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Stéphanie Schiavinato, Andreia Moreira, Myriam Croze, Solène
Delon, Cesar Fortes-Lima, Morgane Gibert, Louis Bujan, Eric
Huyghe, Gil Bellis, Rosario Calderon, Candela Lucia Hernández,
Efren Avendaño-Tamayo, Gabriel Bedoya, Antonio Salas, Stéphane
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Predicting haplogroups using a versatile machine learning program 

(PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex 

(CombYplex): unlocking the full potential of the human STR mutation rate 

spectrum to estimate forensic parameters. 
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HIGHLIGHTS 

 32 Y-STR well-balanced mutation rate (CombYplex) and machine-learning program 

(PredYMaLe) 

 Y-STR-based haplogroup prediction 

 Best predictions using SVM and Random Forest classifiers 

 Assignation accuracy scores (or prediction scores) using SVM: 97% 

 Heterogeneous haplogroup predictions among classes 

 Potential effects of small sample sizes and gene conversion 

 

ABSTRACT 

We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) 

together with a machine learning (ML) program PredYMaLe to assess the impact of 

STR mutability on haplogourp prediction, while respecting forensic community 

criteria (high DC/HD). We designed CombYplex around two sub-panels M1 and M2 

characterized by average and high-mutation STR panels. Using these two sub-panels, 

we tested how our program PredYmale reacts to mutability when considering basal 

branches and, moving down, terminal branches. We tested first the discrimination 

capacity of CombYplex on 996 human samples using various forensic and statistical 

parameters and showed that its resolution is sufficient to separate haplogroup 

classes. In parallel, PredYMaLe was designed and used to test whether a ML 

approach can predict haplogroup classes fromY-STR profiles. Applied to our kit, 

SVM and Random Forest classifiers perform very well (average 97%), better than 

Neural Network (average 91%) and Bayesian methods (<90%). We observe 
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heterogeneity in haplogroup assignation accuracy among classes, with most 

haplogroups having high prediction scores (99-100%) and two (E1b1b and G) having 

lower scores (67%). The small sample sizes of these classes explain the high tendency 

to misclassify the Y-profiles of these haplogroups; results were measurably improved 

as soon as more training data were added. We provide evidence that our ML 

approach is a robust method to accurately predict haplogroups when it is combined 

with a sufficient number of markers, well-balanced mutation rate Y-STR panels, and 

large ML training sets. Further research on confounding factors (such as gene 

conversion) and ideal STR panels in regard to the branches analysed can be 

developed to help classifiers further optimize prediction scores. 

 

Keywords: Y-STR, machine learning, assignation accuracy and haplogroup 

prediction (hg prediction), incremental mutation rates 

 

Running title: Y-chromosome study: combined use of a 32 Y-STRs multiplex and 

machine learning methods for haplogroup prediction  
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INTRODUCTION 

 

The Y-chromosome has been extensively used to identify male individuals in 

forensic communities (Kayser, 2017) and to reconstruct the family and evolutionary 

history of paternal lineages in geneticists (Jobling and Tyler-Smith, 2003) and 

genealogists communities (Calafell and Larmuseau, 2017). Questions related to the 

latter research topic are diverse and to address them on the Y-chromosome which is 

characterized by a low genetic diversity in human species, it can be advantageous to 

capture not only long-term but also short-term genomic information. It would help to 

optimally study not only the biogeographic informativeness of Y-haplotypes (Pardo-

Seco et al., 2019) but also Y-specific migration paths and social structure, surname 

diffusion, paternal history of royal family members, and paternal lineage diffusion 

(Gill et al., 1994; Austerlitz and Heyer, 1998; King et al., 2014, 2007; Bowden et al., 

2008; Chaix et al., 2008; Heyer et al., 2009, 2015; King and Jobling, 2009a, 2009b; 

Verdu et al., 2010; Martinez-Cadenas et al., 2016; Calafell and Larmuseau, 2017). But 

whatever the objectives and the technics used, the key problem remains the same: 

finding a good equilibrium between the resolution needs (markers and mutation 

rates) and the costs involved. Retrieving long-term genomic information has 

classically been completed using Y-SNaPshot analyses (for a review on Y-SNP typing 

see Sobrino, Brión and Carracedo, 2005), and very recently by using massively 

parallel sequencing (Ralf et al., 2019). Retrieving short-term genomic information has 

mainly consisted in Y-STR profiling in accessing the maximum of STRs variants and 
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polymorphism either by (i) designing Y-STR multiplexes including highly mutable 

markers to better discriminate closely related individuals (Purps et al., 2014; 

Gopinath et al., 2016) or (ii) by sequencing and extracting length-based Y-STR 

polymorphism STR loci from Next Generation Sequencing technologies as 

implemented in STRait Razor (Warshauer et al., 2013) to get rid of the excess of 

variants. To access short and long-term information while diminishing costs, some 

studies have chosen to generate high resolution Y-STR data and to use previously 

developed tools to predict haplogroup classes (Young et al., 2011; Mirabal et al., 2010, 

Šehović et al., 2017, Jannuzzi et al., 2020). Among these methods, Neural Network-

based models (Felix Immanuel, 2013; http://www.y-str.org/) and Bayesian-allele 

frequency approaches (Athey 2006) were the first to have been developed, although 

ML approaches have been also tested (Schlecht et al., 2008) (see Supplementary data 

1 for a review). However, the large bias in haplogroup prediction error (Jannuzzi et 

al., 2020) has urged the development of ready-to-use predictive tools, while 

considering more carefully the impact of STR mutation rates. The human Y-STR 

mutation rate spectrum is wide with a 1000 to 10000-fold of magnitude. Although 

this represents a powerful source of variation for designing tools in forensic genetics 

(from molecular to computational-based types),  it is currently poorly explored. 

