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Control Surface Geometry Surrogate-Based Optimization for
Spin-Stabilized Projectile Course Correction

Guillaume Arnoult ∗ and Mickael Zeidler†
Nexter Munitions, 18023 Bourges, France

Eric Garnier‡
ONERA, 92190 Meudon, France

In the present paper a surrogate-based methodology is developed and applied to the design

of a control surface placed on an artillery projectile. An artificial neural network is used to es-

timate the aerodynamic contribution of the control device from numerical simulations. These

estimations are coupled to a flight mechanics code to evaluate the trajectories of controlled

projectiles. From these 6/7 degrees of freedom computations, the trajectories modifications

are modeled using kriging. A correction device should minimize the distance to a 3σ ellipse

(with σ the projectile standard deviation of the projectile dispersion) around the mean impact

point while ensuring problem specific constraints fulfillment. The kriging databases are se-

quentially enriched with the impact point position of the projectile configurations maximizing

the Expected Improvement criterion until a convergence state, assessed by Leave One Out

Cross Validation, is reached. CFD based evaluations of the optimum configuration coefficients

provide a refinement of the neural network databases in the relevant area of the design space.

A course correction corresponding to a decrease of 2 standard deviation in the lateral direc-

tion and an increase of 2 standard deviation in range is achieved respectively by reducing the

pitching moment of the projectile and increasing its lift-to-drag ratio.

Nomenclature

α = Angle of attack, deg

β = Slip angle, deg

ρ = Air density, kg/m3

M = Mach number

V = Velocity, m/s
CA = Axial force coefficient
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CN = Normal force coefficient

Cm = Pitching moment coefficient

∆CA = Spoiler contribution to the axial force coefficient

∆CN = Spoiler contribution to the normal force coefficient

∆Cm = Spoiler contribution to the pitching moment coefficient

CNα = Gradient of normal force coefficient, rad−1

Cmα = Gradient of pitching moment coefficient, rad−1

D = Reference diameter, m

Xs/D = Spoiler longitudinal position w.r.t. the diameter

Hs/D = Spoiler height w.r.t. the diameter

θ = Spoiler span angle, deg

φ = Spoiler roll position, deg

Fsp = Additional force produced by the spoiler, N

X = Downrange, m

Y = Altitude, m

Z = Crossrange, m

XUP = Uncontrolled projectile downrange, m

YUP = Uncontrolled projectile altitude, m

ZUP = Uncontrolled projectile crossrange, m

XCP = Controlled projectile downrange, m

YCP = Controlled projectile altitude, m

ZCP = Controlled projectile crossrange, m

X3σ = Nearest 3σ ellipse point downrange, m

Z3σ = Nearest 3σ ellipse point crossrange, m

PUP = Uncontrolled projectile impact point position

PCP = Controlled projectile impact point position

P3σ = Nearest 3σ ellipse point position

σX = Downrange error standard deviation of the projectile dispersion, m

σZ = Crossrange error standard deviation of the projectile dispersion, m

p = Problem dimensions

N = Number of samples

Ninit = Initial sampling database
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x = Unsampled point location

xi = ith sampled point of the database

y(x) = Accurate evaluation of a function at location x

ymin = Best evaluation of a function

ŷ(x) = Estimation of a function value at location x

R2 = Determination coefficient

µ = Mean value of the dataset

Z = Gaussian correlation process

σ = Model variance

r = Correlation vector

R = Correlation matrix

s = Root mean square estimation error

EI = Expected Improvement

Φ = Cumulative distribution function

φ = Standard normal density function

g = Expression of the constraint function

gmin = Limit of the constraint defining feasible designs

ĝ(x) = Estimation of the constraint function at location x

G(x) − gmin = Measure of the feasibility of design x

I. Introduction

Artillery projectiles are subjects to external perturbations of different nature (for instance wind gusts, variation

of initial velocity etc) and therefore not deterministic. This results in the dispersion of the impact locations

characterizing the ammunition precision error. The ability of a control surface to correct the projectile course is studied.

The design of a spoiler deployed during a spinning projectile flight is studied with the aim of controlling the precision

error. The control of the projectile course leads to an increased accuracy of the ammunition impact point position.

The evaluation of course correction relies on the computation of the projectile trajectory which depends on the

estimation of the aerodynamic coefficients during the process. Dietrich [1] studied the coupling of a flight mechanic

code with different levels of fidelity for the aerodynamic coefficients computation. Several approaches were investigated,

from empirical and semi-empirical modeling (Spinner [2]) which allows the determination of a trajectory in about

10 minutes to RANS-based Computational Fluid Dynamics (CFD) which requires about one month physical-time of

intensive CFD calculations for the same trajectory. However, empirical models tend to under-estimate the axial force
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coefficient resulting in an overestimation of the projectile range. The error can reach 3 to 10% compared to the real

trajectory while the CFD computations lead to more precise evaluations of the coefficients producing an error of about

2% for the range and lateral deviation [1].

