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Abstract

We consider an open system in contact with a reservoir, where particles as well as energies can be exchanged
between them, and present a description of the dynamics in terms of mixed (pseudo)spin and state vari-
ables. Specifically, a master equation is constructed out of the exchange rates for particles and for energies,
which allows us to probe the system in the grand canonical description. In particular, employing the state
resummation analysis, we obtain coupled time evolution equations for the probability distributions of the
system as well as the environment. This is exemplified by a standard growth model, where the steady-state
density function exhibits power-law behavior with the exponent depending on the microscopic parameters
of the rate equations.
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1. Introduction

Many systems in equilibrium or in non-equilibrium can be described by stochastic processes for which
the configuration probabilities satisfy master equations with appropriate reaction rates [1, 2]. For instance,
applied to chemical reaction kinetics in biological systems [3], this approach gives the concentrations of
reactants as solutions of the time-dependent (evolution) equations obtained from the master equation. From
the theoretical point of view, statistical mechanics, especially in the framework of the recently developed
stochastic thermodynamics [4, 5, 6], connects such stochastic nature of many particle systems to their
macroscopic non-equilibrium dynamics. Accordingly, the second law of thermodynamics as well as the
fluctuation theorems and entropy production rates have been addressed [7, 8, 9, 10].

Usually, the number of particles in the system is taken to be conserved (i.e., leading to the canonical
ensemble) but in reality, particles may leak out. Such a case of particle exchange with external sources
under open boundaries can also be considered [11, 12, 13], for which the description by means of a grand
canonical ensemble is more adequate [14]. In general, the choice of an ensemble does not make any difference
for a large system in equilibrium. Note, however, that there are some model systems exhibiting differences
between microcanonical and canonical ensembles [15, 16]. Also in the presence of particle exchange, the
dynamics of the number of particles may not be described by the canonical ensemble. Further, properties of
a small system, e.g., in confinement [17, 18] may depend on the ensemble used. In this study, we aim at the
extension of a master equation formalism including particle exchange, which is applicable to a broader range
of settings. Specifically, we propose a master equation formulation, which can incorporate the dynamics of
the reservoir.

In physics, various growth phenomena [19, 20, 21, 22] can be described in terms of non-conserved particle
systems, in which new elements are added through stochastic processes [23, 24, 25, 26]. In particular, in a
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non-equilibrium steady-state system a driving force produces growth or destruction of particles via chemical
reactions and boundary sources or sink [27, 28]. The distribution or concentration of particles is essential
for studying criticality in an evolving system [29, 30, 31], derived from a master equation. Integrating over
all possible configurations in general leads the distribution to satisfy functional equations [32]. While the
number of particles is not conserved, competition between growth and production of particles may give rise
to power-law distributions with exponents depending on the microscopic parameters of the transition rates.

In this work, we focus on a system in contact with a reservoir, described by an extended master equation
with additional variables. This may be relevant for Bose condensates where a fraction of the atoms from
a reservoir can condensate in the normal state [33], and therefore deriving a master equation in the grand
canonical ensemble is an appropriate approach to obtaining thermodynamic quantities such as the average
number of particles in the condensate. To describe such a grand canonical system in contact with a particle
reservoir as well as a heat reservoir, the number Ni of particles in given state i can be used as a dynamical
variable. In this way, macroscopic laws of non-equilibrium systems have been derived from stochastic models
within the framework of stochastic thermodynamics [9, 6, 10]. In microscopic pictures, e.g., for molecular
dynamics or Monte-Carlo simulations, on the other hand, it is necessary to assign the state to each and
every individual particle. Combining these two perspectives, we extend the master equation formulation to
a microscopic level in this study, by introducing a pseudo-spin state for the location of each particle. Such
an additional state variable depicts whether the particle is in the system or in the environment, consequently
determining the numbers of particles in the system and in the environment. This master equation describing
a grand canonical ensemble allows particle exchange as well as usual energy exchange. Summing over the
extended variables then leads to the master equation with energy exchange only, thus recovering the usual
description in the canonical ensemble. The particle exchange rates account for the growth or decline of
the system in the evolution equation for the distribution function, depending on the parameters chosen. In
other cases, there may exist a natural particle exchange rate depending also on the local energy exchange
between the system and the reservoir. In the equilibrium state, this defines the proper number of particles
at a given chemical potential.

This paper is organized as follows: Section 2 introduces additional occupation variables for the system
and its reservoir and establishes the general master equation in the grand canonical ensemble for an extended
version of the probability distribution function in Sect. 3. In Sect. 4, via partial resummation of the states
from the reservoir, projection onto the canonical ensemble is carried out; this leads to novel time-dependent
equations for the non-equilibrium dynamics of the probability distribution functions in Sect. 5. Section 6
presents examples of physical systems in the grand canonical ensemble. Specifically, we consider a growth
process with constant production rates, exhibiting a power-law size distribution of its elements, as well as
two Ising systems exchanging particles. Finally, a summary is given in Sect. 7.

2. Microstates and master equation

To write down a master equation, one should define the microscopic state variables in advance. As
we attempt to describe the dynamics of the reservoir as well, the degrees of freedom corresponding to the
particles in the reservoir need to be taken into account explicitly. Accordingly, we consider a system of
Ntot particles with N particles in system S and Nenv ≡ Ntot − N particles in reservoir Senv. Following
the standard formalism for the grand canonical ensemble [34, 35], we assume that the total number Ntot of
particles is a constant. Then the state of particle i is represented by xi (or more generally by a vector ~xi)
which can be a discrete or continuous variable (i = 1, 2, . . . , Ntot). Before we proceed, we note here that the
number N of particles is by no means a microscopic variable. It is a macroscopic variable (see, e.g., [34]),
which is subject to an average, just like the energy or entropy. Therefore, one should consider an alternative
variable to formulate a microscopic-level description of grand canonical systems. To this end, a pseudo-spin
variable for particle locations is introduced in this study.

