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We investigate perturbations that maximize the gain of disturbance energy in two-
dimensional isolated vortex and counter-rotating vortex-pair. The optimization is carried
out using the method of Lagrange multipliers. For low initial energy of the perturbation
(E(0)), nonlinear optimal perturbation/gain is found to be the same as linear optimal
perturbation/gain. Beyond a certain threshold E(0), optimal perturbation/gain obtained
from linear and nonlinear computation is different. There exists a range of E(0) for
which nonlinear optimal gain is higher than linear optimal gain. For isolated vortex,
higher value of nonlinear optimal gain is attributed to interaction among different
azimuthal components, that is otherwise absent in a linearized system. Spiral dislocations
are found in nonlinear optimal perturbation at the radial location where the most
dominant wavenumber changes. Long-time nonlinear evolution of linear and nonlinear
optimal perturbation is studied. The evolution shows that after the initial increment of
perturbation energy, the vortex attains a quasi-steady state where the mean perturbation
energy decreases on a slow time-scale. The quasi-steady vortex state is non-axisymmetric
and its shape depends on the initial perturbation. It is observed that the life of a
quasi-steady vortex state obtained using nonlinear optimal perturbation is longer than
that obtained using linear optimal perturbation. For counter-rotating vortex-pair, the
mechanism that maximizes the energy gain is found to be similar to that of the isolated
vortex. Within the linear framework optimal perturbation for a vortex pair can be
either symmetric or anti-symmetric, whereas, the structure of the nonlinear optimal
perturbation, beyond the threshold E(0), is always asymmetric. Quasi-steady state for
counter-rotating vortex pair is not observed.

Key words:

1. Introduction

From giant cyclones to small-scale structures in turbulence, vortices are present in
almost all natural flows. They play a crucial role in the transport of mass, momentum and
energy in flow processes. Perhaps this is why Kiichemann (1965) observed that “vortices
are the sinews and muscles of fluid motion”. As such, vortices have been extensively
studied for their role in flow transition and turbulence. For a detailed examination on
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different types of vortical flows, the interested reader is referred to Lugt (1983), Saffman
(1992) and Green (1995).

The mathematical analysis of vortex systems can be traced back as early as 1880.
Kelvin (1880) investigated wave motions in a column of uniform vorticity surrounded by
irrotational flow (popularly referred to as the Rankine vortex model). These so-called
Kelvin waves were the starting point for several later works on the dynamics of Rankine
vortex as well as other vortical flows. One such topic is stability of vortex columns.
A general perturbation to Rankine vortex can be represented as a linear combination
of the various Kelvin waves. If the perturbation is small, nonlinear term in the flow
equations can be dropped. Within the linear framework, the evolution of each wave
component occurs independently from the rest. Therefore the stability of a vortex column
can be determined by analyzing the stability of each wave component separately. For
inviscid vortex, the waves are neutrally stable. In the presence of viscosity the waves
decay exponentially in time. For other vortex models (for example the Lamb-Oseen
vortex), additional waves can exist (Fabre, Sipp & Jacquin 2006). Still, all waves decay
exponentially under the action of viscosity. Thus, any infinitesimal perturbation to an
isolated vortex will eventually decay in time.

Linear Stability Analysis (LSA) is useful for studying the asymptotic response of a fluid
system to infinitesimal perturbations. Long-term, the least stable - or most unstable -
mode is expected to dominate the flow evolution. However, many flow processes occur on
a finite time scale. LSA fails to capture such transient processes that might contribute
to the growth of perturbation energy (E). The transient growth of perturbation energy
is attributed to non-normality of the linearized Navier-Stokes operator (Farrell 1988;
Trefethen et al. 1993). As a consequence of non-normality, the eigenmodes associated
with the operator are non-orthogonal. Therefore, it is possible to combine different
eigenmodes and form an initial perturbation for which the rate of change of perturbation
energy (dE/dt) with time is positive, despite all the eigenmodes being linearly stable.
For unstable systems, eigenmodes can be suitably combined to give a higher growth rate
of perturbation energy than the most unstable eigenmode. During the transient phase
(of stable/unstable flows), the perturbation may become strong enough for secondary
instabilities to occur. The subsequent flow evolution will then be different from that of
the linearized system. An example for such behavior is the plane Couette flow (PCF).
LSA predicts that the PCF is stable for all Reynolds numbers (Re). However, experiments
show that turbulence can be produced and sustained in the PCF for Re as low as ~ 300
(Barkley 2016). The transient growth of perturbation energy might fill-in the gap between
experimental observation and results of LSA.

The inability of LSA to describe flow evolution during the transient phase motivates
us to take an alternate perspective on stability of flow systems. The new approach is
based on seeking perturbation that maximizes the perturbation energy over a given
horizon time (7'). We note that this approach introduces T as a stability parameter.
The perturbation satisfying the maximization criterion is referred to as the optimal
perturbation and the corresponding energy gain at ¢t = T is the optimal gain. The shape
of the optimal perturbation and the value of optimal gain depends on T'. A recent article
by Schmid & Brandt (2014) provides an overview of the various tools and techniques
that have been developed to compute optimal gain and perturbations in flow systems.

Optimal perturbation for an isolated vortex has been studied mainly within the linear
framework (Antkowiak & Brancher 2004, 2007; Pradeep & Hussain 2006; Mao & Sherwin
2011, 2012). Antkowiak & Brancher (2004) carried out optimal perturbation analysis
for two-dimensional (2D) and three-dimensional (3D) perturbations with azimuthal
wavenumber m = 1. They observed that linear optimal perturbation consists of vorticity
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filaments in a spiral arrangement near the outer periphery of the vortex core. The energy
growth mechanism was attributed to a combination of the Orr mechanism (Orr 1907) and
vortex induction. During Orr mechanism the spiral filaments that are inclined against
the base flow is uncoiled resulting in the growth of perturbation energy. This uncoiling,
in-turn, was found to promote vortex induction along the vortex axis. Furthermore they
reported that linear optimal gain for small axial wavenumbers (k — 0) is significantly
higher than for large wavenumbers. For k = 0, linear optimal gain was found to increase
linearly with 7". Pradeep & Hussain (2006) investigated 3D linear optimal perturbation
for various (m, k) combinations and identified the corresponding physical mechanism
behind the energy growth. They reported that the axisymmetric mode (m = 0) results
in the largest growth of perturbation energy in the full computational domain. The
m = 1 (bending) mode, on the other hand, causes the largest perturbation to the vortex
core. They speculated that the bending wave might be responsible for core transition to
turbulence. Antkowiak & Brancher (2007) observed that a perturbation consisting of a
stack of azimuthal velocity streaks leads to an amplification of perturbation energy in
columnar vortices. The velocity stack evolves to form vortex rings around the core of the
vortex. Based on this observation they surmised that a similar mechanism might be at
play in the development of vortex rings around a columnar vortex when it is submerged
in a turbulent background.

In the present work, we investigate nonlinear optimal perturbation of an isolated Lamb-
Oseen vortex. The only work in this direction is by Bisanti (2013). Bisanti’s analysis was
restricted to m = 2 perturbations, and the value of nonlinear optimal gain obtained
in the work was found to be lower than the linear optimal gain. We do not put any
restriction with respect to m in our work. Our results show that the interaction between
different azimuthal components can result in higher optimal gain than linear optimal
gain. Bisanti (2013) reported that if the initial energy of the perturbation is large, the
m = 2 nonlinear optimal perturbation triggers a subcritical bifurcation to a quasi-steady
rotating tripolar perturbation. The existence of quasi-steady non-axisymmetric vortex
states has been established in several earlier works (for example, Rossi, Lingevitch &
Bernoff (1997) and Le Dizes (2000)). We have studied the long-term nonlinear evolution
of the linear and nonlinear optimal perturbations. Dipolar, tripolar and quadrupolar
vortex states that retain their shape for several rotation periods are observed in our
simulations. This suggests that optimal perturbation serves as a good initial condition
to realize quasi-steady non-axisymmetric vortex states. Our work also brings out the
significance of critical layer in the evolution of non-axisymmetric vortices.

