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Abstract. The paper considers a n-patch model with migration terms, where
each patch follows a logistic law. First, we give some properties of the total

equilibrium population. In some particular cases, we determine the condi-

tions under which fragmentation and migration can lead to a total equilibrium
population which might be greater or smaller than the sum of the n carrying

capacities. Second, in the case of perfect mixing, i.e when the migration rate
tends to infinity, the total population follows a logistic law with a carrying ca-

pacity which in general is different from the sum of the n carrying capacities.

Finally, for the three-patch model we show numerically that the increase in
number of patches from two to three gives a new behavior for the dynamics of

the total equilibrium population as a function of the migration rate.

1. Introduction. Population dynamics is a wide field of mathematics, which con-
tains many problems, for example fragmentation of population and the effect of
migration in the general dynamics of population. Bibliographies can be found in
the work of Levin [12, 13] and Holt [10]. There are ecological situations that moti-
vate the representation of space as a finite set of patches connected by migrations,
for instance an archipelago with bird population and predators. It is an example of
insular bio-geography. The standard question in this type of biomathematical prob-
lems, is to study the effect of migration on the general population dynamics, and the
consequences of fragmentation on the persistence or extinction of the population.

Freedman and Waltman [8] were among the first to consider the case of two
patches 

dx1

dt = r1x1

(
1− x1

K1

)
+ β(x2 − x1),

dx2

dt = r2x2

(
1− x2

K2

)
+ β(x1 − x2),

(1)
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where xi is the population in patch i, the parameters ri and Ki are respectively
the intrinsic growth rate and the carrying capacity patch i, and β is the migration
rate assumed to be symmetric in both directions. They analyzed the model in the
case of perfect mixing (β → +∞) and showed that the total equilibrium population
x∗1(β) + x∗2(β) can be greater than the sum of the carrying capacities K1 +K2.

The 2-patch model (1) was extensively studied by many authors, among them
DeAngelis et al. [4], Holt [10], Freedman et al. [7]. It is worth noting that the
two-patch model (1) had never been completely analysed until the work of Arditi
et al. [1] which gave the complete study of the model (1), i.e the comparison of X∗T
with K1+K2 for all values of β. One distinguishing characteristic is the depiction of
three situations for the position of x∗1(β)+x∗2(β) compared to K1 +K2. Under some
conditions, fragmentation leads to a total equilibrium population strictly greater or
smaller than the sum of the carrying capacities, see Fig. 1 in [1].

DeAngelis and Zhang [5], DeAngelis et al. [6] and Zhang et al. [19] have consid-
ered the model

dxi
dt

= rixi

(
1− xi

Ki

)
+ β(xi−1 − 2xi + xi+1), i = 1, · · · , n (2)

where we denote x0 = xn and xn+1 = x1, allowing the patches to join in a circle so
that the same relationships hold between xi, xi−1 and xi+1 for all values of i. An
interesting result of (2) is that in the case ri = Ki, for i = 1, · · · , n, for any β > 0,
the total population at steady state satisfies

n∑
i=1

x∗i (β) >

n∑
i=1

Ki. (3)

Our aim is to extend some of the results in [1, 2, 5, 6] to the more general case
of the n-patch model:

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

γij (xj − xi) , i = 1, · · · , n. (4)

where n is the number of the patches in the system. The parameter β represents
the dispersal rate of the population; γij = γji ≥ 0 denotes the flux between patches
j and i, for j 6= i. Note that if γij > 0 there is a flux of migration between patches
i and j and if γij = 0 there is no migration. In the case where β = 0, there is no
migration , and the system (4) admits (K1, · · · ,Kn) as a non trivial equilibrium
point, which furthermore is globally asymptotically stable (GAS). The problem is
whether or not, the equilibrium continues to be positive and GAS for any β > 0
and whether or not, the total population at equilibrium is greater than the sum of
the carrying capacities.

The paper is organized as follows. In Section 2, the mathematical model of n
patches, and some notation, are introduced. In Section3, we give some results on
the comparison of the total equilibrium population with the sum of the carrying ca-
pacities. In Section 4, the behavior of the model is studied when the migration rate
tends to infinity. In Section 5, we consider the three-patch model and by numer-
ical simulations we prove the existence of a new behavior of the total equilibrium
population. In section 6, we consider the multi-patch logistic growth, coupled by
asymmetric migration terms. In Appendix A, we give some properties of the total
equilibrium population. In Appendix B, we recall some results which are used in
our proofs.
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In all the paper, we denote by: R+ the non negative real numbers. Given a
vector u ∈ Rn let uT denotes its transpose. We denote by Re and |.| the real part
and the module of a complex number respectively.

2. Mathematical model. We consider the model of multi-patch logistic growth,
coupled by symmetric migration terms (4). This system of differential equations
can be written:

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1

γijxj , i = 1, · · · , n (5)

where

γii = −
n∑

j=1,j 6=i

γij , i = 1, · · · , n (6)

denotes the outgoing flux of patch i. The matrix

Γ := (γij)n×n (7)

is called the connectivity matrix. Its columns sum to 0 since the matrix Γ is sym-
metric and the diagonal elements γii, defined by (6), assert that each row of γ sums
to 0. The model of (1) studied in [1, 4, 7, 8, 10] corresponds to the case where the
migration rate γ12 = γ21 > 0 can be normalized to 1, by replacing β by β/γ12. The
model (2) studied in [5, 6, 19] corresponds to the case where

γ1n = γn1 = γi,i−1 = γi−1,i = 1 for 2 ≤ i ≤ n and γij = 0 otherwise. (8)

We have the following result:

Proposition 2.1. The domain Ω = {(x1, . . . , xn) ∈ Rn/xi ≥ 0, i = 1, . . . , n.} is
positively invariant for the system (4).