Now we discuss how to represent the location of a particle, namely, whether a particle is located in the
system S or in the reservoir Senv. In principle, the total phase space of a particle can be separated into
two subspaces, one of which corresponds to the state space of the particle being in the system and the
other in the reservoir. The location of each particle is determined accordingly. Therefore, it is necessary

2



to introduce an interface separating the whole phase space. Then, for instance, one may consider a specific
system and develop a model for the interface capturing its permeability responsible for the particle exchange
dynamics.

Instead of that, in this study, we take rather a general approach to the case that particles have the
same state variables in the same phase space, regardless of their locations. We then simply introduce an
additional independent state variable, which represents the location of each particle. Such a type of state
variable was introduced to the implementation of a Monte Carlo simulation algorithm for grand canonical
systems [36, 37]. Here we extend this idea and include dynamics of the particles in the reservoir as part of
the model, in order to illuminate the contributions of the reservoir to the non-equilibrium dynamics of the
system.

Specifically, the Ising-type (pseudo-)spin variable si is assigned to particle i, taking the value +1 or
−1 according to whether the particle is in system S (si = 1) or in Senv (si = −1), respectively. Each
particle is thus described by state (xi, si), depending on whether it belongs to system S, in the same
manner as the lattice-gas model, as well as on the continuous or discrete energy state xi. In the case of
a chemical reaction system with several species [10], one may introduce, e.g., Potts spin variables in place
of the Ising-type spin variables. The microscopic state of the whole system (S ∪ Senv) is then specified
by (x1, x2, . . . , xNtot

, s1, . . . , sNtot
) ≡ {xi, si}tot. For convenience, we adopt the following notation for state

variables: {xi} and {xi}env representing the N variables in the system and the Nenv variables in the reservoir,
respectively, out of the total xNtot

variables {xi}tot ≡ (x1, x2, . . . , xNtot
) of the whole system.

Once the microscopic states of the whole system are specified, the dynamics of the system can then be
described by the master equation for the probability distribution function P ({xi, si}tot; t) at time t:

∂P ({xi, si}tot; t)

∂t
=

Ntot
∑

j=1

[ws(−sj → sj)P (Rj{xi, si}tot; t)− ws(sj → −sj)P ({xi, si}tot; t)]

+

Ntot
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi, si}tot; t)− wx(xj → x′

j)P ({xi, si}tot; t)], (1)

where ws and wx are the transition rates corresponding to particle location and state changes, respectively,
with the notation Rj{xi, si}tot ≡ (x1, . . . , xNtot

, s1, . . . ,−sj , . . . , sNtot
) and Qj{xi, si}tot ≡ (x1, . . . , x

′
j , . . . ,

xNtot
, s1, . . . , sNtot

). Henceforth, we omit the time-dependence in the probability distribution function P for
simplicity.

As apparent from its form, simultaneous transitions of two (or more) particles are not included in
Eq. (1). Since such a simultaneous transition probability during a short time interval δt is of the order (δt)2,
its contribution vanishes as we take the limit δt → 0 to obtain the continuous-time dynamics described by
Eq. (1) [2, 38, 39]. In the same manner, transitions between states (xi → x′

i) and those between locations
(si → −si) are described separately. We note that equilibrium Monte Carlo simulation algorithms for grand
canonical systems consist of two separate steps as well [40, 41]: the transition in its configurational energy
with a fixed number of particles and the insertion/removal of a particle. In short, as far as microstates of
the system are specified by {xi, si}tot, our master equation provides rather a general description at the level
of the corresponding stochastic process.

Henceforth we use the notation for discrete state variables; however, replacing the summation
∑

{xi}tot

by the integration
∫

dNtotx makes it straightforward to consider continuous state variables as well.
With the master equation proposed, one can probe how the average value of a quantity of interest changes
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in time. For instance, the number of particles in system S evolves according to

d〈N〉

dt
=

Ntot
∑

j=1

∑

{si}tot

∑

{xi}tot

δsj ,1
∂

∂t
P ({xi, si}tot)

=

Ntot
∑

j=1

∑

{si}tot

δsj ,1
∑

{xi}tot

Ntot
∑

k=1

[ws(−sk → sk)P (Rk{xi, si}tot)− ws(sk → −sk)P ({xi, si}tot)]

+

Ntot
∑

j=1

∑

{si}tot

δsj ,1
∑

{xi}tot

Ntot
∑

k=1

∑

x′

k

[wx(x
′
k → xk)P (Qk{xi, si}tot)− wx(xk → x′

k)P ({xi, si}tot)], (2)

where the master equation in Eq. (1) has been used. Here the second term on the right-hand side vanishes
after the double summation over energy states; only the first term describing spin processes gives non-
vanishing contributions. In consequence, Eq. (2) takes the simple form:

d〈N〉

dt
= −

Ntot
∑

j=1

〈(

δsj ,1 − δsj ,−1

)

ws(sj → −sj)
〉

, (3)

where the bracket 〈· · ·〉 stands for the average over all states.
Closing this section, we make a few remarks on the characteristics of Eq. (1) and its potential applications.