One of the major motivations for studying vortex dynamics is its application in the
analysis of aircraft wakes. Vorticity sheet generated over the wings of the aircraft roll-up
downstream to form a pair of counter-rotating vortices. These wake vortices are quite
resilient to surrounding turbulence and remain in the atmosphere for many rotation
periods of the vortex. If an aircraft encounters wake vortices, there is a possibility of
loss of control. Such a scenario would be catastrophic during take-off or landing as the
aircraft may not have sufficient altitude to recover. To avoid this situation, regulations
have been imposed to set minimum distance between two aircrafts. This allows time for
the wake vortices to decay naturally or to be convected away. Due to the continuing
increase in demand for air transport, such regulations have led to the saturation of
aircraft operations in many major airports. There is an urgent need to find solution to
the saturation problem. One possibility would be to develop strategies for alleviation
of wake vortices. In this regard, optimal perturbation in double vortex systems may
provide a lead. It is expected that the optimal perturbation will hasten the transition
to turbulence in wake vortices, thereby rendering the wake benign for vortex encounter.
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Compared with the single vortex system, the double vortex system has been considerably
less explored. The stability of a vortex pair was investigated in earlier works (for example
Crow 1970; Tsai & Widnall 1976; Pierrehumbert 1980). In 2D, Brion, Sipp & Jacquin
(2014) showed the existence of several unstable modes for a vortex-pair. Recently, Jugier
(2016) pursued this flow and investigated linear optimal perturbation for a pair of
counter-rotating vortices. He found that a transient mechanism can lead to higher energy
gain than the most unstable mode. In the present work we investigate linear and nonlinear
optimal perturbation in a counter-rotating vortex pair. The vortex-pair is obtained by
superimposing velocity field for two Lamb-Oseen vortices of opposite circulation placed at
a certain distance from each other, and letting the resultant flow to evolve for some time.
The flow evolution stage is important as the superimposed flow is not an exact solution
of Navier-Stokes equations. Such technique has been used in earlier numerical works on
double vortex systems (Brion 2009; Jugier 2016). Our results show that the mechanism
of transient energy growth in counter-rotating vortex pair is similar to that of isolated
vortex. This reinforces the relevance of studying an isolated vortex to the analysis of
vortex pair dynamics. However, unlike an isolated vortex, nonlinear transient processes
does not lead to a quasi-steady dynamics for the vortex pair. Instead, the flow switches
to an unstable evolution beyond a certain time. In this situation, optimal perturbation
(linear /nonlinear) can be used to hasten the rate of flow destabilization.

The paper has been organized as follows. Section 2 describes the governing equations
and the optimization strategy. Next, results from optimal analysis for an isolated Lamb-
Oseen vortex are presented in Section 3. Results for counter-rotating vortex pair are
presented in Section 4. We conclude the paper in Section 5.

2. Problem formulation
2.1. Governing equations

The flow is governed by the incompressible Navier-Stokes equations:

V-u=0, (2.1)
ou B 1,
E+(u~V)u-—Vp+ EV u, (22)
where u, p and Re are the velocity, pressure and Reynolds number, respectively. Equa-
tions (2.1)-(2.2) are accompanied by initial and boundary conditions for the flow vari-
ables. The flow (represented by g = (u,p)) is written as sum of base flow (Q = (U, P))
and perturbation (q’' = (u’,p")),

a=Q+q. (2.3)

The decomposition (2.3) is generally useful when the base state evolves on a time scale
that is much slower than the evolution of the perturbation. More often than not, the
steady solution of equations (2.1)-(2.2) is selected as the base flow. Substituting (2.3) in
equations (2.1)-(2.2) and subtracting from it the equations for the base state, we get the
equations governing the evolution of the perturbation:

V-u' =0, (2.4)
ou' / l / l ! 1 2,7
Equations (2.4)-(2.5) are accompanied by initial conditions for the perturbation (gj_)

and homogeneous boundary conditions. In the linear framework, the nonlinear term
(u' - V)u' is dropped from equation (2.5).
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2.2. Optimization

We seek initial perturbation (g{) that maximizes the gain of perturbation kinetic
energy over a given horizon time T'. The kinetic energy associated with the perturbation
at any time instant is taken as

E(t) = /Q u/(t) () de. (2.6)

where (2 is the computational domain. The energy gain with respect to the initial
perturbation is

G(qg’ t) = E(t)/E(0)7 (2'7)
where F(0) is the energy of the perturbation at ¢ = 0. Therefore optimal perturbation
maximizes the value of G at T. We use the method of Lagrange multipliers to solve the
optimization problem. The Lagrangian functional, £, is defined as

L£(qd,q".q0,q5,2) = G gy T) — (g™, F(q')) — A(E; — E(0)), (2.8)

where F (q’) = 0 represents the equation system (2.4)-(2.5) (or the linearized version of
it for linear optimization), g* and A are the Lagrange multipliers and, < .,. > denotes
the inner product of two vectors,

(a,b) — /T /Q a-b dod. (2.9)

F is usually referred to as the Navier-Stokes operator. The boundary conditions accom-
panying equations (2.4)-(2.5) are implicit in the definition of £. Ej is a parameter that
constrains the kinetic energy of the perturbation at ¢ = 0 to a fixed value (equal to
Ep) via the last term in the right hand side of equation (2.8). The constraint is set
using a geometric update technique described later in this section. The optimization
procedure, therefore, yields optimal perturbation/gain correponding to a given value of
Ey. Within the linear framework, optimal gain is independent of the initial energy of the
perturbation. Non-linear optimal gain/perturbation, on the other hand, depends on the
value of Fj.

For optimality, the gradient of £ with respect to all the variables should be zero.
Setting to zero the gradient of £ with respect to

(a) g, returns equations (2.4)-(2.5),
(b) ¢, gives the adjoint equations

V-ut =0, (2.10)

ou™

T4 (U -Vut+ (o V)ut =ut - (VU) +ut - (VW)

o (2.11)

1
7v+77v2+
p Re u-,

(c) ¢, gives the compatibility equation

/
T
ut() = 220 (2.12)
Eo
(d) g, gives the optimality equation
E
Vg, £=u"(0) - 25 (0). (2.13)
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For a detailed derivation of equations (2.10)-(2.13) the interested reader is referred to
Farrell (1988); Corbett & Bottaro (2000); Zuccher, Bottaro & Luchini (2006); Cherubini
et al. (2011, 2013), Schmid & Brandt (2014) and Kerswell (2018).

An iterative procedure is employed to arrive at the optimal initial condition. Each
iteration loop consists of the following four steps:

1) equations (2.4)-(2.5) (also referred to as direct equations) are marched forward in
time from ¢ = 0 to T,

2) equation (2.12) is used to compute the adjoint field at T,

3) equations (2.10)-(2.11) are solved backwards in time from ¢t =T to ¢t = 0,

4) equation (2.13) along with the geometric update technique proposed by Douglas,
Amari & Kung (2000) are used to set the next guess for gj,.

The geometric update technique sets the initial energy of the perturbation. First, the
component of Vg, £ that is normal to q), is scaled as per the initial energy constraint,

vqéﬁl

NI = B(0)Y/? %o —_
O g e

(2.14)
where j is the iteration number and | denotes normal component. The initial perturba-
tion for step 1) of next iteration is then given by:

g/t = qff cos(a) + N7 sin(«). (2.15)

In equation (2.15) « is the step length and its starting value is unity. A simplified line
search is implemented to choose the right value of a. If at the end of step 1 the energy
gain has higher value than the previous iteration, then « is not changed. If the gain
is lower than the previous gain, « is reduced successively by a factor of two until the
energy gain has a higher value compared to last iteration. For the first iteration loop, the
initial perturbation for step 1 is random white noise. In linear optimization the terms
(w' - V)ut and ut - (Vu/)" are are not present in equation (2.11).

The computations have been carried out using Nek5000 (Fischer, Lottes & Kerkemeier
2008), which is an open source spectral element solver for incompressible and weakly
compressible flows. For the single vortex system, a circular computational domain is
used. For the double vortex system, computations are carried out in a rectangular
domain. The computational domain is divided into a large number of spectral elements.
Each spectral element is further discretized using Gauss-Lobatto-Legendre (GLL) points.
Near the vortex core region, the spatial resolution of the mesh is kept high in order to
capture the flow gradients accurately. The resolution decreases towards the boundary of
the computational domain. Convergence studies have been carried out to establish the
adequacy of the extent of the computational domain and mesh resolution. The effect of
the size of the computational domain for an isolated vortex is discussed in Section 3.2.2.

