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Abstract

The paper presents a numerical framework for the aerodynamic analysis of aircraft wings
in transonic cruise and take-off/landing compatible with preliminary and conceptual design
phase requirements based on the Non-Linear Vortex Lattice Method (NL-VLM). The pur-
pose of this work is to demonstrate the applicability of the VLM-2.5D RANS approach for
aircraft design optimization. The algorithm captures wing sweep effects, important in the
transonic regime and near CLmax conditions, by a stripwise viscous-inviscid coupling strategy
with an infinite-swept wing (2.5D) Reynolds-Averaged Navier-Stokes (RANS) solver. Aero-
dynamic forces are evaluated through spanwise integration of the 2.5D RANS solutions and
a trefftz-plane analysis of the VLM solver. The framework allows calculations of single and
multi-element configurations without modifying the VLM mesh. A novel CLmax criteria is
proposed based on recently observed stall-cells patterns that captures CLmax , αmax and the
spanwise location of the stall, which represent important design parameters. The applicabil-
ity of the framework to aircraft design is demonstrated by embedding the analysis tools into
a gradient-free Covariance Matrix Adaptation Evolution Strategy. After a verification phase,
validation is performed on high-speed, high-lift and combined high-speed/high-lift optimisa-
tions cases. In particular, the capability of the numerical algorithms towards multi-topology
optimisation is demonstrated.

1. Introduction

Aircraft design is made of three distinct phases, preliminary, conceptual and detailed.
These phases aim at different objectives so that different tools are necessary. In concep-
tual design, the aerodynamic analysis comes mainly from knowledge-based and low-fidelity
methods with low computation cost, because hundreds if not thousands of concepts are
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Nomenclature

α, AoA Angle of attack

αmax Angle of attack at CLmax

∆α Viscous corrections

Γ Circulation magnitude

λ Aspect ratio

φ, Λ Sweep angle

A Geometry influence matrix

b Wing span

CD 3D drag coefficient

ck Kink chord

CL 3D lift coefficient

CM 3D pitching moment coeffi-
cient

cr Root chord

CLmax Maximum lift coefficient

Clα Lift curve slope

Clinv Inviscid sectional lift coeffi-
cient

Clvisc Viscous sectional lift coeffi-
cient

dl Incremental vortex segment
of length

LE Leading Edge

S Wing reference area

t Wing thickness

TE Trailing Edge

Wto Aircraft takeoff weight

Ww Weight of the wing

Wzf Aircraft zero fuel weight

xcp Pressure center position

xref Reference point for pitching
moment calculation

evaluated[1]. Moreover, nearly 80% of the life-cycle cost are induced by choices made in
the conceptual phase[2]. The aerodynamic and structural analysis are particularly prone
to errors due to the low-fidelity methods used and the complex interaction between the
disciplines involved[2].

In a conceptual multi-disciplinary design optimization (CMDO) framework, the number
of design variables remains low and the optimization is oriented towards the exploration
of the design space[1]. A stochastic optimizer is often used at this stage with both single-
objective and multi-objective functions and requires thousand of function evaluations to
converge toward an optimum. Fast turnaround aerodynamic tools are then necessary like
inviscid potential methods. A linear potential method such as the Vortex Lattice Method
(VLM) solves inviscid, attached and incompressible flows, which does not represent the
flow physics over the aircraft. Therefore, non-linear effects like compressibility and flow
separation cannot be captured by this method.

However, viscous correction can be applied to the VLM by using 2D RANS data or exper-
imental data[3, 4, 5, 6, 7, 8]. These methods are solved iteratively to find the viscous correc-
tion by changing the local angle of attack[3, 4, 9] or by using a local decambering approach[7].
These viscous correction methods have showed interesting accuracy[6, 10] compared to
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higher-fidelity solutions for low-speed CLmax prediction[3] and transonic conditions[11]. One
interesting feature presented by Gallay et al.[11] is the use of 2.5D RANS data to incorporate
crossflow effects for a better CLmax and shock wave prediction[6].