First, one may add an overall “super” heat bath, coupled to the whole system S∪Senv. In Sect. 3, for example,
we consider a canonical heat bath to confirm that the conventional grand canonical description is recovered
from our formalism. Such a heat bath with given temperature seems to be a reasonable option especially for
the non-equilibrium dynamics of biological systems. However, the additional reservoir may not necessarily
be assumed. As apparent from the example of the growth problem described in Sect. 6.1, it is the transition
rates ωs and ωx that are prescribed as input parameters of the model [see, e.g., Eq. (42)], independently of
the “super” heat bath.

We also note that in general there could be two different mechanisms responsible for the particle exchange.
To facilitate the discussion, we consider here a Hamiltonian system and write the total energy as the sum
of the energy of the system and that of the reservoir as well as the interaction energy: E({xi, si}tot) =
E({xi}) + E({xi}env) + Eint({xi}tot). Obviously, direct interactions between particles in S and in Senv

would lead to the subsequent particle exchange, mediated by the term Eint. As already discussed, however,
this term, corresponding to the interfacial contributions, is neglected in this study; otherwise the transition
rate ωs should be taken as a function of the state variables xi. We also note that the interfacial contributions
are usually neglected in the conventional formulation for equilibrium statistical mechanics of a bulk system.
Here the other mechanism mediates the particle exchange, via the energy difference in the system: δE ≡
E(x1, . . . , xN±1)−E({xi}), which gives rise to state-independent transition rates ωs(1 → −1) and ωs(−1 →
1). According to the Widom insertion formula [42], the energy difference δE quantifies the chemical potential
of the system.

Lastly, the assumption that the state variables of particles in S and Senv are the same may impose
restrictions on the applicability of our formalism. First of all, in the uncommon case that the system and
reservoir are spatially separated, our master equation does not apply because the state spaces corresponding
to the positions of particles should be different. In fact, the assumption corresponds to the absence of
interfacial contributions which may mediate a transition between the system and reservoir with different
state variables. In our formulation, all state variables but the location are kept fixed while a particle is
moving from the reservoir to the system or vice versa. Nevertheless, there are a few classes of systems for
which our formulation can be utilized. For instance, if the system and reservoir have the same geometry, one
can characterize both of them with the same state variables. The transition between the system and reservoir
can be prescribed in such a trivial way that the particle in S simply jumps to the same position in Senv

(and vice versa) keeping all the other state variables fixed. Potential applications may include the material
exchange between two capillaries, coupled thin layers of metallic materials with different electric/magnetic
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properties, and the spread of a (traffic) jam across road lanes. Further, our formulation is also suitable to a
mean-field level description where the position of each particle is irrelevant (see, e.g., Ref. [43]).

3. Connection to the equilibrium grand canonical description

In this section, we describe how our formulation is connected to the equilibrium grand canonical descrip-
tion. In the equilibrium description, the transition rates can be specified by the help of the detailed balance
conditions:

ws(sj → −sj)Peq({xi, si}tot) = ws(−sj → sj)Peq(Rj{xi, si}tot) (4)

and

wx(xj → x′
j)Peq({xi, si}tot) = wx(x

′
j → xj)Peq(Qj{xi, si}tot). (5)

If the system is in contact with a heat reservoir at temperature T , the equilibrium distribution is given by
Peq({xi, si}tot) ∝ exp [−βE({xi, si}tot)] with the inverse temperature β ≡ 1/kBT . Here rewriting the
probability density P ({xi, si}tot) in the grand canonical ensemble requires a two-step projection, consisting
of

P ({xi}tot, N) =
∑

{si}tot

δ

[

Ntot
∑

k=1

sk−(2N−Ntot)

]

P ({xi, si}tot) (6)

and

P ({xi}, N) =
∑

{xi}env

P ({xi}tot, N), (7)

as well as P (N) =
∑

{xi}
P ({xi}, N) =

∑

{xi}tot

P ({xi}tot, N). The derivation of the equation governing

the dynamics of P ({xi}, N) is one of the main issues to be addressed in this paper.
Before proceeding to such non-equilibrium dynamics in a more general setting, we first examine how the

equilibrium description of the whole system (S ∪ Senv) represents the grand canonical description of system
S. Supposing that particles are indistinguishable, we have

Peq({xi, si}tot) =
1

Ntot!

1

ZNtot

e−βE({xi,si}tot), (8)

with the partition function

ZNtot
≡

1

Ntot!

∑

{xi,si}tot

e−βE({xi,si}tot) =
1

Ntot!

Ntot
∑

N=0

WN

∑

{xi}tot

e−β[E({xi})+E({xi}env
)], (9)

where WN is the number of Ntot-particle states for the whole system corresponding to the N -particle states
for system S in the grand-canonical description and the interactions between the system and the reservoir
have been assumed weak enough for the energy to be separable:
E({xi, si}tot) = E({xi})+E({xi}env). As the particles are indistinguishable, we simply have WN =

(

Ntot

N

)

=
Ntot!(N !Nenv!)

−1. Then writing the partition function in the form

ZNtot
=

Ntot
∑

N=0

1

N !

∑

{xi}

e−βE({xi})ZNenv
, (10)

where ZNenv
≡ (Nenv!)

−1
∑

{xi}env

e−βE({xi}env
) is the partition function for reservoir Senv, and defining the

Helmholtz free energy ANtot
≡ −kBT lnZNtot

, one arrives at the standard grand-canonical description of
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system S, with the chemical potential µ given by the derivative of the Helmholtz free energy with respect
to the particle number. To be specific, in equilibrium Eqs. (6) and (7) lead to

Peq({xi}, N) =
1

N !

