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Multi-Discriminator with Spectral and Spatial Constraints Adversarial
Network for Pansharpening

Anaïs Gastineau, Jean-François Aujol, Yannick Berthoumieu, and Christian Germain ∗†

Abstract
The pansharpening problem amounts to fusing a high resolution panchromatic image with a low res-
olution multispectral image so as to obtain a high resolution multispectral image. So the preservation
of the spatial resolution of the panchromatic image and the spectral resolution of the multipsectral
image are of key importance for the pansharpening problem. To cope with it, we propose a new
method based on multi-discriminator in a Generative Adversarial Network (GAN) framework. Two
discriminators are considered. The first one is optimized to preserve textures of images by taking as
input the luminance and the near infrared band of images, and the second one preserves the color
by comparing the chroma components Cb and Cr. Thus, this method allows to train two discrimi-
nators, each one with a different and complementary task. Moreover, to enhance these aspects, the
proposed method based on multi-discriminator, and called MDSSC-GAN SAM, considers a spatial
and a spectral constraints in the loss function of the generator. We show on numerous examples the
advantages of this new method.

Index term : Deep learning, Generative Adversarial Network, multi-discriminator, remote sensing,
pansharpening.

1 Introduction
Remote sensing is the set of techniques that, through the acquisition of images, provide information about the
surface of the Earth without direct contact with it. It is the whole process of capturing and recording the energy of
an emitted or reflected electromagnetic radiation, processing and analyzing the information it represents. Remote
sensing methods provide relevant tools for monitoring agricultural resources, changes in biodiversity and ecosystems
for land cover or oceans, natural disasters and for studying of the atmosphere.

In remote sensing, the spatial resolution is given by the surface of the ground captured by one pixel. It affects
the reproduction of details in the image. The spectral resolution is given by the number of bands of the image and
by the bandwidth of the signal captured by the sensors producing the images. The higher the number of channels is
or the narrower the bandwidth is, the higher the spectral resolution gets.

Recent satellites such as Spot 6-7, Ikonos, GeoEye or Pléiades offer multispectral and panchromatic images.
Panchromatic chanel is characterized by a high spatial resolution and a low spectral resolution, whereas multispectral
images have a low spatial resolution and a high spectral resolution. For Pléiades satellite, the panchromatic image
is composed of one large band and a multispectral image composed of four finer bands, these bands being green,
blue, red (RGB) and near infrared bands, respectively. More precisely, the ground sampling distance is 2.8 m for
multispectral images and 0.7 m for panchromatic images. The wavelength of the blue band is between 430 nm and
550 nm, 490 nm and 610 nm for the green one, 600 nm and 720 nm for the red one and 750 nm and 950 nm for the
near infrared (NIR) one. The panchromatic chanel is sensitive to a wide range of wavelengths of visible light between
480 nm and 830 nm.

In terms of image content, it is interesting to note: i) As the spectral bands (RGB) overlap, it means that for this
channel’s the spatial content is obviously highly correlated. ii) Since the vegetation reflects better in the infrared, the
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NIR band allows to get much geometrical and texture information in vegetation areas. Figure 1 shows an example
of it: the intensity of pixels is higher where the vegetation is healthy or dense.

(a) (a) (b) (b)

Figure 1: Example of the near infrared (NIR) band of a satellite image (a) and the near infrared (NIR) band of the
same image (b). The NIR band gives more texture information than the RGB bands in vegetation area.

The pansharpening problem consists in fusing a panchromatic and a multispectral image in order to reconstruct a
high spatial resolution multispectral image. For Pleiades images, this imposes a resolution factor setting to 4. Figure
2 gives an example of RGB bands of the pansharpening problem. The panchromatic image gives high frequency
information (in particular about geometry and texture), whereas the multispectral image gives information about
the spectral diversity.

(a) (a) (b) (b) (c) (c)

Figure 2: Example of Pléiades satellite image with the panchromatic image (a), the RGB bands of the low resolution
multispectral image (b) and the RGB bands of the high resolution multispectral image (c). This example illustrates
the problem of pansharpening focused on reconstruction of the high resolution multispectral image.