Proof. If xi = 0, and xj ≥ 0, for all j 6= i, then we have

dxi
dt

=
∑

j=1,j 6=i

γijxj ≥ 0, i = 1, · · · , n.

Therefore, xi(t) cannot become negative, which shows that Ω is positively invariant
for the system (4).

Proposition 2.2. Assume that the connectivity matrix Γ := (γij)n×n is irreducible.
The model (4) has a unique positive equilibrium point which is GAS in the positive
cone Rn+ \ {0}.

Proof. The result follows from [16].

Remark 2.3. The matrix Γ being irreducible means that the set of patches cannot
be partitioned into two nonempty disjoint subsets, I and J , such that there is no
migrations between a patch in subset I and a patch in subset J . The matrix Γ is
assumed to be irreducible throughout the rest of the paper. Therefore species can
reach any patch from any patch either directly or through other patches.
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3. Comparison of the total equilibrium population with the sum of carry-
ing capacities. In all of this work, the GAS equilibrium of the system (4), whose
existence is shown in Proposition 2.2, is denoted by E∗(β) = (x∗1(β), . . . , x∗n(β)).
The equilibrium point E∗(β) is the solution of the algebraic system:

rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

γij (xj − xi) = 0, i = 1, · · · , n. (9)

The sum of these equations shows that E∗(β) satisfies the following equation
n∑
i=1

rixi

(
1− xi

Ki

)
= 0. (10)

Therefore E∗(β) belongs to the ellipsoid

En−1 =

{
x ∈ Rn : Θ(x) :=

n∑
i=1

rixi

(
1− xi

Ki

)
= 0

}
. (11)

Note that this ellipsoid is independent of the migration terms β and γij .
Our aim is to compare the total equilibrium population

X∗T (β) = x∗1(β) + · · ·+ x∗n(β), (12)

with the sum of carrying capacities K1 + . . . + Kn, when the rate of migration β
varies from zero to infinity. Let us begin with some interesting particular cases of
the system (4).

3.1. Equal growth rates. In the next proposition, we show that if the growth
rates are equal in all patches, then the total equilibrium population is always smaller
than the sum of the carrying capacities:

Proposition 3.1. If r1 = · · · = rn, then the total equilibrium population, defined
by (12) satisfies X∗T (β) ≤

∑n
i=1Ki, for all β ∈ [0,∞[.

Proof. The equation of the tangent space to the ellipsoid En−1, defined by (11), at
point A = (K1, . . . ,Kn) is given by

n∑
i=1

(xi −Ki)
∂Θ

∂xi
(A) = 0, (13)

where Θ is given by (11). Since ∂Θ
∂xi

(A) = −ri, (13) can be written as follows:

n∑
i=1

ri (xi −Ki) = 0. (14)

If we take r1 = · · · = rn in (14), we get that the equation of the tangent plane to
En−1 at the point A is

n∑
i=1

xi =

n∑
i=1

Ki.

By the convexity of En−1, any point of En−1 lies in the half-space defined by the
inequation

∑n
i=1 xi ≤

∑n
i=1Ki. Therefore E∗(β) satisfies
n∑
i=1

x∗i (β) ≤
n∑
i=1

Ki for all β ≥ 0.

Which completes the proof of the proposition.
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3.2. Equal carrying capacities. In the next proposition, we show that if the
carrying capacities are equal in all patches, then the total equilibrium population
does not depend on the migration rate and is always equal to the sum of the carrying
capacities:

Proposition 3.2. If K1 = · · · = Kn =: K, then X∗T (β) = nK for all β ≥ 0.

Proof. As shown in item 1 of the proposition A.3, we have x∗i (β) = K for all β ≥ 0
and all i = 1 · · ·n. Therefore X∗T (β) = nK.

3.3. Equal ratios ri/Ki. In the next proposition, we show that if the ratios αi =
ri
Ki

are equal in all patches, then the total equilibrium is always larger than the sum
of the carrying capacities:

Proposition 3.3. If α1 = . . . = αn =: α, then

X∗T (β) ≥
n∑
i=1

Ki, for all β ≥ 0. (15)

Moreover, if there exist i and j such Ki 6= Kj, then X∗T (β) >
∑n
i=1Ki, for all

β > 0.

Proof. From Lemma A.2 we deduce that for all β ≥ 0 we have

X∗T (β) =

n∑
i=1

Ki +
β

α

∑
j<i

γij(x
∗
j (β)− x∗i (β))2

x∗j (β)x∗i (β)
≥

n∑
i=1

Ki.

Equality can hold if and only if β = 0 or x∗j (β) = x∗i (β) for all j < i. Let us
prove that if at least two patches have not the same carrying capacity then equality
cannot hold for β > 0. Suppose that there exists β > 0 such that the positive
equilibrium satisfies x∗j (β) = x∗i (β) for all j < i, then x∗1(β) = . . . = x∗n(β). Denote
by x∗ > 0 their common value. Then all terms γij (xj − xi) in (9) vanish, so that
these equations become

rix
∗
(

1− x∗

Ki

)
= 0, i = 1, · · · , n.

Therefore Ki = x∗ for all i, which gives a contradiction. Hence the equality (15)
can hold if and only if β = 0.

In [5, page 3092], DeAngelis et al. have shown this result in the particular case
of the model (2), and ri = Ki, i = 1 · · ·n, see (3).