ZNenv

ZNtot

e−βE({xi}), (11)

where Eq. (8) has also been used. Further, for Ntot ≫ N , we can perform the Taylor expansion of the
Helmholtz free energy:

kBT ln(ZNenv
/ZNtot

) = ANtot
(Vtot, T )−ANtot−N (Vtot − V, T )

≃ N
∂ANtot

(Vtot, T )

∂Ntot
+ V

∂ANtot
(Vtot, T )

∂Vtot
≃ Nµ+ pV,

where V and Vtot are the volume of S and S ∪ Senv, respectively, µ is the chemical potential, and p the
pressure (see, e.g., Ref. [44]). We note that the condition Ntot ≫ N should be assumed in this procedure of
defining the chemical potential. Accordingly, the equilibrium probability indeed takes the grand-canonical
form:

Peq({xi}, N) =
1

N !

1

Q
e−β[E({xi})−µN ], (12)

where the relation pV = kBT lnQ with the grand partition function Q =
∑

N eβµNZN has been used, and

ZN =
1

N !

∑

{xi}

e−βE({xi}). (13)

Note also that Q may not be expressed as the summation over N as above, if the energy contributions of
particles in Senv depend on the particle index i. In such a case, Senv may not behave like a usual thermal
particle reservoir, and a more detailed description of the environment, besides the chemical potential, should
be provided. In a similar context, albeit in terms of coarse-graining rather than indistinguishability of
particles, it has already been reported that the entropy may not be an extensive variable of the system [45].

On the other hand, we can specify the transition rate ws from the equilibrium probability distribution.

For the purpose, we multiply Eq. (4) by δ
[

∑Ntot

k=1 sk−(2N−Ntot)
]

and take the summation over {si}tot. The

left-hand side then becomes W−1
N

[(

Ntot−1
N−1

)

ws(1→− 1)+
(

Ntot−1
N

)

ws(−1→1)
]

Peq({xi}tot, N), which reduces,
upon summation over {xi}tot, to [rws(1→− 1) + (1− r)ws(−1→1)]Peq(N) with r ≡ N/Ntot. Similarly, the
right-hand side of Eq. (4) takes the form (1− r)ws(−1→1)Peq(N−1) + rws(1→− 1)]Peq(N+1) for N ≫ 1.
To sum up, we have

[rws(1→− 1) + (1− r)ws(−1→1)]Peq(N) = (1− r)ws(−1→1)Peq(N−1) + rws(1→− 1)Peq(N+1)

or

rws(1 → −1) = (1− r)ws(−1 → 1)eβµ, (14)

where the probability for the particle number has been related to the chemical potential via P (N±1) =
P (N)e∓βµ (see, e.g., Ref. [42, 46]). More generally, Eq. (14) can be expressed in terms of the chemical
potential:

ws(sj → −sj)

ws(−sj → sj)
=

WN

WN−sj

esjβµ, (15)

for sj = ±1.
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4. Projection onto the canonical ensemble

In the standard description of the N -particle system S, one is concerned with the probability P ({xi})
for the system in state (x1, x2, . . . , xN ). It corresponds to the conditional probability P ({xi}|{si=ζi}tot) ≡
P ({xi}|{ζi}tot) in the grand canonical description, where ζj ≡ 1 and −1 for 1 ≤ j ≤ N and for N+1 ≤
j ≤ Ntot, respectively. In this section, we examine how the conventional (canonical) description is recovered
from the grand canonical description.

Summing over all possible states in system Senv yields

P ({xi}) =

∑

{xi}env

∑

{si}tot

∏Ntot

j=1 δsj ,ζjP ({xi, si}tot)
∑

{x′

i
}tot

∑

{si}tot

∏Ntot

j=1 δsj ,ζjP ({x′
i, si}tot)

. (16)

To obtain the master equation for P ({xi}), we introduce the projection operator Ps ≡
∏Ntot

j=1 δsj ,ζj and write
Eq. (16) in the form

∑

{xi}env

∑

{si}tot

PsP ({xi, si}tot) = P ({xi})
∑

{x′

i
}tot

∑

{si}tot

PsP ({x′
i, si}tot), (17)

which, upon differentiation with respect to time, gives

∑

{xi}env

∑

{si}tot

Ps

∂P ({xi, si}tot)

∂t
=

∑

{x′

i
}tot

∑

{si}tot

Ps

[

∂P ({x′
i, si}tot)

∂t
P ({xi}) + P ({x′

i, si}tot)
∂P ({xi})

∂t

]

.

(18)

Substitution of Eq. (1) leads the left-hand side of Eq. (18) to take the form

∑

{xi}env

∑

{si}tot

Ps

Ntot
∑

j=1

{

[ws(−sj → sj)P (Rj{xi, si}tot)− ws(sj → −sj)P ({xi, si}tot)] (19)

+
∑

x′

j

[wx(x
′
j → xj)P (Qj{xi, si}tot)− wx(xj → x′

j)P ({xi, si}tot)]
}

=

N
∑

j=1

ws(−1 → 1)P ({xi}, Rj{ζi}tot) +

Ntot
∑

j=N+1

ws(1 → −1)P ({xi}, Rj{ζi}tot)−

N
∑

j=1

ws(1 → −1)P ({xi}, {ζi}tot)