2.3. Linear Stability Analysis of Lamb-Oseen vortex

The flow state is written in normal mode representation,
q/(r,0,1) = a(r)e™’e (2.16)

where m is the azimuthal wavenumber and ¢ and A are complex quantities. Substituting
(2.16) in the linearized version of equations (2.4)-(2.5) we get a generalized eigenvalue
problem:

Aq = \B§ (2.17)

The real and imaginary parts of A correspond to the growth rate and frequency of
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the eigenmode respectively. In the discrete version of the problem, A and B are non-
symmetric matrices. A shift-inverse transformation is used to compute the eigenmodes
and eigenvalues.

3. Isolated vortex
3.1. Base flow

The base flow for carrying out the optimal analysis is a Lamb-Oseen vortex. Its velocity
distribution in cylindrical coordinate system is given by:

r
ur =0, upg=-—(1— 677’2/“2) (3.1)
27y
where u,. and uy are the radial and azimuthal components of velocity, I" is the circulation
associated with the Lamb-Oseen vortex, a is the vortex dispersion radius and r is the
distance from the origin. The vortex strength (I") is related to vorticity (w) by:

I= /Q wdf? (3.2)

In equation (3.2), the integration is carried out over the entire computational domain.
The vortex dispersion radius (a) is given by:

_ [ r2wd(?
a=1/ % (3.3)

The Lamb-Oseen vortex is assumed to be frozen in time. The length and velocity scales
have been rendered non-dimensional using a and I'/2ma respectively. The Reynolds
number (Re = I'/2nv) for all simulations is Re = 5000. Bernoftf & Lingevitch (1994)
analyzed the relaxation of a perturbed Gaussian vortex and found that the perturbations
evolve on a Re'/3 time scale. For Re = 5000, the time scale for evolution of perturbation
is several orders lower than viscous dissipation (7, = 27a?/v). It is, therefore, reasonable
to assume that the base flow is steady during perturbation evolution. This is confirmed in
Appendix A where optimization results obtained for T' = 4.8 using an evolving base flow
are found to be nearly the same as those obtained using the frozen base flow approach.
For very large horizon times the frozen base flow approach is inadequate and serves as
an approximation. Compared to an evolving base flow, the frozen base flow approach
has significant advantages in terms of computational memory and time.

3.2. Linear analysis
3.2.1. Optimal gain and perturbation

Optimal perturbation for an isolated vortex has been studied mostly in 3D and
almost exclusively within the linear framework (Antkowiak & Brancher 2004, 2007;
Pradeep & Hussain 2006). Antkowiak & Brancher (2004) investigated linear optimal
perturbation (LO-P) for azimuthal wavenumber m = 1. In the present study, we extend
the 2D-optimization work of Antkowiak & Brancher (2004) by considering additional
wavenumbers.

A general perturbed state of Lamb-Oseen vortex is amenable to Fourier decomposition
in the azimuthal direction:

q'(r,0,t) = Z A (1, 1)e™? + c.c. (3.4)

meZ
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FIGURE 1. Re = 5000 isolated vortex: variation of the largest energy gain with the horizon time
for m = 1, 2 and 3. The linear optimal gain curve is the envelope of the gain curves for different
m and is shown by a thick solid line. Inset is a magnified view of the part of the gain curve
where the linear optimal perturbation switches from m > 1 to m = 1. The variation of the
2D linear optimal gain for Re = 1000 and m = 1 reported by Antkowiak & Brancher (2004) is
shown by a dashed line.

T=1.0 (m=3) T=2.0 (m=2) T=4.8 (m=2) T=5.5 (m=1) T=12.0 (m=1)

FIGURE 2. Re = 5000 isolated vortex: vorticity field of the linear optimal perturbation for
varying horizon time (top row). The corresponding vorticity field at the horizon time ¢ = T' is
shown in the bottom row.

where (r,6) represents a spatial location with respect to the center of the cylindrical
coordinate system, m is the azimuthal wavenumber that takes non-negative integer
(Z) values and c.c. denotes the complex conjugate. In the linear framework different
azimuthal components evolve independently from one another. Therefore, we carry out
linear optimization for different wavenumbers m separately. Linear optimal gain (LO-G)
for a given horizon time 7' is the largest gain of all azimuthal wavenumbers. Figure 1
shows the variation of largest gain with T for various m. The horizon time has been
rendered non-dimensional by the rotation period of the base flow (7 = 472a?/I"). The
LO-G curve, shown as a thick solid line in figure 1, is the envelope of the different m
gain curves. It is observed that LO-G increases with T up to the largest horizon time
that has been studied. For T' < 5.5, the optimal perturbation has azimuthal wavenumber
m > 1. For T' > 5.5, LO-P corresponds to m = 1. A kink is observed in LO-G curve at
T = 5.5 that marks the shift of LO-P from m = 2 to 1 (see the inset of figure 1). For
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=2.0 (m=2) ——
=4.8 (m=2) ——
=5.5 (m=1) —— 1
=7.0 (m=1) ——

E(Y/E(0)

50 60 70

FIGURE 3. Re = 5000 isolated vortex: evolution of the energy gain with time for computations
initiated with the linear optimal perturbation corresponding to different horizon times. The
azimuthal wavenumber of linear optimal perturbation is written inside parentheses in the legend.
The evolution of perturbation is governed by linearized version of equation system (2.4)-(2.5).
The variation of the linear optimal gain with 7" is shown using a dashed line. The long-term
perturbation vorticity field for the computations initiated with the 7" = 2.0 and 7.0 linear
optimal perturbations are shown in inset. The time instants from which the two fields are taken
are marked by arrows.

T > 5.5 the optimal gain increases linearly with 7'. This is consistent with Re = 1000
result of Antkowiak & Brancher (2004). The gain curve reported by them is shown by a
dashed line in figure 1. The slope of LO-G curve for Re = 5000 is higher than Re = 1000.
Accordingly, as T" increases the difference between LO-G for the two Reynolds numbers
Srows.

The vorticity field associated with LO-P for different horizon time is shown in the top
row of figure 2. In the bottom row, the corresponding evolved vorticity field at t = T
is shown. LO-P consists of vorticity filaments in spiral arrangement. Energy growth for
such flow structures is attributed to the Orr mechanism (Orr 1907). The Orr mechanism
is typical of plane shear flows. Its relevance in rotational flows has been demonstrated by
Antkowiak & Brancher (2004) and Pradeep & Hussain (2006). As T increases, the vortex
filaments move away from the vortex center. During the flow evolution, the vorticity
filaments uncoil. For large T, a dipolar perturbation appears in and around the core
region of the vortex. This can be observed in last column of figure 2. The effect of the
dipolar structure is to shift the vortex core from its unperturbed location. For lower
horizon times (T' < 5.5), the optimal perturbation leads to a quadrupolar (m = 2) or a
six-polar (m = 3) structure which does not induce any shift in the position of the vortex
core.

3.2.2. Long-term linear evolution of the linear optimal perturbation

Direct time integration of the linearized version of equations (2.4)-(2.5) is carried out
using LO-P for various T" as the initial condition. The time evolution of the energy gain is
shown in figure 3. In each case, the gain reaches a peak value and then decreases rapidly.
The peak gain corresponding to each T is nearly the same as LO-G for the same T.
For T' < 5.5, the gain continues to decrease rapidly even at large times. The long-term
perturbation field consists of vorticity filaments similar to those of the initial perturbation
but in an opposite spiral arrangement (inset of figure 3; c.f. figure 2). For T' > 5.5 the
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R T =428 T=170 T =438
linear linear nonlinear
15a 109.4 163.6 140.8
26a 109.5 163.9 141.9
37a 109.5 164.6 141.9

TABLE 1. Effect of the size of the computational domain on the value of optimal gain for 7" = 4.8
and 7.0. The nonlinear gains are for £(0) = 0.01. R is the radius of the computational domain.
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FIGURE 4. Re = 5000 Linear Stability Analysis of an isolated Lamb-Oseen vortex: variation
of the non-dimensional (a) growth rate and, (b) frequency of the displacement mode with the
size of the computational domain. The results have been rendered non-dimensional with respect
to the rotation time of the vortex 7. The growth rate of the perturbation calculated using the
energy decay rate at large time for 7' = 7.0 in figure 3 is shown by a bull’s eye symbol. (c)
Part of the continuous spectrum for m = 1. (d) Vorticity distributions for eigenmodes from the
continuous spectrum corresponding to two eigenvalues. r denotes radial distance from the origin
of the cylindrical co-ordinate system.