 

SUPPLEMENTARY DATA 1 
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In this paper, we assessed whether a well-balanced STR multiplex, associated with 

machine learning (ML) approaches can efficiently predict haplogroups, while still providing 

the high Discrimination Capacity (DC) index required in forensic genetics. We designed a 32 

Y-STR-typing kit "CombYplex" around two panels of STRs (M1 and M2) mutating at various 

rates (selected from 3.85 x 10
-04 to 1.45 x10

-02 
mutation/locus/generation) to test the impact 

STR mutability on Hg prediction. Then, we designed "PredYMaLe" (Predicting Y-lineages 

using ML models), a program that includes various ML approaches to predict Y-haplogroup 

classes from a set of Y-STR markers. 

 First, for the CombYplex design, we assembled and typed a panel of 996 male individuals 

from three continents (Africa, Europe, and South America) available in our collections; we 

tested the discrimination power of CombYplex by computing both classic forensic and 

statistics parameters, e.g. Haplotype Diversity (HD), Discrimination Capacity (DC), Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Second, we tested 

whether the ML approaches implemented in the PredYMaLe program could efficiently predict 

the haplogroup lineages. We used a sub-panel of 503 chromosomes on four panels of STRs 

(the full 32-STR CombYPlex, the Y-filer, and the CombYplex_M1 and M2 only) for which 

haplogroup data were available. We evaluated the impact of STR-assembly on assignment 

accuracy, by considering first seven main Hg classes (considered as basal Y-tree branches) 

and then 12 detailed Hg classes (including E-subdivided terminal-like branches) to test the 

impact of Hg subdivision. Although not all haplogroup lineages could be tested in this 

article, the wide range of coalescence ages associated with the Hgs tested here (from 

5 KYA for  R1b1a1a2a1a2a1b1a1-M167 to 45 KYA for Hgs I-170 or J-M304 (Kivisild et 

al. 2017) should give a good preview of the prediction scores for comparable clades 

existing in the Y-tree and of the associated divergence between the relative 
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haplotypes. Our results showed that: (i) the full and well-balanced STR profiles (CombYplex 

or Y-filer) give the best prediction scores using the SVM and Random Forest classifiers, 

whereas Neural Network or Bayesian approaches, the most currently used methods for Hg 

prediction, fall short; (ii) PredYMaLe and CombYplex can predict haplogroup classes with an 

average assignment accuracy of 97% using Support Vector Machines (SVM) and Random 

forest classifiers, but classifiers are sensitive to STR panel composition, STR number, and 

training dataset size. These results can be used in the future to design well-balanced STR 

panels with a high number of markers, featuring high discrimination capacity and accurate 

predictions of haplogroup lineages with appropriate ML methods. 
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MATERIALS AND METHODS 

 

1. Database of Y-STR characteristics 

 For 220 Y-STRs, we collected information on Y-STR molecular characteristics, mutation 

rates, and polymorphisms for humans. This database is available in Supplementary data 2. 

 

SUPPLEMENTARY DATA 2 

 

2. Selecting Y-STRs and constructing multiplexes: CombYplex M1 and M2 

We selected a set of 32 Y-STRs from our database to construct two complementary 

multiplexes: one with average-mutating markers (M1) and one with high-mutating markers 

(M2). These markers were chosen to be polymorphic and to have the simplest molecular 

structure as possible (see Table 1). M1 includes the following 18 Y-STRs: DYS485, DYS588, 

DYS502, DYS461, DYS638, DYS643, DYS587, DYS575, DYS578, DYS632, DYS508, 

DYS640, DYS511, DYS577, DYS556, DYS517, DYS565 and DYS538. Their mutation rates 

range from 3.85 x 10-04 to 3.21 x 10-03 mutation/locus/generation. Their molecular structures, 

primers and conditions are detailed in Table 1 and an example of a M1_CombYplex profile is 

proposed in Figure 1a. 

 

TABLE 1, FIGURE 1a 

 

M2 includes a sex-testing assay (derived from Cadamuro et al., 2015) and the 

following 14 Y-STRs: Y-GATA-A10, DYS570, DYS549, DYS460, DYS442, DYS510, 

DYS541, DYS576, DYS513, DYS458, DYS481, DYS612, DYS444, and DYS533. These 

markers were chosen to be highly polymorphic and to have the simplest molecular structure 
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as possible; however, when STR with pure molecular structures could not be selected, we 

compromised between a simple structure and high STR mutation rate (e.g. DYS612 and 

DYS533). Their mutation rates range from 3.32 x 10-03 to 1.45 x 10-02 

mutation/locus/generation. Their molecular structures, primers and conditions are detailed in 

Table 1 and an example of a M2_CombYplex profile is proposed in Figure 1b. 

 

TABLE 1, FIGURE 1b 

 

The multiplexes were designed using the shortest amplicons as possible, with a 

maximum size of 356 bp for DYS533 (M2). They were designed to be used independently or 

combined, according to the degree of resolution required. The cost of a full CombYplex 

reaction (32 Y-linked STRs + three sex-typing markers) is only 4.3 € (in France and based on 

public prices for all the reagents), and one of the assets of this multiplex in regard to its 

resolution. This tool was developed on an ABI Prism 3730 DNA Analyzer 48-capillary array 

system (Life Technologies), due to contextual and logistic reasons, but its design strategy can 

be transposed to Next Generation Sequencing. 