Generally, this problem is formulated as follows:
yk = SHkuk +Bk, ∀ k ≤ K
P =

∑
k≤K

αku
k , (1)

where y ∈ Rm×n×K is the observed low resolution multispectral image, P ∈ RM×N the high resolution panchromatic
image and u ∈ RM×N×K the fused high resolution image with a factor s between the low and the high spatial
resolution such as M = m× s and N = n× s and K the number of spectral bands. In most cases, s = 4 for satellite
images. In this model (1), S is the subsampling operator, H the blur operator and B a gaussian noise. The second
equation supposes that P can be approached by the linear combination of the bands of u. The coefficients (αk)k≤K
are specific to the sensors of each satellite.

Several approaches have been proposed to solve the pansharpening problem, they can be grouped into four main
classes:

• Component substitution methods that use a linear transformation such as PCA on the multispectral image to
dissociate spectral from spatial details in order to replace the spatial details by the panchromatic image [1, 2].

• Multiresolution analysis methods that decompose panchromatic and multispectral images into a pyramid or a
sequence of signal with a decreasing information content. Then the high frequencies of the panchromatic image
are added to the multispectral image [3, 4].
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• Variational and bayesian methods giving an a priori on the solution by solving an inverse problem [5, 6, 7].

• Learning methods modeling the relationship between multispectral and panchromatic images through different
level of features, without the need of a model such as (1).

Recently, approaches based on deep learning give the best state of the art results. Masi et al. [8] adapt a
CNN, initially proposed for the super-resolution problem [9], to the pansharpening problem. This CNN mimics the
behavior of a sparse representation in three convolutional layers. Palsson et al. [10] propose to use a 3D CNN by
considering multispectral images as 3D images: two spatial dimensions and one spectral dimension. This makes it
possible to better model the inter bands spectral correlation. Guo et al. [11] propose a four layers CNN robust to the
inconsistencies accross satellites with dilated multilevel blocks. These dilated multilevel blocks allow to make full use
of features extracted by the convolutional layers. Moreover, to avoid overfitting they propose to use a l2-regularization
term on the weights in the loss function.

An important point for the pansharpening problem is to preserve the geometry and the color of images. To do so,
Yang et al. [12] propose the PanNet network that trains in the high frequency (HF) domain to preserve the structure
and the geometry of the panchromatic image. The spectral information, i.e. the color, is preserved by propagating
the multispectral image thanks to residual connections in a ResNet architecture.

More rencently, there is the emergence of GANs for the generative problem. Generative Adversarial Networks
(GANs), introduced by Goodfellow et al. [13], are a class of unsupervised learning algorithms. This type of network
mimics any data distribution. Usually, GANs are generative models where two networks are competing each other.
The first network, the generator Gθ, generates samples, while its adversary, the discriminator network Dη tries to
detect if it is a real sample or if it is the result of the generator.

For example, Liu et al. [14] propose a GAN based method. Their method, named PSGAN, considers a simple
architecture, i.e. a stack of multiple layers for the generator and the discriminator. But more recently, they propose
an extension [15] by changing the architecture of the generator. They choose a residual auto-encoder architecture
for the generator with two sub-networks allowing to extract complementary features of the panchromatic and the
multispectral images. Zhang et al. [16] propose an architecture using the deep learning module Spatial Feature
Transform (SFT) intitialy designed by Wang et al. [17] for the super-resolution problem. This structure allows
to reproduce the spatial characteristics of the panchromatic image within the multispectral images. In the same
spirit, our recent paper [18] builds on a RDGAN (Residual Dense Generative Adversarial Network) method. In our
RDGAN approach, we consider a Residual Dense architecture for the generator with a geometrical constraint in the
non adversial loss function to restore the spatial resolution of images. He et al. [19] preserve the spectral resolution
by adding a regularisation term based on the Spectral Angle Map (SAM) measure in the generator in an adversarial
autoencoder framework. This measure computes the spectral distortion between two images and they propose to
minimize this quantity in the loss function.

Since GANs are efficicents for image reconstruction, many improvements in the GAN algorithm have been pro-
posed, especially by considering multiple discriminators. This multi-discriminator framework is mainly used for the
super-resolution problem. For example, Zhu et al. [20] consider three discriminators. The first one is a pixel discrim-
inator, commonly used in GAN, the second one compares colors with the low resolution images and the third one
compares edges and textures by considering the grayscale images. For the generator, they optimize a loss function
considering a l2 term between the generated and the target images and two feature terms comparing output of a
pre-trained VGG network in order to preserve details. Lee et al. [21] keep the pixel discriminator of traditional GAN
approaches and consider two other discriminators. One avoids checkerboard artifacts by comparing the discrete cos-
inus transform and the other one restores high frequencies by comparing the histograms of the gradient magnitude
of the input images. Park et al. [22] propose a method based on multiple discriminators in a CycleGAN context for
image enhancement. In addition of the conventional discriminator, they propose to use a feature discriminator. It
consists in using, as input of the discriminator, the output of one layer of a pre-trained VGG network.

