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A new diabatization method is presented, which is suitable for the development of accurate high-
dimensional coupled potential energy surfaces for use in quantum dynamics studies. The method is
based on the simultaneous use of adiabatic wave function and energy data, respectively, and combines
block-diagonalization and diabatization by ansatz approaches. It thus is called hybrid diabatiza-
tion. The adiabatic wave functions of suitable ab initio calculations are projected onto a diabatic
state space and the resulting vectors are orthonormalized like in standard block-diagonalization. A
parametrized diabatic model Hamiltonian is set up as an ansatz for which the block-diagonalization
data can be utilized to find the optimal model. Finally, the parameters are optimized with respect
to the ab initio reference data such that the deviations between adiabatic energies and eigenvalues
of the model as well as projected state vectors and eigenvectors of the model are minimized. This
approach is particularly advantageous for problems with a complicated electronic structure where
the diabatic state space must be of higher dimension than the number of calculated adiabatic states.
This is an efficient way to handle problems with intruder states, which are very common for reactive
systems. The use of wave function information also increases the information content for each data
point without additional cost, which is beneficial in handling the undersampling problem for high-
dimensional systems. The new method and its performance are demonstrated by application to three
prototypical systems, ozone (O3), methyl iodide (CH3I), and propargyl (H2CCCH). Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4967258]

I. INTRODUCTION

The detailed study of reactive processes at molecular level
is of fundamental interest for understanding chemistry. The
tremendous progress in experimental techniques provides a
plethora of data and the great advance in theory can deliver
the corresponding interpretations to gain deep insight. How-
ever, the complexity of the experimental data and the effort for
a theoretical treatment of a reactive process increase extremely
rapidly with the size of the system. One of the main the-
oretical bottlenecks for systems beyond three atoms is the
development of accurate analytical potential energy surfaces
(PESs), which are essential for a theoretical (quantum) reaction
dynamics investigation. At least for adiabatic ground states,
two strategies have proven feasible for developing higher-
dimensional PESs with good accuracy. One possibility is based
on local interpolation techniques1–5 while the other utilizes
invariant theory and permutation symmetry of indistinguish-
able nuclei.6 A third approach is currently emerging with
promising results, which is based on artificial neural net-
works.7–24 Unfortunately, an extension of these methods to
excited state PESs is not straightforward because of the dif-
ficulty to account for the state-state interactions. So far, this
has been attempted by the modified Shepard interpolation25–27

and very recently by using invariant polynomials and complete
nuclear permutation-inversion (CNPI) symmetry.28,29

a)wolfgang.eisfeld@uni-bielefeld.de

For excited states, it generally is of great advantage to
use a quasi-diabatic representation for the coupled electronic
states.30–43 A unique and truly diabatic representation in gen-
eral cannot be defined strictly and it might be better to speak of
a quasi-diabatic representation.37,43 In the following we will
still use the term “diabatic” rather than “quasi-diabatic” simply
for the convenience of the reader. The requirement for a suit-
able diabatic representation is that it minimizes the remaining
derivative coupling among the states in the model and the states
not included into the model to a degree that it can be neglected
like in the standard Born-Oppenheimer approximation.43 Most
attempts to develop coupled PESs for a manifold of states are
based on some kind of diabatic representation. This simpli-
fies the quantum dynamics treatment because the diabatization
removes the singularities of the nonadiabatic derivative cou-
plings. Furthermore, the matrix elements of the electronic
Hamiltonian become particularly simple functions in a dia-
batic basis, making it easier to find analytical expressions for
them.

One of the simplest approaches of this kind is the lin-
ear vibronic coupling model, which has been an early and
extremely successful approach for the explanation of many
phenomena in ultra fast nuclear dynamics.44 Unfortunately,
the standard linear vibronic coupling model is only useful
for describing processes that are entirely dominated by the
short-time dynamics so that only a very small part of the
coupled potential energy surfaces (PESs) is of importance.
However, we are interested in processes that are not of this kind
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and require accurate PESs over extended regions of nuclear
configurations. For this reason we and others have been extend-
ing the vibronic coupling approach in recent work.39,45–51 The
advantage of the vibronic coupling approach and the corre-
sponding “diabatization by ansatz” technique is that it yields
directly a PES matrix in closed form. The disadvantage is that
in the absence of high molecular symmetry there might be a
fair amount of ambiguity in the diabatization because only adi-
abatic electronic energies are used and no information about
the electronic wave functions is utilized.

Some early diabatization approaches used properties of
the wave functions rather than the energies for the diabati-
zation.36,52 Related to these ideas was the development of
wave function based direct diabatization schemes. An early
version of this kind of approach was introduced by Cimiraglia
et al.53 who defined a set of asymptotic diabatic reference
states with respect to which the wave functions at all other
geometries are diabatized within an ab initio code to directly
compute diabatic states and energies. The method is based
on unitary transformations of the states to fulfill maximal
overlap criteria combined with the use of quasi-degenerate
perturbation theory. A lot of scientific effort has been devoted
to similar techniques by which diabatic energies and nona-
diabatic couplings can be determined from the electronic
wave functions within the framework of electronic structure
methods.54–66 In general, the direct diabatization approaches
do not yield analytic PES matrices directly. Some of these
methods compute and annihilate the nonadiabatic coupling
elements and are thus reference-free while others are based
on a reference point. The approaches annihilating the nona-
diabatic couplings benefited strongly from the advent of ana-
lytic evaluation techniques of the derivative couplings within
the framework of multiconfiguration-reference configuration
interaction (MRCI).67 For example, the diabatization algo-
rithm of Nakamura and Truhlar58 is based on the generation of
diabatic molecular orbitals (DMOs) and characteristic config-
uration state functions (CSFs) in the basis of those DMOs. This
procedure yields diabatic wave functions, energies, and nona-
diabatic couplings in an automatic way and was extended to
also account for the atomic spin-orbit (SO) coupling matrix.68

The advantage of such methods is that the diabatization model
is generated more or less automatically. By point-wise com-
putation of the diabatic properties, a PES model might be
constructed subsequently. In principle, all these methods are
based on the ideas of block-diagonalization of the electronic
Hamiltonian.40 The applicability of such methods for the con-
struction of diabatic PESs has been demonstrated by Domcke
et al. who developed a particularly simple approach.54,55 They
used their method to determine a diabatic two-state PES model
for ozone, properly describing the conical intersection of the
1A2 and 1B1 states.69 This model will also be used as a reference
test case in the present work.

We recently developed a new method for the generation
of SO coupled diabatic PESs based on analytic atomic SO
coupling matrices and a special kind of diabatization.70–72

The central idea is a diabatic representation of the spin-
space (“spin-free”) adiabatic states with a reference point at
the atom-fragment asymptote and thus the method is called
Effective Relativistic Coupling by Asymptotic Representation

(ERCAR). The method requires that all states correspond-
ing to a specific atom-fragment asymptotic state need to be
represented throughout the nuclear configuration space. How-
ever, some of these states may be ionic or otherwise become
very high in energy, meaning that it is unfeasible to compute
ab initio electronic structure energy reference data for them to
determine the model parameters. On the other hand, only low-
lying adiabatic states are relevant for the dynamics of most
processes of interest. Thus, it is sufficient to determine the
diabatic representation of these high-energy states only from
the adiabatic wave functions using the block-diagonalization
ideas and without the need of energy data. We combine this
approach with a “diabatization by ansatz” to represent the more
relevant states in order to obtain highly accurate PESs for them
with a reliable representation of the adiabatic wave functions
as well.

In the present work we extend these ideas to a gen-
eral approach of a hybrid diabatization by ansatz and block-
diagonalization method. In the following we will present the
theoretical background and the details of the method, followed
by some applications to demonstrate the power of the approach
and the accuracy of the PESs obtained.