 

3. Population samples 

Samples, available from collaborations and internal collections, were obtained from 

healthy human volunteers with consent forms. They were extracted from various substrates 

including saliva and whole blood. A total of 996 samples were used in this study (plus one 

male control, one female control and 1 AZFc deleted Y-chromosome male to control for 

deletion) and genotyped with the CombYplex kit. This dataset includes six native West 

African populations: three populations from Benin: 59 Bariba (Parakou region), 47 Yoruba 

(Ketou region), and 68 Fon (Cotonou and Ouidah regions), two populations from Ivory Coast: 
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47 Ahizi (Nigui-Saff region) and 37 Yacouba (Danané region), and one population from Mali: 

13 Bwa (Segou region), three native South African populations (97 Xhosa, 90 Zulu, and 33 

Tswana), three admixed African-descendant populations (52 French Guyana and Suriname 

Noir Marron, 56 Ketou-Yoruba, 35 Brazil - Rio de Janeiro, 20 Colombia), one native 

American population (6 Palikour), and 11 European populations (30 Spain Barcelona, 19 

Spain Galicia, 24 Spain Granada, 25 Spain Huelva, 46 France Loire-Atlantique, 50 France 

Vendée, 21 France Sarthe, 30 France Maine and Loire, 81 France Ariège-Pyrénées, and 57 

France Haute-Garonne). 

 

4. Analysis of grouped samples 

DNA samples were grouped based on two criteria: geographic ("GEO" sample) and 

phylogenetic ("HAPLO" sample). 

 In the "GEO sample" the geographic location of individuals is based on two generations 

of residence. All the 996 male individuals are included in this sample, to evaluate forensic 

parameters and control the discrimination power of the sample. 

 The “HAPLO sample”, a haplogroup-based sample, is a subset of the GEO sample, used 

to evaluate haplogroup predictions with ML methods. It includes 503 individuals for whom Y-

SNP haplogroup and Y-filer profiles were also available. Since many studies have already 

tested the added value of PPY23 and Y-filer plus, we did not type these these additional 

products due to the costs involved. We used Y-filer, a mutationally relatively balanced Y-STR 

kit for which we already had data in our database. We removed DYS385a/b and analysed only 

15-STRs from the Y-filer panel since we have found evidence of conversion and outlier 

alleles in previous work (Balaresque et al., 2014). Eight main Hgs were first considered to 

calculate forensics parameters (E1a, E1E1a, E1b1b, F, G, I, J, R1b1a1a2). However, 

haplogroup classes represented by a very low number of individuals were not included in the 
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subsequent ML analyses (7 individuals in Hg F-M213*/F-M89*, and 2 individuals in Hg 

E1b1b1b1a-M81 included in E1b1b for 12-classes analyses): 7-Main and 12 detailed classes 

were considered in ML-analyses. Hg G and E1b1b had the lowest sample sizes, with 9 and 

12 individuals respectively; we kept these Hgs in the 7-main classes to test the potential 

impact of a low number of individuals. The results for these two Hgs will have to be 

considered carefully due to the effect of small training sets reported in the ML literature. 

 First, the HAPLO sample was used to test the efficiency of CombYplex using classic 

forensics parameters (Haplotype diversity, Gene Diversity, Discrimination Capacity and 

Match Probability) and to test whether CombYplex could discriminate haplogroup classes 

using discriminant analyses (PCA). Second, it was used to test whether haplogroups could be 

predicted from the full 32 Y-STR, from the M1 and M2 only (lower number of markers and 

contrasted mutation rate), or from the Y-filer Y-STR profiles using an ML program. The 

HAPLO sub-sample includes six European populations (n=201; 26 Spain Barcelona, 14 Spain 

Galicia, 19 Spain Granada, 22 Spain Huelva, 64 France Pyrenees, 56 France Haute-Garonne), 

five native African populations (n=191; 52 Benin Parakou Bariba, 60 Benin Cotonou Fon, 36 

Ivory-Coast Ahizi, 30 Ivory-Cost Yacouba, 13 Mali Bwa), and five admixed African-

descendant populations (n=111; 8 French Guyana Aluku, 50 Ketou-Yoruba, 27 Noir-Marron, 

12 Brazil-Rio de Janeiro, and 14 Colombia). 

 

5. DNA extraction 

The DNA extraction method was chosen according to the sample substrate. DNA was 

extracted from: (i) whole blood, using the QiaAmp DNA Blood mini-kit (Qiagen), (ii) serum, 

using the i-genomic DNA Blood mini-kit (Euromedex), and (iii) saliva, using the OG-300 

Oragene DNA Self-Collection Kit (DNA Genotek) following the respective manufacturer’s 
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instructions. The quantity and quality of DNA extracted was estimated using a NanoDrop 

Spectrophotometer 2000C (LabTech). 

 

6. PCR amplification conditions: CombYplex M1 and M2 

CombYplex M1 and M2 were amplified in a reaction volume of 12.5 µl with 6.25 µl 

of QIAGEN Multiplex PCR Plus Kit (Qiagen), 1.25 µl Q-solution (Qiagen), 4 µl of the 

CombYplex M1 or M2 primer mix (see Tables 1a and 1b for concentrations) and 5 ng of DNA 

template (limit of detection tested: 2-2.5 ng). Thermal cycling was conducted on a GeneAmp 

PCR System 2700 (Applied Biosystems) using the following conditions: 95°C for 5 min; 30 

cycles: 95°C for 30 sec, 62°C for 90 sec, 72°C for 30 sec; 68°C for 30 min, 10°C hold. To 

ensure that the resultant PCR amplicons were A-tailed (thereby avoiding the split peak 

phenomenon when visualized), a 2 µl reaction mix incorporating 0.125 U Taq polymerase 

(Fisher BioReagents) and a 1X PCR buffer system was added to 5 µl of PCR products prior to 

incubation for a further 45 min at 72°C. 