−

Ntot
∑

j=N+1

ws(−1 → 1)P ({xi}, {ζi}tot) +

N
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi}|{ζi}tot)− wx(xj → x′

j)P ({xi})],

(20)

where Eq. (17) has been used and it has also been recognized that
∑

{xi}env

∑

x′

j
[wx(x

′
j→xj)P (Qj{xi, si}tot)−

wx(xj→x′
j)P ({xi, si}tot)] = 0 for N + 1 ≤ j ≤ Ntot, due to the symmetry between x′

j and xj included in
the partial sum

∑

{xi}env

. It is of interest that the projection operator Ps would actually make the sum of

particle transfer rates a constant:

Ps

Ntot
∑

j=1

ws(sj → −sj) =

N
∑

j=1

ws(1→− 1) +

Ntot
∑

j=N+1

ws(−1→1). (21)
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Next the first term on the right-hand side of Eq. (18) reads

∑

{x′

i
}tot

∑

{si}tot

PsP ({xi})×

Ntot
∑

j=1

{

ws(−sj → sj)P (Rj{x
′
i, si}tot)− ws(sj → −sj)P ({x′

i, si}tot) (22)

+
∑

x′′

j

[wx(x
′′
j → x′

j)P (Qj{x
′
i, si}tot)− wx(x

′
j → x′′

j )P ({x′
i, si}tot)]

}

= P ({xi})





N
∑

j=1

ws(−1 → 1)P (Rj{ζi}tot) +

Ntot
∑

j=N+1

ws(1 → −1)P (Rj{ζi}tot)

−

N
∑

j=1

ws(1 → −1)P ({ζi}tot)−

Ntot
∑

j=N+1

ws(−1 → 1)P ({ζi}tot)



 ,

since the sum over all energy states vanishes.
We now combine Eqs. (19) and (22) to derive the projected master equation governing the dynamics of

S:

∂P ({xi})

∂t
=

1

P ({ζi}tot)





∑

{xi}env

∑

{si}tot

Ps

∂P ({xi, si}tot)

∂t
−

∑

{x′

i
}tot

∑

{si}tot

Ps

∂P ({x′
i, si}tot)

∂t
P ({xi})





=
N
∑

j=1

ws(−1 → 1)
P (Rj{ζi}tot)

P ({ζi}tot)
× [P ({xi} | Rj{ζi}tot)− P ({xi})]

+

Ntot
∑

j=N+1

ws(1 → −1)
P (Rj{ζi}tot)

P ({ζi}tot)
× [P ({xi} | Rj{ζi}tot)− P ({xi})]

+

N
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi}|{ζi}tot)− wx(xj → x′

j)P ({xi})]. (23)

Here the equilibrium with respect to particle exchanges, in which those terms associated with ws vanish, is
attained if the condition P ({xi}|Rj{ζi}tot) = P ({xi}) is fulfilled. In other words, if P ({xi}) is independent
of N , particle exchanges become irrelevant. Then the standard (canonical) master equation for a system of
N particles relaxing toward the equilibrium with respect to particle states is recovered in a straightforward
manner:

∂

∂t
P ({xi}) =

N
∑

j=1

∑

x′

j

[

wx(x
′
j → xj)P (Qj{xi})− wx(xj → x′

j)P ({xi})
]

. (24)

Otherwise, particle exchanges with Senv as well as particle states in S are yet to equilibrate. As given in
Eq. (23), the additional terms associated with ws, which correspond to the particle exchange, should be
included in the proper description of the nonequilibrium dynamics of the system.

5. Macroscopic dynamics of the system

5.1. Transformation from spin variables to the particle number

Usually, it is not possible to measure directly the dynamics of microscopic variables. In this section,
we describe the macroscopic dynamics with the number N of particles as an independent variable, in-
stead of the pseudo-spin variable {si}tot, via the transformation defined in Eq. (6), which is generally
applicable to any system exchanging particles. In particular, for indistinguishable particles, the definition
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can be cast into a simplified form. Namely, provided that P ({xi}tot, s1, . . . , sNtot
) = P (xπ(1), . . . , xπ(Ntot),

sπ(1), . . . , sπ(Ntot)) with π being the permutation operator, the probability in terms of N reads

P ({xi}tot, N) = WNP ({xi, si=ζi}tot), (25)

where we have WN =
(

Ntot

N

)

as noted already in Sect. 2.
In this case, the master equation can be obtained via differentiating explicitly both sides with time:

∂P ({xi}tot, N)

∂t
= NWNws(−1 → 1)

P ({xi}tot, N−1)

WN−1
−Nws(1 → −1)P ({xi}tot, N)

+ (Ntot −N)WNws(1 → −1)
P ({xi}tot, N+1)

WN+1
− (Ntot −N)ws(−1 → 1)P ({xi}tot, N)

+

Ntot
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi}tot, N)− wx(xj → x′

j)P ({xi}tot, N)]. (26)

To probe the time evolution of P ({xi}), we make use of the projection
∑

{xi}env

P ({xi}tot, N) = P (N)P ({xi}|N),

which leads directly to

P (N)
∂P ({xi}|N)

∂t
=

∑

{xi}env

[

∂P ({xi}tot, N)

∂t
−

∂P (N)

∂t
P ({xi}|N)

]

. (27)

At first, summing over {xi}tot, one can rewrite Eq. (26) in the form

∂P (N)

∂t
= NWNws(−1 → 1)

P (N−1)

WN−1
−N ws(1 → −1)P (N)

+ (Ntot −N)WNws(1 → −1)
P (N+1)

WN+1
− (Ntot −N)ws(−1 → 1)P (N)

= ω(N−1 → N)P (N−1)− ω(N → N − 1)P (N)

+ ω(N+1 → N)P (N+1)− ω(N → N + 1)P (N), (28)

where ω(N−1 → N) ≡ (Ntot−N+1)ws(−1→1), ω(N → N−1) ≡ Nws(1→ − 1), ω(N+1 → N) ≡ (N +
1)ws(1→ − 1) and ω(N → N+1) ≡ (Ntot−N)ws(−1→1). Note here that setting ∂P (N)/∂t = 0 for
P (N) = Peq(N) results in Eq. (14) as expected.