3.4. All patches but one are identical. We assume now that n− 1 patches are
identical, that is to say, they have the same carrying capacities and the growth
rates. We assume also that the flux of migration between the n-th patch and all
these n− 1 identical patches are equal. Hence we have the following conditions

K1 = · · · = Kn−1 =: K, r1 = . . . = rn−1 =: r and γn1 = . . . = γnn−1 =: γ (16)

Under conditions (16), we show that the n-patch model behaves like a 2-patch
model, that is, there are only three situations as depicted in Fig. 1. This figure is
similar to Figure 2 of [1]. This property holds regardless of the flux of migration
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Case K < Kn

0

J0

J1

J2

r

rn
rn = rrn

Kn
= r

K

Case K > Kn

0

J2

J1

J0

r

rn
rn = r

rn
Kn

= r
K

Figure 1. Qualitative properties of model (4) when (16) holds.
In J0, patchiness has a beneficial effect on total carrying capacity.
This effect is detrimental in J2. In J1, the effect is beneficial for
β < β0 and detrimental for β > β0.

between the identical n−1 patches, provided that the connectivity matrix Γ, defined
by (7), is irreducible. More precisely, define regions J0, J1 and J2 by:

If K < Kn then


J0 =

{
(r, rn) : rn ≥ Kn

K r
}

J1 =
{

(r, rn) : Kn

K r > rn > r
}

J2 = {(r, rn) : r ≥ rn}

(17)

If Kn < K then


J0 =

{
(r, rn) : rn ≤ Kn

K r
}

J1 =
{

(r, rn) : Kn

K r < rn < r
}

J2 = {(r, rn) : r ≤ rn}

(18)

We have the following proposition:

Proposition 3.4. Assume that the conditions (16) hold in the system (4). We
consider the regions, denoted J0, J1 and J2, depicted in Fig. 1, and defined by
(17) when K < Kn and by (18) when K > Kn. Let αn = rn/Kn and α = r/K.

1. If (r, rn) ∈ J0 then X∗T (β) > (n− 1)K +Kn for all β > 0.
2. If (r, rn) ∈ J1 then X∗T (β) > (n − 1)K + Kn for 0 < β < β0 and X∗T (β) <

(n− 1)K +Kn for β > β0 where β0 is given by

β0 =
rn − r

γ(α− αn)

1

1/αn + (n− 1)/α
. (19)

3. If (r, rn) ∈ J2 then X∗T (β) < (n− 1)K +Kn for all β > 0.

Proof. Assume that the conditions (16) hold and K < Kn. From item (2) in
Proposition A.3 we deduce that

x∗1(β) = · · · = x∗n−1(β) =: x∗(β) < x∗n(β). (20)

Now, using Lemma A.1, the total equilibrium population becomes

X∗T (β) = (n− 1)K +Kn + β

n−1∑
j=1

γ (x∗(β)− x∗n(β))

αnx∗n
+

n−1∑
i=1

γ (x∗n(β)− x∗(β))

αx∗

 .
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Therefore

X∗T (β) = (n− 1)K +Kn + (n− 1)βγ
(x∗(β)− x∗n(β))(αx∗(β)− αnx∗n(β))

ααnx∗(β)x∗n(β)
. (21)

1. If (r, rn) ∈ J0, then αn ≥ α. Hence (αx∗ − αnx∗n) < α(x∗ − x∗n) < 0, which
implies that (x∗ − x∗n)(αx∗ − αnx∗n) > 0, and then X∗T (β) > (n − 1)K + Kn for
β > 0.

2. If (r, rn) ∈ J1, then rn > r and α > αn. According to Equation (21), the
equality

X∗T (β) := (n− 1)x∗(β) + x∗n(β) = (n− 1)K +Kn,

is equivalent to β = 0 or αx∗(β) − αnx∗n(β) = 0. Thus x∗(β) and x∗n(β) are the
solutions of the linear system{

αx∗(β)− αnx∗n(β) = 0,
(n− 1)x∗(β) + x∗n(β) = (n− 1)K +Kn,

which admits a unique solution

x∗(β) =
1

α

(n− 1)K +Kn

(n− 1)/α+ 1/αn
, x∗n(β) =

1

αn

(n− 1)K +Kn

(n− 1)/α+ 1/αn
. (22)

As (x∗1(β), · · · , x∗n(β)) is an equilibrium point of the system (4), it satisfies the
following system

0 = rx∗(β)

(
1− x∗(β)

K

)
+ βγ (x∗n(β)− x∗(β)) ,

0 = rnx
∗
n(β)

(
1− x∗n(β)

Kn

)
+ (n− 1)βγ (x∗(β)− x∗n(β)) ,

(23)

obtained from (9) by replacing xi = x∗i (β) and using (16) and (20). Using the
formulas (22), the system (23) has a unique solution β0 given by

β0 =
rn − r

γ(α− αn)

1

1/αn + (n− 1)/α
, (24)

which is positive since rn > r and α > αn. According to Lemma A.4 we have:

dX∗T
dβ

(0) = (n− 1)γ(K −Kn)

(
1

rn
− 1

r

)
,

which is positive since r < rn and K < Kn. So:

• If β ∈ (0, β0], then X∗T (β) > (n− 1)K +Kn.
• If β ∈ (β0,∞[, then X∗T (β) < (n− 1)K +Kn.

3. If (r, rn) ∈ J2 then r ≥ rn. We have:

αx∗(β)− αnx∗n(β) =
r

K
x∗(β)− rn

Kn
x∗n(β)

From item (2) in Proposition A.3 we deduce that x∗(β)/K > 1 and x∗n(β)/Kn < 1.
Therefore

αx∗(β)− αnx∗n(β) > r − rn ≥ 0,

which gives X∗T (β) < (n− 1)K +Kn for β > 0.
We use item 2- (b) of Proposition A.3 and the same procedures to study the case

where K > Kn.