The goal of the current work is to perform aerodynamic optimization of wing plan-
form using a VLM/2.5D RANS approach[6] with a Covariant Matrix Adaptation Evolu-
tion Strategy (CMA-ES)[12] optimizer. High-speed optimization is explored with low-speed
multi-topology optimization as well. Moreover, a new spanwise stall detection criteria is
introduced as an optimization constraint. Finally, low-speed and high-speed optimizations
are combined together to explore the trade-off between high-speed and low-speed objective
functions.

2. Aerodynamic Solver

2.1. Vortex Lattice Method Extended to high Angle of Attack

The wing is modeled as a thin surface represented by vortex rings (Figure 1). The bound

Figure 1: Representation of thin lifting surfaces (Source: [13]).

vortices are placed on the wing panel’s 1/4 chord and the Neumann boundary condition of no
penetration is enforced at the collocation point located at the 3/4 chord of the wing’s panel.
This is referred to as the 1/4-3/4 rule and it is a fundamental concept for Vortex Lattice
Methods derived by Pistolesi[14]. By using a single panel vortex lattice in two-dimension
(Figure 2), he found that by placing the vortex point at the 1/4 chord and the boundary
condition at the 3/4 chord, the section lift curve slope corresponds exactly to the thin airfoil
theory (2π). However, this is only true with the assumption of small angles of attack. The
velocity induced U at a distance r from a vortex placed at c/4 with the boundary condition
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is represented by:

U = U∞sin(α) =
Γ

2πr
(1)

with Kutta-Joukowski formulation of lift and thin airfoil theory, but without assumption of
small angles becomes:

1

2
ρU2
∞c2πα = ρU∞Γ = ρU∞2πrU∞sin(α) (2)

1

2
c2πα = 2πrsin(α) (3)

r =
1

2

α

sin(α)
(4)

Figure 2: Control point and vortex location (Source: [6]).

Therefore, the collocation point must be corrected at high angles of attack to maintain a
local lift curve slope of 2π. The influence of each vortex rings on each other is evaluated using
the Biot-Savart Law and assembled into an influence matrix A. The boundary condition is
incorporated in the right-hand side (RHS) and the linear system is solved for the unknown
circulation Γ (Equations 5).


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m
...

...
. . .

...
Am,1 Am,2 · · · Am,m



Γ1

Γ2
...
Γm

 =


RHS1

RHS2
...

RHSm

 (5)

RHSK =
(
U,V,W

)
∞ · nK (6)

The Vortex Lattice Method only models inviscid, incompressible and attached flows.
Here, we include sectional data computed with a two-dimensional RANS flow solver to
incorporate non-linear effects such as flow separation and shock waves.
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2.2. 2.5D RANS Flow Solver

The viscous sectional data are generated with NSCODE[15], a two-dimensional RANS
flow solver extended for infinite swept flows[16]. The 2D Navier-Stokes equations are solved
with the addition of one scalar equation for the crossflow derived with infinite swept wing
conditions in a rotated coordinate system normal to the sweep line, ∂

∂y′
= 0,

∂ρv′

∂t
+ u′

∂ρv′

∂x′
+ w′

∂ρv′

∂z′
=
∂τx′y′

∂x′
+
∂τy′z′

∂z′
(7)

where v′ is the crossflow velocity in the sweep line direction. The 2.5D extension allows
crossflow effects to be computed with a 2D mesh. There is no cells or halos required in the
spanwise direction, thus reducing the computational cost and memory requirement compared
to a similar infinite-swept wing 3D RANS flow solver calculation. The effect of incorporating
crossflow with the infinite swept wing condition is demonstrated in Figure 3 where the same
calculation is performed for different swept flows conditions in low-speed and high-speed
regimes. The low-speed CLmax is reduced with increasing sweep as well as the lift curve
slope. In transonic conditions, the shock position is reduced from 50% without crossflow
to 25% chordwise with a 30◦ swept flow condition. The leading edge pressure peak is also
increased with the sweep. These crossflow effects, when coupled to the VLM, allows a better
maximum lift coefficient prediction for high-lift configurations and viscous drag estimation
in transonic conditions. Since the chordwise pressure distribution is also better captured,
the pitching moment estimation is also improved with 2.5D sectional data. Physical effects
captured by the infinite swept wing condition are presented in Figure 4.
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Figure 3: Lovell - Crossflow effects over the sectional aerodynamic characteristics.
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Figure 4: Physical effects captured by infinite swept wing RANS solution : i) stagnation region, ii) shock
waves, iii) trailing-edge crossflow boundary-layer thickening/separation (Source: [11]).