On the other hand, Eq. (26) allows to rewrite the first term on the left-hand side of Eq. (27):

∑

{xi}env

∂P ({xi}tot, N)

∂t
= ω(N−1 → N)P ({xi}|N−1)P (N−1)− ω(N → N−1)P ({xi}|N)P (N)

+ ω(N+1 → N)P ({xi}|N+1)P (N+1)− ω(N → N+1)P ({xi}|N)P (N)

+

Nenv
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi} | N)− wx(xj → x′

j)P ({xi} | N)]P (N). (29)

Inserting Eqs. (28) and (29) into Eq. (27), we obtain

∂P ({xi}|N)

∂t
=ω(N−1 → N)

P (N−1)

P (N)
× [P ({xi}|N−1)− P ({xi}|N)]

+ ω(N+1 → N)
P (N+1)

P (N)
× [P ({xi}|N+1)− P ({xi}|N)]

+

Nenv
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P (Qj{xi}|N)− wx(xj → x′

j)P ({xi}|N)]. (30)

9



As before, one can identify that P ({xi}|N) ≡ P ({xi}), regardless of N , in equilibrium with respect to
particle exchanges. In this case, Eq. (24) is recovered straightforwardly once again. At this stage, the
dynamical equation governing the probability density in the grand canonical ensemble, given by Eq. (7), is
simultaneously obtained from Eq. (29) as follows:

∂P ({xi}, N)

∂t
=ω(N−1 → N)P ({xi}, N−1)− ω(N → N−1)P ({xi}, N)

+ ω(N+1 → N)P ({xi}, N+1)− ω(N → N+1)P ({xi}, N)

+

N
∑

j=1

∑

x′

j

[wx(x
′
j → xj)P

(

Qj{xi}, N
)

− wx(xj → x′
j)P ({xi}, N)]. (31)

5.2. Distribution function

In this section we consider the distribution function F (x|N ; t) of variables {xi} at time t:

F (x|N ; t) ≡
∑

{xi}

N
∑

j=1

δ(x−xj)P ({xi}|N), (32)

where δ(x−xi) is to be understood as the Kronecker delta in the case of discrete variables. Then, as
before, taking the time derivative, substituting Eq. (1) for ∂P ({xi, si})/∂t and following similar proce-
dures, one obtains the evolution equation for the distribution function F (x; t) or the normalized distri-
bution function f(x|N ; t) ≡ N−1F (x|N ; t). Similarly, we also define the distribution function G(x|N ; t)

≡
∑

{xi}env

∑Ntot

j=N+1 δ(x − xj)P ({xi}env|N) and the normalized distribution function g(x|N ; t) ≡ (Ntot −

N)−1G(x|N ; t) for Senv.
When there are no correlations between the exchange and the state of a particle, in other words, f(x|N ; t)

is independent of N , the system is described by the (canonical) master equation in Eq. (24) and it is
straightforward to derive

∂f(x; t)

∂t
=

1

N

∑

{xi}

N
∑

j=1

δ(x−xj)×

N
∑

k=1

∑

x′

k

[wx(x
′
k → xk)P (Qk{xi}|N)− wx(xk → x′

k)P ({xi}|N)]

=
∑

x′

[wx(x
′ → x)f(x′, t)− wx(x → x′)f(x; t)] , (33)

where the density function, independent of N , is defined as follows:

f(x; t) ≡

Ntot
∑

N=1

f(x|N ; t)P (N). (34)

Here particle exchanges between S and Senv do not bring on any additional dynamics to the density function
of the system.

We next take into account the correlations between the exchange and the state of a particle. In such a
case additional effects arise due to particle exchanges as described in Eq. (23). To find the corresponding
terms, we first show that

∑

{xi}

N
∑

j=1

δ(x− xj)P ({xi}|N − 1) =
∑

{xi}

N−1
∑

j=1

δ(x− xj)P ({xi}|N − 1) +
∑

xN

δ(x− xN )P (xN |N − 1)

= (N − 1)f(x|N − 1; t) + g(x|N − 1; t) (35)
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and

∑

{xi}

N
∑

j=1

δ(x− xj)P ({xi}|N + 1) = Nf(x|N + 1; t), (36)

as we have assumed that the particles are indistinguishable. Making use of the above equations together
with Eq. (30), we thus obtain

N
∂f(x|N ; t)

∂t
=

∑

{xi}

N
∑

j=1

δ(x−xj)
∂P ({xi}|N)

∂t

= w(N−1 → N)
P (N−1)

P (N)
× [(N−1)f(x|N−1; t) + g(x|N−1; t)−Nf(x|N ; t)]

+ w(N+1 → N)
P (N+1)

P (N)
× [Nf(x|N+1; t)−Nf(x|N ; t)]

+N
∑

x′

[wx(x
′ → x)f(x′|N ; t)− wx(x → x′)f(x|N ; t)] . (37)

Now we are ready to address the time evolution of f(x; t), which reads

∂f(x; t)

∂t
=

Ntot
∑

N=1

f(x|N ; t)
∂P (N)

∂t
+

Ntot
∑

N=1

∂f(x|N ; t)

∂t
P (N). (38)