Remark 3.5. This proof is adapted from [1]. Actually, if we take n = 2 and γ = 1
in Proposition 3.4, we find the results given by Arditi et al in [1, Proposition 2,
page 54].



8 B. ELBETCH, T. BENZEKRI , D. MASSART AND T. SARI

4. Perfect mixing. In this section our aim is to study the behavior of the system
(4) for large migration rate, i.e when β →∞. We need the following result:

Lemma 4.1. The connectivity matrix Γ has rank n−1. Except 0 which is a simple
eigenvalue of Γ, whose eigenvector is u = (1, . . . , 1)T , all other eigenvalues of Γ are
negative.

Proof. Let s = maxi=1,...,n(−γii). The matrix B defined by

B = Γ + sI,

is non-negative and irreducible. Then by the Perron-Frobenius theorem [9, Theorem
2, page 53], the spectral radius of B is a simple eigenvalue, and it is the only
eigenvalue of B which admits a positive eigenvector. Now observe that (1, . . . , 1)T

is an eigenvector of B, and the corresponding eigenvalue is s. This proves that
s = ρ(B) is a simple eigenvalue of B, and since s = ρ(B) any other eigenvalue λ of
B satisfies λ < s. Therefore 0 is a simple eigenvalue of Γ = −sI + B, that is, the
rank of Γ is n− 1, and all other eigenvalues of Γ are negative.

We have the following result :

Theorem 4.2. We have

lim
β→+∞

E∗(β) =

(∑n
i=1 ri∑n
i=1 αi

, . . . ,

∑n
i=1 ri∑n
i=1 αi

)
. (25)

where αi = ri/Ki.

Proof. Denote

E∗(∞) =

(∑n
i=1 ri∑n
i=1 αi

, . . . ,

∑n
i=1 ri∑n
i=1 αi

)
.

Recall that the equilibrium point E∗(β) is the unique positive solution of the al-
gebraic system (9). Therefore it is defined, in the positive cone, by the fact that
it belongs to the ellipsoid En−1 defined by (11), and the equation Fβ(E∗(β)) = 0,
where

Fβ(x1, . . . , xn) :=

ri
β
xi

(
1− xi

Ki

)
+

n∑
j=1,j 6=i

γij (xj − xi)


i=1,··· ,n−1

.

The ellipsoid En−1 is compact, so E∗(β) has at least one limit point in En−1, when
β goes to infinity. Besides, Fβ converges, uniformly on compact sets, to the linear
map

Rn −→ Rn−1

(x1, . . . , xn)T 7−→ Λ(x1, . . . , xn)T

where Λ is the sub matrix of the connectivity matrix Γ defined by (7), obtained by
dropping the last row of Γ. Hence any limit point (x1, . . . , xn) of E∗(β) satisfies
Λ(x1, . . . , xn)T = 0.

Since Λ is obtained from Γ by dropping the last row, and the rows of Γ sum to
zero, the rank of Λ equals that of Γ, which is n− 1 by Lemma 4.1.

Therefore, by the convexity of En−1, Λ(x1, . . . , xn)T = 0 has exactly two solutions
in En−1, which are the origin and E∗(∞). To prove the convergence of E∗(β) to
E∗(∞), it suffices to prove that the origin cannot be a limit point of E∗(β).

Write E∗(β) = (x1(β), . . . , xn(β)). We claim that for any β, there exists i such
that xi(β) ≥ Ki, which entails that E∗(β) is bounded away from the origin.
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Let xi(β) = min{x1(β), · · · , xn(β)}. We have

ri
β
xi(β)

(
1− xi(β)

Ki

)
+

n∑
j=1,j 6=i

γij(xj − xi) = 0

whence
ri
β
xi(β)

(
1− xi(β)

Ki

)
≤ 0

and since xi(β) cannot be negative or 0, we have xi(β) ≥ Ki.

As a corollary of the previous theorem we obtain the following result which
describes the total equilibrium population for perfect mixing:

Corollary 4.1. We have

X∗T (+∞) = lim
β→+∞

n∑
i=1

x∗i (β) = n

∑n
i=1 ri∑n
i=1 αi

. (26)

Remark 4.3. Notice that the formula (26) shows that the total equilibrium popu-
lation does not depend on the flux of migration γij . This formula was obtained for
the 2-patch case by Freedman and Waltman [8, Theorem 1]. It was also obtained
in [6, Theorem B.1] for the model (2) corresponding to the particular case (8) of
the migration flux.

Proposition 4.4. If α1 = · · · = αn =: α, then X∗T (+∞) =
∑n
i=1Ki.

Proof. We use Equation (26) for α1 = · · · = αn =: α.

Arditi et al. [1] also obtained the formula (26), in the 2-patch case, by us-
ing singular perturbation theory, see [1, Formula (A.13)]. They showed that, if
(x1(t, β), x2(t, β)) is the solution of (1), with initial condition (x10, x20), then, when
β →∞, the total population x1(t, β)+x2(t, β) is approximated by Y (t), the solution
of the logistic equation

dX

dt
= rX

(
1− X

2K

)
, where r =

r1 + r2

2
and K =

r1 + r2

r1/K1 + r2/K2
, (27)

with initial condition Y (0) = x10 + x20. Therefore the total population behaves
like the unique logistic equation given by (27). In addition, one obtains the follow-
ing property: with the exception of a small initial interval, the population densi-
ties x1(t, β) and x2(t, β) are both approximated by Y (t)/2, see [1, Proposition 3].
Therefore, this approximation shows that, when t and β tend to ∞, the popula-
tion density xi(t, β) tends toward r1+r2

α1+α2 , as stated in Theorem 4.2 and in addition,

xi(t, β) quickly jumps from its initial condition xi0 to the average (x10 +x20)/2 and
then is very close to Y (t)/2. Our aim is to show that this result is true for the
n-patch model (4).