II. THEORY

A. Adiabatic and diabatic representations

The typical approach to handle the complicated prob-
lem of a molecular quantum system is to separate the total
Hamiltonian

Ĥ(q, Q) = Ĥnn(Q) + Ĥne(q, Q) + Ĥee(q) (1)

into the part that only depends on the nuclear coordinates Q
and the remaining electronic Hamiltonian

Ĥel(q, Q) = Ĥne(q, Q) + Ĥee(q), (2)

which depends on both nuclear coordinates Q and electronic
coordinates q. Eq. (2) may be solved approximately for any
given nuclear configuration Q using modern electronic struc-
ture methods. The electronic eigenenergy Ea

j (Q) correspond-
ing to the jth eigenstate |ψa

j (q; Q)〉 of Eq. (2) defines the jth
adiabatic PES of the system. The adiabatic state |ψa

j 〉 is defined
by being an eigenstate of Ĥel for any given nuclear configu-
ration Q. Thus, the total Hamiltonian can be expressed in the
adiabatic representation as

Ĥ
a
(q, Q) = Ĥnn(Q) 1 + Λ̂(Q) + Ea(Q), (3)

where the electronic degrees of freedom have been integrated
out resulting in the adiabatic potential matrix Ea. As is well
known, the nuclear kinetic energy operator in Ĥnn induces a
nonadiabatic or derivative coupling Λ̂ among the adiabatic
states that may become troublesome in regions where the
coupling gets strong. The idea of a diabatic basis is that
the diabatic states forming this basis are chosen such that
the derivative coupling is reduced to a degree that it can be
neglected safely. The price to pay is that diabatic states in
general are not eigenstates of Ĥel anymore and that a diabatic
basis cannot be defined without ambiguity and arbitrariness.
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The diabatic states belong to Ĥel and thus the adiabatic states
can be expanded in terms of the diabatic basis as

|ψa
j 〉 =

∑
k

ukj |ψ
d
k 〉. (4)

The evaluation of the matrix elements of Ĥel,〈
ψa

i |Hel | ψ
a
j

〉
=

∑
k,l

u∗kiulj

〈
ψd

k |Hel | ψ
d
l

〉
=

∑
k,l

u∗kiulj wd
kl(Q),

(5)
yields the diabatic potential matrix Wd . If both adiabatic and
diabatic basis were complete, the expansion coefficients ukj

would correspond exactly to the elements of the unitary trans-
formation matrix that diagonalizes Wd to yield the adiabatic
state energies Ea

j as eigenvalues according to

U†WdU = Ea = diag(Ea
j ). (6)

This relation is crucial for the diabatization approach presented
in the following.

B. Group Born-Oppenheimer approximation

No approximations have been introduced up to this point
because we have assumed that both adiabatic and diabatic
bases are complete. Of course, any reasonable state basis for
the electronic problem is far from complete and for any prac-
tical application only a small number of states can be handled.
Typically, it is possible to find a small subset of adiabatic
states among which nonadiabatic couplings are important,
while the interactions to all other states are small enough
to be neglected. The reasoning here is the same as the one
used in the usual adiabatic or Born-Oppenheimer approxima-
tion. The only difference is that in the present case a group
of states is separated from all others by neglecting the cor-
responding nonadiabatic couplings. This is called the group
Born-Oppenheimer approximation.30

Let us assume that we want to treat a limited number of
Na adiabatic states and omit any further states by invoking the
group Born-Oppenheimer approximation. We represent each
of the Na adiabatic states in a finite Nd-dimensional diabatic
basis by

|ψa
j 〉 ≈

Nd∑
k=1

ukj |ψ
d
k 〉, j = 1, . . ., Na, Nd ≥ Na, (7)

which now is only an approximate representation due to the
limitation of the chosen basis. While in many diabatization
approaches the dimension of the diabatic basis is equal to the
number of adiabatic states of interest, this is not a require-
ment for the present method. In fact, the hybrid diabatization
was developed especially for the case where Nd > Na due
to the particular choice of diabatic states as required for the
representation of relativistic couplings.70–72 More generally,
different diabatic basis states are important in different areas
of nuclear configuration space, which means that a diabati-
zation with Nd > Na usually is necessary for global diabatic
PES models. Furthermore, the eigenvalues of the finite diabatic
potential matrix, Ed

j (Q), will also show deviations from the
exact adiabatic PESs, Ea

j (Q). A larger diabatic basis reduces
these deviations and improves the accuracy of representing the

adiabatic PESs by the diabatic potential matrix. The explicit
choice of the diabatic basis will be explained below.

C. Adiabatic states from ab initio calculations

In order to obtain a diabatic model for a set of coupled
PESs, one first needs to compute adiabatic energies and wave
functions for the electronic states of interest. Special attention
has to be paid to the representation of the adiabatic wave func-
tions as was first pointed out by Woywod and Domcke.54,55

First of all, we want to express the adiabatic states in terms of
configuration state functions (CSFs) as

|ψa
j (q; Q)〉 =

M∑
k=1

ckj(Q) |ψCSF
k (q; Q)〉 (8)

with the number of CSFs, M, being much larger than Nd. It is
of great advantage to use CASSCF wave functions optimized
for the set of electronic states of interest. The active molec-
ular orbitals from the CASSCF calculations are not unique
because within the active space all pairwise orbital rotations are
redundant and the CASSCF energy is invariant. Therefore, it is
necessary to diabatize the CASSCF MOs first before the cor-
responding CI vectors can be used for an analysis of the elec-
tronic wave functions. This diabatization of the MOs can be
achieved in various ways.54–56,58,73 In the present study we use
the simple method by Woywod and Domcke that is based on
maximizing the overlap of the current CASSCF MOs with a set
of reference orbitals precomputed for a specific nuclear geom-
etry. After the MOs are diabatized in this way and the CASSCF
CI vectors are transformed into the diabatic orbital basis, the
resulting CI coefficients ckj can be related directly to the expan-
sion coefficients uk j in terms of diabatic states, Eq. (7). Instead
of the CASSCF CI vectors, also CI vectors from higher level
calculations like MRCI can be used for that purpose. The idea
behind this is that a diabatic state can be defined as one that
preserves its character upon changes of the nuclear coordi-
nates and this character can be associated with a single CSF or
a fixed linear combination of CSFs. This concept is known as
preservation of configurational uniformity56,73 and has been
applied in various diabatization approaches.39,40,53,58,59,74–77

This means that for a given set of adiabatic states one can eas-
ily find the required set of diabatic basis states by analyzing the
major contributions of CSFs to the ab initio CI vectors when
moving through nuclear configuration space. The correspond-
ing CI coefficients in principle provide sufficient information
to diabatize the adiabatic energies in the spirit of the vari-
ous block-diagonalization approaches.40,54,55,58,59,73,77 How-
ever, this will not yield the diabatic potential matrix directly,
which is the goal of the present work. In the following it will be
shown how this can be achieved by combining the information
of the CI coefficients with an explicit diabatic potential model.

D. Diabatic model (ansatz)

As was pointed out in the discussion of Eq. (6), the connec-
tion between the diabatic and adiabatic potential matrices is the
basis transformation that diagonalizes the diabatic matrix for
any given nuclear configuration. What remains is a represen-
tation of the diabatic matrix elements in closed mathematical
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form. Since the diabatic states by definition are slowly varying
functions of the nuclear coordinates, the same will be true for
the diabatic matrix elements. In fact, it has been shown that
such slowly varying functions are a sufficient condition for
the minimization of the remaining derivative coupling men-
tioned in Sec. I.30,43 As a result, the matrix elements can be
expressed by very simple functions of the nuclear coordinates.
In principle, any type of parametrized function could be used
as long as basic requirements as symmetry properties are ful-
filled. For simplicity, they can be expanded as parametrized
multi-dimensional polynomials

wd
kl(Q) =

∑
a

pkl
a

∏
b

Q
nkl

ab
b (9)

in terms of a suitable set of nuclear coordinates Qb. The
choice of these coordinates often is important for the accu-
racy and may account for symmetry, asymptotic behaviour,
etc. The expansion coefficients pkl

a are parameters which have
to be determined based on the ab initio data (see below). In
the most general form, one can use all products of powers
nkl

ab of coordinates Qb up to a certain order okl
a =

∑
b nkl

ab for
each term for a given matrix element. However, it usually is
better to use more sophisticated choices for the polynomial
expansion, selecting specific multi-mode terms and powers
as needed to optimally reproduce the adiabatic ab initio ref-
erence data. Furthermore, the symmetry of the system may
require that certain parameters vanish while other parameters
might be related to each other by fixed ratios determined by
group theory.44,46,47,78,79 A typical example for this situation
would be a Jahn-Teller state with a symmetry-induced conical
intersection. Such conditions should be utilized a priori for
the method to be efficient and reliable. The analysis of the ab
initio CI vectors also helps to determine which diabatic cou-
pling elements are of significance and which elements may be
set to zero or can be approximated at a lower level than the
more important matrix elements.80 This will be discussed in
more detail for the specific examples in Section III.