rapid decay of perturbation energy seems to arrest after some time. Subsequently the
energy decays very slowly and the perturbation has a dipolar structure (see inset of figure

LO-P for a given horizon time can be written as a linear combination of the eigenmodes
of the linearized Navier-Stokes operator (Pradeep & Hussain 2006). Due to the non-
orthogonality of the eigenmodes, transient growth of perturbation energy is possible in
vortex systems (Antkowiak & Brancher 2004; Pradeep & Hussain 2006). However, long-
term the most unstable or least stable mode is expected to dominate the flow evolution.
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Fabre, Sipp & Jacquin (2006) (hereafter referred to as FSJ 2006) carried out Linear
Stability Analysis (LSA) of Lamb-Oseen vortex and found that all the eigenmodes,
other than the 2D-displacement mode (m = 1), have negative growth rate. The 2D-
displacement mode is neutrally stable and its effect on the base flow is to shift the
location of the vortex center. It is observed that the long-term perturbation field for
T > 5.5 in figure 3 is very similar to the 2D-displacement mode. This implies that the
2D-displacement mode contributes to the LO-P for T' > 5.5. As the 2D-displacement
mode has zero growth rate, the perturbation energy at large time is expected not to
vary with time. We, however, observe that the perturbation energy decays slowly at
large time. The reason for this is the finiteness of the computational domain used for
the present work. To elucidate this, we present the variation of the growth rate (\,) and
the frequency (\;) of the 2D-displacement mode obtained via LSA (section 2.3) with the
radius of the computational domain (R) in figures 4 (a) and (b), respectively. It can be
observed that both A\, and \; are close but not equal to zero. Both the quantities seem to
approach zero as R — oo. Due to the negative growth rate of the 2D-displacement mode
in the finite domain, the perturbation decays long-term for 7' > 5.5. This is confirmed
by noting that the decay rate derived from the energy evolution curve for T" > 5.5 at
large time (shown by bull’s eye symbol in figure 4a) is close to the growth rate of the 2D-
displacement mode obtained via LSA. The difference between the two values is because
of the presence of other modes, albeit with lower magnitude than the 2D-displacement
mode. If the linearized simulations are carried on further the difference is expected to
become smaller.

A question that arises in view of the sensitivity of LSA results to the extent of the
computational domain is: does the size of the domain affect the value of the LO-G?. Our
computations show that beyond a certain radial extent, LO-G is unaffected. Table 1 lists
the values of LO-G for T" = 4.8 and 7.0 for different values of domain radius R. The
suitable size of the computational domain for optimal analysis depends on the horizon
time T'. This is because the vortex filaments of the LO-P move away from the vortex
center as 7' increases. In the present case R = 15a appears to be adequate to carry out
linear optimization at least up to T'= 7.

Figure 1 shows that LO-G increases monotonically with 7. Therefore a Lamb-Oseen
vortex can support transient growth up to very large horizon times, despite being linearly
stable. The reason is understood to be the existence of a continuous spectrum for the
Lamb-Oseen vortex. Mao & Sherwin (2011; 2012) found that in addition to the discrete
spectrum, two continuous spectra exist for the Batchelor vortex. The tangential and radial
velocity distribution of a Batchelor vortex is similar to a Lamb-Oseen vortex. However,
unlike Lamb-Oseen vortex which is a 2D model, Batchelor vortex is characterized by
Gaussian distribution of axial velocity. As for the Batchelor vortex, continuous spectrum
exists for Lamb-Oseen vortex as well. Figure 4(c) shows a part of the continuous spectrum
of Lamb-Oseen vortex for m = 1. The computations have been carried out in a domain
of radial length R = 100a. It is observed that the modes from the continuous spectrum
can have a very low decay rate. The lower the decay rate, the further the mode is located
from the vortex core (figure 4d). The discrete modes are generally located near the
vortex center (FSJ 2006). We recall that with increasing T', LO-P moves away from the
vortex center. Therefore, LO-P at large T is constituted of modes from the continuous
spectrum that have a low decay rate. Consequently, the continuous spectrum and the
2D-displacement mode combine to exhibit transient growth of perturbation energy up
to very large values of horizon time.

We end the part on linear analysis by a short note on the applicability of finite domain
simulations. In practical scenarios, an isolated vortex does not exist. In most situations a
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FIGURE 5. Re = 5000 isolated vortex: (a) variation of the nonlinear optimal gain for 7" = 4.8
with initial energy of the perturbation The azimuthal velocity field associated with nonlinear
optimal perturbation (at t = 0) for F(0) = 10™* and E(0) = 3 x 10~ is shown in (b) and (c),
respectively. A magnified view of the two spiral dislocations in the nonlinear optimal perturbation
is provided. A synthetic two-color scheme has been used in the magnified view to display the
dislocations clearly. In (a) the value of the linear optimal gain is indicated by a dashed line.

vortex belongs to a part of multi-vortex system, for example, trailing vortices in the wake
of an aircraft. The effect of surrounding vortices, in such situations can be emulated by
using appropriate boundary conditions, albeit in a finite domain. We would like to point
out that in practice it is impossible to carry out infinite domain computations.

3.3. Nonlinear analysis

Recent works on nonlinear optimization of flows (like boundary layer flow, plane
Couette flow) have shown that for the same horizon time nonlinear optimal perturbation
(NLO-P) can result in higher gain than LO-P (Cherubini et al. 2011, 2013; Kerswell
2018). We extend nonlinear optimization to Lamb-Oseen vortex. Non-linear optimization
is carried out by retaining the nonlinear terms in the direct-adjoint iterative process
(section 2.2). The adjoint equations require the input of the direct perturbation field.
Hence, the time history of the direct flow is saved at each iteration of the optimization
process. This increases the computational cost significantly when compared with linear
optimization. Unlike for LO-G, nonlinear optimal gain (NLO-G) depends on the initial
energy of the perturbation (E(0)). Therefore the nonlinear framework presents a richer
parameter space than the linear framework. For each horizon time, computations are
carried out for varying values of F(0). The general variation of NLO-G with F(0) is
found to be similar for different horizon times 7. We have selected T = 4.8 to present a
detailed analysis. Unless stated otherwise, the results for nonlinear optimization of the
isolated vortex are for T' = 4.8.
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3.3.1. Optimal gain

Figure 5(a) provides the variation of NLO-G with E(0) for T = 4.8. The corresponding
LO-G is shown using a dashed line in the same figure. For low values of the initial energy
(E(0) < 5x107%), NLO-G is nearly the same as LO-G. Beyond E(0) = 5x 10—, NLO-G
departs from the linear value. At first, NLO-G increases with E(0) and reaches a peak
value for E(0) = 0.03. The NLO-G value for E(0) = 0.03 is ~ 50% higher than LO-G.
With further increase in F(0), NLO-G decreases monotonically. G becomes lower than
LO-G for E(0) > 0.07. Therefore, there exists a range of E(0) for which NLO-P yields
higher gain than the LO-P.

Table 1 demonstrates the effect of the size of the computational domain on the value
of NLO-G. Similarly to LO-G, the NLO-G for T' < 7.0 is unaffected by expansion of the
domain beyond 15a.

Cherubini et al. (2013) investigated NLO-P for the plane Couette flow (PCF) and
reported a similar variation of NLO-G with E(0) as in figure 5(a). Unlike in the present
work they considered 3D perturbations in their analysis. We note that the base state
for both flows is 2D and linearly stable. In both flows, there exists a threshold value of
E(0) below which NLO-G remains nearly the same as LO-G; above the threshold value,
NLO-G shows significant departure from LO-G. However, unlike the PCF where NLO-G
remains higher than LO-G for E(0) greater than the threshold, NLO-G for a 2D LO
vortex becomes lower than the LO-G for large values of E(0). The explanation may be
that in the PCF, for large values of E(0), the flow field at the horizon time becomes
turbulent. With the restriction of 2D perturbation for Lamb-Oseen vortex, there is no
possibility of flow transition even with large F(0), and any initial perturbation must
eventually decay as suggested by the result of linear stability analysis.