In this paper, we propose a GAN architecture exploiting jointly the spatial and spectral information sources. On
the one hand, we seek to see how best to condition the discriminator part. On the other hand, we also study how we
can introduce pertinent levels of information considering the non advertial loss of the generator part. We propose a
new multi-discriminator GAN based approach for the pansharpening problem with spectral and spatial constraints
leading to the general architecture presented in Figure 3.

The preservation of the spatial resolution of the panchromatic image and the spectral resolution of the multispec-
tral image are of key importance for the pansharpening problem. In order to cope with it, we propose to separate
these two tasks by considering two "orthogonal" discriminators. The first one is optimized to preserve texture and
geometry of images by taking as input the luminance and the NIR bands of images. The second one preserves the
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Figure 3: General framework of a multi-discriminator GAN, where the input [↑ y, P ] is the concatenation of the high
resolution panchromatic image P and ↑ y the low resolution multispectral image y upsampled at the resolution of
P , u is the target image, û is the generated image, uY IR the concatenation of the luminance and the near infrared
band, uCbCr the concatenation of the chroma components Cb and Cr and Dcolor and Dgeom are the discriminators.

color and the spectral resolution of images by comparing the chroma components Cb and Cr. Thus, this method
allows to train two discriminators, each one with a different and complementary task. Moreover, to enhance these
aspects, we propose a method based on multi-discriminator, called MDSSC-GAN SAM, which considers a spatial
and a spectral constraints for designing the generator.

2 Proposed method
In the literature based on GANs, see e.g. [14, 16], the following loss functions are classically used:

L(Gθ) =
∑
i≤Nb

αlog(Dη(Gθ(↑ y, P )))

+ δ||u−Gθ(↑ y, P )||1 (2)

for the generator Gθ, where the first term is the cross entropy term used in adversarial learning and the second one
is the l1 norm between the target and the generated images. And

L(Dη) =
∑
i≤Nb

log(1−Dη(Gθ(↑ y, P ))) + log(Dη(u)) (3)

is the loss function for the discriminator Dη. Here, Nb is the batch size, [↑ y, P ] is the input of the network Gθ with
↑ y corresponding to the low resolution multispectral y image upsampled with a bicubic interpolation to the size of
the panchromatic image P , Gθ(↑ y, P ) is the output of the generator, θ and η the parameters of the generator Gθ
and the discriminator Dη to optimize and u is the target image. The goal is to optimize θ and η.

Since we work with a residual framework, the output of the generator Gθ(↑ y, P ) is a residual image. This residue
contains information about spatial and spectral details. The final reconstructed image is obtained by adding this
residue image with the low resolution multispectral image ↑ y. So the equations (3) and (2) are formulated in a
residual way as follows:

L(Gθ) =
∑
i≤Nb

αlog(Dη(Gθ(↑ y, P )+ ↑ y))

+ δ||u−Gθ(↑ y, P )− ↑ y||1 (4)

and

L(Dη) =
∑
i≤Nb

log(1−Dη(Gθ(↑ y, P )+ ↑ y))

+ log(Dη(u)). (5)

For better understanding, in the rest of the paper, we set û = Gθ(↑ y, P )+ ↑ y the generated image.
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2.1 Multi-Discriminator
2.1.1 First discriminator

Motivated by texture preservation, the first discriminator considered Dgeom takes in input the luminance and the
NIR bands. Indeed, grayscale images allow to highlight texture and geometry. Moreover, as vegetation reflects in
the NIR band, this band is very important to get information of texture and geometry in vegetation areas. So, the
luminance and the NIR band are concatened in order to get images with two bands and then used in input of this
discriminator. The luminance is obtained by computing a linear combination of the red, blue and green bands.