E. Hybrid diabatization

A sufficient condition for diabatizing the adiabatic refer-
ence data would be that, once the diabatic model is defined, the
free parameters are determined such that the diabatic eigenval-
ues reproduce the adiabatic energies sufficiently well through-
out the nuclear configuration space. This entirely energy-based
approach is called diabatization by ansatz and is being used
extensively for vibronic coupling problems.44 The strength of
this method is to model a very limited region of the PESs
by a low-order expansion, which is sufficient for short-time
dynamics of ultra-fast processes. However, for the accurate
representation of larger regions of the PESs, one generally has
to expand the diabatic matrix to higher orders and the diabatiza-
tion by ansatz may become rather troublesome. For this reason,
we developed the present hybrid approach, which combines the
diabatization by ansatz with the use of wave function infor-
mation as in the previously discussed block-diagonalization
methods.

For this purpose, a subspace of the selected CSFs that
correspond to diabatic states is defined as described above.

Diabatic states can also be defined by fixed orthonormalized
linear combinations of CSFs of the selected subspace. Then the
CI coefficients corresponding to this subspace are collected for
each relevant adiabatic state for all nuclear configurations of
the reference data set. The corresponding CI vectors for each
nuclear configuration Q are projected onto the diabatic basis
vectors. This defines a set of subspace CI vectors, csub

j (Q), in
which the CI coefficients are ordered according to the diabatic
basis as defined by the diabatic potential matrix. The dimen-
sion N sub of the csub

j vectors is much smaller than M so that a
symmetric reorthonormalization procedure is required, which
is shown below.

In the first step, the subspace CI vectors csub
j (Q) are

renormalized by

c̃j(Q) =
csub

j (Q)
���
���c

sub
j (Q)���

���
. (10)

The renormalized CI vectors c̃j(Q) are then used to form the
square matrix S(Q) with matrix elements

Sjk(Q) = c̃†j (Q) · c̃k(Q), (11)

which corresponds to an overlap matrix. This is a real, symmet-
ric, positive semi-definite matrix and thus can be diagonalized
by

s(Q) = diag
(
sj(Q)

)
= V†(Q) S(Q) V(Q), (12)

yielding the eigenvalues sj. Eigenvalues of zero would corre-
spond to linearly dependent state vectors c̃j, which can be ruled

out. Therefore, the real matrix s−
1
2 can be formed containing

the inverse square-roots of the eigenvalues of S. This matrix
is then used to construct the transformation matrix T obtained
from the back transformation of s−

1
2 by

T(Q) = V(Q) s−
1
2 (Q) V†(Q). (13)

The matrix T(Q) is finally used to generate orthonormal CI
vectors con

j (Q) as the column vectors of the matrix

Con(Q) = C̃(Q) T(Q), (14)

which are used for the fitting process. The entries con
kj corre-

spond directly to the expansion coefficient of the kth diabatic
basis state for the jth adiabatic state. This procedure essentially
is the well-known symmetric reorthogonalization applied to
the projected CI vectors in the space spanned by the dia-
batic basis vectors. This is equivalent to the orthogonalization
of AO basis functions in electronic structure, e.g., in typical
Hartree-Fock methods (see, e.g., Ref. 81).

One big advantage of the hybrid diabatization over tradi-
tional block-diagonalization techniques is that phase informa-
tion can be neglected. Only the phase-free CI weights

dkj(Q) = ���c
on
kj (Q)���

2
(15)

are needed and computed by taking the absolute square of the
symmetrically renormalized subspace vector components. The
CI weights are sufficient for the hybrid diabatization because
this approach is based on non-linear least-squares fitting, min-
imizing a penalty function f (p) that can be defined at will (see
below). Of course, one could also use the CI vectors if the
phase relations are standardized in some way.
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The CI weights correspond directly to the contribution of
the respective diabatic state to the adiabatic wave function in
question. For each nuclear configuration Q we have Na adia-
batic energies and Na×N sub CI weights as reference data from
the ab initio calculations in order to determine the free param-
eters of the diabatic model. Of course, one usually wants to
determine the adiabatic energies with the best accuracy possi-
ble, which means that CASSCF most likely is insufficient. It is
straightforward to replace the CASSCF energies by the results
from advanced correlation treatments like MRCI, CASPT2, or
maybe even MR-CC calculations. The CI coefficients can also
be taken from advanced MRCI or similar calculations. The
number of total possible configurations M increases dramati-
cally, but the number of the resulting CI weights stays constant
after projection and the symmetric reorthonormalization.

Finally, the actual determination of the optimal param-
eters p of the diabatic matrix is carried out by least-squares
fitting. This requires the definition of a penalty function, f (p),
which is to be minimized. The penalty function for the hybrid
diabatization using CI weights reads

f (p) =
∑

i

Na∑
j

ρij

(
Ea

j (Qi) − Ed
j (Qi; p)

)2

+
N sub∑

k

σijk

(
djk(Qi) − ujk(Qi; p)2

)2
→ min (16)

in which the first sum runs over all nuclear configurations Qi
in the ab initio data set, ρij are fitting weights for the adiabatic
energies, and σijk are fitting weights for the CI configuration
weights. In principle, the mixing of different physical prop-
erties in this particular function, energies, and wave function
information, adds an element of ambiguity. However, exactly
the inclusion of wave function data to an otherwise energy
based diabatization procedure enforces a physically meaning-
ful diabatization result, especially when using very flexible
ansatz functions for the diabatic matrix elements. Special
attention has to be paid to the ρij and σijk fitting weights
because the significance of the squared errors of energies and
CI weights may be vastly different. For example, if the refer-
ence energies are given in atomic units, an acceptable deviation
might be of the order of 10−5–10−6. By contrast, a deviation in
the state composition of 1% for a given diabatic basis state
would correspond to 10−2–10−3 and thus would contribute
orders of magnitude more to the penalty function than an
energy deviation of 10 µEh if the fitting weights were equal.
A further effect to be taken into account is that there are N sub

times more input data for the CI weights than for the adiabatic
energies. This problem can be solved by a simple scaling like

σijk =
φE

ij

N sub φd
ijk

ρij σ
in
ijk (17)

in which φE
ij is the acceptable error for energy deviations and

φd
ijk is the acceptable deviation in state composition. The mul-

tiplication with the input fitting weight σin
ijk allows for further

flexibility in the fitting procedure. The ρij fitting weights for

the adiabatic energies can be adapted to the required accu-
racy in various regions of the PESs, e.g., by energy criteria or
manual manipulation as is frequently used in PES fitting.

The actual minimization of the penalty function can be
carried out by any suitable standard optimization method. The
only limitation is that the diagonalization of the diabatic matrix
is required in order to obtain the energies Ed

j (Qi), which ren-
ders the problem non-linear. In our present implementation we
use a dual-layer approach of standard Marquardt-Levenberg
fitting embedded into a genetic algorithm. Starting from an
initial guess for the parameters, the genetic algorithm stochas-
tically generates trial parameter sets, which are then used as
input for the Marquardt-Levenberg optimization. Then a lim-
ited number of new parent sets is selected based on the obtained
fitting errors. The next generation of trial parameter sets is gen-
erated by scrambling the parent sets and additional mutations.
Usually the optimization converges within fairly few gener-
ations and the parameter set giving the smallest root mean
square (rms) error is selected as the final result.