2.3. Viscous Coupling Algorithm

Viscous corrections are incorporated using an alpha coupling algorithm[? 3, 6]. Viscous
effects are introduced from sectional aerodynamic coefficients computed with a 2D/2.5D
RANS flow solver. Corrections are applied iteratively on the local angle of attack, α2D,
in the right-hand side of the VLM system of equations until the inviscid sectional lift is
equal to the viscous lift for each section spanwise. A typical implementation is presented by
Algorithm 1. To better understand the coupling scheme, Figure 5 is used to demonstrate
how the local effective angle of attack is calculated with 2.5D RANS data. For a local section

Clinv = Clvisc = 2π(α− αi − α0l −∆α) (8)

where ∆α is the viscous corrections, αi the induced angle of attack and α0l the zero lift
angle of attack. The effective angle of attack is defined as

α− αi = αe =
Clinv
Clα

+ α0l +∆α (9)

with the viscous corrections defined as

∆α = α3D − α2D cosφ (10)

where φ is the sweep line used to generate the 2.5D RANS sectional data. The cosφ term
comes from the lifting-line potential equation for infinite swept wing conditions[17]. The
cosφ correction is necessary when using 2.5D RANS sectional data to ensure the correct
local lift curve slope[18]. The local angle of attack is evaluated using a constant local lift
curve slope of 2π. Therefore, the collocation point is calculated according to the local angle
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of attack as derived previously in Equation 4. Furthermore, since no camber is modeled the
VLM model the zero list angle of attack, α0l, is equal to zero. More details on the coupling
algorithm can be found in [19].

C
L

C N

C = Ncos( )

Clvisc=Clinv

i

Viscous Effect
2.5D RANS

Effect of
Aspect Ratio

CL =2 /(1+ /2)

CL =2

= 8

Inviscid Infinite
Swept Wing

CL =2 /(1+ /2)COS( )

Figure 5: Viscous coupling algorithm.

One advantage of this approach is that it allows 3D multi-topology analysis without the
need to generate complex 3D meshes required for 3D RANS solvers. Since complex flow
physics is incorporated in the 2.5D RANS solution, the approach only requires 2D meshes
for single and multi-element airfoil sections. These are easily amenable to automation, and
in this work the overset approach is used to further simplify the multi-element analysis.
Also, it was found in [6] that the VLM mesh can remain fixed and uncambered since the
information is carried by the RANS solution (Figure 6). This also eases the VLM meshing
which remains unchanged with regards to the different topologies defined along the span.

2.4. Forces Calculation

The total lift is evaluated by summing the incremental lift force of each panel with the
Kutta-Joukowski theorem as follow:

F =
N∑
i=1

ρ∞Γi(U∞ × dl) (11)
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Figure 6: Viscous correction applied to the VLM.

Algorithm 1 α method

1: Solve the VLM to calculate Clinv
2: for Every Spanwise Section i do
3: Calculate the effective angle of attack:

αe(i) =
Clinv(i)

2π
− α2D(i) cosφ+ α3D

4: Interpolate the viscous lift at the effective angle of attack:
αe(i)⇒ Clvisc(αe(i))

5: Calculate the angle of attack correction:
α2D(i) = α2D(i) + Clvisc(αe(i))−Clinv(i)

2π

6: Update the right-hand side
7: end for
8: Repeat Steps 1-7 until |Clvisc − Clinv| < ε

where dl is the bound vortex filament. The lift force is calculated with the VLM while the
drag estimation is divided into two contributions, induced drag and viscous drag.