To overcome the RANS-based CFD computational time and the empirical models lack of accuracy, an alternative

consists in modeling the variations of the aerodynamic coefficients using surrogate modeling, also called response

surface methods. The flight mechanics code inputs are directly interpolated in the response surface constructed from a

limited number of accurate but expensive calculations, reducing the computational cost of the complete aerodynamic

model.

The interest for surrogate models in this paper is twofold. As a first step, aerodynamic coefficients are simply

estimated from CFD-based response surfaces. Paiva et al. [3], Peter et al. [4] and Rajkumar and Burdina [5] compared

different surrogate models ability in reproducing various function variations. From these studies, neural networks

and kriging seems the most able to model the evolution of a function from a reduced sampling of CFD evaluations.

Subsequently, several studies rely on surrogate models to identify optimum designs. Of specific interest in the present

study, kriging appears promising in the case of an optimization study. The maximization of the expected improvement,

calculated from the kriging model features has been successfully applied several times for the identification of design

maximizing lift coefficient (Meunier [6] and Kanazaki et al. [7]) and for the lift-to-drag ratio of an airfoil (Jeong et al.

[8] and Forrester et al. [9]). In the specific field of projectile optimization, surrogate models have been mostly used for

missiles and projectiles range extension (Schönning et al. [10] and Won et al. [11]). Fowler and Rogers [12] mixed

kriging and neural network with the aim of extending a projectile range while ensuring its stability during the flight.

Based on previous studies, the present work takes advantages of the combination of different surrogates models to

solve an optimization problem. The originality of this study comes from the coupling between CFD evaluations and

flight mechanics in a shape optimization framework. Fast aerodynamic coefficients evaluations are available thanks to

a multi-layer perceptron (MLP) and its combination with kriging leads to the determination of controlled projectile

configurations producing a course correction in both cross- and downrange with a sole device. A sequential enrichment

of both surrogate models is developed at different steps of the optimization process to help the optimizer converging to

an optimum. The refinement of the different response surfaces used during this study has proven to be necessary to

accurately compute the trajectories and hence to determine an optimum device shape for the spin-stabilized projectile

course correction.

The present paper is organized as follow : the selected device geometry is presented in section II. Kriging and neural

network methodologies are described briefly in section III. Aerodynamics of the controlled projectile are introduced in

the section IV. The optimization of the device design is presented in section V and a flight mechanics study is achieved

in section VI to highlight the projectile behavior modifications.
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II. Maneuver concept
The choice of deploying a spoiler during the projectile flight has been particularly motivated by the work of Patel et

al. [13] and Simon [14]. In their work, Patel et al. demonstrated the effectiveness of micro-spoiler in the capability of

modifying the behavior of a projectile for an angle of attack ranging from 0 to 18◦, which is the effective range of the

present uncontrolled projectile. Simon demonstrated the ability of a spoiler to generate additional forces and moments

from subsonic to supersonic regimes by using RANS and ZDES simulations.

The geometrical configuration of the spoiler is presented in fig. 1. Four parameters were optimized, the longitudinal

position from the nose Xs/D, the height Hs/D, the span angle θs and the roll position φs defined w.r.t. the vertical axis

in fig. 1b. The spoiler is supposed mounted on a free-rolling support and the latter parameter would be controlled by an

internal motor providing the opposite spin-rate of the projectile. The angular position of the spoiler, deduced from

the required 2-D course correction, would be fixed in the earth referential during the flight while the projectile body

would be spinning. A unique deployment instant is chosen for the spoiler. From this time until the impact, the device is

assumed deployed and maintained in position by the internal motor. The geometrical parameters ranges are given in

table 1.

Xs/D
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x/R
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θs

Hs/D
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(a) Sideview projectile geometry (b) Rear view of the

projectile geometry

Fig. 1 Visualization of the spoiler geometry

The control of the angular position enables choosing toward which direction the trajectory is altered. A 2-D course

correction combination of cross- down-range modifications ability is thus demonstrated by varying the roll position at

which a given spoiler geometry is deployed in fig. 2. As illustrated by the arrows Fs , the normal force induced by the

spoiler is continuously diametrically opposed to the spoiler angular position. During the projectile flight and until the

spoiler deployment, information about the trajectory perturbation would be gathered using an external radar system.

From the tracking system, the precision error at the impact is estimated and the course correction required is deduced.

The optimization problem consists in determining a design which produces a 2-D course correction reducing the

precision error at the impact of the projectile. This error is statistically defined by STANAG 4635 [15] as the deviation

of the real impact points from the mean impact point. It is determined as the quadratic sum of different errors occurring
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(b) Impact points for different roll positions φs

Fig. 2 Spoiler roll position φs influence on the trajectory modification, the red dots are the impacts points
associated to the roll positions presented in fig. 2a

during the projectile flight (meteorological effects, variations in initial velocity, etc). The error budgets are empirically

deduced from field firing conducted by DGA (French General Armament Direction) of the uncontrolled projectile.