F. Practical aspects

The hybrid diabatization method, which is described
above, is a versatile and powerful method for the construction
of diabatic PESs. Still, certain aspects have to be taken into
account in order to achieve accurate results. One of the most
important challenges is the generation of consistent electronic
structure data. Especially when treating systems undergoing
dissociation, it is very difficult to find an appropriate active
orbital and state space, which is closed throughout the nuclear
configuration space. During the set up of the ab initio cal-
culations, problems with active/inactive orbital rotations and
intruder states have to be identified and solved to guarantee
reference data that can be diabatized. For a detailed descrip-
tion of methods to analyse and fix such problems, we refer to
our recent work regarding block-diagonalization.80

Second, a good starting guess is necessary for the cum-
bersome non-linear fitting procedure. It has been shown that
decoupling the system via block-diagonalization and fitting
all matrix elements independently from each other offers a
reliable path to generate starting guesses systematically. Addi-
tionally, from the block-diagonalization one can get detailed
information on the matrix elements, which helps a lot in setting
up the model. By analyzing the shape of the diagonal and off-
diagonal elements in advance, appropriate forms of the ansatz
can be chosen and very small off-diagonal elements can be
neglected and set to zero. After that analysis, the matrix ele-
ments can be fitted linearly or non-linearly (depending on the
ansatz) and independently from each other.

The hybrid diabatization as described above requires sev-
eral steps of analysis, data gathering, data manipulation, model
set up, and numerical fitting. The entire procedure is summa-
rized in a flow chart visualising the sequence of necessary steps
for the generation of a set of diabatic PESs using the hybrid
diabatization method (Figure 1).

III. APPLICATIONS

The previously described hybrid diabatization method
will be demonstrated in the following by application to various
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FIG. 1. Flowchart visualising all steps of the hybrid diabatization method. Red boxes are ab initio calculations, green boxes are (non-linear) fitting procedures,
and blue boxes are several different types of data analysis and model preparing. The loops are necessary to ensure an optimal model with minimal deviation in
the final PES and might be passed a few times.

systems to show the performance and flexibility of the method
and the accuracy of the fitting results.

A simple proof-of-principle example is the conical inter-
section of two electronic states of the ozone (O3) molecule
which has been investigated by Woywod and Domcke54,55 and
others.73 For this rather simple system with only two elec-
tronic states, the applicability and accuracy of the new hybrid
diabatization method are shown in general.

The methyl iodide (CH3I) system is a more complicated
example where the dynamics of the photodissociation is of
interest. Bond breaking occurs and needs to be described accu-
rately by the PESs. In the present example, we only focus
on the dissociation coordinate and keep the methyl fragment
fixed. The electronic structure changes heavily upon the C–I
bond breaking and different states and orbitals are important in
different areas of the PESs. Highly excited states, which can-
not be calculated via standard ab initio techniques, are relevant

in this case70–72 and their treatment by the hybrid diabatiza-
tion method is demonstrated. A stable diabatization is ensured
because it is possible to treat all kinds of conical intersec-
tions and intruder states observed in the optimized ab initio
treatment of the reference data.80

Finally the highly complex propargyl radical (H–C–C–
CH2) is treated by hybrid diabatization. Using this chal-
lenging 12-dimensional example with many excited states
and complicated electronic structure, the full power of the
new diabatization technique is demonstrated. For this sys-
tem we mostly focus on the bound state region of the full-
dimensional, coupled PESs in order to simulate the absorption
spectra.

A. Ozone

The conical intersection of the 1A2 and the 1B1 electronic
state has been used as a test case for diabatization previously
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by Woywod and Domcke54,55 on a CASSCF level of theory.
This simple two state model is used here as a proof-of-principle
example. Therefore, the same setup of the underlying ab initio
calculations is used for the hybrid diabatization model as was
reported by Domcke and co-workers.

1. Symmetry and coordinates

Utilizing the symmetry of a system usually is of great
advantage. Therefore, symmetry displacement coordinates rel-
ative to a reference point in C2v-symmetry are used to represent
the diabatic matrix. Starting from the primitive valence dis-
tances r1, r2 and the bonding angle α, linear combination
leads to a set of coordinates transforming like irreducible
representations a1 and b2 of C2v.

As a reference point for the diabatization the bonding
angle of the conical intersection α = 120.942◦ with a ground
state equilibrium distance of r1,2 = 1.296 Å is chosen. For this
proof-of-principle model, we only treat displacements in the
asymmetric stretch coordinate rc = r1 – r2 and the bending
coordinate α, which are of b2 and a1 symmetry, respectively.
Ab initio data were calculated for 1271 geometries in an area
from rc = –0.4 Å to 0.4 Å and α = 90◦–150◦.

It needs to be mentioned that the ozone system shows
strong multi-reference character. Four different configurations
play an important role in the area described above. Therefore,
the CI vectors from the ab initio data were projected onto
the reference vectors of the diabatic basis states defined at
the conical intersection in the basis of the four relevant CSFs.
The resulting projected CI vectors then only consist of the
two components corresponding to the two different diabatic
reference states.

2. Diabatic model

The symmetry properties of the displaced coordinates
described above are important in setting up a model for the
diabatic matrix Wd . Each diagonal matrix element wd

ii has
to transform like a1 and the off-diagonal matrix element wd

12
needs to transform like b2 to ensure the correct symmetry of
the total Hamiltonian. The matrix is expanded in polynomials
in the displacement coordinates rc and α, which yields prod-
uct terms of the form αkrl

c. Thus non-zero matrix elements wd
ii

only contain even exponents l and non-zero matrix elements
wd

12 only contain odd exponents l. In this work, the polyno-
mials are expanded up to an order of N = 6. Altogether, the
ansatz for the diabatic matrix Wd can be written as

Wd
ii (α, rc) =

j+2k=N∑
j,k

pii
jkα

jr2k
c , (18)

Wd
12 (α, rc) =

j+2k+1=N∑
j,k

p12
jk α

jr2k+1
c , (19)

with parameters pjk which have to be determined by an
appropriate fitting procedure.

3. Fitting weights

The advantage of the new hybrid diabatization method is
that both ab initio energies and CI vectors are used for the

fitting procedure. As described in Eq. (16), the fitting weights
must be balanced to ensure the best possible fit result. The
fitting weights ρij of the adiabatic energies are scaled with an
exponential decay

ρij = exp
(
−3

(
Ea

j (Qi) − Ea
j (Q0)

))
. (20)

This renders the lower energies at the conical intersection and
near the potential minimum more important than higher ener-
gies which is a sensible choice because ab initio data can be
problematic for higher energies where further couplings to
states not included in the model can occur. To account for the
different orders of magnitude between energies and CI coef-
ficients, the further scaling of the fitting weights for the CI
coefficients follows

σijk

(
djk

)
= γ · ρij ·

(
1 − 0.9djk

)
. (21)

The pre-factor γ is chosen as 0.01 for the ozone system. Once
all fitting weights are determined, a non-linear Marquardt-
Levenberg minimization embedded in a genetic algorithm is
used to find the optimal parameters for the diabatic model.

4. Accuracy of hybrid diabatization

The fits were calculated for total orders N = 2, 4, 6 of the
diabatic model. Figure 2 shows the fit results compared to the
reference data, which immediately illustrates that the second
order expansion is not sufficient to describe the PESs even
qualitatively. The potential minimum and the area around the
conical intersection are not reproduced properly. The higher
order expansions obviously perform better and seem to follow
the underlying ab initio data perfectly. A quantitative view
on the results is shown in Table I. The fourth order expan-
sion already yields quite accurate results but still results in a
noticeable error in the energies, which is about an order of
magnitude larger than the error for the sixth order. The errors
with respect to the state composition are already very small for
the fourth order fit and are improved only slightly by the sixth
order fit. The squared elements of the first projected CI vector
are displayed in the two right panels of Figure 2 and are com-
pared to ab initio values. The sudden exchange of the values
in the top panel is a signature of a scan passing through a con-
ical intersection at which point the two eigenvectors simply
switch. The gradual exchange of the vectors observed in the
bottom panel is typical for an avoided crossing, nicely show-
ing the extended region of nonadiabatic state interaction and
thus significant mixing of the two diabatic state components.