Theorem 4.5. Let (x1(t, β), . . . , xn(t, β)) be the solution of the system (4) with
initial condition (x10, · · · , xn0) satisfying xi0 ≥ 0 for i = 1 · · ·n. Let Y (t) be the
solution of the logistic equation

dX

dt
= rX

(
1− X

nK

)
, where r =

∑n
i=1 ri
n

and K =

∑n
i=1 ri∑n

i=1 ri/Ki
, (28)
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with initial condition Y (0) =
∑n
i=1 xi0. Then, when β →∞, we have

n∑
i=1

xi(t, β) = Y (t) + o(1), uniformly for t ∈ [0,+∞) (29)

and, for any t0 > 0, we have

xi(t, β) =
Y (t)

n
+ o(1), i = 1, . . . , n, uniformly for t ∈ [t0,+∞). (30)

Proof. Since Γ is symmetric with real coefficients, there exists an orthogonal matrix
P such that

P−1ΓP = D

where D is the diagonal matrix whose diagonal elements are the eigenvalues

λ1 ≤ · · · ≤ λn−1 < λn = 0

of Γ, see Lemma 4.1. We rewrite the system (5) in vector form:

dx

dt
= f(x) + βΓx, (31)

where x = (x1, · · · , xn)T and

f(x) = (r1x1(1− x1/K1), · · · , rnxn(1− xn/Kn))
T
. (32)

Using the variables y = P−1x, the system (31) becomes:

dy

dt
= P−1f(Py) + βDy. (33)

This system of n differential equations can be written
dyi
dt

= gi(y) + βλiyi, i = 1, · · · , n− 1

dyn
dt

= gn(y),

(34)

where the components gi, for i = 1, · · · , n, are defined by

P−1f(Py) = (g1(y), · · · , gn(y))
T
. (35)

When β →∞, (34) is a slow-fast system, with one slow variable, yn, and n− 1 fast
variables, yi for i = 1 · · ·n − 1. According to Tikhonov’s theorem [11, 17, 18] we
consider the dynamics of the fast variables in the time scale τ = βt. One obtains

dyi
dτ

=
1

β
gi(y) + λiyi i = 1, · · · , n− 1. (36)

In the limit β =∞, we find the fast dynamics

dyi
dτ

= λiyi, i = 1, · · · , n− 1. (37)

The slow manifold, which is the equilibrium point of the fast dynamics (37), is
unique and is given by:

yi = 0 for i = 1 · · ·n− 1. (38)

Since λi < 0 for i = 1, . . . , n − 1, the slow manifold is GAS for (37). So, the
theorem of Tikhonov ensures that after a fast transition toward the slow manifold,
the solutions of (34) are approximated by the solutions of the reduced model which
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is obtained by replacing yi, i = 1, · · · , n− 1, by (38) into the dynamics of the slow
variable yn, given by the last equation in (34). One obtains:

dyn
dt

= gn((0, · · · , 0, yn)T ). (39)

Let us compute gn((0, · · · , 0, yn)T ) which is the last component of the vector (35),
given by P−1f

(
P (0, · · · , 0, yn)T

)
. We first notice that

P (0, · · · , 0, yn)T =
1√
n

(yn, · · · , yn)T ,

since it is obtained by multiplying by yn the last column of P , which is simply
the normalized eigenvector u/

√
n of Γ, corresponding to the eigenvalue λn = 0, see

Lemma 4.1. On the other hand, since P is orthogonal, the last row of P−1 = PT is
equal to uT /

√
n. Therefore, using the definition (32) of the vector f , one has

gn((0, · · · , 0, yn)T ) =
1√
n

n∑
i=1

ri
yn√
n

(
1− yn√

nKi

)
= ryn

(
1− yn√

nK

)
,

where r and K are defined in (28). Hence the reduced equation (39) is

dyn
dt

= ryn

(
1− yn√

nK

)
. (40)

Since (40) admits
√
nK as a positive equilibrium point, which is GAS in the positive

axis, the approximation given by Tikhonov’s theorem holds for all t ≥ 0 for the slow
variable yn and for all t ≥ t0 > 0 for the fast variables yi, i = 1, · · · , n − 1, where
t0 is as small as we want.

Using yn = X/
√
n, where X =

∑n
i=1 xi, one obtains that

∑n
i=1 xi(t, β) is ap-

proximated by a solution of the equation

dX

dt
= rX

(
1− X

nK

)
. (41)

Therefore, let Y (t) be the solution of (41) of initial condition Y (0) =
∑n
i=1 xi0,

then, when β → ∞, we have the approximation (29). To prove (30), we observe
that the last column of P is u/

√
n, so for all i, xi(t, β) is yn(t, β)/

√
n, plus some

linear combination of the yi(t, β) for i < n, all of which converge to zero, uniformly
in t.