3.3.2. Optimal perturbation

Figures 5(b) and (c) give the vorticity fields associated with NLO-P for E(0) = 10~*
and 3x 1073, respectively. We recall that the LO-P for T' = 4.8 has azimuthal wavenumber
of m = 2 (figure 1). The shape of NLO-P for E(0) = 10~* is very similar to that of the
m = 2 linear optimal. Thus, for low F(0) both NLO-G as well as the shape of NLO-
P is similar to that obtained via linear analysis. This is so because the contribution
of the nonlinear terms to the evolution of the perturbation becomes smaller as F(0)
tends to zero. Beyond the threshold energy (E(0) > 5 x 10~%) two major differences are
observed with respect to the LO-P. First, the vorticity filaments far from the vortex core
appear less diffused. Second, two spiral dislocations are observed. A spiral dislocation is
identified by the merger of two vorticity filaments of the same sign. In figure 5(c), the
locations of the two spiral dislocations is shown by solid ellipses. The dislocations are
situated at distances of ~ 1.1a and ~ 3.6a from the vortex center. A magnified view
of the two dislocations using a synthetic two-color scale is provided in figure 5(c). In
the first dislocation (r ~ 1.la) two negative vorticity filaments, that are separated by
a positive vorticity filament, merge. In the second dislocation (r ~ 3.6a) two positive
vorticity filaments merge. The general shape of NLO-P for E(0) > 5 x 10~% is similar.

Figure 6 shows the relative contribution of different azimuthal wavenumbers to the
E(0) = 3x1072 NLO-P as a function of distance from the vortex center. The contribution
of |m| > 4 is relatively small and hence are not included in the figure. The data
has been generated by using Fourier decomposition of the azimuthal component of the
perturbation velocity for several radial locations. Unlike LO-P, NLO-P has contribution
from different azimuthal wavenumbers. At any given radial location, the azimuthal mean
of the velocity is non-zero as indicated by the presence of m = 0 component. Among
the non-zero wavenumbers, the most significant contribution to NLO-P is from m = 1
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FIGURE 6. Re = 5000 isolated vortex: Fourier decomposition of the azimuthal component of the
T = 4.8, E(0) = 3 x 1072 nonlinear optimal perturbation (¢t = 0) velocity field at various radial
locations. m is the azimuthal wavenumber. The shaded part corresponds to the radial segment
between the two spiral dislocations in the nonlinear optimal perturbation shown in figure 5(c).

and 2. The shaded region in figure 6 corresponds to the radial location between the two
spiral dislocations in NLO-P (figure 5(c)). It is observed that in the shaded part m = 2
is the most dominant component, whereas outside the shaded part the most dominant
wavenumber is m = 1. It appears that spiral dislocation is the consequence of the switch
in the dominant wavenumber within the NLO-P.

Recently, Bisanti (2013) investigated NLO-P for a 2D Lamb-Oseen vortex. The work
was restricted to m = 2 perturbations. For T' = 4.8 and E(0) = 0.01 Bisanti (2013) found
the value of NLO-G to be lower than the LO-G. Our computations show that for the same
parameters NLO-G is higher than the LO-G (figure 5a). Figure 7(a) shows the variation
of energy gain with iteration number during the optimization process for T = 4.8 and
E(0) = 0.01. Tt is observed that close to the value of the optimal gain reported by Bisanti
(2013) the variation of gain seems to plateau (point A); the increment in the value of
optimal gain with each iteration (J) is O ~ 1073 and it decreases near point A (see
figure 7b). We refer to point A as a sub-optimal state. Figure 7(c) shows the vorticity
field corresponding to the optimal perturbation and its evolved state at t = T as reported
by Bisanti (2013). Figure 7(d) gives the same field for the sub-optimal state obtained in
the present work. The fields are very similar, therefore the sub-optimal state corresponds
to the m = 2 optimal state reported by Bisanti (2013). If the iterations are continued
further, J starts to increase again. The value of gain increases with Nj;., and a converged
state (point B) is reached with higher energy gain. Beyond point B, energy gain does
not change significantly with Nje, up to Njter ~ 500, which is when we terminate the
nonlinear optimization process. The value of J in the converged state is @ ~ 107°. As
shown in figure 6, NLO-P for T' = 4.8 and E(0) = 0.01 has, in addition to m = 2,
significant contributions from other azimuthal wavenumbers. The difference between the
optimal gain reported by Bisanti (2013) and NLO-G of the present work is therefore
attributed to nonlinear interactions between different azimuthal components. We would
like to mention here that in nonlinear optimization with direct-adjoint technique, it is
not possible to completely ascertain if point B is the global optimum. We carried out
T = 4.8, E(0) = 0.01 nonlinear optimization with different initial guesses, for example,
random perturbation, linear/nonlinear optimal perturbation for different 7. In each case
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FIGURE 7. Re = 5000 isolated vortex: variation of (a) the nonlinear optimal gain and (b)
the increment in gain with iteration number during the optimization process for T' = 4.8 and
E(0) = 0.01. The sub-optimal and optimal states are labeled A and B respectively. The optimal
gain reported by Bisanti (2013) is indicated by a dashed line in (a). (c) Vorticity field for the
m = 2 optimal perturbation and its evolved state at ¢ = T as reported by Bisanti (2013). (d)
Vorticity field for sub-optimal perturbation and its evolved state at t = T" as obtained in present
work.
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FIGURE 8. Re = 5000 isolated vortex: variation of (a) the ratio between the nonlinear optimal
gain and the LO-G with initial energy of the perturbation for 7' = 4.8 and 5.5 and (b) linear
and E(0) = 0.01 nonlinear optimal gain with horizon time.

the converged solution corresponds to point B. It is, therefore, likely that point B is the
global optimum, and that there is no jump in energy gain beyond point B in figure 7(a).

3.3.3. Effect of the horizon time

Figure 8(a) displays the effect of T on NLO-G. For a given initial energy of the
perturbation, NLO-G increases with 7. The peak optimal gain for different T" occurs for
nearly the same value of E(0). It is observed that the threshold energy below which the
NLO-G and the LO-G are nearly the same decreases with increasing 7. The threshold
energies for T = 4.8 and 5.5 are 1072 and 10~* respectively. Figure 8(b) shows the
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FIGURE 9. Re = 5000 isolated vortex: evolution of energy gain with time for computations
initiated with (a) linear optimal perturbation and (b) E(0) = 0.01 nonlinear optimal
perturbation, for different horizon times. The evolution of perturbation is governed by equation
system (2.4)-(2.5).
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FIGURE 10. Re = 5000 isolated vortex: (a) variation of the energy gain during one rotation
period of the quasi-steady non-axisymmetric state for computations initiated with the 7' = 4.8
LO-P. (b) The perturbation vorticity field at various time instants marked by solid circles in the
gain curve.

variation of NLO-G for E(0) = 102 with horizon time. For T' < 3.0, the linear and
nonlinear optimal gain is nearly the same. This implies that the threshold energy for
T < 3.0 is higher than 1072, For T' > 3.0, the threshold energy is lower than 10~2 and
the linear and nonlinear optimal gains are different. The difference between LO-G and
NLO-G increases with 7" up to T' = 7.0. The threshold energy decreases with increasing
T.

3.3.4. Long-term nonlinear evolution of linear and nonlinear optimal perturbation:
appearance of a quasi-steady non-azxisymmetric vortex

Rossi, Lingevitch & Bernoff (1997) carried out numerical simulations to investigate the
evolution of non-axisymmetric perturbations to 2D Lamb-Oseen vortex. They observed
that for weak non-axisymmetric perturbation, the vortex relaxes towards an axisymmet-
ric state. If, however, the perturbation is strong enough, a quasi-steady non-axisymmetric
vortex state can be reached. Quasi-steady vortex, as defined by Rossi, Lingevitch &
Bernoff (1997), is one that maintains approximately the same relative distribution of
vorticity over several rotation periods of the vortex and diffuses on a slow time scale.
The results presented in the previous sections show that linear and nonlinear optimal
perturbation can result in a large energy gain at horizon time. Furthermore, the evolved
perturbation field at horizon time is non-axisymmetric. Therefore it is plausible that as
the perturbation relaxes from its high energy state, the vortex might exhibit quasi-steady
non-axisymmetric behavior. To explore this, we carry out direct time integration of the
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FIGURE 11. Re = 5000 isolated vortex: (a) variation of the energy gain during one rotation
period of the quasi-steady non-axisymmetric state for computations initiated with the T = 5.5
LO-P. (b) The perturbation vorticity field at various time instants marked by solid circles in the
gain curve.
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FIGURE 12. Re = 5000 isolated vortex: Fourier decomposition of the azimuthal component
of perturbation velocity in the azimuthal direction at a time instant in the quasi-steady
non-axisymmetric state for computations initiated with (a) the T'= 4.8 LO-P, (b) the T'=5.5
LO-P, (c) the T = 4.8, E(0) = 0.01 NLO-P. The time instants are ¢t = 25.5, 31.8 and 59.9

respectively.

equations governing the nonlinear evolution of the perturbations (equation (2.4)-(2.5)).
The computations are initiated with optimal perturbations, linear and nonlinear, for
various 7.