The precision error is assumed to follow a Gaussian distribution which is represented in fig. 2 by the dashed ellipses

characterized by the down- and cross-range standard deviations.

Parameter range
min max

Longitudinal position Xs/D 4.85 5.5
Height of the spoiler Hs/D 0.05 0.25
Span of the spoiler θs (°) 15 60

Roll position φs (°) 0 360
Table 1 Optimization parameters range

The additional forces and moment induced by the spoiler deployment enable the control of the projectile trajectory.

In contrast with other control devices, the spoiler would remain deployed with its angular position fixed by the motor.

Wey et al. [16] have highlighted that its deployment induces a transitional phase during which the forces and moments

exerting on the projectile are not at an equilibrium. This transitional phase in not modeled in the present study. Since

the spoiler position is time-invariant, the projectile reaches an equilibrium after a short period of time. This equilibrium

6



position is located in the projectile resistance plane, which is also the spoiler symmetry plane.

III. Surrogate models
As estimated from the work of Dietrich [1], the accurate computation of aerodynamic coefficients along the trajectory

is incompatible with the optimization framework presented in this study. Surrogate models are used to model the

spoiler contribution to the aerodynamic coefficients and the trajectory modifications induced by the different parameters

combinations. A short description of the models used in this study is presented here.

A. Initial sampling

In this study, Latin Hypercube Sampling LHS [17, 18] is used for its simplicity and its good overall performances.

According to Jones et al. [19], a good initial sampling size counts 10 samples in every dimension which is usually

not reachable on high-dimensional problems. From a practical point of view, only the spreading of 3p points will be

considered to establish a kriging response surface in the following. The optimization of the points distribution in the

design space is achieved considering the Morris and Mitchell criterion [20] which maximizes the minimal distance

between the sampling sites.

B. Kriging model

The advantage of the kriging modeling of a function, compared to other surrogate models lies in the estimation of

the confidence in the interpolations made. It is affected by the distance between the unknown point x and the sampling

points and is expressed by the root mean square prediction error (RMSE). The response surface computed with kriging

gives thus estimations of the function values at unsampled points but also a quantification of the confidence in these

estimations. The kriging response surfaces modeling the variety of course corrections were constructed from the

OpenMDAO toolbox which is an open-source mutli-objective optimization framework [21]. The enrichment of the

model is achieved through the computation of the Expected improvement and the Probability of Feasibility described in

the next paragraphs.

1. Exploitation and exploration of the Kriging response surface

To combine the local and global search of an optimum, Jones et al. [19] proposed the computation of the Expected

Improvement (EI) which is the mathematical definition of the probability that an unsampled point performs better than

the already best known sampled point of the function. If the uncertainty at this unsampled point is modeled assuming a

normal density function with mean ŷ(x) and standard deviation s(x) taken from the kriging model, the expression of EI

is given by eq. (1) :
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E[I(x)] = (ymin − ŷ(x))Φ
(
ymin − ŷ(x)

s(x)

)
+ s(x)φ

(
ymin − ŷ(x)

s(x)

)
(1)

where Φ and φ are respectively the cumulative distribution and the standard normal density function. The EI proposes a

trade-off between the exploration and the exploitation of the surrogate model. Indeed, values associated to the EI score

are high in the regions of the design space where the function values are significant (exploitation) but are also high in

the unknown regions of the model where the error associated to the model s(x) is large (exploration).

2. Constraints handling from the Kriging model

The addition of constraint functions to the initial problem definition leads to the reduction of parameters combinations

susceptible to minimize the objective function. They are modelled following the definition of the Probability of

Feasibility (PF) introduced by Schonlau [22] and applied successfully to a surrogate-based optimization by Parr et al.

[23]. In the same way as for the EI computation clarified in the preceding paragraph, the PF takes advantages of the

kriging modeling of a function to estimate if constraints are likely to be respected by comparing the estimation of a

function to the constraint limit, see eq. (2).

P[F(x)] = 1
s(x)
√

2π

∫ ∞

0
e−[(G(x)−gmin)−ĝ(x)]2/(2ŝ(x))2 dG (2)

where g is the constraint function, gmin is the limit of the constraint and G(x) − gmin is a measure of the feasibility.

G(x) is a random variable and s(x) is constraint standard deviation of the Kriging model.

C. Artificial Neural Networks

A multi-layer Perceptron is specifically used in this study to model the evolution of the spoiler aerodynamic

coefficients (∆CA, ∆CN and ∆Cm) as a function of the aerodynamic conditions (Mach number M∞ and angle of attack α).

The training database is composed of more than 1300 CFD evaluations of the spoiler. To avoid an over-fitting of the MLP,

resulting in the degradation of the aerodynamic coefficients estimations, the training iterations stop when the coefficient

of determination does no improve anymore on a subset of the training database (10% of the evaluations in the present case).