To verify the fit result and to check that enough ab initio
data points have been used, further data points are calculated
along random vectors in the 2D configuration space which are
not included in the fit. Figure 3 shows a selection of random
scans in comparison to the diabatic model, demonstrating the
quality of the diabatic representation. The rms deviation of
the ab initio data from the random scans in comparison to the
fitting result is 3.9 cm–1, which is similar to the rms error of
the data used to optimize the parameters. This proves that the
number of data points is sufficient and the model is highly
accurate.
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FIG. 2. On the left, 1D-cuts through the PESs of ozone for different distances rc = r1 – r2 and result of the hybrid diabatization for 2nd, 4th, and 6th order are
shown. Single points are adiabatic ab initio reference data and straight lines are eigenvalues of the diabatic model. Plots for 4th and 6th order are indistinguishable
at scale of plot, thus only one line is drawn for both. On the right, squared elements of the eigenvectors of the hybrid diabatization model and squared elements
of the ab initio CI vectors are shown.

B. Methyl iodide

The photodissociation of methyl iodide is an example for
ultra-fast dynamics including conical intersections induced
by spin-orbit coupling. After the rather simple two state
model for ozone, the methyl iodide system as the second
example is much more complicated. The specific strength
of the hybrid diabatization method in describing states not
directly accessible over the complete nuclear configuration
space via ab initio methods is highlighted by the methyl iodide
system.

1. Electronic structure

For an accurate description of the photo dissociation,
many excited states need to be calculated over a large region
of the nuclear configuration space. Here, the C–I dissocia-
tion coordinate is treated as a first step where several conical

TABLE I. Errors (rms) of the eigenvalues of the diabatic model vs. ab initio
adiabatic energies for different order N of the expansion of the diabatic model
of ozone. Additionally, the rms error in the state composition is shown.

Order N Energy (cm−1) Composition (%)

2 893.9 3.28
4 45.5 0.41
6 4.1 0.23

intersections, avoided crossings, and other changes in the elec-
tronic structure occur. To ensure consistency of the ab initio
data for the full dimensional surfaces, all calculations are car-
ried out without any symmetry restriction on the electronic
wave functions. The underlying data of this work are obtained
by the Molpro code82 using CASSCF and internally con-
tracted multiconfiguration-reference configuration interaction
(MRCI).83,84 7 singlet and 6 triplet states are calculated along
the C–I dissociation coordinate with distances between 1.6
and 20 Å. The full technical details of the ab initio calcula-
tions are given elsewhere.72 During our previous studies on
the ERCAR model,70–72 it was shown that it is necessary to
use many high-lying states in the diabatic model to accurately
represent the spin-orbit coupling. Depending on the C–I dis-
tance, these high-lying states may or may not be among the
7, respectively, 6 adiabatic states computed ab initio. It is not
possible to represent these states reasonably in the model using
standard block-diagonalization or diabatization by ansatz pro-
cedures. Hybrid diabatization on the other hand is the perfect
tool for this task because high-lying states can be described
in the diabatic model without explicitly calculating them
ab initio. The necessary data are encoded in the projected CI
vectors of the available adiabatic states.

2. Diabatic model for CH3I

The diabatic model for CH3I is meant to be used within the
ERCAR method to represent the spin-orbit coupled diabatic
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FIG. 3. Comparison of the ab initio data of the four random scans vs. hybrid diabatization model energies of ozone.

PESs of the fine structure states. This requires an asymptotic
diabatic basis of direct product states of atomic iodine and
molecular methyl states.

For an accurate description of the spin-orbit coupling
effects in the iodine atom, both the 5s25p5 ground state elec-
tronic configuration and the 5s25p46s1 excited states con-
figuration have to be taken into account. The ground state
configuration only corresponds to a 2P state, whereas the
excited electron configuration corresponds to four different
spin-space states (4P, 2 2P, 2D, and 2S). Positively charged
iodine states with a 5s25p4 electronic configuration (3P, 1S,
and 1D) and negatively charged states with a 5s25p6 (1S) and
5s25p56s1 (1P and 3P) configuration arise from ionic separa-
tion of the fragments. Combination with the methyl fragment
in the electronic ground states (2A′′2 and 1A′1) yields a total
number of 100 fine structure direct product states. A list of all
states with corresponding symmetries and the number of fine
structure state components is given in Table II.

Standard ab initio electronic structure methods are far
from being able to calculate accurate energies for this huge

TABLE II. List of all fine structure basis states contributing to the spin-orbit
model for iodine with symmetry labels in C3v.

Iodine CH3 Symmetries in C3V Number

I (1 2P) ⊗ CH3 (2A′′2 ) 1A1, 1E, 3A1, 3E 12
I (4P) ⊗ CH3 (2A′′2 ) 3A2, 3E, 5A2, 5E 24
I (2 2P) ⊗ CH3 (2A′′2 ) 1A2, 1E, 3A2, 3E 12
I (2D) ⊗ CH3 (2A′′1 ) 1A1, 2 1E, 3A1, 2 3E 20
I (2S) ⊗ CH3 (2A′′1 ) 1A1, 3A1 4

I− (1S) ⊗ CH3
+ (1A′1) 1A1 1

I− (3P) ⊗ CH3
+ (1A′1) 3A1, 3E 9

I− (1P) ⊗ CH3
+ (1A′1) 1A1, 1E 3

I+ (3P) ⊗ CH3
− (1A′1) 3A2, 3E 9

I+ (1D) ⊗ CH3
− (1A′1) 1A1, 2 1E 5

I+ (1S) ⊗ CH3
− (1A′1) 1A1 1

number of states. Depending on the region of the nuclear con-
figuration space, only a few of these states are within reach
of these calculations. Furthermore, the dissociation along
the C–I coordinate obviously causes drastic changes of the
electronic structure. Thus, the consistency of the underlying
ab initio calculations has to be ensured first, which has been
achieved by techniques developed by us very recently utilizing
the block-diagonalization.80

When describing bond dissociation, there will always
remain certain challenges with the unclosed state space. Elec-
tronic states which are of low energy at the dissociation limit
will be of high energy in the bonding region and are not covered
by the ab initio calculations there. A schematic representation
of such states is shown in Figure 4. Assume a CASSCF cal-
culation with two states (circles and squares) which should
be represented by a model. The ground state (circles) is
smooth along the entire dissociation coordinate whereas the
excited adiabatic state (squares) shows a conical intersection
or avoided crossing. This situation can be described if two
different diabatic states are used to represent the one excited
adiabatic state of interest. Thus, altogether three diabatic

FIG. 4. Scheme of an intruder state coming down for a larger dissociation
coordinate.
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states are necessary to model the two adiabatic states of
Figure 4.

Block-diagonalization techniques are not capable of dia-
batizing these states accurately and consistently along the
coordinate because the number of adiabatic states Na and the
number of diabatic states Nd must be equal. Therefore, one
would need to calculate another adiabatic state, which is both
more expensive and likely to produce even more problems in
other regions of the nuclear configuration space, if it is possible
at all. Hybrid diabatization on the contrary can treat cases with
Nd > Na in the same way as described above in Section II.
In the example of Figure 4 the diabatic basis would consist of
three states and each of the two adiabatic states is expressed in
this basis, reflected by the 3-dimensional projected subspace
CI vectors. Thus, the required data for the third diabatic state
at each point are contained in the two adiabatic subspace CI
vectors.

For the case of methyl iodide that means that a diabatic
model for the required 7 1A1 spin space states can be set up with
only two or three adiabatic states. States of other symmetries
can also be described with only a few adiabatic states. As long
as the system remains in C3v symmetry, states corresponding to
different irreducible representations can be treated separately.