First, we present results from computations initiated with LO-P. The initial per-
turbation energy for all of the computations is F(0) = 1072. Figure 9(a) shows the
temporal evolution of the perturbation energy for 7' = 2.0, 4.8 and 5.5 LO-P. The
perturbation energy (E) has been normalized by F(0). Initially, F grows in time and
its evolution is very similar to that obtained via linear simulation (figure 3). It attains
a peak value near the horizon time. The peak value of F obtained from the nonlinear
computation is lower than that of the linear computation. The differences between the
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FIGURE 13. Re = 5000 isolated vortex: variation of the contribution of different azimuthal
components of perturbation velocity in the azimuthal direction with time, for nonlinear
simulation initiated with 7" = 4.8 LO-P and E(0) = 0.01. Key is the same as in figure 12.
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FIGURE 14. Re = 5000 isolated vortex: (left column) displacement of the vortex center with
time for computations initiated with the LO-P for (a) T'= 2.0, (b) T' = 4.8 and (¢) T' = 5.5;
(right column) corresponding trajectory of the vortex center in the X — Y plane.
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peak linear and nonlinear perturbation energies for T' = 2.0, 4.8 and 5.5 are 14%, 58%
and 21% respectively. After reaching the peak, E decreases for some time and then
exhibits fluctuations. For T' = 2, the fluctuations decay rapidly and thereafter E decreases
monotonically with time. However for T'= 4.8 and 5.5 the energy fluctuations persist for
a long time (more than 40 rotation periods of the vortex) and are quasi-periodic. Two
time scales can be identified for T' = 4.8 and 5.5. The slow time scale corresponds to the
decrease in the mean value of perturbation energy per cycle of energy fluctuation. The fast
time scale corresponds to the time period of energy fluctuation. Figures 10(a) and 11(a)
show the variation of energy on the fast time scale for 7' = 4.8 and 5.5 respectively. The
fast time scale is attributed to energy exchange between the base flow and perturbation.
During one half of the cycle, the perturbation draws energy from the base flow, and in
the other half the perturbation returns energy to the base flow. The periodic fluctuation
of perturbation energy is associated with the quasi-steady non-axisymmetric vortex state
(discussed in next paragraph). Since viscous effects in the quasi-steady state take place
on the slow time scale (Rossi, Lingevitch & Bernoff 1997) we attribute the decrease in
mean energy per cycle of energy fluctuation to viscosity.

Figure 10(b) shows the perturbation vorticity field at different time instants over a
cycle of energy fluctuation for T' = 4.8. The perturbation has non-axisymmetric structure;
at least six regions of concentrated vorticity can be identified in the figure. A Fourier
decomposition of the perturbation field in the azimuthal direction shows that only the
m = 0 (axisymmetric) and m = 2 components are significant (figure 12a). We recall
that in the linear framework the evolution of different azimuthal components occur
independently from one another. Hence, during linearized evolution of T' = 4.8 LO-
P, the perturbation flow at any time instant is m = 2. Nonlinear effects, on the other
hand, may allow transfer of energy between different azimuthal components. To monitor
the transfer of energy from m = 2 component to other components during nonlinear
evolution of T' = 4.8 LO-P, we plot the time evolution of the relative contribution of
different azimuthal components to the perturbation flow. The plots are shown in figure
13. It is observed that as the flow evolves with time, axisymmetric component in the
flow becomes comparable to m = 2 component beyond ¢ ~ 2. The contribution of other
azimuthal components remains relatively small during the flow evolution (and are not
shown in figure 13). The perturbation field (figure 10(b)) rotates in time and the relative
orientation of the vorticity patches remain the same during rotation. The rotation period
of the perturbation is equal to the time-period of energy fluctuation. As the mean energy
decreases on a slow time scale, the non-axisymmetric perturbation remains in the flow
for several rotation periods. Such a perturbation state, based on the definition used
by Rossi, Lingevitch & Bernoff (1997), corresponds to a quasi-steady non-axisymmetric
perturbation. Figure 11(b) shows the perturbation vorticity field during a cycle of energy
fluctuation for the T' = 5.5 case: a quasi-steady non-axisymmetric state exists for this
case as well. The perturbation field is dominated by m = 1 component (figure 12b). Near
the vortex center the perturbation has dipolar structure. The dipole does not rotate
completely about the vortex, instead it exhibits small rotational oscillations about the
vortex center. The oscillation manifests in the movement of vortex core. This can be
observed in figure 14(c)which shows the time history of the location of the vortex center.
The location of vortex center is the barycenter of vorticity for the total flow, that is,
base flow added with perturbation. The left column of figure 14 shows the displacement
of the vortex center along the X- and Y-axis, and the right column shows the trajectory
of the vortex center. The X- and Y-axis are oriented along the horizontal and vertical
directions with the origin at the center of the unperturbed vortex. Unlike in the T" = 5.5
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FIGURE 15. Re = 5000 isolated vortex: (a) displacement of the vortex center with time for
computations initiated with the 7" = 4.8, F(0) = 0.01 nonlinear optimal perturbation; (b)
trajectory of the vortex center in the vortex plane.
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FIGURE 16. Re = 5000 isolated vortex: (a) variation of the energy gain during one rotation
period of the quasi-steady non-axisymmetric state for computations initiated with the 7" = 4.8,
E(0) = 0.01 nonlinear optimal perturbation. (b) The perturbation vorticity fields at the time
instants marked by solid circles in the gain curve are provided.

case, the vortex center does not move significantly for the T'= 2.0 and 4.8 cases (figures
14a,b).

Next we present results from computations initiated with the F(0) = 0.01 NLO-P.
Figure 9(b) gives the evolution of the perturbation energy for T' = 2.0, 4.8 and 5.5.
Similarly to the LO-P, initially the energy increases and then fluctuates with time.
However, the energy fluctuation in the case of the NLO-P persists for a longer time
than that of the LO-P. For example, for T = 4.8 the energy fluctuations are observed
up to t = 68 for the LO-P, while for the E(0) = 0.01 NLO-P fluctuations persist up
to t = 160. Figure 15(a) shows the time history of the location of vortex center along
the X— and Y — axis with time for the T" = 4.8 NLO-P. It can be observed that the
displacement of the vortex center in the two directions is more accentuated than the
situation where the simulations are initiated with the LO-P. The vortex center follows
a spiral trajectory about its original unperturbed location (figure 15(b)). Figure 16(b)
provides the perturbation vorticity field at various time instants in a cycle of energy
fluctuation. Close to the vortex core, the perturbation has a dipolar structure and is
dominated by the m = 1 component. Far from the center other non-zero wavenumbers
become significant as well (figure 12¢). Outside the vortex core region, two vorticity
patches can be identified. The strength of the positive vorticity patch is lower than that
of the negative one and of the dipole present close to the vortex center, as is evident
from figure 16(b). Thus the perturbation field can be considered as a tripole consisting
of a dipole and negative satellite vortex. The tripole rotates around the vortex center
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FIGURE 17. Re = 1000 vortex pair: (a) streamlines and (b) vorticity field for the base flow. The
Kelvin oval is indicated using dotted lines in the two figures. The vortex separation is denoted
by b. The approximate boundary of the two vortex core regions is indicated by dashed circle in
(b). The radius of the circle is equal to the vortex dispersion radius calculated using equation
(3.3).

and has a rotation period equal to the time period of energy fluctuation. Interestingly,
the angular speed of the vorticity patch that is present outside the vortex core is close
to the azimuthal velocity of the base flow at that location. This condition corresponds to
the criterion of existence of critical layers in shear flows. In a critical layer, the nonlinear
terms and/or the viscosity of the flow are significant and allow to deal with singularities
of an otherwise inviscid description of the flow. Habermann (1972) gave a criterion to
distinguish between nonlinear and linear critical layers. As per the criterion, a critical
layer is nonlinear if €3/2Re >> 1; € is a measure of the perturbation amplitude and Re
is the Reynolds number. If €¥/2Re << 1 the critical layer is of the viscous type. For
€3/2Re ~ 1 both nonlinear and viscous effects are significant in the critical layer. We
use the Habermann criterion to identify the nature of the critical layer in figure 16. The
tripolar perturbation structure is observed after the perturbation reaches its peak energy.
Therefore it is reasonable to assume that e ~ O(100). Consequently, ¢/2Re ~ O(10%): the
critical layer observed in figure 16 is nonlinear. We suspect that the long-term persistence
of the energy fluctuation might be attributed to the role of the nonlinear critical layer.
This, however, has not been investigated further as part of the present work.