 

7. Detection and analysis of PCR products 

Diluted A-tailed PCR products were mixed to 8.8 µl Hi-DiTM formamide (Applied 

Biosystems) and 0.2 µl GS600LIZ Size Standard (Applied Biosystems). After incubation at 

95°C for 5 min, the samples were loaded onto an ABI Prism 3730 and a 3500 DNA Analyzer 

48-capillary array system (Applied Biosystems). The G5 matrix filter DS-33 was used to 

detect the five dyes 6-FAMTM (blue), VICTM (green), NEDTM (yellow), PETTM (red) and 

LIZTM (orange). The samples were injected for 15 sec at 1,600 V. Separations were performed 

at 15,000 V for 30 min with a run temperature of 63°C using the POPTM-7 Polymer for 3730 

(Applied Biosystems), run through a 50 cm capillary array (Applied Biosystems). Following 

data collection, samples were analysed with GeneMapper v4.0 (Applied Biosystems). 
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8. SNP genotyping methods 

The populations Fon, Bariba, Yoruba, Ahizi and Yacouba were genotyped using 96 Y-SNPs on 

a BioMark™ HD system (Fluidigm, USA) as described in (Fortes-Lima et al., 2015). Y-

SNP haplogroups were assigned according to ISOGG Y-DNA Haplogroup Tree 2015 

(http://www.isogg.org/tree/) updated in April 2015. All other populations were genotyped 

using classic SNaPshot technics using a hierarchical approach. In total, 14 haplogroup 

lineages were detected and grouped in 7-Main and 12-Detailed classes for ML-analyses (Supp 

Data 6); they were used in combination with 4 sets Y-STR profiles (full CombYplex, Y-filer, 

CombYplex_M1 and CombYplex_M2) in PredYmale program to calculate how accurately a 

haplogroup lineage could be assigned. 

 

9. Sequencing 

Each locus was sequenced for the Male 1 control sample. Primers for sequencing are 

reported in Supplementary data 3. Each PCR product was sequenced in two reactions using 

forward and reverse PCR primers. The sequence reaction was performed with the BigDye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Sequence products were run on 

an ABI 3730 DNA Analyzer (Applied Biosystems). Sequences were analysed using Sequence 

Scanner Software v1.0 (Applied Biosystems) and BioEdit Sequence Alignment Editor version 

7.2.5. 

 

SUPPLEMENTARY DATA 3 

 

10. Forensic parameters and discrimination indexes: population grouping and 

comparative analyses 
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 For GEO and HAPLO grouped samples, the following diversity parameters were 

calculated: haplotype diversity (HD) was calculated using , where n = 

the number of haplotypes in the dataset and xi = the frequency of the ith haplotype (Nei et al., 

1981), gene diversity (GD) was calculated analogously to HD where n and xi denote the total 

number of samples and the relative frequency of the ith allele (Nei, 1973), discrimination 

capacity (DC) was defined as the ratio between the number of different haplotypes and the 

total number of haplotypes:  where Ndiff was the number of different haplotypes, 

N was the sample size, and match probability (MP) was calculated as the sum of squared 

haplotype frequencies  where pi was the frequency of the ith haplotype. 

Haplotype number (n) and haplotype frequencies were estimated using Arlequin v 3.5.2.2 

(Excoffier and Lischer, 2010). We represented the distribution of Y-STR haplotypes according 

to their haplogroup class by PCA: analyses were carried out using R software v 2.15.3 (R 

CoreTeam, 2017) and ade4 packages (Dray and Dufour, 2007). In addition, we performed 

Linear Discriminant Analyse (LDA) using the MASS package (Venables and Ripley, 2002) to 

estimate the proportion of haplogroups that were classed to a satisfactory precision. For LDA 

analysis, about 75% of individuals per haplogroup class taken randomly are used to train the 

model, while the remaining 25% is used to validate the trained classifier by testing its 

efficiency. This procedure was run 100 times. Given that the ML training and the split 

between training and validation datasets are heuristic, all the scores are averaged over 100 

trials. We tested haplogroup prediction on the most represented haplogroup classes in our 

sample: E1a, E1a1a, E1a1b, G, I, J, and R1a1a1 (and on the collapsed root E group, including 

E1a, E1a1a and E1a1b). 

 

11. Predicting haplogroups using machine-learning approaches: PredYMaLe 
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 Haplogroups are usually defined by a given set of SNPs, but here, we explore whether 

they could also be recovered from the phylogenetic information contained in the Y-STR 

haplotype profiles alone. Different methods have been developed to predict haplogroups 

based on STRs, such as the Bayesian-based haplogroup predictor 

(http://www.hprg.com/hapest5/index.html) or Nevgen (https://www.nevgen.org), but neither 

of these is based on generalized ML models such at those proposed here. Here, similarly to 

the work of Schlecht et al., (2008), albeit with a higher resolution, we developed a generalist 

ML-based approach to the problem of haplogroup assignation from Y-STR profiles, then 

applied it to the particular case of the CombYplex profiles. We also assessed whether it 

performs better than the more common linear discriminant analysis. 