Dtotal = Dinduced +Dviscous (12)
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The induced drag is calculated by integrating the kinetic energy far behind the lifting
body in a plane normal to the free stream called the Trefftz plane. For a lifting-line method,
the surface integral can be transferred to a spanwise line integral over the wake trailing
vortices as follows:

Dinduced = −ρ∞
2

∫ b/2

−b/2
Γ (y)wdy (13)

where w is the induced velocity of the trailing vortices in the Trefftz plane. On the other
hand, the viscous drag is calculated from the sectional RANS data and includes the friction
and pressure drag. For each spanwise section, the viscous drag coefficient is interpolated
from the local RANS data values at the corresponding effective angle of attack calculated
by the coupling algorithm. A spanwise integration is then performed to obtain the total
viscous drag:

Dviscous =
1

2
ρ∞U

2
∞

∫ b/2

−b/2
CDviscous

cdy (14)

where c is the local chord length. The 3D pitching moment is also evaluated by a spanwise
integration of the local RANS pitching moment. The center of pressure for every spanwise
section is evaluated using the local viscous lift and viscous drag interpolated at the corre-
sponding effective AoA. The pitching moment relative to the 3D wing reference point is then
computed and integrated spanwise:

xcp =
(Cmc/4

)visc

Clvisc
(15)

Cmxref
=
[
Clvisc cos(αe) + Cdvisc sin(αe)

]xref + xcp
c

(16)

Mxref =
1

2
ρ∞U

2
∞

∫ b/2

−b/2
Cmxref

c2dy (17)

2.5. Spanwise Stall Detection Scheme

The VLM coupled with viscous sectional data is capable of capturing stall cells, numer-
ically obtained by Spalart[20] using a spectral approach and Gallay[5] using the proposed
approach. Stall cells are triggered when the lift-curve slope at a spanwise section becomes
negative. In other words, when a streamwise section in the VLM reaches its viscous CLmax

computed with 2.5D RANS, a sudden change in lift appears spanwise forming a stall cell.
Therefore, the appearance of the first stall cell is used as the criteria for the stall spanwise
position. To do so, the spanloads before and after αmax are compared and the highest ∆Cl
indicates the position of the stall cell and thus the spanwise stall position as demonstrated
in Figure 7. This criteria essentially substitutes the lower fidelity method developed by
Valarezo and Chin[21], and provides not only CLmax , but also an accurate prediction of
αmax.
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Figure 7: Spanwise stall detection scheme.

3. Optimization Reference Geometry

With the aerodynamic analysis tool set, we now proceed towards the optimization prob-
lem. The Lovell wing[22] is a 30.5◦ leading edge swept wing (Figure 8) that was used for
wind tunnel investigation on the effect of flap deflections. The geometry is simple with a
constant airfoil geometry along the span and experimental results are available for the iso-
lated wing with different flap deflections. For its simplicity and available geometry for clean
and high-lift configurations, the isolated Lovell wing was chosen as the reference geometry
for this optimization work. Note that the same wing was chosen by Valarezo and Chin
to calibrate their stall model[21]. The VLM coupled with RANS solutions are compared
against experimental data for the Lovell wing to verify that the aerodynamic coefficients
are well estimated by the tool for the reference geometry. Figures 9, 10 and 11 present the
overall aerodynamic coefficients for the clean configuration with different swept sectional
data. A better maximum lift coefficient and pitching moment are obtained with the 30◦

swept sectional data. The same observation is confirmed for the high-lift configuration with
slat and flap deflected at 25◦ and 10◦ respectively (Figures 12 and 13). The numerical set-
tings for the VLM model is to used 5 and 50 panels chordwise and spanwise, respectively.
A verification of the model comparing 3D RANS solutions is made in reference [19].
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(a) Planform. (b) Airfoil.

Figure 8: Lovell geometry[22].

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-10 -5  0  5  10  15  20

C
L

Alpha (deg)

VLM (2D RANS)
VLM (2.5D RANS Sweep 15)
VLM (2.5D RANS Sweep 30)

EXP
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Figure 10: Lovell clean configuration - CD.

4. Evolution Strategy Optimizer

The maximum lift coefficient and its position along the span are very sensitive in regards
of the wing geometry, yielding a highly non-linear function, even non-continuous, which
poses a problem for gradients evaluation. Therefore, Gradient free optimizers are preferable
and a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was chosen for its well
known performance on non-linear and non-continuous problems[12, 23]. CMA-ES is consid-
ered as state-of-the-art in evolutionary algorithm and reliable for global optimization[24].
Furthermore, CMA-ES requires almost no calibration except population size. The code is
available from https://www.lri.fr/~hansen/cmaes_inmatlab.html and the Python ver-
sion was used to be fully integrated inside the VLM C++ Python interface.
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Figure 13: Lovell slat: 25◦ flap: 10◦ - CM .