4. Vortex pair

Our principle objective for investigating optimal perturbation of isolated vortex is its
possible application in hastening the decay of aircraft trailing vortices. In general, a
trailing vortex system consists of a pair of counter-rotating vortices (in some situations
there can be additional vortices). It has been shown in earlier studies that a vortex
can experience significant modification to its shape under the strain field of its counter-
rotating pair. A question then arises is, can the optimization results for isolated vortex
be extended to counter-rotating vortexr air? We explore the answer to this question by
carrying out linear and nonlinear optimization of a vortex pair.

4.1. Base flow

The base flow is a pair of equal strength, counter-rotating vortices. The base flow is
created by initializing the flow with a pair of counter-rotating Lamb-Oseen vortices and
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letting it evolve for some time. Since the LO-vortex pair is not a solution of the Navier-
Stokes equations, this evolution allows the flow to adjust. During this transient period
the shape of the vortices changes from axisymmetric to elliptic. The flow then evolves on
a diffusive time scale. This approach has been used in earlier works on counter-rotating
vortex pair (Sipp, Jacquin & Cossu 2000; Brion 2009). Owing to its symmetry, we consider
only one side of the flow for characterizing the vortex pair. Let the half-domain on the
side of the counter-clockwise rotating vortex (positive vorticity) be denoted by 7. The
location of the vortex center, with respect to any origin, is given by:

o rwd®2
=

where r is the position vector with reference to the same origin. The circulation (I") and
vortex dispersion radius (a) are given by equations (3.2) and (3.3) respectively, where
the domain of integration is £21. Because of self-induction, the vortex pair translates at a
speed equal to I'/27b; b is the distance between the two vortex centers. The simulations
have been carried out in a frame of reference that moves with the vortex pair. Uniform
velocity of magnitude I"/2b is specified at the inlet boundary and a stress-free condition
is imposed on the outflow and side boundaries. As for the isolated vortex, the base flow
for the analysis of the vortex pair is assumed to be frozen. The ratio between the vortex
dispersion radius and separation between vortex centers is a/b ~ 0.18. The length and
velocity scales have been rendered non-dimensionalized using b and I'/27. The Reynolds
number for all vortex pair simulation is Re = (I'/2nv) = 1000. Figure 17 shows the
streamlines and the vorticity field for the base flow. Two flow regions can be identified
in the figure. In the first region, the streamlines are closed. In the second region, the
flow has an open trajectory. The two flow regions are separated by a limiting streamline
referred to as the Kelvin oval.

Ie

(4.1)

4.2. Linear optimization

Unlike the single vortex system, a pair of 2D-counter-rotating vortices is linearly unsta-
ble (Brion et al. 2014). Long-term the most unstable mode will dominate the perturbation
evolution. However, before the exponential behavior sets in, transient (algebraic) growth
of perturbation energy may occur due to the non-normality of the linearized Navier-
Stokes operator. Therefore, it is possible that for some initial perturbations the energy
gain at a given horizon time is higher than the gain obtained using the most unstable
mode as the initial perturbation (see Appendix B). For the optimization process, as
the computations are carried out in the moving reference frame, homogeneous Dirichlet
boundary conditions are specified at the inlet and a stress-free condition is applied at
the outflow and side boundaries for the direct equations. For the adjoint equations,
a homogeneous Dirichlet boundary condition is applied on the outlet and stress-free
conditions on the inlet and side walls. Figure 18(a) shows the variation of the LO-G
with horizon time (T') on log-lin axes. Time is rendered non-dimensional using the time
taken by system of two line vortices of strength +1" to translate a distance equal to b
under self-induction (7, = 27b%/I"). Also indicated by a dotted line is the energy gain
corresponding to the most unstable mode. It can be observed that the difference between
the two gains increases with T up to T" = 4.0. For T' > 4.0, LO-G increases exponentially
with T" according to the growth rate of the most unstable mode; the exponential growth
appears as linear curve on log-lin axes. Therefore, the maximum duration for which
transient processes contribute to the linear optimal gain is 47.

Any perturbation to a vortex pair can be split into symmetric and anti-symmetric
components. The velocity field for the (anti-)symmetric component is (anti-)symmetric
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FIGURE 18. Re = 1000 vortex pair: (a) variation of the linear optimal gain with horizon time.
The gain obtained using the most unstable mode as the initial perturbation is indicated by a
dotted line. The bottom row shows the velocity component parallel to the center-line for the
LO-P corresponding to (b) T'= 0.5, (¢) T'= 1.0 and, (d) T" = 5.0. The solid circles (resp. hollow
squares) in (a) correspond to data points for which the LO-P is symmetric (resp. anti-symmetric).
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FIGURE 19. Re = 1000 vortex pair: Variation of the LO-G with horizon time rendered
non-dimensional by the rotation period of the vortex. Also shown is the LO-G curve for an
isolated vortex for Re = 5000.
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FIGURE 20. Perturbation vorticity field for (a) Re = 5000 isolated vortex and (b) Re = 1000
vortex pair. The left column shows the field corresponding to 7" ~ 2.5 LO-P and the right
column shows its evolved state at t = T™.

about the center-line. Within the linear framework, the two components evolve indepen-
dently from each other. Therefore the LO-P can be either symmetric or anti-symmetric.
A common approach adopted for optimization of counter-rotating vortex pair, is to use
half of the computational domain and prescribe symmetry or anti-symmetry boundary
condition on the center-line. In this approach, symmetric and anti-symmetric LO-P are
obtained separately. We have used a different approach where computations are carried
out for the full computational domain. This is because of the unavailability of anti-
symmetry boundary condition in Nek5000. LO-P obtained using the full domain approach
is the one that has higher energy gain between symmetric and antisymmetric LO-P. For
T < 0.6 and T > 4.0 LO-P is anti-symmetric, whereas for 0.6 < T < 4.0 the LO-P is
symmetric. Figure 18(b-d) gives the velocity component normal to the center-line for the
LO-P corresponding to three horizon times. With increasing 7', LO-P moves away from
the vortex center. For large T', LO-P is primarily located on the Kelvin oval and along
the center-line.

We now compare LO-G for an isolated vortex and vortex pair. To do so, we chart the
variation of the LO-G with 7™ on log-lin axes where T™ is the horizon time rendered
non-dimensional by the rotation time of a vortex (T* = T'7,/7 and 7 = 47%a?/I") in
figure 19. The LO-G curve for the isolated vortex presented earlier (see Section 3.2) is
included in figure 19. Since, for a vortex pair, GG increases exponentially with T for
large T (figure 18a), same variation is observed in G — T™* curve for large T*. In figure
19, the exponential behavior for vortex pair sets in for 7% 2 60. For T* < 60, the
variation of G with T* for a vortex pair is qualitatively similar to that of isolated vortex.
Furthermore, for a given 7™, the linear evolution of the LO-P for the two systems are also
similar. We consider linear flow evolution for 7% = 2.5 LO-P to demonstrate this. The
initial perturbation is anti-symmetric about the center-line. Figure 20 shows the shape
of LO-P and its evolved state at 7. The LO-P for both isolated and vortex-pair system
consist of vorticity filaments in a spiral arrangement around the vortex core. The evolved
perturbation state at T™* has a quadrupolar structure near the vortex center. Therefore
it appears that the mechanism for the largest gain in perturbation energy for a vortex
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FIGURE 21. Re = 1000 vortex pair: variation of the nonlinear optimal gain with (a) the initial
energy of the perturbation for different horizon times, 7' = 0.3 (o), T'= 0.5 (o), T'= 0.6 (4),
T=08(0),T=10(v), T=12 (M) and T = 2.0 (a), (b) the horizon time for E(0) = 0.05.