 We ran a pre-pilot study to test the efficiency of seven ML models (detailed in Bishop, 

2006) so the fittest ML models could be implemented in PredYmale (details of pre-pilot study 

in Supplementary Data 4). Three models were eventually selected: Support Vector Machines 

(SVM), Random Forest Classifiers and k-Nearest Neighbors (kNN). These models follow the 

same concept: they build a classifier (a function) that maps a point in the problem space (here, 

a sample defined by its repeat counts for a given set of STRs) to a given class (here, a 

haplogroup). It should be noted that naive Bayes classifiers, a common method to address the 

problem of linking a set of STR markers to a haplogroup, and tested in a pilot run, have been 

constantly outperformed by SVMs and Random Forest Classifiers. 

SUPPLEMENTARY DATA 4 

 

 Support Vector Machines (SVM) are classifiers that linearly partition the problem space 

by determining the frontier of the hyperplane maximizing its distance to the training samples 

(Cortes and Vapnik, 1995). Although SVMs were originally designed to discriminate between 

only two classes, they can be used in multi-class classification problematics (Chih-Wei Hsu 
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and Chih-Jen Lin, 2002), the problem being then divided in as many one-versus-all sub-

problems as there are classes, which are solved independently. These partial classifiers are 

then merged to define the final classifier. Concretely, each sample in the training set is 

represented in the problem space by a point whose coordinates are the number of repetitions 

for each STR. Samples with close characteristics will cluster together. The SVM will 

determine a set of hyperplanes maximizing the margin between the classes. New 

points (i.e. unlabelled samples) are classified in either class depending on where they 

find themselves with regards to these hyperplanes. 

 Random Forest Classifier decision trees (Breiman, 1993) are linear classifiers that 

partition the problem space by defining a tree of binary conditions based on the features of a 

sample. Each new sample is then run through this tree of questions until it reaches a leaf, 

containing its predicted haplotype. Since a decision tree tends to over-fit the dataset it has 

been trained with, it might encounter difficulties generalizing when confronted with new 

samples. The random forest model (Ho, 1995) was developed to alleviate this limitation. At 

first, it trains multiple independent trees on several distinct subsets of the training data. Then, 

their outputs are averaged to define the final classifier. To improve the efficiency of random 

forests, we trained them with the AdaBoost boosting algorithm (Freund and Schapire, 1997). 

AdaBoost successively trains several copies of a base classifier (here a random forest) on the 

same dataset, and the training is adapted over generations to force the classifier to focus on 

hard to classify samples. Finally, all the generated classifiers over the generations are 

weighted according to their performances and combined to produce the final classifier. In our 

case, the learning process generates a decision tree defining questions on the number of 

repetitions of each STR. Depending on the answer, the sample to be classified will fall in one 

of the haplogroups. A notable advantage of this method is that its architecture (a sequence of 

questions) is easy for a human to understand, making the classification process transparent. 
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 The k-nearest neighbour algorithm (also known as k-NN) is a non-parametric 

classification method. To produce a prediction for an unlabelled point, the algorithm combines 

the labels of the k closest points from the learning dataset according to a voting system. There 

are many ways to adapt the algorithm to the problem at hand, for instance by choosing the 

distance used, by applying a preliminary dimension reduction, by weighting the votes and so 

on. An advantage of the k-NN is that its error rate in a multi-class classification problem is 

proved to be bounded as an expression of the Bayes error rate, giving it a solid theoretical 

ground. 

 

Implementing PredYMaLe 

 We developed PredYMaLe (Predicting Y-lineages using machine learning models), a 

graphical interface to our automatic labelling solution, available at 

https://gitlab.com/delehef/predymale/. It is implemented in Python using the scikit-learn 

machine learning library and the Qt5 GUI library, and is available for GNU/Linux, macOS 

and Windows. PredYMaLe can be used on any Y-STR dataset where every sample is 

represented as a set of numerical repeat values (e.g. CombYplex, PPY23, etc.). Empty or null 

values are deliberately not supported in PredYMaLe: to avoid biases stemming from an 

imperfect dataset, we advise users to remove or insightfully fix erroneous profiles. The 

predicted labels can be exported to a CSV file for easy interoperability with other programs. 

 

Procedure 

We tested whether haplogroups could be predicted using the three selected ML models 

implemented in the PredYMaLe program, and the three different Y-STR profiles (CombYplex 

full, CombYplex_M2, and Y-filer). Each model was trained and evaluated using the HAPLO 

dataset (503 individuals, 7 Main and 12 Detailed Hg classes considered, 19 populations) and 
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according to the same protocol. The dataset was normalized in the [0; 1] range to avoid 

numerical discrepancies influencing the final result. Similar to the LDA analyses, 75% of the 

samples were used to train the model, while the remaining 25% were used to evaluate the 

trained classifier by testing its efficiency. Given that ML training, as well as the split between 

training and validation datasets are heuristic, all the scores are averaged over 100 trials. This 

also alleviates score outliers and offers a better interpretation of the performances of multiple 

models on real datasets. For that purpose, we performed two runs of analyses: for the first run, 

individuals were considered to belong to one of seven major haplogroup classes (E1a-M33, 

E1b1a-M2*, E1b1b-M215, G-M201, I-M170, J-M304, and R1a1a1-M269 called MainHg), 

and for the second run, to one of twelve more detailed haplogroup classes (E1a-M33, E1b1a1-

M2*, E1b1a7-M191, E1b1a7a-U174, E1b1a8a-U209, E1b1a8a1-U290, E1b1b1-M35*, G-

M201, I-M170, J-M304, R1b1a1a2-M269, and R1b1a1a2a1a2a1b1a1-M167 called 

DetailedHg). The poorly represented haplogroup classes (e.g. F-189, and E1b1b1b1a-M81) 

could not be included in the procedure. 