3. Approximate block-diagonalization

To get a first insight into the diabatic states of methyl
iodide along the C–I dissociation coordinate, an approximate
block-diagonalization method is used. In general, the sym-
metric diabatic potential matrices Wd consist of n(n+1)

2 unique
matrix elements, which describe the diabatic coupling among
all n states. This large amount of matrix elements which need
to be represented by a model can be reduced drastically if
certain off-diagonal elements or couplings can be neglected
beforehand. For the analysis, the diagonal adiabatic matrix Ea

is transformed pointwise with the CI-matrix Con obtained from
the ab initio calculations and block-diagonalization,

Wd = ConEaCon†. (22)

Having a closer view at Eq. (22) immediately reveals
problems in the case of Nd , Na. Straightforward block-
diagonalization is not possible in that case because of different
dimensions of matrices Wd and Ea. In order to still use block-
diagonalization as a tool for analysis, it must be ensured that
the number of adiabatic energies equals the necessary number
of diabatic states. One option is to add roughly estimated model
data for missing energies and the other is to use additional ab
initio data if possible, e.g., from more approximate calcula-
tions. In this work, we set up additional ab initio calculations
for that purpose. 22 singlet, 21 triplet, and 3 quintet states are
calculated by a small CI calculation with a restricted number of
configurations. Only the configurations representing the nec-
essary states in Table II are allowed for the excitations. These
calculations yield inaccurate energies because of the reduced
CI space and thus a poor description of dynamic electron corre-
lation. But no intruder states can occur since all states possible
within this configuration space are computed. Data from these
low level ab initio calculations are then treated like the accu-
rate data. After symmetric reorthonormalisation the resulting
CI vectors and adiabatic energies can be used in Eq. (22).

For this rough model it is possible to look at all matrix
elements wd

ij independently of each other. Figure 5 shows the
21 off-diagonal coupling elements between the seven diabatic
states of 1A1 symmetry as an example. It is obvious at first
glance that several of the off-diagonal elements are close to
zero nearly for the complete dissociation coordinate and thus
are irrelevant. Others only contribute little to the coupling and
also may be neglected in the diabatic model. Only a reduced
number of couplings is necessary, which reduces the computa-
tional cost for the fitting of the diabatic model considerably. In
case of the 1A1 symmetry, a reduction from 21 to 14 relevant
coupling elements is achieved.

A second advantage of this preliminary block-
diagonalization prior to the full diabatization is that informa-
tion about the shape and thus mathematical form of the diabatic
energies and off-diagonal elements can be extracted and a
physically sensible ansatz can be obtained. In the case of CH3I,
it is obvious that all diabatic energies have to become constant
for large distances between iodine and the fixed methyl frag-
ment. The off-diagonal coupling elements have to vanish for
large distances. Still, there needs to be flexibility in the area
of interaction between the nuclei. An adequate choice for the
representation of the matrix elements wd

ij for both repulsive and
bound states, which also treats the long distance interaction of
ions correctly, is

wd
ij(r) = pij

0 +
pij

1

r
+

6∑
k=2

pij
k

r2k
+ pij

7 e−pij
8 r . (23)

The parameters pij
1 can be fixed at zero for all off-diagonal

coupling elements and also for diagonal elements if the frag-
ments of the dissociation are not charged. Additionally, the
parameters pij

0 have fixed values. For off-diagonal matrix ele-
ments, they are zero, because the states do not couple at infinite
C–I distance and the diagonal diabatic elements are deter-
mined by the values of atomic iodine energies. The other
parameters pij

k need to be determined via fitting algorithms.
In contrast to straight diabatization by ansatz techniques, the
matrix elements wd

ij of the block-diagonalization data can be
fitted independently from each other. The non-linear fitting

FIG. 5. Off-diagonal diabatic matrix elements of symmetry 1A1. The dashed
lines represent matrix elements close to zero and are neglected in the diabatic
model, solid lines represent relevant matrix elements included into the model,
open circles and crosses are ab initio block-diagonalization data.
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of uncoupled single matrix elements is relatively easy and
straightforward using the ansatz described above in Eq. (23).
For the diagonal elements wd

ii which refer to diabatic ener-

gies, the asymptotic energy pij
0 is fixed to the energy of the

corresponding iodine atomic state in Table II. The remaining
seven parameters for states corresponding to homolytic disso-
ciation or eight parameters for heterolytic dissociation are then
freely relaxed with a Marquardt-Levenberg algorithm embed-
ded in a genetic algorithm. The merged results of the fitting
procedure for all diagonal elements are shown in Figure 6 and
corresponding rms errors of all matrix elements are given in
Table III.

This example shows that all diabatic matrix elements can
be represented at least qualitatively by the chosen ansatz. Still,
the vastly varying rms errors among different states already
show certain limitations of this block-diagonalization only
model. This is due to the fact that one has no possibility to con-
trol or even balance the fit among the different matrix elements,
which are all fitted independently from each other. Diagonal-
ization of the diabatic matrix Wd yields the adiabatic energies
as eigenvalues, which could be compared directly with the
ab initio data. However, since we used inaccurate model data
as underlying ab initio data, such a comparison is of no interest
because it does not refer to the accurate ab initio data. The main
advantage of the fitted data from the block-diagonalization is
that the obtained set of parameters pij

k can be used as a starting
guess for the coupled hybrid diabatization fit and it helps in
setting up the model at the beginning.

4. Fitting weights

One of the most important parts in setting up a hybrid
diabatization model is a sensible choice of the fitting weights.
The general setup of the fitting weights for methyl iodide is
similar to the previously described one for ozone. Because
many high-lying states are present in this model, the decay of
the weights with increasing energy is increased and reads

ρij = exp
(
−5

(
Ea

j (Qi) − Ea
j (Q0)

))
. (24)

As described in the theory section in Eq. (17), attention has to
be paid to the balance between energy weights and CI weights.

FIG. 6. Fit of block-diagonalized diabatic energies of symmetry 1A1. Solid
lines are diabatic energies from the model, open circles are ab initio block-
diagonalization data.

TABLE III. Unweighted rms error in cm–1 of matrix elements for the 1A1
states after block diagonalization and fitting.

Element rms/cm–1

1-1 275.3
2-2 754.2
3-3 715.7
4-4 1109.1
5-5 701.8
6-6 907.0
7-7 1128.0

1-2 68.6
1-3 86.8
1-4 198.9
1-5 207.2
1-6 201.1
1-7 92.6
2-3 123.8
2-5 144.6
2-6 396.6
3-5 152.6
3-7 433.4
4-5 484.4
4-7 92.8
6-7 124.9

In addition to the scaling of the weights depending on the
energy and the issues discussed for ozone, the weights for the
CI coefficients are scaled with the number of states N in the
diabatic system. The total weight for CI coefficients is chosen
as

σijk (N) =
γj · ρij ·

(
1 − 0.9djk

)
N

(25)

with a pre-factor γj = 0.05 for the lowest energy state and a
pre-factor of γj = 0.005 for all other states. A comparison of
fitting results with different pre-factors γ is discussed below.
This weighting scheme has shown to be powerful and flexi-
ble, which fulfills our needs to construct accurate PESs. Still,
manual manipulation of the fitting weights can be necessary
and useful in certain areas of the PESs.

5. Accuracy of the results

The results of the hybrid diabatization fit using the fitting
weights described above and the block-diagonalization data as
a starting guess are shown in Figure 7. The performance of the
hybrid diabatization is excellent for this example, particularly
when compared to block-diagonalization. The fitting errors
of the adiabatic energies from hybrid diabatization are one
to two orders of magnitude smaller than those obtained from
the pure block-diagonalization as described in Section III B 3.
A closer look at the region of the avoided crossing between
states 2 and 3 is given in Figure 8 demonstrating the quality
of the hybrid diabatization fit. All features of the PESs are
reproduced very well and the energy rms errors (Table IV)
of the low-lying states show excellent quantitative agreement.
Naturally, the rms error is slightly higher for states with strong
diabatic coupling like the 3A1 state. Also the composition of
the adiabatic states is in excellent agreement with the ab initio
data.
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FIG. 7. Result of hybrid diabatization fit with starting parameters taken from
block-diagonalization of symmetry 1A1. Solid lines are eigenvalues of the
diabatic model, open circles are ab initio reference energies.

Results of hybrid diabatization fits are given for differ-
ent pre-factors γ in Table IV. One of the main advantages
of the hybrid diabatization method becomes obvious there.
By adjusting the γ-parameter, the accuracy can be balanced
between energy and state composition depending on the treated
system. A relatively high value of γ is necessary for CI-
dependent models like ERCAR. For γ = 0 no CI information
is included in the model and the hybrid diabatization reduces
to the well-known diabatization by ansatz. In the present case
the energy errors can be improved noticeably by reducing γ
from 0.1 to 0.01. At the same time the deviations in the CI
coefficients increases only very slightly.