In the case of perfect mixing, the approximation (29) shows that the total popu-
lation behaves like the unique logistic equation (28) and then, when t and β tend to

∞, the total population
∑
xi(t, β) tends toward nK = n

∑
ri∑
αi

, where αi = ri/Ki,

as stated in Corollary 4.1. The approximation (30) shows that, with the exception
of a thin initial boundary layer, where the population density xi(t, β) quickly jumps
from its initial condition xi0 to the average Y (0)/n, each patch of the n-patch model
behaves like the single logistic equation

dx

dt
= rx

(
1− x

K

)
, (42)

where r and K are defined in (28). Hence, when t and β tend to ∞, the population

density xi(t, β) tends toward K =
∑
ri∑
αi

, as stated in Theorem 4.2.
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5. Three-patch model. Our aim in this section is to show that when n ≥ 3 the
behavior of the n-patch logistic equation is richer and more intricate than in the case
n = 2, where only three situations can occur: the case where the total equilibrium
population is always greater than the sum of carrying capacities, the case where it
is always smaller, and a third case, where the effect of migration is beneficial for
lower values of the migration coefficient β and detrimental for the higher values.
More precisely, it was shown in [1] that, if n = 2, the following trichotomy holds

• If X∗T (+∞) > K1 +K2 then X∗T (β) > K1 +K2 for all β > 0.

• If d
dβX

∗
T (0) > 0 and X∗T (+∞) < K1 + K2, then there exists β0 > 0 such

that X∗T (β) > K1 + K2 for 0 < β < β0, X∗T (β) < K1 + K2 for β > β0 and
X∗T (β0) = K1 +K2.

• If d
dβX

∗
T (0) < 0, then X∗T (β) < K1 +K2 for all β > 0.

Therefore, the condition X∗T (β) = K1 + K2 holds only for β = 0 and at most for

one positive value β = β0. The value β0 exists if and only if d
dβX

∗
T (0) > 0 and

X∗T (+∞) < K1 +K2.

β

K1 +K2 +K3

X∗T

Figure 2. Total equilibrium population X∗T of the system (4) (n =
3) as a function of migration rate β. The parameter values are given
in Table 5.

In the numerical simulations we take n = 3 and γij = 1 for all i, j = 1, 2, 3. We
show that we can have new behaviors of X∗T (β) due to the addition of the third
patch. We show that we can have the following situations, which do not exist in
the two-patch model:

• We can have simultaneously
dX∗

T

dβ (0) < 0 and X∗T (+∞) > K1 + K2 + K3, as

shown in Fig. 2.

• We can have
dX∗

T

dβ (0) > 0 and X∗T (+∞) > K1 +K2 +K3 and there exist values

of β for which we have X∗T (β) < K1 +K2 +K3, as shown in Fig. 3.

• We can have
dX∗

T

dβ (0) < 0 and X∗T (+∞) < K1 +K2 +K3 and there exist values

of β for which we have X∗T (β) > K1 +K2 +K3, as shown in Fig. 4.

Therefore the equality X∗T (β) = K1 +K2 +K3 can occur for two positive values of
β, not only for a unique positive value as in the two-patch case.
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β

K1 +K2 +K3K1 +K2 +K3

X∗T X∗T

Figure 3. Total equilibrium population X∗T of the system (4) (n =
3) as a function of migration rate β. The figure on the right is a
zoom, near the origin, of the figure on the left. The parameter
values are given in Table 5.

β

K1 +K2 +K3

X∗T

Figure 4. Total equilibrium population X∗T of the system (4) (n =
3) as a function of migration rate β. The parameter values are given
in Table 5.

6. Asymmetric dispersal. Arditi et al. [2] generalized the mathematical analysis
of the two-patch model (1) to the asymmetric case

dx1

dt
= r1x1

(
1− x1

K1

)
+ β(γ12x2 − γ21x1),

dx2

dt
= r2x2

(
1− x2

K2

)
+ β(γ21x1 − γ12x2),

(43)

where γ12 6= γ21. They showed that there are only three cases as in the symmetric
dispersal case. In this section we give some results on the general multi-patch
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Table 1. The numerical values of the parameters for the logistic
growth function of the model (4), with n = 3, used in Fig. 2, 3,
4. All migration coefficients satisfy γij = 1. The derivative of the
total equilibrium population at β = 0 is computed with Eq. (58),
and the perfect mixing abundance X∗T (+∞) is computed with Eq.
(26).

Figure r1 r2 r3 K1 K2 K3
dX∗

T (0)
dβ X∗T (+∞)

2 0.12 18 0.02 0.5 1.5 2 −79.19 4.44 >
∑
Ki = 4

3 0.04 3 0.2 0.5 6 9.5 299.33 16.17 >
∑
Ki = 16

4 4 0.7 0.06 5 1 4 −24.58 9.42 <
∑
Ki = 10

logistic growth, coupled with asymmetric migration terms :

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

(γijxj − γjixi) , i = 1, · · · , n. (44)

where γij ≥ 0 denotes the incoming flux from patch j to patch i, for i 6= j. As in
the symmetric dispersal case (4), the system (44) can be written in the form (5)
where

γii = −
n∑

j=1,j 6=i

γji, i = 1, · · · , n (45)

denotes the outgoing flux of patch i. The connectivity matrix is defined by (7). Its
columns sum to 0 since the diagonal elements γii, defined by (45), assert that what
comes out of a patch is distributed between the other n − 1 patches. As in the
symmetric dispersal case, the positive cone Rn+ is positively invariant for the system
(44). We have the following result, whose proof needs the Lemma B.2, which is
recalled in Appendix B.

Theorem 6.1. Assume that the connectivity matrix Γ := (γij)n×n is irreducible.
The model (44) has a unique positive equilibrium point which is GAS in the positive
cone Rn+ \ {0}.