 

Validation: The evaluation process gives a score to a model, reflecting the efficiency of its 

predictions. We used the standard success score defined as s = nC /nT, where nC is the 

number of successfully labelled validation samples and nT the total count of validation 

samples. One success rating noted ‘score’ considers prediction as correct only if the predicted 

label of the validation sample matches the expected one.  
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RESULTS 

 

1. CombYplex: from polymorphisms to discrimination power 

 

The CombYplex polymorphism was assessed based on 996 samples. All CombYplex 

profiles are available in Supplementary data 5. As expected, we observed an increasing level 

of polymorphisms from the less discriminative set of M1 markers (mean allele number: 6; 

Table 1) to the most discriminative M2 set (mean allele number: 9; Table 1). Forensic 

parameters were calculated for the GEO and HAPLO sample groups defined above (Table 2). 

GD and HD were greater than 0.999 for all GEO and HAPLO sub-groups using full 

CombYplex profiles. As expected, when M1 and M2 were analysed independently, M2 was 

always more discriminant than M1, with MP values oscillating from 0.001 (all populations) to 

0.003 (Europe) using the GEO sample, and from 0.007 (Hg R) to 0.14 (Hg F) using the 

HAPLO sample. Indexes of discrimination capacity and match probability were observed in 

line with these values. 

SUPPLEMENTARY DATA 5 

TABLE 1, TABLE 2 

 

Inter-haplogroup comparative analyses: PCA and LDA 

 We tested whether CombYplex and Y-filer profiles could easily discriminate between 

haplogroup classes using the HAPLO sample (Supplementary 6). For this aim, we performed 

a PCA with seven haplogroup classes (MainHg) and a LDA (Table 3). PCA results based on 

CombYplex showed that haplogroup classes are well-discriminated along the two first axes 

(Figure 2a, especially R1b1a1 and E1a1a), but also along the second and third axes (Figure 

2b, G, and I). LDA scores reach 94% in average, and oscillate from excellent (100 for E1a-
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M33, E1b1a-M2, G-201, J-M304, R1b1a1a2-M269), to very good (95 for I-M170), correct 

for one of the less represented classes (62% for E1b1b-M35*). 

 

SUPPLEMENTARY DATA 6 

FIGURE 2a,b 

In comparison, discrimination of haplogroup classes appears less efficient using Y-filer 

profiles, both on F1xF2 and the F2xF3 axes (Figure 3a, b) but also using LDA (81% on 

average). 

FIGURE 3a,b 

 

These results provide evidence of the high resolving power of the 32 Y-STR CombYplex 

profile, not only for investigating paternal lineages but also for discriminating among 

haplogroups. Based on these encouraging results, we assessed whether haplogroup classes can 

be predicted using an ML approach based on CombYplex, Y-filer, CombYplex_M1 Y-STR 

and CombYplex_M2 Y-STR profiles. 

 

2. Haplogroup prediction (HP) using Y-STR profiles and PredYMaLe program 

 

 We tested whether haplogroup classes can be predicted using an ML-based approach on 

CombYplex, Y-filer, CombYplex_M1 Y-STR and CombYplex_M2 Y-STR profiles. Results 

from the first run (seven major haplogroup classes (E1a-M33, E1b1a-M2*, E1b1b-M215, G-

M201, I-M170, J-M304, and R1a1a1-M269 called MainHg) were very informative on the 

three methods and the four datasets tested. Although HP scores using SVM and Random 

Forest are similar, SVM performed slightly better than Random Forest (Table 3); on average, 
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these two methods gave much better results than kNN: Random Forest/SVM HP average 3 

methods 90-97%; kNN HP average 3 methods: 52-73%; Table 3). 

 

TABLE 3 

 

Compared to classic LDA (73 - 94%), SVM and Random Forest models perform 

systematically better, whatever the STR dataset, and especially using CombYplex. This results 

illustrates the combined impact of the marker number and the mutation rate range chosen on 

assignation accuracy. However, LDA performs better than kNN also for the three methods 

tested here. From the four STR datasets tested, we noted a noticeable performance of 

CombYplex (SVM: 97%) compared with M1 (SVM: 96%) and Y-filer (SVM: 95%), the M2 

subset being systematically declassed (SVM: 92%, RF: 90%, kNN: 52%); when all E classes 

are collapsed, HP scores are very high (SVM et RF: 96-100%). A strong heterogeneity in HP 

scores is observed between haplogroup classes, even when the best method (SVM) is 

considered with the best STR combination (CombYplex): the G (67%) and E1b1b (67%) 

branches give the lowest HP scores compare to all others branches (100%). These two 

haplogroup classes represent the least represented ones (respectively N=9, 12), thus, 

suggesting the strong influence of sample size on the efficiency of HP. By analyzing 

confusion matrices for the best combination SVM/CombYplex and the worst combination 

kNN/M2, we observe clear differences in misclassification profiles (Figure 4): for the best 

combination, only two misclassifications are observed: E1b1a for E1b1b, and R for G. In 

contrast, 5 miss-targeted classifications are observed for kNN/M2, illustrating the incapability 

of this model/STR panel to associate an STR profile to a defined haplogroup class (especially 

for G: 0% HP). 
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FIGURE 4 

 

No classifier exhibits a particularly skewed behavior regarding either of the metrics; all of 

them, on both datasets, follow the same pattern: F1-score and markedness stay close, while 

the informedness tends to score lower, denoting conservative classifiers. Therefore, defining 

the best classifier as the one with the best overall scores is straightforward. For a more 

detailed insight, Supplementary Data 7 (Supp tables 7a-7c) contain the per-class, per-dataset 

and per-classifier precisions, recalls, F1-scores, informednesses and markednesses. 