The MLP models of each coefficient were implemented using the Python module Scikit-learn [24]. The details on

the internal architecture providing the best reconstruction results (based on the calculation of the R2 coefficient on a

validation database) for the present study are gathered in Table 2. It has to be noticed that the best estimations using

MLP are obtained when the inputs and outputs are scaled in the same interval of range [−1; 1].
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MLP Layers 5 x 100 x 100 x 100 x 3
Optimization algorithm LBFGS
Activation function Logistic sigmoïd f (x) = 1

1+e−x

Table 2 MLP internal parameters

IV. Projectile aerodynamics

A. Simulations overview

In this study, a MLP is used to model the variations in the aerodynamic coefficients of the spoiler configurations.

The database is composed of RANS-based CFD evaluations. The contribution of the spoiler is isolated by simulating

the flow around both controlled and uncontrolled projectile. The uncontrolled projectile has been studied prior to the

present work, for instance by Simon et al. [25] and Zeidler et al. [26]. The aerodynamic modifications induced by the

spoiler deployment are described in the following.

1. Meshing strategy

The 155 mm caliber (cal.) projectile is composed of a 5.6 cal-long body constituted of a 3 cal-long truncated nose.

The 0.63 cal-long boat tail of the projectile is divided into a 3◦ and a 7.5◦ sloped part. 1300 RANS-based evaluations of

the projectile aerodynamic coefficients are available for a wide variety of flight conditions and spoiler geometries to

constitute an initial database.

The uncontrolled projectile computational grid is identical for every flow condition and is used as background mesh

in the study of the controlled projectile. The computational domain external boundary extends at a distance of 50 caliber

around the projectile. The total number of cells is equal to 22 million, the azimuthal resolution of the grid being set

to 1.5 degree per cell. The spoiler setup on the projectile body is ensured via the chimera method which consists in

merging two grids into a unique one as shown in fig. 3.
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Fig. 3 Computational grid for the controlled projectile

Flow quantities are transferred from the background grid to the spoiler patch through interpolating areas. A cell-size

ratio close to 1 at the interfaces between the background and the patch grids has been imposed. The grid associated to

the spoiler is constituted of 5 million cells which leads to a controlled projectile mesh size of 27 million cells.

2. elsA code

The CFD solver used in this study to compute the aerodynamic coefficients of the different projectile configurations

is the ONERA’s solver elsA based on a cell-centered finite volume approach for solving the Navier-Stokes equations on

structured multiblock grids [27]. RANS simulations are performed for a spoiler deployed under the projectile body to

obtain positively defined pitching moment coefficient.

The computations constituting the initial aerodynamic coefficients database were realized using the Spalart-Allmaras

(SA) one-equation turbulence model. Consistently the same turbulence model is used in the computations enhancing

this database. It is known that SA model performs poorly in the presence of massively detached flows. However, a

comparison with other turbulence models (k −ω and EARSM not presented here) shows maximum discrepancies of the

order of 10% for drag coefficient evaluations which is considered acceptable in the present case, since we are more

interested in relative performance.

B. Flow around the controlled projectile

The flight conditions encountered by the uncontrolled projectile are ranging from supersonic Mach number (at the

muzzle exit) to high subsonic, the angle of attack remaining below 6◦. The deployment of the spoiler can occur at any

point of the trajectory thus the uncontrolled and controlled projectile aerodynamic models are constructed in the same

range of flight parameters.
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Four flight conditions were simulated corresponding to subsonic, transsonic and supersonic regimes. A generic

spoiler is located in the middle of the projectile boat-tail to highlight the flow modifications induced by its presence. As

shown in fig. 4, the topology of the flow remains similar to the uncontrolled projectile case with the presence of similar

expansion and shock waves. The spoiler induces modifications in its vicinity and affects directly the projectile wake.
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Fig. 4 Controlled projectile, pseudo-schlieren visualization | |grad(ρ)| | at α = 0◦ for four freestream Mach
numbers

Upstream of the spoiler a recirculation bubble is highlighted by the streamlines presented in fig. 5b. Downstream

of the spoiler a second detached area is developed which merges with the wake of the projectile. Because of the

longitudinal position of the spoiler close to the projectile base, a fluidic reattachment occurs in the computations of the

present study. The diameter of the wake is increased compared to the uncontrolled projectile cases, resulting in an

increase of the base drag. A comparison of streamlines is presented in fig. 5 focusing on the projectile base flow. The

detached areas are showed for both projectile configurations at M = 0.9 and α = 0.
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Fig. 5 Iso-contour of Mach number, iso-pressure lines and streamlines for M = 0.9 and α = 0◦ in the
symmetry plane

The symmetrical recirculation area defined by the streamlines downstream of the uncontrolled projectile base in fig.