Then, the loss function of the discriminator is:

LDgeom
=
∑
i≤Nb

log(1−Dηg
(ûY IR)) + log(Dηg

(uY IR)), (6)

where ûY IR and uY IR are the concatenation of the luminance Y and the NIR bands of û and u respectively and ηg
the parameters of Dgeom to optimize.

2.1.2 Second discriminator

Next, to preserve the spectral resolution and the color in images, we consider a second discriminator comparing the
color of the target image and the fused image by using the chroma components Cb and Cr from a conventional
YCbCr transformation. The idea is to exploit that the RGB inter-channel dependance is usually higher than the
YCbCr inter-channel dependance. Consequently, to preserves the color, the Cb and Cr components are used. This
amounts to minimizing:

LDcolor
=
∑
i≤Nb

log(1−Dηc
(ûCbCr)) + log(Dηc

(uCbCr)), (7)

where uCbCr and ûCbCr correspond to the concatenation of the chroma components Cb and Cr for u and û respec-
tively and ηc the parameters of Dcolor to optimize.

2.1.3 Architecture of discriminators

The architecture of each discriminator, presented in Figure 4, is composed of seven convolutional layers with a
number of feature maps increasing from 32 to 1024. These convolutional layers are used to extract enough features
and capture the representation of data in a space. Then, to classify, two dense layers are added. This type of layers
learns a function in the data space detecting whether the generated image is real or fake. Indeed, while convolutional
layers extract features from a small receptive field, dense layers provide learning features from all the combinations
of the features of the previous layer. So this type of layer allows to classify the information by taking into account
all the previous features.

Figure 4: Architecture of each discriminator, where k is the kernel size, n the number of filters and s the stride for
the convolutional layers.

2.2 Generator
2.2.1 Loss function of the MDSSC-GAN SAM method

The proposed loss function take into account two types of constraints: a geometrical and a spectral constraint.
Indeed, He et al. [19] propose to preserve the spectral resolution by adding a constraint based on the Spectral Angle
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Map (SAM) measure. They show that this term allow to improve visual results but also evaluation metrics. So, to
preserve the spectral resolution, we propose to add this term in the loss function. In this case, the following loss
function is minimized:

L(Gθ) =
∑
i≤N

αglog(Dηg (ûY IR)) + αclog(Dηc(ûCbCr)+

αl1||û− u||1 + αt
∑
x∈Ω
|∇u(x)⊥.∇û(x)|+

αsam
∑
x∈Ω

arccos

(
u(x).û(x)

||u(x)||2||û(x)||2

)
, (8)

where ∇(.) is the gradient operator, ⊥ is the orthogonal vector, . is the inner product, Ω the image domain and
αg,c,l1,t,sam are weights. The first and the second term are the cross entropy terms associated to each discriminator.
The third term is the l1 norm between the target and the fused image. The fourth term is the geometrical constraint,
it forces the alignment of gradient of each bands of the solution with each band of the target image. The last one,
is the SAM measure computing the absolute value of the angle between two vectors composed of pixel values of the
target and the generated image at each point of the domain. A SAM measure equal to zero indicates no spectral
distortion but radiometric distorsions can be present. It means that vectors are parallel but with a different wave-
lenght.

2.2.2 Architecture

We consider the same architecture as in our RDGAN [18] approach; a residual dense architecture as in Figure 5 for
the generator.

Figure 5: General architecture of the generator. The input [P, ↑ y] is the concatenation [.] of the panchromatic image
P and ↑ y the multispectral image y = (y1, ..., yN ) resized to the size of P , blocks Bi, i ≤ p, are residual dense blocks,
k is the kernel size of the convolution, n the number of filter and s the stride. Each convolutional layer is followed by
a ReLU, except the last layer of the network. Arrows represent the dense connections and the + residual connection.

Residual Dense architecture keep advantages of dense [23] and residual [24] connections. These types of archi-
tecture were introduced in order to solve the vanishing gradient problem faced during the training process of a deep
network.

The considered architecture in Figure 5 takes in input the concatenation of the panchromatic image P and ↑ y
the multispectral image y = (y1, ..., yN ) resized to the size of P and is composed of several residual dense blocks.

3 Experiments
3.1 Dataset and quality evaluation
Pléiades satellite images are used to train and test the networks. Satellite images are cropped into patches of size
128× 128 to train and test. Finally, 3150 samples are used for training and 379 for testing.