 

Supplementary Data 7 (Supp table 7a à 7c) 

 

 The second run aimed to test the impact of sub-branch on haplogroup assignation 

accuracy score. We used a maximum resolution by considering the 12 most represented 

haplogroup branches (E1a-M33, E1b1a1-M2*, E1b1a7-M191, E1b1a7a-U174, E1b1a8a*-

U209, E1b1a8a1-U290, E1b1b1-M35*, G-M201, E1b1b1b1a, I J, R1b1a1a2-M269, 

R1b1a1a2a1a2a1b1a1-M167) and the two best models selected from the first run: SVM and 

Random Forest (Table 4). Per-class, per-dataset and per-classifier precisions, recalls, F1-

scores, informednesses and markednesses are given in Supplementary Data 7 (Supp tables 7d-

7f). 

 

TABLE 4 

Supplementary Data 7 (Supp tables 7d à 7f) 

 

The average HP scores are high for both models and the four datasets, but they are lower than 

those from the first run, probably due to the smaller sample sizes and the close genetic affinity 
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of the different classes. Better prediction performances are observed for Random Forest, all 

STR datasets considered, with the highest average HP score obtained for CombYplex. The 

lowest scores are observed for M2 with an average HP score of 71% for Random Forest; this 

Y-STR dataset also has higher heterogeneity in HP scores between classes (from 27% for 

E1b1a1 to 100% E1a-M33; Table 4). By analyzing the confusion matrices for the best 

combination (Random Forest/CombYplex) and the worse (SVM/M2), we noticed that 

misclassification profiles are different (Figure 5). For Random Forest/CombYplex, 

misclassifications occur mainly across phylogenetically neighbors E1b1a and R1b1a1a2 

branches. In contrast, for SVM/M2, misclassifications are associated with very diverse 

branches on the whole Y-chromosome phylogenetic tree (e.g. hg G), reflecting the impact 

either of highly mutating markers, the lower number of STR loci in this panel or the lack of 

association between STR profile and Y-haplogroup due to the impact of additional molecular 

mechanism as gene conversion. 

 

FIGURE 5 

 

 

DISCUSSION 

 In this paper, we assess whether a panel of well-balanced Y-STR mutations, built around 

two sub-STR panels (from 3.85 x 10-04 to 1.45 x10-02 mutation/locus/generation), associated 

with machine learning (ML) approaches can efficiently predict haplogroups. We developed 

the 32 Y-STR panel "CombYplex" and genotyped it on 996 male individuals from three 

continents (West and South Africa, West Europe, South America) to explore and confirm the 

discrimination capacity of the full, M1 and M2 panels, using classing forensic and statistics 

parameters. Then, we developed the ML approach PredYMaLe (Predicting Y-lineages using 
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ML models) and tested it on an assembled panel of 503 individuals, for which Hg and Y-filer 

information were also available in our database allowing a direct comparison of Y-STR 

assemblies. 

 

 STR panels and ML classifers: an ideal association? 

 We have demonstrated noticeable differences in prediction scores between STR panels 

and ML methods. Among all ML classifiers, SVM and Random Forests give better and more 

homogeneous prediction scores (90-97%) compared with kNN (52-97%) for this dataset, 

independently of the panels analysed. 

 When performing basal branch analyses (7-classes), mutationally well-balanced panels 

(CombYplex, Y-filer) and mutationally average panels (M1) performed better than the M2 

panel, which was systematically outperformed. This result suggests that mutationally well-

balanced or average STR panels should be preferred when analysing basal branches. The 

lower performance of M2 could imply either that assignation accuracy is affected by 

homoplasia using M2, due to the high mutation rate of the panel, or by the low number of 

STRs analysed (14 STRs). The latter argument is less probable since the 15 selected STRs of 

the Y-filer profiles gave better results. 

 When moving toward terminal branches (12-classes), mutationally well-balanced STR 

panels (CombYplex, Y-filer) performed better than M1 and M2 panels. M1 composed solely 

of average mutating STRs (18 STRs) were less performant due to its lack of discrimination 

power, giving equivalent results to M2 with four additional STR loci. Assignation accuracies 

for M1 and M2 decrease for the less represented classes, reflecting the need for the largest 

training set possible, and also a well-balanced STR panel with a sufficient number of STR 

loci when exploring closely related phylogenetic branches. 
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 Variation in performance accuracies across Hg classes 

We showed that some haplogroups (e.g. E1a, I, J) have very distinct and 

unambiguous Y-STR profiles leading to 100% assignation accuracy scores, while 

others haplogroups (e.g. G, E1b1b) are more prone to misclassification within the 

STR panels and datasets analysed here. The impact of complexifying molecular 

mechanisms, such as gene conversion (Rozen et al., 2003), which potentially affect these 

profiles cannot be excluded (Balaresque et al., 2014) and could be further investigated. 

However the consistently worst scores of misclassification for the G and E1b1b 

haplogroups is likely to be the simple consequence of their small sample size. If the 

low accuracy of less well represented classes is problematic, empirical trends suggest 

that results are instantly improved when more training data are available. By 

running PredYmale with 10 additional G profiles collected recently, we observed that 

the prediction accuracy score reaches 83%, illustrating that prediction accuracy is 

significant improved when more training data are available. We encourage users to 

train and use PredYmale on their own datasets, to learn about the prediction scores 

expected for the part of the tree explored. Given that PredYmale computations are 

rather fast, users should not hesitate to use larger datasets, or to adapt their STR 

panels to attain the best prediction scores. 