4.1. Non-Linear Constraints

CMA-ES does not handle constraints by default. However, a penalty constraint violation
can be incorporated[25]. For every constraint i and for a given solution x, the constraint
value is computed as follows

γi(x) =
1

εi
×
{
gi(x) + εi for inequality constraint gi(x) ≤ 0.0

}
(18)

where εi are user-defined values. When γi > 0, the constraint is considered active and a
penalty is added to the objective function. The penalty is evaluated with equation (19)

fi(x) =

{
wiγi(x)2, if γi > 0

0, otherwise
(19)

where wi are user-defined constants. Every penalty fi is added to the cost function.
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4.2. VLM with CMA-ES Implementation Verification

To verify the implementation of CMA-ES with the VLM, an induced drag minimization
is performed with the twist as the design variable. The geometry used is the Lovell wing
discretized with 50 panels spanwise and 5 panels chordwise (Figure 14). The twist is defined
at 5 equally distant control sections along the span, thus 5 design variables are used. An
inequality constraint for the lift coefficient, CL ≥ 0.5, is also added to verify the cost penalty
implementation. Since the VLM is based on Prandtl’s lifting-line theory, the optimal solution
should be at CL = 0.5 with a twist distribution giving an elliptical spanload, thus the lowest
induced drag.

Results show that an elliptical spanload is recovered by the optimizer as expected (Figure
15). Only 1000 function evaluations are necessary to achieve the optimal solution (Figure
16) which took under 20 minutes to complete on 6 cpus of intel 3930k. Furthermore, the
inequality constraint on CL is handled properly with the final solution lying at CL = 0.5 as
expected. These results confirms the implementation of CMA-ES with the VLM and the
cost penalty constraint.
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Figure 14: Lovell - VLM planform mesh.
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Figure 16: CMAES - Induced drag optimization.

5. Structural Model

A structural constraint must be considered to avoid optimal solutions with unrealistic
geometries, like infinite aspect ratio to reduce the induced drag. A solution is to incorporate
the wing weight as a constraint, where the optimal solution cannot be heavier than the
Lovell reference wing. Since the constraint is applied as a difference in terms of weight
between the new configuration and the reference Lovell wing, the sensitivity with regards
to the wing geometry is more important than the precision of the wing weight calculation.
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A sensitivity analysis was performed by Mariens[26] for different statistical methods for
wing weight estimations and the results of the analysis are presented in Table 1. From
the analysis, Torenbeek and EMWET are the two methods with the largest sensitivity
with regards to wing parameters like sweep, thickness, span, etc... The Torenbeek weight
estimation used is a statistical method[27] derived from a more complex quasi-analytical
method derived also from Torenbeek. EMWET is a quasi-analytical tool developed by
Elham[28] to estimate the wing weight. However, its implementation is more complex than
Torenbeek’s statistical approach and the structural accuracy is not the goal of the present
work. Therefore, Torrenbeek was chosen to evaluate the wing weight, with the relation given
by Equation 20.

Method Wto Wzf b cr Λ λ t/cr t/ck t/ct

Torenbeek
Howe
EMWET
Shevell
LTH

Table 1: Wing weight estimation method sensitivity to wing parameters (Adapted from [26]).

Ww = 0.06
w

σr
nult
√
WtoWzf

b3

S

1

(t/c)avecos2Λ

1 + 2λ

1 + λ
+ wtssS (20)

6. Sectional Viscous Database and Design Variables

This section explores the optimization problem complexity that can be achieved using
2.5D RANS data with the non-linear VLM approach. Since low-speed CLmax and transonic
cruise conditions are considered, the RANS sectional data must be generated with great
care and for a wide range of conditions to perform a full flight spectrum optimization. At
low-speed conditions, RANS simulations were performed for the clean configuration and for
high-lift configuration with slat and flap deflected for three different flap deflections (10◦,
25◦, 40◦). For cruise conditions, only the clean configuration was considered at four different
Mach numbers (0.6, 0.7, 0.75, 0.8).