5a is deeply modified by the presence of the spoiler as shown in fig. 5b. In the latter, the base flow is not symmetrical

and the spoiler influence is perceivable in the intensity lowering and position modification of the shocks ahead of the

boat-tail. Fig. 5b highlights the modifications of the projectile trim angle with the disappearance of the stagnation

point which is clearly identified in the case of the uncontrolled projectile 5a. Directly downstream of the spoiler a small

recirculation area is identified while on the other side, a recirculation bubble is formed just downstream of the base.

Moreover, due to the curvature of the streamlines an additional shock appears in the wake which can be designated as

recompression shock, for these transonic freestream conditions, which is not present in the case of the uncontrolled

projectile.

V. Spoiler optimization
The optimization process developed within this study is illustrated by the flowchart presented in fig. 6. In the

specific optimization solved here, the instant of deployment of the spoiler is selected by the authors to happen in the last

12% of the uncontrolled projectile traveled distance. Within the 88% of the uncontrolled projectile course, information

is gathered on the external perturbations occurring during the flight. The guidance system of the projectile computes the
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theoretical trajectory and thus determines accurately the expected impact point and the deviation from the uncontrolled

projectile mean impact point.

The initial step of the process consists in estimating the spoiler contribution to the aerodynamic coefficients of

the projectile with a MLP, paragraph V.A. Three response surfaces (∆CA, ∆CN and ∆Cm) are used in the trajectories

computations by a six/seven degrees-of-freedom flight mechanics code of various configurations determined by LHS,

paragraph V.B. These computations constitute the initialization step for the construction of kriging response surface of

the trajectories modifications induced by the controlled surfaces, paragraph V.C. A sequential enrichment of the kriging

response surfaces based on the selection of optimal design using a genetic algorithm is implemented to converge toward

the optimum set of parameters achieving the required course correction, paragraph V.D. The main steps of this process

are detailed in the following sections with illustrations of the ongoing optimization problem.

Trajectories optimization loop
CFD database loop

No

NoMLP
modelling of
∆CA, ∆CN

and ∆Cm

Trajectories
computations

Kriging
modelling of
projectiles
trajectories

Bi-objective
optimization
until Leave

One Out Cross
Validation
convergence

CFD
computations

of the
optimum

configuration

Impact points
convergence?

Global
optimum
localized

Xs/D
Hs/D
θs
M∞
α

Xs/D
Hs/D
θs
φs

Fig. 6 Flowchart of the surrogate-based optimization algorithm

The trajectories optimization loop, referred to as inner loop in the following, defines which configuration of the

controlled projectile is considered as optimum. During this process, the range and the lateral deviation produced by the

selected configurations are added to the kriging databases used to model the objective and constraint functions. This

inner loop constitutes the first adaptive sampling of the optimization process. The CFD database loop, referred to as

outer loop, aims at refining the aerodynamic coefficients databases in the specific regions of the design space where

promising configurations of the controlled projectile are identified. These databases are enriched during the global

optimization process with the CFD based aerodynamic coefficients of the optimum configuration selected from the

trajectories optimization loop until a state of convergence of the impact point position is reached. This enrichment is

the second adaptive sampling. The MLP models associated to the aerodynamic coefficients of the control surface are

trained with the additional CFD results before each new run of the inner loop.
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A. Aerodynamic coefficients estimations

A MLP is used to estimate the increment in force and moment due to the deployment of the spoiler (∆CA for the

additional axial force coefficient, ∆CN for the additional normal force coefficient and ∆Cm for the additional pitching

moment coefficient) over the 5 dimensions of the design space presented in table 3 (3 spoiler geometrical parameters

Xs/D, Hs/D, θs to which the Mach number M∞ and the angle of attack α are added).

Parameter range
min max

Longitudinal position Xs/D 4.85 5.5
Height of the spoiler Hs/D 0.05 0.25
Span of the spoiler θs (◦) 15 60

Mach number M∞ 0.7 3
Angle of attack α (◦) 0 6

Table 3 MLP parameters range for the modeling of the spoiler aerodynamic coefficients

The initial MLP database consists of 1300 RANS computations. The advantage of using a MLP model against a

kriging model here has been discussed by the authors in [28]. The construction of the kriging model required several

hours while it is limited to twenty minutes when considering MLP. Additionally, the distribution of the CFD evaluations

over the parameters space does not follow an optimal design of experiment which eventually leads to an over-fitting of

the kriging model.

The validation of the MLP response surface training is illustrated in fig. 7 where MLP estimations of ∆CN are

compared to a validation set of 50 CFD evaluations, independent from the training database.
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Fig. 7 MLP Lift force coefficient estimations over a validation database
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The quantification of the MLP quality is achieved by calculating the coefficient of determination R2 which

characterizes globally the surrogate model quality.