To evaluate the results, we use the SAM metric presented in the loss function in Equation (8). In addition, to
measure the quality of generated images, several criteria are considered. We note X and Y two images, Xi with
i ≤ K the ith band of X, Xj with j ≤ |Ω| the jth pixel of X and Ω the image domain.
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3.1.1 The Cross Correlation coefficient (CC)

It evaluates the spatial distortion bewteen the fused image and the target image by computing the intrabands and
interbands correlation,

CC(X,Y ) = 1
K

∑
i≤K

∑
j∈Ω

(Xi
j − µX)(Y ij − µY )∑

j∈Ω
(Xi

j − µX)2
∑
j∈Ω

(Y ij − µY )2
, (9)

where µX and µY are the mean of X and Y respectively. The CC coefficient is between -1 and 1 with an ideal value
of 1. Indeed, a coefficient equal to 1 indicates images are strongly positively correlated, i.e. images share a lot of
spatial information.

3.1.2 The Peak Signal to Noise Ratio (PSNR)

It measures the reconstruction quality of the fused image,

PSNR(X,Y ) = 10log10

(
d

MSE(X,Y )

)
, (10)

where MSE(X,Y ) is the mean square error betwenn X and Y .

3.1.3 The PSNR on high frequencies

Because texture and geometry are more visible in high frequencies, we propose to compute the PSNR on high pass
filtered images. It is equivalent to consider:

PSNRh(X,Y ) = PSNR(X ∗ h, Y ∗ h), (11)
where h is a Butterworth filter.

Since the previous criteria require a target image, the Wald’s protocole [25] is used to train the networks. It
consists in reducing the spatial resolution of observed images in order to use the original multispectral image as
target image. This protocol offers a convenient way to evaluate results and to compare methods. It is commonly
used when dealing with satellite images.

3.2 Details of implementation
The proposed method is implemented with Tensorflow 1.2 and it uses ADAM algorithm to optimize weights of
networks with an initial learning rate of 0.0002 and a momentum of 0.5. Finally, the batch size is adjusted to 19.

3.3 Results
First, to underline the advantages of the proposed method, we compare our method with several methods. The first
and the second one consist in turning off each discriminator individually. The third one consists in considering one
discriminator taking in input the concatenation of the luminance, the near infrared band and the chrom components.
This method allows to highlight the advantage of the multi-discriminator aspect. Finally, the last method is the
proposed multi-discriminator method without the spectral constraint in the generator loss function. This last method
allows to underline the contribution of the spectral constraint of our proposed method. So it amounts to compare
five methods, summerized in Table 1:

Method Number of inputs of constraints in the loss
discriminators discriminators function of the generator

’MDSSC-GAN concat’ 1 [Y, NIR, Cb, Cr] spatial
’MDSSC-GAN texture’ 1 [Y, NIR] spatial
’MDSSC-GAN color’ 1 [Cb, Cr] spatial

’MDSSC-GAN’ 2 [Y,NIR] and [Cb, Cr] spatial
’MDSSC-GAN SAM’ 2 [Y,NIR] and [Cb, Cr] spatial and spectral

Table 1: Summary of compared methods, where [.] represents the concatenation, Y the luminance, NIR the near
infrared band and Cb and Cr the chroma components.
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(a) MDSSC-GAN
concat

(b) MDSSC-GAN
color

(c) MDSSC-GAN
texture

(d) MDSSC-GAN (e) MDSSC-GAN
SAM

(f) target

(g) MDSSC-GAN
concat

(h) MDSSC-GAN
color

(i) MDSSC-GAN
texture

(j) MDSSC-GAN (k) MDSSC-GAN
SAM

(l) target

MDSSC-GAN concat
P SNRh = 22.92

MDSSC-GAN color
P SNRh = 22.81

MDSSC-GAN texture
P SNRh = 24.38

MDSSC-GAN
P SNRh = 25.24

MDSSC-GAN SAM
P SNRh = 32.59

Figure 6: Visual results on vegetation areas when comparing performances of each discriminator individually with the
proposed MDSSC-GAN method. MDSSC-GAN color considers only the color discriminator, MDSSC-GAN texture
considers only the geometrical discriminator, MDSSC-GAN concat considers only one discriminator taking in input
the concatenation of the luminance, the near infrared band and the chroma components Cb and Cr, MDSSC-GAN
andMDSSC-GAN SAM are the proposed methods, the last one adding a spectral constraint to the loss function.
The first line is RGB images, the second line near infrared bands and the third line differences between the high
frequencies of target images with the high frequencies of fused images. We can see that the best results is given by
the proposed MDSSC-GAN SAM method.