Proof. Consider the system (44). We define the following matrix

A = βΓ + diag(r1, · · · , rn), (46)

where Γ is the connectivity matrix defined by (7). Therefore A = (aij) where

aij =

{
βγij if i 6= j

ri − β
∑
k 6=i γik if i = j

(47)

Note that, the matrix (47) is the Jacobian matrix of the system (44) evaluated at
x = 0. According to a result of Lu and Takeuchi [14, Corollary 1], the system
(44) possesses a globally stable positive equilibrium if s(A) > 0 where s(A) is the
stability modulus of the matrix A. Let us prove that s(A) > 0. Let u = (1, · · · , 1)T .
We have

ATu = (r1, · · · , rn)T ≥ λu, where λ = min{r1, · · · , rn} > 0.

Therefore, since A is a Metzler matrix, according to Lemma B.2, we have

s(A) = s(AT ) ≥ λ > 0.
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Some of the results obtained in the symmetrical case can be easily extended to
the asymmetric case. For instance we have the following result:

Proposition 6.2. If r1 = · · · = rn, then the total equilibrium population, defined
by (12) satisfies X∗T (β) ≤

∑n
i=1Ki, for all β ∈ [0,∞[.

Proof. The equilibrium point E∗(β) is the solution of the algebraic system:

rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

(γijxj − γjixi) = 0, i = 1, · · · , n. (48)

As in the symmetric dispersal case, the sum of these equations shows that E∗(β)
satisfies the equation (10). Therefore E∗(β) belongs to the ellipsoid defined by (11).
The rest of the proof is the same as the proof of Prop. 3.1 and simply consists in
noticing that the interior of the ellipsoid is strictly convex.

7. Conclusion. The goal of this paper was to generalize to a multi-patch model
the results obtained in [1] for a two-patch model. The migration between patches
is modeled by a symmetric Metzler matrix, called the connectivity matrix. When
the connectivity matrix is irreducible, the system is shown (Prop. 2.2) to have a
unique non-trivial equilibrium, which furthermore is globally asymptotically stable.
One of the questions we have looked at is

Question 7.1. Is it possible, depending on the migration rate, that the total popu-
lation be larger than the sum of the capacities of each patch ?

We have answered this question (Prop. 3.4- Sec.3) in the particular case when
all patches, but one, are identical in carrying capacity growth rate, and migration
rate to and from the ”central” patch. The results are similar to those of [1], in that
there exists a critical value of the migration rate where the answer to Question 7.1
changes.

In Section 4 we looked at another particular case, that of perfect mixing, when the
migration rate goes to infinity, in other words, when there is no restriction whatso-
ever on travel. We computed the equilibrium in this situation, and by perturbation
arguments (see [17]), we proved that the dynamics in this ideal case provide a good
approximation to the case when the migration rate is large.

In Section 5 we considered the case when there are only three patches. We
provided numerical evidence to the fact that the answer to Question 7.1 is more
subtle than in the two-patch case, in particular there may be at least two critical
values where the answer changes.

In Section 6 we considered the asymmetrical dispersal case, that is, the connec-
tivity matrix is no longer assumed to be symmetric. We proved that the globally
asymptotically stable equilibrium still exists in this case (see Theorem 6.1).

Some questions remain open : what are the exact conditions on the model un-
der which there might be several critical values where the answer to Question 7.1
changes ? is it possible to give a general classification of all possible cases ? To
what extend would the classification of all possible cases characterize the model ?
We think this problem is very difficult and warrants further work.

Appendix A. Some properties of the total equilibrium population. In
this section, we give some properties of the total equilibrium population X∗T (β) =∑n
i=1 x

∗
i (β).
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Lemma A.1. The total equilibrium population X∗T satisfies the following relation:

X∗T (β) =

n∑
i=1

Ki + β

n∑
i=1

n∑
j=1,j 6=i

γij(x
∗
j (β)− x∗i (β))

αix∗i (β)
. (49)

Proof. The equilibrium point E∗(β) satisfies the system

0 = αix
∗
i (β) (Ki − x∗i (β)) + β

n∑
j=1,j 6=i

γij
(
x∗j (β)− x∗i (β)

)
, i = 1 · · ·n. (50)

Dividing (50) by αix
∗
i , one obtains

x∗i (β) = Ki + β

n∑
j=1,j 6=i

γij(x
∗
j (β)− x∗i (β))

αix∗i (β)
.

Taking the sum of these expressions gives (49).

Lemma A.2. We suppose that α1 = . . . = αn =: α, then

X∗T (β) =

n∑
i=1

Ki +
β

α

∑
j<i

γij(x
∗
j (β)− x∗i (β))2

x∗j (β)x∗i (β)
. (51)

Proof. We have

X∗T (β) =

n∑
i=1

Ki +
β

α

n∑
i=1

n∑
j=1,j 6=i

γij(x
∗
j (β)− x∗i (β))

x∗i (β)

=

n∑
i=1

Ki +
β

α

∑
j<i

(
γij(x

∗
j (β)− x∗i (β))

x∗i (β)
+
γji(x

∗
i (β)− x∗j (β))

x∗j (β)

)

=

n∑
i=1

Ki +
β

α

∑
j<i

γij(x
∗
j (β)− x∗i (β))x∗j (β) + γji(x

∗
i (β)− x∗j (β))x∗i (β)

x∗j (β)x∗i (β)
,

which gives (51), since γij = γji.

Proposition A.3. Consider the system (4).

1. If K1 = · · · = Kn =: K, then x∗1 = . . . = x∗n = K.
2. If (16) hold then x∗1 = . . . = x∗n−1 =: x∗ and

(a) If K < Kn then K < x∗ < x∗n < Kn.
(b) If K > Kn then K > x∗ > x∗n > Kn.