C. Propargyl

The last and most complex example demonstrating the
power of our new approach is the propargyl radical. The 12
degrees of freedom of this system greatly affect the develop-
ment of the PESs, rendering this a very challenging task. One
of the major effects is essentially independent of diabatization.
Due to the large number of coordinates for high-dimensional
systems, the representation of the complete nuclear configu-
ration space quickly becomes problematic. Since not only the

FIG. 8. Closer view of the avoided crossing of the 1A1 symmetry. The result
of hybrid diabatization is shown in solid lines, open circles are ab initio data.

TABLE IV. Unweighted rms errors of the lowest energy states of hybrid
diabatization results for all symmetries depending on the pre-factor for the
weight-scaling. The left number in each column is the rms error of the energy
in cm–1 and the right one is the rms error of the state composition in %.

γ

Symmetry 0.1 0.05 0.01

1A1 10.1 0.5 9.6 0.3 9.1 0.6
1E 25.7 1.4 31.9 1.5 7.9 1.9
3A1 40.6 0.6 26.9 0.9 22.5 0.8
3E 17.3 0.6 14.5 0.8 7.2 0.7

required number of data points but also the required computa-
tion time for each point increases rapidly with the system size,
this quickly evolves into an undersampling problem, for which
no obvious solution is available. Another effect more directly
connected to diabatization is the size of the diabatic model
and the number of free parameters optimized in the non-linear
fit. This number is directly related to the number of states and,
more importantly, the number of possible coordinate combina-
tions, rapidly becoming the main contributor in this regard. For
the propargyl radical, the hybrid diabatization is used to target
these well-known problems in several ways. On the one hand,
the use of the wave function information helps to determine an
optimal diabatic model and thus allows to represent the dia-
batic Hamiltonian by a minimum of necessary parameters. On
the other hand, the great information content of both adiabatic
energies and wave functions may reduce the effects of under-
sampling and assists in the determination of a large number of
free parameters. Even though the sampling of nuclear config-
urations must be very sparse, the requirement to reproduce the
adiabatic wave functions puts much stricter restrictions on the
parameters and thus may enforce that a reasonable represen-
tation of the Hamiltonian in a wider region around the actual
nuclear configuration is achieved.

1. Electronic structure

The electronic structure of the propargyl radical has been
found to be rather complicated.80,85,86 Many effects like orbital
rotations or incomplete state spaces can lead to problems.
These issues also have considerable effects on the quality of
a diabatization. Therefore, it is of great interest to analyse the
electronic structure and see if the ab initio data are suitable
for diabatization at all. First, the information obtained by the
block-diagonalization is used to find a stable electronic struc-
ture. We have reported the details of such an analysis and the
corresponding theoretical background very recently.80

The reference data needed for the hybrid-diabatization in
the form of the adiabatic energies and adiabatic wavefunctions
have been calculated with the Molpro ab initio suite of codes
using the MRCI method.82–84 These calculations include 9
electronic states, which are determined along a large number
of 12D random vectors. The full technical details of the ab ini-
tio calculations are given elsewhere.80 Analysis of the final
ab initio data shows that it is advantageous to perform the
hybrid diabatization with an additional virtual state. This is
performed in the same manner as discussed above in the case
of methyl iodide and greatly increases the accuracy of the fit.



184108-13 Wittenbrink et al. J. Chem. Phys. 145, 184108 (2016)

2. Diabatic model

The construction of the diabatic model for propargyl fol-
lows a generic scheme utilizing the system’s symmetry and
general matrix elements of the form of Eq. (9). However, the
generic approach still includes a lot of arbitrariness regard-
ing the order of the respective matrix elements of the diabatic
model matrix. Especially in this example with 12 coordinates,
9 adiabatic and 10 diabatic states, respectively, a systematic
analysis of specific coupling elements would be a very tedious
task and in many cases not worth the trouble. Thus, a more
general way to determine the diabatic model has been chosen.

Like in the example of methyl iodide, the data obtained
by the block-diagonalization are used to find a physically
motivated diabatic model. In this regard, the diabatic matrix
elements from the block-diagonalization are analysed in terms
of significance and complexity to estimate a suitable approx-
imation. The specific procedure is also described in our pre-
vious work and thus will not be repeated here.80 In addition
to this analysis, the symmetry requirements for the diabatic
Hamiltonian are utilized, which has to transform as the totally
symmetric irreducible representation of the molecular symme-
try transformation group. In the case of propargyl, we use the
C2v point group since proton exchange is unlikely to be rele-
vant in our applications. Combined with symmetrized coordi-
nates, this helps to reduce the diabatic matrix even further and
allows for a comparably simple diabatic model. The diabatic
model used in the examples shown here contains 1150 free
parameters. These parameters are based on coordinate product
terms as described in Eq. (9) with a maximum order of 2. For a
12D system where 9 states are considered, this is an extremely
simple diabatic model that serves mainly as a demonstration of
the method. For an accurate model the order of the expansion
will be increased in future work. However, as shown below
this model is already able to give qualitatively correct PESs.
There are several reasons why such a simple model is able
to perform this well. The effects of the hybrid-diabatization
will be discussed below. Another reason why this fairly sim-
ple model is already able to describe a large part of the nuclear
configuration space is the choice of coordinates. In addition
to the utilization of symmetrized coordinates, the distances
of the primitive valence coordinates are transformed to tun-
able Morse coordinates as described elsewhere.51 This allows
for low order terms to already carry the properties needed for
the description of the asymptotic behavior. The full details
of the coordinate system used will be given in forthcoming
work.

3. Fit results

With the diabatic model given, the next step is to obtain
the diabatic PESs by optimization of the free parameters. As
already mentioned above, the diagonalization of the diabatic
model matrix renders the problem non-linear. Especially for
big systems as is the case for the propargyl radical, the high
number of free parameters becomes problematic. The con-
vergence of the non-linear fit is very sensitive to the initial
guess due to a huge number of possible local minima in the
parameter space. Therefore, the direct access to the diabatic
matrix elements by the block-diagonalization is utilized, which

allows us to perform linear least squares fits of the matrix
elements individually. Although these preliminary fits do not
yield good PESs, this step is very important in order to provide
an optimal initial guess for this high-dimensional optimization
problem. With this initial guess, it is now possible to perform
a hybrid-diabatization of the available ab initio data.

As discussed for the other examples, another important
aspect of the non-linear optimization problem is the fitting
weights. However, one can easily see that the great number of
ab initio data makes specific targeting of single fitting weights
impractical. Thus, one has to choose a more general approach
to determine reasonable weights. The energy weights ρij are
determined in a similar way to Eq. (20), where a simple decay
model is chosen. However, the decay based on the energy dif-
ference ∆a

j = Ea
j − Ea

j,ref is amplified by a cutoff function
following

ρij = *
,
0.5 − arctan *

,

α1(∆a
j − α2)

π
+
-

+
-
· e−α3∆

a
j . (26)

Here, α1 = 30, α2 = 0.2, and α3 = 8 are system-specific
parameters that can be adapted as suitable. The focus on the
differences with respect to the reference energies allows for the
inner region close to the C2v minimum to be described very
well and the outer regions to be represented with sufficient
accuracy. For the results shown the weights of the CI coeffi-
cients are scaled to be 0.1% of the weights of the energies.
This concept is still preliminary for the propargyl radical and
may be adapted to a more advanced model in future work.

The fitting results shown in the following are based on
3601 geometry points. The 9 adiabatic states considered yield
32 409 ab initio energies. Despite this large number, one can
easily see that the sampling is still very sparse for a proper rep-
resentation of a 12D nuclear configuration space. In contrast to
a diabatization by ansatz, the hybrid-diabatization offers a way
to increase the information content for the non-linear optimiza-
tion. As already discussed above, this is achieved by inclusion
of the CI coefficients, yielding another 324 090 data. Here lies a
great strength of the hybrid-diabatization. As discussed above,
the block-diagonalization data already allow for a physically
motivated diabatic model and help by improving the conver-
gence of the optimization problem. In the same manner, these
data are now used to reduce the effects of undersampling one
has to face in the construction of high-dimensional PESs. The
adiabatic wavefunctions are very well suited for this task, as
they may already contain information that would normally
require the calculation of more data points. In addition to this,
the effects one can see at conical intersections or avoided cross-
ings are typically better described by the CI coefficients than
by the energies. The requirement of the non-linear fit to cor-
rectly reproduce the adiabatic wavefunctions ensures that the
diabatic model describes the physics in such regions properly,
especially the rapid changes in the adiabatic state composi-
tions. The price to pay is that the non-linear optimization may
not yield the best rms errors concerning the energies. However,
the advantages greatly surpass the disadvantages in this regard,
which is especially important for systems with many compli-
cated state interactions like methyl iodide or the propargyl
radical.
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FIG. 9. Results obtained by the hybrid-diabatization along a 12D random cut
through the PESs of propargyl. Open circles are ab initio energies and the
solid lines are the adiabatic energies obtained by the hybrid-diabatization.