All the simulations were also performed at three different Reynolds numbers to capture
the effect of taper ratio. Finally, to incorporate the viscous effects of crossflow over swept
wings, every simulation was performed at nine different sweep angles (0◦, 5◦, 10◦, 15◦,
20◦, 25◦, 30◦, 35◦, 40◦) with the 2.5D RANS flow solver NSCODE[15] using the Spalart-
Allmaras turbulence model. More than 3000 2.5D RANS calculations were necessary to
generate the database. These computations are performed only once and can be used for any
optimization problem. Afterwards, linear interpolation is used to generate the appropriate
viscous database during the optimization, making for a rapid function evaluation. The
viscous database is summarized in Table 2. Note that standard CFD practices are used in
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generating the RANS solutions: farfield located at 100 chord; y+ < 1; residuals are converged
to 10−5 and the mesh used is fine enough to be considered mesh-independent within the
tolerance required. More details on the mesh generation process used is described in [29]
with the flow solver accuracy presented in Pigeon[15].

Planform optimization is considered in the present study with seven design variables
defining the geometry (Table 3 and Figure 17). The wing twist is defined by a linear
function fixed by the root and tip twist. The tip chord is given a lower bound of 0.13 to
prevent unrealistic geometries and ensure sufficient chord length for winglets. The leading
edge sweep is bound between 0◦ to 40◦ which corresponds to the range of sweep evaluated
in the viscous database. The spanwise kink position is set to a minimum of 0.1524 that
corresponds to the actual Lovell wing kink position and the chord length at the kink position
is controlled by the trailing edge sweep. The root chord is given a lower bound of 0.2 to
avoid again unrealistic geometries. The planform surface area is also kept constant to the
Lovell reference geometry, thus the span is evaluated at each function evaluation with the
design variables to keep the wing surface area constant.

Low-Speed High-Speed

Mach Number 0.2 0.6, 0.7, 0.75, 0.8
Reynold’s Number 0.7E6, 1.3E6, 2E6 3.3E6, 6.3E6, 9.3E6
Sweep 0, 5, 10, 15, 20, 25, 30, 35, 40
Angle of Attack -6 to Post-Stall
Slat Retracted, Deflected: 25 Retracted
Flap Retracted, Deflected: 10, 25, 40 Retracted

Table 2: Viscous database.

DESIGN VARIABLES (7)

Lower Bound Upper Bound
Root Chord (V1) 0.2 –
TE Kink Sweep (V2) 0 90
Tip Chord (V3) 0.13 –
LE Sweep (V4) 0 40
Root Twist (V5) -10 10
Tip Twist (V6) -10 10
Kink Position (V7) 0.1524 –

Wing Surf. Area 0.5523 (Constant)
Span Calculated from the design variables

Table 3: Design variables for planform optimization.
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Figure 17: Design variables for planform optimization.

7. Optimization Results

7.1. High-Speed Optimization

The use of 2.5D RANS sectional data has a significant effect on the transonic shock
and allows cruise optimization with wave drag sensitivity to sweep. The same optimization
is performed for different cruise Mach numbers to evaluate compressibility effects over the
optimal planform. Since the twist is a design variable, the angle of attack is fixed at 1◦. The
optimization problem is defined as follow,

minimize
x

− CL
CD

subject to Ww(x)−Wwreference
≤ 0.0

where W is the wing weight calculated with Torenbeek (Equation 20). The weight constraint
ensures the solution is not heavier than the reference Lovell wing.

As the cruise Mach number is increased, the optimal planform sweep is also increased
(Figure 18) from 22.16◦ to 37.91◦ LE sweep. At a high Mach number, increasing sweep
reduces wave drag, thus the optimal solution at a Mach number of 0.8 has a higher LE
sweep of 37.91◦ compared to the Lovell wing 30.5◦ LE sweep. Therefore, the optimized
planform has lower viscous drag (Figure 19) which comprise drag due to shocks. These
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results confirm the sensitivity of viscous drag with regard to sweep from the 2.5D RANS
sectional data.