Quantitative results are presented in Table 2.

Method CC SAM PSNR PSNRh
ideal value 1 0 max max

MDSSC-GAN concat 0.969 0.141 29.416 27.224
MDSSC-GAN color 0.970 0.139 29.492 27.406

MDSSC-GAN texture 0.969 0.140 29.394 27.5015
MDSSC-GAN 0.970 0.138 29.493 27.361

MDSSC-GAN SAM 0.970 0.137 29.455 27.455

Table 2: Quantitative results when comparing performances of each discriminator individually with the proposed
methods. ’MDSSC-GAN color’ considers only the color discriminator, ’MDSSC-GAN texture’ considers only the
geometrical/texture discriminator, ’MDSSC-GAN concat’ considers only one discriminator taking in input the con-
catenation of the luminance, the near infrared band and the chroma components Cb and Cr, ’MDSSC-GAN’ and
’MDSSC-GAN SAM’ the proposed methods, the last one adding a spectral constraint to the loss function. Best
results are in bold and worst results are underlined.

First, we can note that the multi-discriminator aspect improves substantially quantitative results (Table 2).
Indeed, the ’MDSSC-GAN concat’ method shows that if one just modifies the inputs while keeping only one dis-
criminator is not sufficient to improve results. Then, when only the geometrical discriminator is considered, results
are not very convincing, except for the high frequencies measure (PSNRh). While considering only the color dis-
criminator, the obtained results are equivalent to the proposed multi-discriminator methods execpt for the PSNRh
metrics which is not as well as the ’MDSSC-GAN SAM’ method. Table 2 shows that the geometrical discriminator
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reconstructs better the high frequencies and the color discriminators improves the other metrics in general. Finally,
when comparing the ’MDSSC-GAN’ method with the other proposed ’MDSSC-GAN SAM’ method, we can see that
adding a spectral constraint in the loss function of the generator improves the SAM and the PSNRh measure while
degrading the PSNR metric.

Visual results in Figure 6 show an example on vegetation areas. As vegetation reflects better in infrared, we
choose to display results of the near infrared band. This example shows that the proposed method with a spectral
constraint reconstructs high frequencies much better than the other one.

So, quantitative and visual results show advantages to use several discriminators compared to only one discrimi-
nator, by an improvement of metrics and a better high frequencies reconstruction.

Method CC SAM PSNR PSNRh
ideal value 1 0 max max
GSA [26] 0.871 0.237 21.94 22.41
GLP [27] 0.866 0.242 21.74 23.05

PanNet [12] 0.950 0.157 28.36 26.60
PSGAN [14] 0.952 0.155 26.59 26.96
RDGAN [18] 0.969 0.138 29.38 27.23
MDSSC-GAN 0.970 0.138 29.49 27.36

MDSSC-GAN SAM 0.970 0.137 29.45 27.45

Table 3: Quantitative results when comparing performances of state of the art methods. Best results are in bold and
worst results underlined.

Low Resolution Target PanNet [12]
P SNR = 31.09

PSGAN[14]
P SNR = 32.34

RDGAN[18]
P SNR = 32.48

MDSSC-GAN
P SNR = 33.46

MDSSC-GAN SAM
P SNR = 33.76

Figure 7: Visual results for state-of-the-art methods. For each method is displayed the RGB image on the left and
the near infrared (NIR) band on the right. A significant improvement if the PSNR is observed with our new method
MDSSC-GAN SAM.
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(a) PanNet[12] (b) PSGAN[14] (c) RDGAN[18] (d) MDSSC-GAN (e) MDSSC-GAN SAM (f) target

PanNet

SAM = 0.251

PSGAN

SAM = 0.249

RDGAN

SAM = 0.227

MDSSC-GAN

SAM = 0.227

MDSSC-GAN SAM

SAM = 0.223

(g) PanNet (h) PSGAN (i) RDGAN (j) MDSSC-GAN (k) MDSSC-GAN SAM

Figure 8: Visual results of state of the art methods. The first line is RGB images, the second line is the map SAM,
i.e the angle of distortion between the fused image and the target at each pixel and the third line is a zoom of the
map SAM. The blue indicates an angle of distortion of 0 and the yellow an angle of 90. The best result is given by
the proposed MDSSC-GAN SAM method.