R2 = 1 −
∑N

i=1(ŷ(xi) − y(xi))∑N
i=1(y(xi) − ȳ(x))

(3)

where ŷ(xi) is the estimation by the surrogate model at unsampled position xi , y(xi) is the CFD value of the

coefficient and ȳ(xi) is the mean over the N samples of the validation set. The initial MLP presents a R2 = 0.724 for the

lift coefficient however some estimations over the validation database present an important discrepancy compared to the

actual value of the spoiler contribution. For instance, configurations 15, 16 or 38 show high value of the relative error.

These particular spoiler geometries have one of their parameters very close to the boundaries defined in Table 1 which

could explain the difficulty of the response surface to estimate accurately the coefficients.

The time needed to interpolate the aerodynamic coefficients using a MLP is only 30 seconds to get the 10 164

combinations of α and M∞ required to compute a controlled projectile trajectory using the 6DoF code, which requires

20 seconds for each trajectory.

B. Trajectories initial sampling

An initial database of controlled projectiles is spread over the p = 4 dimensional design domain (3 geometrical

parameters Xs/D, Hs/D, θs and the roll position φs) using the optimized LHS methodology. The number of samples

is directly determined from the rule of thumb stated earlier as Ninit = 34 = 81 configurations. The trajectories are

computed using the 6-DOF flight mechanics code Balco [29] and presented in fig. 8.
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Fig. 8 Trajectories of controlled projectiles initialized by 4-dimensional LHS

A wide variety of corrections (around the uncontrolled projectile mean impact point at [1;1]) is proposed in this

purely exploratory phase of the process. The lateral deviations and range modifications produced by the different

spoilers are used to initialize the kriging response surfaces modeling the objective and constraint functions that are
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described in the next paragraph.

C. Definition of the optimization problem

Considering the distribution of the uncontrolled projectile impact points introduced in section II, the objective

function is defined as the minimization of the distance between the controlled projectile impact point and the closest

point belonging to the 3σ ellipse, eq. (4). Optimizing a spoiler geometry allowing such correction would ensure the

correction of more than 99% perturbed trajectories. However, a single optimization of the objective function is not

sufficient since any combination of range and lateral modification leading close to the 3σ ellipse would be considered as

optimum.

The optimization problem studied here consists in determining a spoiler geometry able to produce the course

correction in the most unfavorable case of trajectory perturbation. It is then assumed that, if the spoiler geometry fulfills

this specific case, it will allow producing every course correction, as illustrated in fig. 2. This is imposed through the

definition of three additional constraints. An increase of the projectile range is imposed through eq. (5), illustrated in

fig. 9 by the horizontal green dashed line. The natural motion of the projectile, directly influenced by its spinning, leads

to a lateral deviation towards the right of the canon position. The selection of the most unfavorable case induces the

reduction of this lateral deviation of the projectile, eq. (6), illustrated in fig. 9 by the vertical green dashed line.

Finally, to avoid an over-sizing of the spoiler geometry, only the configurations resulting in an impact point located

inside the 3σ ellipse are considered as optimum to the present problem. This constraint translates inot eq. (7) in

which the distance between the controlled projectile impact point and the uncontrolled projectile mean impact point is

compared to the distance between the uncontrolled projectile mean impact point and the closest point belonging to the

3σ ellipse. It is illustrated in fig. 9 by the dashed green ellipse centered on the uncontrolled projectile mean impact

point.
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Objective: min( fd) =
√
(X3σ − XCP)2 + (Z3σ − ZCP)2

(4)
w.r.t. constraints: XCP > XUP + 2σX (5)

ZCP < ZUP − 2σZ (6)
d (PUP;PCP) < d (PUP;P3σ) (7)

Definition of the objective and constraint functions
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Fig. 9 Constrained targeted area for the course
correction optimization problem

The grey area in fig.9 corresponds to a violation of a least one of the stipulated constraints. The targeted area is the

tiny white circled zone where the optimizer should minimize the distance with the 3σ ellipse. These colors for the

constrained areas are used in the following presentation of the optimization results.

D. Bi-objective optimization

An adaptive sampling is developed inside the inner loop in fig. 6, based on the kriging estimations of the objective

and constraint functions. A bi-objective optimization is achieved with the aim of maximizing EI and PF through an

evolutionary process simulated with the NSGA-II algorithm developed by Deb et al. [30]. One specific configuration

is selected at each step of the inner loop resulting from the convergence of the bi-objective genetic algorithm. Only

individuals belonging to the Pareto front of this bi-objective optimization, illustrated for an on-going process in fig. 10,

can be selected to enrich the database. More specifically, following the suggestions by Parr et al. [31], the individual

maximizing the product of both quantities is promoted, ensuring the exploration of the design space with configurations

fulfilling the constraints.
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Fig. 10 Configurations of spoiler belonging to the Pareto Front during the inner loop optimization process,
the red dot corresponds to the point of the front maximizing EI × PF

The studies by Durantin [32] and Waldock [33] highlight the advantage of treating the problem as a multi-objective

optimization. The maximization of EI and PF separately leads to the selection of better candidates than in the case of a

single-objective optimization. Indeed, the product EI × PF is highly multi-modal, meaning that the optimizer may

likely be trapped in the neighborhood of a local optimum while this behavior can be avoided in the multi-objective

optimization. Thus, it is important to note that the point selected from the single-objective optimization may not

correspond to the optimum found on the Pareto Front of the multi-objective optimization.