Additionally, the optimizer has successfully brought the maximum lift-to-drag ratio at
the desired angle of attack of 1◦ (Figures 20-21). CMA-ES also managed to keep roughly
the same lift-to-drag ratio around 29 for the different cruise Mach numbers (Table 4). The
optimal lift coefficient at 1◦ is also lower with increasing Mach number.
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Mach=0.75
Mach=0.80

Figure 18: Optimized planform for different cruise Mach number.
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Mach 0.6 0.65 0.7 0.75 0.78 0.8

CL 0.409 0.394 0.391 0.359 0.333 0.344
CL/CD 29.36 29.11 29.11 28.95 28.71 28.85

Table 4: Optimized results for different Mach number at α = 1◦.

7.2. Low-Speed Optimization

The aerodynamic design of high-lift systems requires a trade-off between maximum
lift coefficient and lift-to-drag ratio. The takeoff distance and the climb performance are
strongly affected by lift-to-drag ratio. On the other hand, the required approach airspeed
for airworthiness[3] must be 1.23× Vs1g where Vs is the stall speed. Therefore landing per-
formance is directly related to CLmax . Another important airspeed at takeoff is V2, the speed
at which the aircraft may safely climb with one engine inoperative, V2 = 1.13 × Vs[3]. The
lift-to-drag ratio at V2 influences directly climb performance and V2 can also be expressed
in terms of lift coefficient, CL2 =

CLmax

1.132
. The lift-to-drag ratio at CL2 should therefore be

considered as an objective function with CLmax . However, CMA-ES is a single objective
optimizer, thus composite objective function with user-defined weights is used (Equation
21). For simplicity, the high-lift configuration is considered constant along the span with
the slat deflected at 25◦ and the flap deflected at 10◦.

Single objective CLmax optimization yields a solution with a low lift-to-drag ratio of 7.76
at CL2 and a lower aspect ratio planform of 7.42 (Figure 23 and Table 5). Adding the
lift-to-drag ratio to the objective function is necessary for takeoff performance. Thus, one
function evaluation goes as follows:

1. Find CLmax by incrementing the angle of attack until the lift curve slope becomes
negative.

2. Calculate CL2 =
CLmax

1.132
.

3. Calculate CD at CL2 with a Proportional Integral Derivative controller[30] over the
angle of attack for an accurate evaluation of CD at CL2 .
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The tradeoff between climb performances and CLmax is observed by a pareto front when
performing the same optimization with different weights for CLmax (Figure 24). As the weight
is reduced for CLmax in the objective function, the optimal planform sweep is increased, which
in turns reduces the CLmax and increases the lift-to-drag ratio at CL2 (Figure 25 and Table
5).

minimize
x

−W1

(
CLmax)−W2

(CL
CD

)
@CL2

subject to Ww(x)−Wwreference
≤ 0.0

(21)
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Figure 23: (CLmax
) Optimization compared with (CLmax

+ CL

CD
at CL2

) optimization.

7.2.1. Spanwise Stall Constraint

It is required per certification of transport aircraft that handling qualities must be ade-
quate to allow a safe recovery from high angle of attacks where stall conditions are reached
(Federal Aviation Administration[31]). However, swept tapered wings tend to have a higher
spanload towards the tip which contributes to a less stable outboard stall. The VLM/RANS
solver allows the spanwise stall position to be detected with stall cells[20] (Figure 7) and
can be introduced as a constraint in the optimization to ensure appropriate stall conditions.
The spanwise stall constraint is chosen to be less than 60% of the span.

The stall constraint is well handled by the optimizer (Figure 26) with the optimal plan-
form stalling at 58%. Moreover, adding the stall constraint has a negligible effect on the
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Weights CLmax

CL

CD

WCLmax
1.0

3.45 7.76
W CL

CD

0.0

WCLmax
2.0

2.85 11.19
W CL

CD

1.0

WCLmax
2.5

2.89 11.12
W CL

CD

1.0

WCLmax
3.0

3.18 10.37
W CL

CD

1.0

WCLmax
5.0

3.32 9.84
W CL

CD

1.0

WCLmax
10.0

3.43 9.61
W CL

CD

1.0

Table 5: Low-Speed optimization results.

overall planform (Figure 27), but does have important effects on the twist distribution (Table
6) with a 4.02◦ root twist and −1.55◦ tip twist.
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Figure 26: Spanwise stall constraint.