PanNet [12]

P SNR = 27.10

PSGAN [14]

P SNR = 27.52

RDGAN[18]

P SNR = 28.32

MDSSC-GAN

P SNR = 28.37

MDSSC-GAN SAM

P SNR = 28.52

Target

PanNet

P SNRh = 25.60

PSGAN

P SNRh = 25.33

RDGAN

P SNRh = 28.51

MDSSC-GAN

P SNRh = 23.13

MDSSC-GAN SAM

P SNRh = 29.68

(a) PanNet (b) PSGAN (c) RDGAN (d) MDSSC-GAN (e) MDSSC-GAN SAM

Figure 9: Visual results of state of the art methods on urban areas. The first line is RGB images, the second line
is the difference between high frequencies of the target image and high frequencies of the fused image and the third
line is a zoom of images in second line. The best result is given by the proposed MDSSC-GAN SAM method.
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In a second time, we compare our proposed method with some recent state-of-the-art pansharpening methods.
The coefficient injection methods GLP [27] and GSA [26] and the PanNet [12], PSGAN [14] and RDGAN [18] net-
works. For a more coherent and relevant comparison, all networks are trained with the same Pléiades dataset. The
training time is about 24 hours for the ’PanNet’ and the proposed methods based multi-discriminator ’MDSSC-GAN’
and ’MDSSC-GAN SAM’, 15 hours for the ’PSGAN’ method and 12 hours for the ’RDGAN’ method.

Table 3 presents a comparison of quantitative results between state-of-the-art methods. In a first time, we can
see that deep learning approaches give better results than GLP and GSA methods. But it is important to note that
the coefficient injection methods GLP and GSA need the coefficients αk, k ≤ K, of the Equation (1) for the fusion
and we do not have these coefficients. So it may be possible to get slightly better results with these methods. Then,
the proposed method give best quantitative result for most metrics. We can note an improvement of the SAM, the
CC and the PSNRh metrics meaning a better preservation of the spectral and spatial resolution and a better recon-
struction of high frequencies with the ’MDSSC-GAN SAM’ method, but a better PSNR with the ’MDSSC-GAN’
method.

First, Figure 7 is a general example of image fusion of all the state-of-the-art methods. It is difficult to see a major
visual difference in this example, but we note a significant improvement of the PSNR with our proposed method
’MDSSC-GAN SAM’. Indeed, we improve the PSNR about 0.3 dB on this image face to the best state-of-the-art
method.

Figure 9 gives an example of the high frequencies reconstruction for each method. In fact, this Figure displays
the RGB image and the difference between high frequencies of the target image and high frequencies of the fused
image for each method. We can see that the best visual result is for the proposed ’MDSSC-GAN SAM’ method. In
this example, the best PSNR does not give the best high frequencies reconstruction. Indeed, we can see that the
worst high frequencies reconstruction is for the ’MDMD-GAN’ method but the PSNR of this image is one of the
best. On the contrary, the proposed ’MDSSC-GAN SAM’ method has a similar PSNR, but the high frequencies are
much better reconstructed.

Then, Figure 8 shows an example of the preservation of the spectral resolution. This Figure displays the SAM
metrics at each pixel, i.e. the angle of distortion between the target image and the fused image at each pixel. A
pixel with zero distortion is displayed in blue and a pixel with a high distortion in yellow. In this example, it is more
difficult to see a substantial difference on the whole image but in the zoomed part, we can see that adding the SAM
term in the loss function of the generator allows to get better results. Indeed, the proposed ’MDSSC-GAN SAM’
method gives a better result.

4 Conclusion
To conclude, we propose a method, named ’MDSSC-GAN SAM’, for the pansharpening problem. This method
consi-ders multi-discriminator in a Generative Adversarial Network framework, by training two discriminators with
a different and complementray task. The first one is to improve the spatial resolutionand the second one to improve
the spectral resolution. Moreover, both geometrical and spectral constraints in the generator loss function are added
to enhance these aspects.

Experiments have shown that the proposed method ’MDSSC-GAN SAM’ gives better quantitative and visual
results. Quantitaive results show an improvement for all spatial and spectral metrics and visual results confirm it by
reconstructing better high frequencies and spectral contents in images.
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