E. Course correction results

The adaptive sampling described in the previous section is applied to the projectile course correction problem. A

convergence criterion, chosen as the evaluation of the Leave One Out Cross Validation (Myers et al. [34]), is compared

to a threshold (10−4 in the present study) for the kriging modeling of the objective function. The adaptive sampling of

the optimization is conducted until this criterion is reached. The distance of the impact point to the 3σ ellipse for all the

configurations satisfying the constraints is evaluated. The configuration leading to the closest point to the 3σ ellipse is

selected as an ’intermediate’ optimum and its aerodynamic coefficients (∆CA, ∆CN and ∆Cm) are assessed using RANS

computations.

The spreading of the impact points in the targeted area is presented in fig. 11 from the initialization step to the last

iteration of the process which occurs after 3 CFD enrichment of the MLP databases. The impact points are colored by

the spoiler frontal surface associated to the trajectory modification.
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Fig. 11 Resulting impact points during the optimization process, dots are colored by the spoiler frontal
surface of the spoiler

The initial stage of the optimization is only able to select 4 configurations of the spoiler producing the required

range increase X−XUP

2σX
eq. (5) before the convergence threshold on the objective response surface is reached. The

configurations of the spoiler presented in fig. 11, after the enrichment of the MLP database, are almost equivalent

regarding the spoiler frontal surface. This means that in the 4-dimensional design space, the configurations producing

the required 2-D course correction are located on an hypersurface depending on Hs/D × θs . The choice of any spoiler

configuration belonging to this particular hypersurface determines the magnitude of the force induced by the spoiler.

The longitudinal position of the spoiler Xs/D influences the magnitude of the pitching moment created by the spoiler

which is directly linked to the lateral deviation produced by a spinning projectile while the roll position φs determines

toward which direction the force induced by the spoiler is applied.

A refinement of the MLP database occurs between two steps of the optimization process. Contributions of the

spoiler to the aerodynamic coefficients is deduced from CFD computations spread along the controlled part of the

trajectory following a LHS. An example of this second adaptive sampling is illustrated in fig. 12 where the seven red dots

represent the flow conditions for the CFD computations of the aerodynamic coefficients. Initially, nine sampling point

were selected for the adaptive refinement of the MLP models. However, it appeared that similar flight conditions were

selected for three CFD computations leading to almost identical spoiler contribution to the aerodynamic coefficients.

Seven aerodynamic conditions were chosen to enrich the MLP database, thus avoiding an eventual over-fitting of the

surrogate model.
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Fig. 12 Choice of flow conditions during the controlled projectile flight identified on the optimal trajectory
defined by the inner loop

In the present case, a convergence state on the impact point position is reached after 3 CFD enrichment of the MLP

databases. The use of surrogate models allows solving an inner loop step in 24 hours. Each of the CFD enrichment

requires between 30 and 45 hours over 84 processor for each flow conditions (45 × 84 × 7 = 26 460 CPU hours for one

step of CFD enrichment). The global optimum configuration is capable of producing a course correction very close to

the 3σ ellipse while satisfying the constraints, hence able to correct most of the trajectories.

The enrichment of the MLP databases between two inner loop steps, illustrated in fig. 11, has a clear influence on

the number of identified controlled projectiles able to produce the required 2-D course correction and results in impact

points getting closer to the 3σ ellipse. Indeed, refining the MLP database by computing the optimum configuration

aerodynamic coefficient, which hence belongs to the hypersurface of equal frontal surface, leads to an increase in the

estimations accuracy for all the configurations belonging to the subset of potential solutions and results finally in the

identification of an optimum spoiler configuration.

VI. Flight Mechanics study of the optimum configuration
The optimum configuration determined during the process enables the course correction of the projectile. The

constraints defined in the problem statement conflict with the natural motion of the uncontrolled projectile. The

modifications of the projectile behavior allowing an increase in the range and a decrease in the lateral deviation after the

deployment of the spoiler are highlighted in this section.

The flight mechanics behavior of the controlled projectile was unknown prior to the present study. This explains the
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restriction of the initial MLP database angle of attack definition to a maximum of 6◦. Indeed, at the maximum the

uncontrolled projectile angle of attack is α = 3◦ as illustrated in fig. 13a. As a consequence, an increase was expected

once the spoiler is deployed but it appears in fig. 13a that it exceeds 10◦ during the trajectory. The deployment of the

spoiler during the flight leads to an extrapolation of the aerodynamic coefficients by the initial MLP response surfaces.

The interest of the optimization outer loop is thus, in a first time, to extend the domain of definition of the MLP database.