Root Twist Tip Twist CLmax

CL

CD
Spanwise Stall Pos.

Optimization without
Stall Constraint

-3.06 -1.66 3.18 10.37 67%

Optimization with Stall
Constraint

4.02 -1.55 3.24 10.14 58%

Table 6: Optimal solution with and without spanwise stall constraint.
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7.2.2. High-Lift Configuration Optimization

Since the clean planform is modeled by the VLM while the section characteristics are
incorporated by the viscous data, multi-topology high-lift optimization can be performed by
assigning different viscous sectional data corresponding to different high-lift configurations
along the span. One scenario explored is a slat optimization to achieve a minimum CLmax .
The problem is defined with 2 design variables, the start and end points of the slat along the
span. The objective function is to minimize the slat length for a required CLmax (Equation
22).

The optimal solution for different CLmax constraint (Figure 29) shows the continuity of the
solution, thus confirming the performance and robustness of CMA-ES and the aerodynamic
solver. One interesting finding is that the optimizer does not extend the slat to 100% of the
span, as the tip-region local AoA is below stall at the wing CLmax due to strong velocities
induced by tip vortex.

In particular, it does not protect the wing tip, as the local angle of attack is below stall
at the wing CLmax .

minimize
y1,y2

Lslat(y1, y2) = y2 − y1

subject to CLmaxTarget − CLmax(y1, y2) ≤ 0.0

y1 − y2 ≤ 0.0

(22)
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MINIMUM SLAT REQUIREMENT FOR A GIVEN CLmax
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Figure 29: Optimization of slat configuration.

7.3. Multi-Objective Low-Speed and High-Speed Optimization

Finally, a composite objective function optimization combining the previous low-speed
and high-speed objectives is explored with cruise conditions at Mach = 0.75 (Equation 23).
The optimal planform lies between the low-speed and high-speed optimal planforms with a
moderate leading edge sweep of 17.8◦ (Figure 30). The low-speed optimized planform has
poor cruise performance with a lift-to-drag ratio of 9.74 (Table 7). On the other hand, the
high-speed optimized planform has a relatively low CLmax of 2.596 compared to the low-
speed optimized planform. Combining low-speed and high-speed objective functions result
in a solution with good stall characteristics, climb performances and cruise performances as
well (Table 7).

minimize
x

− 5.0×
(
CLmax)− 1.0×

(CL
CD

)
@CL2

− 1.0×
(CL
CD

)
cruise

subject to Ww(x)−Wwreference
≤ 0.0

(23)
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Figure 30: Optimized planform comparison with composite low-speed/high-speed objective function at
Mach = 0.75 for cruise conditions.

CLcruise

CL
CD@CLcruise

CLmax

CL
CD@V

Low-Speed Optimization 0.086 9.74 3.32 9.84
High-Speed Optimization 0.359 28.95 2.596 10.96
Low-Speed/High-Speed Optimization 0.46 27.02 3.12 10.48

Table 7: High-speed and low-Speed optimization performed at Mach = 0.75 for cruise conditions.
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8. Conclusion

A fast turnaround aerodynamic tool suitable for conceptual and preliminary design phase
requirements is presented. High-speed and high-lift analyses are performed with a Vortex
Lattice Method coupled to an infinite-swept wing RANS solver via a stripwise angle-of-attack
correction procedure. A novel physics-based stall criteria is developed to obtain CLmax , αmax
and the spanwise location of the stall, a net improvement over the semi-empirical Valarezo
method. Aerodynamic forces are directly obtained from the coupled VLM/RANS procedure,
by spanwise integration of the RANS forces and Treffz-plane analysis of the VLM solutions.
In particular, multi-element analysis is performed on the same mesh as the clean wing
mesh. The analysis tools are embedded within a gradient-free Covariance Matrix Adaptation
Evolution Strategy to perform aerodynamic optimization. The algorithm is verified on a
canonical minimum induced-drag case and validated on several combined high-speed/high-
lift cases, including multi-topology optimisation of partial-span slat. The framework runs a
single analysis within seconds on a single-CPU, allowing the use of gradient-free optimization
strategies that are required during the early aircraft design phases.
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