Overall, the fitting results for propargyl are in good agree-
ment with the ab initio data and the rms error of the non-
linear fit amounts to 483.7 cm–1. Representative results for
the adiabatic energies obtained by the hybrid-diabatization are
presented in Figures 9 and 10. Open circles are the ab initio
energies and the solid lines are the adiabatic energies obtained
by the hybrid-diabatization.

For both examples, it is observed that the region near the
reference point of the model is described extremely well. Far-
ther away from the origin the agreement becomes less good
as expected. On the one hand, this can be explained by the
used weights as discussed above, where the weights are based
on the differences of the reference energies at each geome-
try point. On the other hand, the model used in this example
is the simplest possible approximation to get a qualitatively
correct description of the PESs. There is still a lot of room for
improvement and corresponding work is currently in progress.

The first example given in Figure 9 focuses on the descrip-
tion of the state interactions. Here, the most interesting aspect
is the state interactions among the states 5–8. This interaction
is described very well with only small deviations in state 7
after the crossing. The next interactions occur at around 0.23
and 0.31 and both show avoided crossings between the states.

FIG. 10. Results obtained by the hybrid-diabatization along a 12D random
cut through the PESs of propargyl. The color coding is the same as in Figure 9.

These interactions are also well described with only small
deviations. In this particular example, the utilization of the
virtual state (highest model adiabatic data) does not seem to
be needed. One can easily see that the virtual state does not
interfere with the other adiabatic states at all. However, the
electronic structure may change for different regions in the
nuclear configuration space. This becomes clear by consider-
ing the next example in Figure 10. It is easy to see that the
virtual state is important for the description of the state inter-
actions. States 8 and 9 show an avoided crossing around 0.16,
which is described well. By the shape of state 9 at around 0.4, it
quickly becomes clear that another state is needed to describe
this region. However, there are no ab initio data available. In
this case the information of the adiabatic wave functions is
used to simulate the avoided crossing with the next higher
state. This actually is key for the ability to diabatize the ref-
erence data reasonably. One can argue that it is possible to
describe such behavior by introducing a more flexible diabatic
model. This approach may very well lead to a reasonable rms
error, however, the focus should always lie on the physics of
the system. The introduction of the virtual state does exactly
this. By adding the missing diabatic state and the utilization
of the adiabatic wave functions as extra information, one can
achieve good fitting results even with a simple diabatic model
and represent the physics correctly. This is of great advantage
when applying our method to different molecules of larger
size. A more flexible model always goes hand in hand with a
higher number of parameters that need to be optimized. As one
can see, even for a simple model, the number of parameters
needed to describe the electronic structure of the propargyl
radical is quite high.

IV. CONCLUSIONS

A new method for the diabatization of adiabatic elec-
tronic energies and wave functions and the development of
accurate diabatic potential energy surfaces (PESs) has been
developed. In this method adiabatic wave function information
is used simultaneously with adiabatic energy data and both are
required to be reproduced by a parametrized diabatic model
Hamiltonian. This can be considered a combination of block-
diagonalization and diabatization by ansatz approaches and
thus is called hybrid diabatization. The new method overcomes
a number of disadvantages of previous approaches. Other than
pure block-diagonalization approaches, it yields analytic dia-
batic PESs directly and in contrast to standard diabatization
by ansatz techniques the reproduction of the adiabatic wave
functions ensures physically meaningful results.

In a first step, the adiabatic states and wave functions of
interest are analysed and the diabatic state space required to
represent all relevant adiabatic states in the region of interest
is determined. The diabatic states are characterized by their
wave functions (typically CSF coefficients) at a chosen ref-
erence point. Then for each point in nuclear configuration
space, the adiabatic wave functions are projected onto this
diabatic state space and orthonormalized like in typical block-
diagonalization approaches. In the second step, a parametrized
diabatic model matrix of the dimension of the diabatic state
space is setup. In this step the block-diagonalization data can
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be utilized to develop an optimal diabatic model. Finally, the
parameters of the diabatic model are determined by fitting the
adiabatic energy data and projected wave function data, which
have to be reproduced in a least-squares sense by the eigen-
values and eigenvectors of the diabatic model. The non-linear
fitting benefits greatly from an initial guess that can be gen-
erated by a preliminary fit of the single matrix elements from
the block-diagonalization data.

The new approach has a number of advantageous fea-
tures. For systems beyond three atoms the sampling of the
nuclear configuration space for the generation of reference data
becomes increasingly sparse. The utilization of the wave func-
tion data increases the information content of each data point
considerably, thus reducing the arbitrariness due to the under-
sampling. The requirement of the diabatic model to reproduce
adiabatic energies as well as wave functions also ensures that
the result is much more reliable than a standard diabatiza-
tion by ansatz. Diabatic wave functions and properties can
be obtained in this way, which are of high quality and really
represent the physics of the system. We utilize this capabil-
ity, e.g., in the ERCAR method developed by us in order to
generate very accurate fine structure state PESs from simple
non-relativistic ab initio data and experimental atomic spin-
orbit data combined with a specific hybrid diabatization. In
that context, a further feature of the hybrid diabatization is
highly relevant. It allows in a straightforward way to repre-
sent a system by a diabatic model of higher dimensionality
than the number of adiabatic states available as reference data.
This is necessary for the ERCAR method for the modeling
of the spin-orbit effects but also for non-relativistic systems
whenever the highest adiabatic state shows avoided crossings
with states not included in the reference data. Especially the
latter is a very common and tough problem in the develop-
ment of excited state PESs and now can be treated by hybrid
diabatization.

The different features and the power of our new method
are demonstrated by three examples. First we present as proof-
of-principle application the diabatization of the 1A1 and 1B2

electronic states of ozone in the region of their conical intersec-
tion. The chosen two-dimensional two-state problem has been
utilized before by other groups for this purpose. Our results
show that the hybrid diabatization is capable of yielding ana-
lytic diabatic PESs of excellent accuracy with an rms with
respect to the reference energy data of about 4 cm–1. The error
of the PES model is significantly lower than that obtained
from a comparable fit using the same model and the pure
block-diagonalization data, showing the power of the hybrid
diabatization. The second application is the one-dimensional
diabatization of a large number of adiabatic states of methyl
iodide, CH3I. The breaking of the C-I bond is modeled, which
induces drastic changes in the electronic structure. This case
demonstrates the handling of adiabatic intruder states which
require a diabatic state basis larger than the number of available
adiabatic states. This example also is used to investigate the
influence of the data weighting during the non-linear fitting,
which turns out to be important. Again, a diabatic model of
excellent accuracy is obtained with final rms errors for energies
between 7 and 23 cm–1 and below 2% of squared CI coeffi-
cients for the projected wave functions. As a final application,

we present a 12-dimensional diabatic model for 9 adiabatic
states of the propargyl radical. This example demonstrates the
capability to handle high-dimensional problems with many
electronic states. The electronic structure of this system is
very complicated with numerous avoided crossings and con-
ical intersections including intruder states. In this case the 9
adiabatic states can be represented by 10 diabatic states, which
becomes possible by the hybrid diabatization. Due to the high
dimensionality and the large state space, only the simplest dia-
batic model is fitted so far and the rms error of the energies
is still 484 cm–1. Nevertheless, this is a very promising result
and shows the capacity of the hybrid diabatization. The numer-
ical result will be improved by developing a more advanced
model in the near future and corresponding work currently is
in progress.
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