Moreover, the choice of a specific spoiler instant of deployment (12% of the trajectory before the impact in the studied

case) in combination with a specific frontal surface value leads to the identification of designs able to produce the

required 2-D course correction. In the 4 dimensional domain (defined in table 1), an iso-surface of spoiler frontal

surface is thus defined by the product FSs = θs × Hs/D. In the present course correction problem, this value is lower

than the maximum allowed by the parameters range, as indicated by the parameters combination in table 14a. The

adjustment of the instant of deployment for a given spoiler geometry with the modification of the roll angle φs allows

producing any 2-D course correction. The magnitude of the trajectory modifications depends thus on the integration of

the additional forces induced by the spoiler (which are maximized when the frontal surface is maximum) over the time

interval during which it is deployed.

After the computation of the first inner loop, the extension of the MLP database is thus beneficial for all the evaluated

configurations. The following iterations of the outer loop are used to increase the accuracy of the MLP database until a

convergence state is reached. The modification of the aerodynamic coefficient induced by the enrichment of the database

is shown in fig. 13 where the evolution of the optimum projectile coefficients are presented. It has to be noted that in fig.

13b and 13c the aerodynamic coefficients of the uncontrolled projectile are close to 0 while the figures focuses on the

spoiler contributions.
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The formulation of the optimization problem constraints requires an extension of the projectile range. The deployment

of a spoiler leads naturally to an increase in the drag coefficient CA of the controlled projectile, which reduces the range

if the device roll position is not piloted. One solution to achieve the range extension goal is thus to increase the lift to

drag ratio of the projectile CN/CA as illustrated in fig.13b. This is achieved by the increase angle of attack highlighted

in fig. 13a. An additional force Fsp is induced by the spoiler deployment, which is diametrically opposed to its roll

position. The trajectory modification results in the integration of this force over the time interval during which the

spoiler is deployed, as expressed in eq. (8) :

z =
∫ timp

tdepl

Fspdt =
∫ timp

tdepl

1
2
ρSV2CNααT dt (8)

with αT =
√
α2 + β2

with αT (the total angle of attack) the root-square-sum of the pitch and yaw angles. The ability of controlling the spoiler

roll position φs enables orienting this additional force and thus the course correction.

The optimum configuration obtained from the algorithm combines the two behaviors described above to achieve the

required 2-D course correction. The geometrical characteristics of the optimum are gathered in Table 14a and presented

in fig. 14b :

Parameter value
Longitudinal position Xs/D 5.494
Height of the spoiler Hs/D 0.247

Span angle θs (◦) 58.3
Roll position φs (◦) 352.5

(a) Definition of the optimum spoiler geometry
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(b) Optimum spoiler geometry parameters

Fig. 14 Resulting spoiler producing a 2-D course correction

The deployment of the spoiler induces the production of an aerodynamic force directly opposed to its position on the

body of the projectile, represented by the vector Fsp in fig. 14b b. This additional force can be decomposed into a

lift and a lateral force contribution. Due to the constraints imposed in the present optimization process, the spoiler is

deployed under the projectile body. The normal forces induced by the spoiler and the projectile are thus oriented in the

same direction, maximizing the controlled projectile lift. These contributions to the aerodynamic forces acting on the

projectile result respectively in an increase in range and to a reduction of the lateral deviation to produce the required

2-D course correction.
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VII. Conclusions
A surrogate-based algorithm was developed with the aim of optimizing a spoiler geometry deployed during the

flight of a spin-stabilized projectile. An original feature of the present study consists in the coupling of MLP and

kriging response surfaces with a flight mechanics code to identify spoiler geometries able to produce a specified course

correction. The selection of an optimum configuration is achieved through several adaptive sampling of the different

response surfaces. Kriging response surfaces are enriched in the inner loop of the optimization problem to model the

objective and constraint functions while the MLP database is enhanced with additional CFD evaluations of the optimum

spoiler aerodynamic coefficients. The controlled projectile is able to reach an increased range and a reduced lateral

deviation compared to the uncontrolled projectile trajectory. The modification of the angle of attack consecutive to the

spoiler deployment leads to the increase of the coefficients ratio responsible for the trajectory modifications.

Even if it would have been more rigorous to initially set a wider angle range of angle of attack for the MLP database,

the outer loop is able to circumvent this issue. The methodology adapted to the precision error reduction is flexible

since an adaptation of the objective function modeled by kriging allows solving an optimization problem for any course

correction type. This method could be complemented with a stability analysis of the controlled projectile flight.

In the following of this study, multi-fidelity surrogate models could be used to integrate unsteady computations of

the optimum configuration in the databases. Kriging variants, such as Hierarchical kriging or Co-kriging could be used

to estimate the contribution of the spoiler to the aerodynamic coefficients with increased accuracy. Moreover, wind

tunnel measurements of the controlled projectile aerodynamic coefficients will be compared with the surrogate models

estimations.
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