As the first and the second terms on the right-hand side are given by Eqs. (28) and (37), respectively, we
finally obtain:

∂f(x; t)

∂t
=

Ntot
∑

N=1

Ntot −N

N
w(−1 → 1)× [g(x|N ; t)− f(x|N ; t)]P (N)

+
∑

x′

[wx(x
′ → x)f (x′; t)− wx(x → x′)f (x; t)] . (39)

Similarly, we obtain the equation governing the dynamics of g(x; t) as well:

∂g(x; t)

∂t
=

Ntot
∑

N=1

N

Ntot −N
w(1 → −1)× [f(x|N ; t)− g(x|N ; t)]P (N)

+
∑

x′

[wx(x
′ → x)g (x′; t)− wx(x → x′)g (x; t)] . (40)

It is remarkable that the dynamics of the system S and the reservoir Senv are coupled together and
governed by the particle exchanges between S and Senv as well as the state changes inside S and Senv. Here
we make two additional remarks. First, if Ntot ≫ N , as expected from statistical mechanics of systems
in contact with a thermal reservoir, the density function f(x; t) of S is dominated by g(x; t) of Senv while
g(x; t) is rather independent from f(x; t). Second, if the transition rate is proportional to N/(Ntot − N),
for instance w(−1 → 1) ≡ wsN/(Ntot −N) [see also Eq. (42) in the next section], Eq. (38) takes the simple
form

∂f(x; t)

∂t
= −ws [f(x; t)− g(x; t)] +

∑

x′

[wx(x
′ → x)f (x′; t)− wx(x → x′)f (x; t)] . (41)
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6. Physical systems in the grand canonical ensemble: Examples

6.1. Systems with constant production rates

As an example, we consider a simple growth process, where each particle in the system tends to produce a
new one and to decay with given rates. As for production each of the N particles in system S produces a new
one by choosing one among the Ntot−N particles in reservoir Senv to be transferred to system S. The former
brings on factor N in the corresponding transition (growth) rate while the latter leads to the probability,
associated with the selection, proportional to (Ntot−N)−1. On the other hand, decay is described by the
process that a particle among the N particles in system S leaves the system and enters reservoir Senv. As
a result, the transition rate is given by

ws(sj → −sj) =
kN

Ntot −N
δsj ,−1 + λδsj ,1, (42)

with appropriate growth and decay rate constants k and λ, which reduces Eq. (21) to

Ps

Ntot
∑

j=1

ws(sj → −sj) = (k + λ)N, (43)

for the sum of particle transfer rates and Eq. (3) to the balance equation

d〈N〉

dt
= (k − λ)〈N〉, (44)

for N 6= Ntot. In case that decay is dominant over growth (k < λ), the particle number N decreases to
zero. In the opposite case of k > λ, N increases to Ntot: When all the Ntot particles are transferred to S
(i.e., N = Ntot), the first term on the right-hand side of Eq. (42) is absent, reducing the balance equation
to dN/dt = −λN . Accordingly, N cannot exceed Ntot as expected.

It is of interest to examine the chemical potential in the growth process. Equation (15) can be rewritten
in the form

ws(sj → −sj)

ws(−sj → sj)
≈ exp

[

sj ln
Ntot −N

N
+ sjβµ

]

, (45)

for large N while Eq. (42) reads

ws(sj → −sj)

ws(−sj → sj)
=

λδsj ,1 + kN(Ntot −N)−1δsj ,−1

λδsj ,−1 + kN(Ntot −N)−1δsj ,1

= exp

{

sj ln

[

λ(Ntot −N)

kN

]}

. (46)

Comparing the above two equations, we can identify the chemical potential:

µ = kBT ln

(

λ

k

)

, (47)

which depends only on the growth parameters λ and k. It is now apparent that the chemical potential
vanishes in the case of a symmetric process (k = λ), which results in dN/dt = 0. When k > λ, the chemical
potential µ is negative, leading to N ≈ Ntot, as the free-energy could be further reduced by adding additional
particles. In contrast, for k < λ, we have N ≈ 0 in equilibrium. These observations indeed coincide with
the consequences of Eq. (3).

We now consider growth of the size measured by the variable xi (which may represent, for example, local
heights), with the rate wx(xi→x′

i) = rδ[x′
i−xi−∆(xi)], where ∆(x) = bx+ c is a linear function of x. As a

simple example, we consider the reservoir Senv to be sufficiently large, so that its distribution function does
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not change [∂g(x; t)/∂t = 0], with ωx(xi→x′
i|si= − 1) = 0 and Ntot ≫ N assumed. In this case Eq. (41)

gives a proper description of the dynamics of the system with ws = k.
With the growth rate wx(x→x′) = rδ[x′−x−∆(x)], Eq. (41) in the steady state reads

kf(x) = kg(x) + r
∑

x′

δ[x−x′−∆(x′)]f(x′)− r
∑

x′

δ[x′−x−∆(x)]f(x)

= kg(x) +
r

1 + b

∑

x′

δ

(

x−c

1+b
− x′

)

f(x′; t)− rf(x)

= kg(x) +
r

1 + b
f

(

x−c

1+b

)

− rf(x). (48)

If Senv contains only those particles smaller than x0, namely, g(x>x0) = 0, we obtain

(k + r)f(x>x0) =
r

1 + b
f

(

x−c

1+b
>

x0−c

1+b

)

, (49)

which yields the steady-state functional equation
(

1 +
k

r

)

f(x) =
1

1 + b
f

(

x−c

1+b

)