Proof. Suppose that K1 = · · · = Kn =: K then the equations (9) giving the equi-
librium point are satisfied for xi = K. Therefore E∗(β) = (K, . . . ,K) does not
depend on β. This proves the first item of the proposition.

Now, for the proof of the second item, suppose that (16) hold, that is to say
K1 = · · · = Kn−1 =: K, r1 = · · · = rn−1 =: r and γn1 = · · · = γnn−1 =: γ. Then
the equations (9) are written

rxi

(
1− xi

K

)
+ β

n∑
j=1,j 6=i

γij(xj − xi) = 0, i = 1 · · ·n− 1,

rnxn

(
1− xn

Kn

)
+ βγ

n−1∑
j=1

(xj − xn) = 0.

(52)
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Now, consider the following system of algebraic equations
rx
(

1− x

K

)
+ βγ(xn − x) = 0,

rnxn

(
1− xn

Kn

)
+ (n− 1)βγ(x− xn) = 0.

(53)

obtained from (52) by replacing xi = x, for i = 1 · · ·n− 1 and using the conditions
γin = γ, for i = 1 · · ·n − 1. We first notice that if (x = x∗, xn = x∗n) is a positive
solution of (53) then (x1 = x∗, · · · , xn−1 = x∗, xn = x∗n) is a positive solution of
system (52). Let us prove that System (53) has a unique solution (x∗, x∗n). Indeed,
multiplying the first equation of (53) by n− 1 gives the following system

(n− 1)rx
(

1− x

K

)
+ (n− 1)βγ(xn − x) = 0,

rnxn

(
1− xn

Kn

)
+ (n− 1)βγ(x− xn) = 0.

(54)

The system (54) represents the equilibrium point of a two-patch model. It is known,
see [1, Prop. 1], that it has a unique solution (x∗, x∗n), satisfying

K < x∗ < x∗n < Kn if K < Kn, and K > x∗ > x∗n > Kn if K > Kn. (55)

(a) K < Kn (b) K > Kn

E

P

E

P

0 0x x

xn xn

A

B

C

A

B

C

Kn

K

K

Kn

K

Kn

Kn

K

Figure 5. The intersection point (x∗, x∗n), between Ellipse E and
Parabola P, lies in the interior of triangle ABC. (a): the case
K < Kn. (b): the case K > Kn.

For the convenience of the reader, we give here the details of the proof of (55).
Adding the equations of (54) we get

r(n− 1)x
(

1− x

K

)
+ rnxn

(
1− xn

Kn

)
= 0, (56)

which is the equation of an ellipse E passing through the points (0, 0), (K, 0), (0,Kn)
and A = (K,Kn). The first equation of (54) represents a parabola P of equation
xn = P (x), where

P (x) = x

(
1− r

βγ
+

r

βγK
x

)
. (57)
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So, the solutions of system (54) are defined by the intersection points between
Ellipse E and Parabola P, as it is shown in Fig. 5. Since P ′(K) = 1 + r

βγ > 1,

this intersection lies in the triangle ABC, where A = (K,Kn), B = (K,K) and
C = (Kn,Kn), which proves (55).

Lemma A.4. The derivative of the total equilibrium population X∗T (β) at β = 0,
is given by

dX∗T
dβ

(0) =

n∑
i=1

1

ri

n∑
j=1,j 6=i

γij (Kj −Ki) . (58)

Proof. By differentiating the equation (49), at β = 0, we get:

dX∗T
dβ

(0) =

n∑
i=1

n∑
j=1,j 6=i

γij(x
∗
j (0)− x∗i (0))

αix∗i (0)
,

which gives (58), since x∗i (0) = Ki for i = 1 · · ·n.

Appendix B. Stability modulus of a Metzler matrix. For the ease of the
reader, we recall in this section the proof of a result which gives a minoration of the
stability modulus of a Metzler matrix, see Lemma B.2. This Lemma is a corollary
of result which gives a minoration of the spectral radius of a non negative matrix,
see Lemma B.1. Recall that the spectral radius of matrix A is defined as

ρ(A) = max {|λ| : λ is an eigenvalue of A} . (59)

We have the following result [15, Lemma 8]:

Lemma B.1. Let A be a non negative matrix. Let u ∈ Rn and λ ∈ R. If Au ≥ λu
then ρ(A) ≥ λ.

Proof. If Au ≥ λu then, since A is non negative, Aku ≥ λku for all k. There-
fore ‖Ak‖ ≥ λk for any matricial norm. Using the Gelfand formula ρ(A) =

limk→∞ ‖Ak‖
1
k , we obtain that ρ(A) ≥ λ.

Recall that the stability modulus of a matrix A is given by

s(A) = max {Re(λ) : λ is an eigenvalue of A} . (60)

A matrix A = (aij) is said to be Metzler if aij ≥ 0 for i 6= j. We have the following
result [3, Lemma 8]:

Lemma B.2. Let A be a Metzler matrix. Let u ∈ Rn and λ ∈ R. If Au ≥ λu then
s(A) ≥ λ.

Proof. Let A be a Metzler matrix, there exists h > 0 such that A + hI, where I
is the identity matrix, is non negative. Let u and λ be such that Au ≥ λu. Since
(A + hI)u ≥ (λ + h)u, using Lemma B.1, we deduce that ρ(A + hI) ≥ λ + h.
According to the Perron-Frobenius Theorem [9, Theorem 3, page 66], we have

s(A+ hI) = ρ(A+ hI).

Therefore we have s(A + hI) ≥ λ + h. Using s(A + hI) = s(A) + h, we obtain
s(A) ≥ λ.
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