FIGURE 22. Re = 1000 vortex pair: perturbation vorticity field of the 7" = 0.6 nonlinear
optimal perturbation for (a) E(0) = 10~ and (b) E(0) = 0.02.

pair is the same as that of an isolated vortex. In other words, the interaction between
the two vortices of the vortex pair has no significant effect on the physical processes that

yield the largest energy gain. Same inference is made with flow evolution of symmetric
LO-P.

4.3. Nonlinear optimization

Figure 21 shows the variation of the NLO-G with initial energy of the perturbation
(E(0)) for various horizon times. NLO-G has been normalized using the LO-G. As for
the isolated vortex, there exists a threshold value of E(0) below which NLO-G is nearly
the same as the LO-G. Above this threshold, the optimal gain is different from the LO-
G. With increasing T', the threshold E(0) decreases. The peak difference between the
nonlinear and linear optimal gains increases with horizon time up to 7' = 0.6 (figure
21b). For T' = 0.6, the NLO-G is higher than the LO-G for the largest range of E(0).
For T > 1.0, the NLO-G is lower than the LO-G for all the values of E(0) that were
considered in this work.

Next we discuss the shape of the NLO-P for a vortex pair. Figure 22 shows the vorticity
field of the T' = 0.6 nonlinear optimal perturbation for £(0) = 10~* and E(0) = 2x10~2.
The threshold energy for 7' = 0.6 is E(0) = 6 x 10~%. Below the threshold energy, the
nonlinear and linear optimal perturbations have identical shape. Above the threshold
energy, the nonlinear optimal perturbation has an asymmetric structure: the perturbation
is stronger in the positive vortex than the negative vortex.
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FIGURE 23. Re = 1000 vortex pair: (a) time evolution of the energy gain for computations
initiated with the LO-P and the E(0) = 0.02 nonlinear optimal perturbation. (b) Perturbation
vorticity field at ¢ = 0.6 and t = 6.0 for the computation initiated with the LO-P. (c)
Perturbation vorticity field at ¢t = 0.6 and ¢ = 6.0 for the computation initiated with the
E(0) = 0.02 nonlinear optimal perturbation.

4.4. Long-term nonlinear evolution of the optimal perturbation

Figure 23 gives the time history of the energy gain for computations initiated with the
LO-P and the E(0) = 0.02 NLO-P for T" = 0.6. The initial energy of the LO-P is also
set to F(0) = 0.02. Initially, the perturbation energy increases because of the transient
processes. The peak gain reached during the transient phase for NLO-P is higher than
that reached by the LO-P. Long-term the LO-P results in higher energy gain than the
NLO-P. The perturbation vorticity field at two time instants during the flow evolution
are shown in figures 23(b,c). For the LO-P, the flow field at ¢ = T is nearly symmetric,
whereas for the nonlinear optimal the flow field is asymmetric. At large times (¢t = 6), the
perturbation has a dipolar structure near the vortex core. The vortex dipoles provoke a
displacement of the vortex cores in the left and downwards direction.

5. Conclusions

Results have been presented for the optimal perturbation of single and double vortex
systems. The optimal perturbation corresponds to the initial condition that results in
largest gain of perturbation energy for a given horizon time T'. A direct-adjoint approach
is employed to compute the optimal perturbations and corresponding gains. Both linear
and nonlinear optimization have been performed.

The single vortex system is modeled as isolated 2D Lamb-Oseen (LO) vortex. The
Reynolds number based on the vortex circulation is Re = 5000. Linear analysis showed
that the optimal perturbation for low horizon time T is of azimuthal wavenumber m > 2.
For large T the linear optimal perturbation (LO-P) is of m = 1. In general, LO-P
consists of vorticity filaments in a spiral arrangement. With increasing horizon time 7,
the vorticity filaments move away from the vortex center. For low values of the initial
perturbation energy (E(0)), linear and nonlinear optimal analysis yield the same result.
However, beyond a threshold value of E(0), the nonlinear optimal perturbation (NLO-
P) and the corresponding gain is different from that obtained via linear computation.
Fourier decomposition of the NLO-P beyond the threshold energy shows contributions
from multiple azimuthal wavenumbers. The interaction between different wavenumbers
results in higher optimal gain than that of the linear optimal for a range of E(0).

Long-term nonlinear evolution of linear and nonlinear optimal perturbations is studied.
It is observed that after the transient energy growth, the perturbation relaxes towards a
quasi-steady non-axisymmetric state. The shape of the perturbation in the quasi-steady
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Frozen base flow Diffusing base flow

Linear 109.4 109.4
Non-linear Ey = 1072 140.3 139.8

TABLE 2. Linear and nonlinear Fy = 1072 optimal gains G(T) obtained for a Lamb-Oseen
vortex at Re = 5000, with 7" = 4.8 using a frozen base flow and a diffusing base flow.

state depends on the structure of the optimal perturbation. For example, for the T' = 4.8
linear optimal perturbation the quasi-steady state consists of six vorticity patches, while
for the T' = 4.8 NLO-P, the quasi-steady state has a tripolar structure. In the tripolar
structure, a satellite vortex rotates around a vortex dipole. The appearance of the satellite
vortex is attributed to a nonlinear critical layer effect. The optimal perturbations, linear
and nonlinear, are a good initial condition to obtain non-axisymmetric vortices.

The two-vortex system has been modeled as a pair of equal strength counter-rotating
vortices. Such a flow configuration is relevant for the study of vortex dynamics in the
wake of an aircraft. A counter-rotating vortex pair is a linearly unstable flow system
(Brion et al. 2014). However it supports transient growth of perturbation energy that
may lead to significantly higher energy gain than that reached by the most unstable
mode. For small and large horizon times 7', the LO-P of vortex pair is anti-symmetric
about the center-line, whereas for moderate 7', the LO-P is symmetric. It is observed
that for 2D perturbations, the mechanism of transient growth in a vortex pair is similar
to that of an isolated vortex. Adding a counter-rotating vortex in the vicinity of a first
vortex does not have a significant effect on the shape of the optimal perturbation within
the first vortex. Similarly to the isolated vortex, a threshold value of F(0) exists beyond
which the nonlinear optimal gain is higher than the linear optimal gain. In this situation
the NLO-P is asymmetric about the center-line.
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Appendix A. Validation of the frozen base flow approach

In this appendix, the validity of frozen base flow approach for linear and nonlinear
optimization process is demonstrated. We select T' = 4.8 and compute the nonlinear and
linear optimal gain with frozen as well as diffusing base flow. Table 2 lists the values of
the optimal gain obtained via the two approaches. It can be observed that the difference
between the two approaches is less than 0.5%. The slightly lower value of optimal gain
obtained using diffusing base flow is attributed to reduction of vortex strength under the
action of viscosity.
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T Cmum(T)
0.1 0.7
0.25 1.9
0.4 3.5
4.0 39.2
6.0 41.6

TABLE 3. Value of Crum (defined by B 1) calculated for LO-P corresponding to various
horizon times.

Appendix B. Vortex pair: contribution of most unstable mode to
LO-P

A pair of counter-rotating planar vortices is a linearly unstable flow system (Brion et
al. 2014). The long time response of the linearized system will be governed by the most
unstable mode. However, owing to the non-normal nature of the linearized operator, the
most unstable mode alone cannot be representative of short time transient flow processes.
To confirm this, we calculate the following ratio for LO-P computed for various horizon
times:

(opt(T), uy )

(um> U.$)

In (B1), the numerator on the right hand side is the scalar product between the
velocity field corresponding to linear optimal perturbation (uept), and adjoint of the
most unstable mode of the vortex-pair system (u,,). The denominator on the right hand
side of (B 1) is the scalar product between the most unstable mode (u,,) and uy,. In the
calculation of the scalar product, only spatial integration is carried out (unlike the inner
product defined in (2.9) where the integration is carried out in both space and time), and
all the vectors are normalized with respect to their norm. The ratio C),,, is a measure
of the contribution of the most unstable mode (mum) to LO-P. This follows from the bi-
orthogonality relation between the eigenmodes of the direct and adjoint system. Table 3
shows the value of C,m calculated for LO-P corresponding to various horizon times. For
large T', Chpum is relatively high. This suggests large contribution of the most unstable
mode in long time LO-P. On the other hand, for low T the contribution of most unstable
mode to LO-P is low as is evidenced by relatively small value of Ci,um-

Conum(T) = (B1)
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