, (50)

in the range of x ≫ x0. To solve the functional equation in Eq. (50), we first translate the variable and the
function according to x ≡ y + d and f(x) ≡ f̃(y), with d ≡ −c/b. This leads to the reduced form

(

1 +
k

r

)

f̃(y) =
1

1 + b
f̃

(

y

1+b

)

, (51)

the solution of which is given by f̃(y) = y−α [47] with exponent α = 1 + ln(1+k/r)/ ln(1+b), up to a
constant factor determined by the normalization of f . Therefore, for b 6= 0, f(x) has the form of the
power-law distribution

f(x) =
α− 1

a

(

1 +
x

a

)−α

, (52)

with a = c/b. The distribution is normalizable as long as k > 0 (corresponding to the case that there are
particles transferring from Senv to S). When b = 0, on the other hand, a general solution of Eq. (50) is
given by the exponential distribution

f(x) =
1

ξ
exp(−x/ξ), (53)

with the characteristic size ξ = c[ln(r+k) − ln r]−1. Therefore in this case, where each element ceases to
grow in proportion to the current size and increases its size rather slowly by adding the constant amount c,
the probability of finding a large size is exponentially small. Note that the characteristic size becomes large
only when the particle transfer from Senv to S is slight (k ≪ r).

6.2. Two Ising systems exchanging particles

The Ising model is one of the simplest models for many-particle systems. We consider two Ising systems
S1 and S2, which exchange particles with each other. Each particle in the model is represented by their spin
state σ = ±1 and pseudo-spin variable s = ±1; the latter represents whether the particle is in system S1 or
in system S2. This model provides an additional example of the system in the grand canonical description.
Since it was studied in our previous work [48], we here introduce only the formulation briefly, just for
completeness. The energy E of the whole system is defined by

E =−
1

2

∑

i,j

J1σiσj

(1 + si)(1 + sj)

4
−

1

2

∑

i,j

J2σiσj

(1− si)(1− sj)

4
. (54)
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Then Eq. (1) leads to the master equation for the model in the form

∂P ({σi, si})

∂t
=

Ntot
∑

j=1

[ws(−sj → sj)P (Rj{xi, si})− ws(sj → −sj)P ({xi, si})]

+

Ntot
∑

j=1

[wσ(−σj → σj)P (Qj{σi, si})− wσ(σj → −σj)P ({σi, si})]. (55)

From the relation Peq({σi, si}) ∝ e−βH and the detailed balance condition

ws(sj → −sj)

ws(−sj → sj)
=

exp[−βE(Rj{σi, si})]

exp[−βE({σi, si})]
, (56)

we obtain the transition rate of the form

ws(sj → −sj) =
1

2τs

[

1 + sjσj tanh

(

∆h

2

)]

. (57)

Here τs is the relaxation time and ∆h ≡ h1 − h2 is the local field difference, with

h1 ≡ −βm1J1 = −
βJ1
2Ntot

Ntot
∑

j=1

(1 + sj)σj ,

h2 ≡ −βm2J2 = −
βJ2
2Ntot

Ntot
∑

j=1

(1− sj)σj . (58)

Similarly, we have

wσ(σj → −σj) =
1

2τσ

[

1 + σj tanh

(

1 + sj
2

h1 +
1− sj

2
h2

)]

. (59)

Accordingly, in the mean-field approximation, the master equation for the distribution function reads

∂P (σ, s)

∂t
= −

1

2τs

[

1 + σs tanh

(

∆h

2

)]

P (σ, s) +
1

2τs

[

1− σs tanh

(

∆h

2

)]

P (σ,−s) (60)

−
1

2τσ

[

1 + σ tanh

(

1 + s

2
h1 +

1− s

2
h2

)]

P (σ, s) +
1

2τσ

[

1− σ tanh

(

1 + s

2
h1 +

1− s

2
h2

)]

P (−σ, s).

Solving this master equation, one may obtain equilibrium and non-equilibrium behaviors of this coupled
systems, the detailed analysis of which can be found in Ref. [48].

7. Conclusion

We have provided a grand canonical description of equilibrium and non-equilibrium systems in terms
of a master equation, introducing the environment system as a reservoir of particles (constituents) as well
as energy. Using extended variables (occupation numbers or pseudo-spins), which introduces additional
transition rates associated with particle exchange, creation or destruction, we have obtained a generalized
master equation governing the particle transfer as well as the energy transfer. The conversion from the
grand canonical description to the canonical one has been examined by partial resummation of states, which
is equivalent to the Legendre transformation between the grand potential and the free energy. In this way,
we have successfully extended the master equation formalism to the system in which the number of particles
is not conserved. In particular, correlations between the exchange and the state of a particle lead to coupled
equations governing the dynamics of the density functions of the system and of the reservoir (environment).
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The coupling terms explicitly describe the particle exchanges between the system and the environment. This
description is useful for system growth where particles are added as well as new sites are created, leading to
critical phenomena. In most existing studies, the environment is usually assumed to be infinitely large and
its dynamics left rather unspecified. However, the environment of a complex system is expected to perform
a significant role as resources or buffers for the system. In the grand canonical formalism, dynamics of the
environment or coupling between the system and the environment can be handled in detail and therefore the
formalism may provide a concrete base for modeling of more realistic complex systems, elucidating the role
of the environment. For instance, one might examine the effects of the resource depletion, considering the
case N ≈ Ntot. In the same manner, the entropy production in the environment can be tracked explicitly.
This may pave the way towards an extended understanding of the relaxation dynamics of systems in contact
with finite-size reservoirs. Such applications to various relevant systems and subsequent calculations of the
entropy production rates are left for future study.
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