 

Using PredYMaLe with other STR panels 

 Our results demonstrate the need to find a good equilibrium between the number of 

markers, their mutability and the sample size of the training set according to the tree structure 
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considered.  When analysing basal branches, well-balanced STR panels or average mutating 

STR panels can be selected preferably with SVM or Random Forest classifiers to ensure 

higher prediction scores. The M1 panel, an average mutating STR panel, gives very good 

results. Since these STRs have generally simpler motifs or low repeat counts, they can be 

extracted from whole-genome sequencing data using pre-existing tools (STRait Razor, 

Warshauer et al., 2013) and used to predict basal branches. 

 When moving toward terminal branches, mutationally well-balanced STR panels 

associated with SVM or Random Forest classifiers can be selected. In both cases, a minimal 

number of markers (> 20-30 STRs) is required to guarantee the best prediction scores 

possible. In forensic genetics, two commercial kits are commonly used, PPY23 (Purps et al., 

2014) and Y filer ® Plus (Gopinath et al., 2016). We have briefly tested whether our program 

could be confidently used with these panels by running PredYmale on published data. Based 

on our previous conclusions, we have only included the most represented classes (N>20). We 

analysed 451 individuals from five basal branches (E1b1b, G, I, J, R) for PPY23 (Pamjav et 

al., 2017, Heraclides et al., 2017), and 282 individuals from four basal branches (G, I, J, R1) 

for Y filer ® Plus (Lacerenza et al., 2017). The average prediction scores obtained with 

SVM and Random Forest reached 98.5% for PPY23 and 97% for Y-filer plus (equiv. sample 

for CombYplex reaches 98.5%). These results confirm the high prediction scores obtained 

with the SVM and Random Forest classifiers, for the three mutationally well balanced panels, 

for basal branches and sufficently large training sets. 

 

Predicting Hg using ML approaches: SVM, random forest and nearest neighbours 

classifiers 

 By developing an ML program (PredYMaLe), designed to predict haplogroups using any 

Y-STR profiles, we show that ML models, especially SVM and Random Forest, give much 
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better HP results compared to alternative ML methods, including Bayesian, or Neural 

Network-based models. Interestingly these two classifiers have been reported to perform quite 

well for many other biological data (Fernández-Delgado et al., 2014). An interesting 

observation resides in the large variance of scores depending on the algorithm used: naive 

Bayes methods giving the worst results, while SVMs reach excellent precisions. The low 

accuracy of naive Bayes-based methods, in this case, can be explained by the fact that 

these algorithms consider features independently, and so cannot capture the 

information contained in their covariance patterns. SVMs, on the other hand, by 

maximizing the margin between the training classes, typically give excellent results 

as long as first, the problem is linearly well separable, which seems to be the case in 

this study, and second, that there is no consequent overlap between the different 

classes. Were it not the case, one can apply the “kernel trick” (Aizerman et al., 1964), 

which uses Mercer’s theorem to computationally cheaply immerse the dataset in a 

much larger space, where classes that are not linearly separable in the original space 

might become linearly separable. 

 In conclusion, support vector machines, random forests and nearest-neighbors classifiers 

are interesting alternatives to Bayesian or Neural networks classifiers to predict Y-

haplogroups. Future users should note that although we developed and mostly used 

PredYmale with datasets featuring Y-STR profiles sampled with the CombYplex kit, 

the underlying ML concepts in our tool can be used on any STR panel (using STR 

repetition counts). We encourage users to train and use PredYmale on their own 

datasets regardless of the typing method. 
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FIGURES Legends 

 

Figure 1a. CombYplex M1 profile of male control; two artifacts can occasionally be 

observed on the M1 electrophergram: in the polymorphism zone of the DYS588 locus 

(blue dye) and in the polymorphism zone of the DY508 locus (yellow dye), as shown 

here. 

Figure 1b. CombYplex M2 profile 

Figure 2a. PCA for CombYplex F1xF2 

Figure 2b. PCA for CombYplex F2xF3 

Figure 3a. PCA for Y-filer F1xF2 

Figure 3b. PCA for Y-filer F2xF3 

Figure 4. Confusion matrices for the first run on MainHg (7 haplogroup classes) for 

CombYplex/SVM and M2/k-Nearest Neighbors. 

Figure 5. Confusion matrices for the second run on DetailedHg (12 haplogroup 

classes) for CombYplex/Random Forest/ and M2/SVM. 
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Fig 1a, b 
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Tables 

Table 1. CombYplex M1 (a) et M2 (b): markers, molecular structures, primers and amplification conditions. *Dyes: Blue: FAM; 

Green: VIC; Yellow: NED; Red: PET. Nomenclature is given according to the following papers: (Kayser et al., 2004; Gusmão et al., 

2006; Parson et al., 2016 and the STRidER Reference database: https://strider.online/). 
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Table 2. Forensic parameter estimates for GEO and HAPLO samples for the full CombYplex, M1 and M2 and Y-filer. Parameters 

calculated: Genetic Diversity or Haplotype Diversity (GD/HD), Discrimination Capacity (DC), and Match Probability (MP). 

Table 2. 

 
Population 
(Geo sample) 

 CombYplex total CombYplex M1 CombYplex M2     

 N n GD/HD DC MP n GD/HD DC MP n GD/HD DC MP     

All pop 996 916 0,9998 0,9196 0,0012 607 0,9964 0,6094 0,0053 889 0,9998 0,8926 0,0013     

South America : 
native (Palikur) 6 6 0,9999 1 0,1666 4 0,9630 0,6667 0,2778 6 0,9999 1 0,1667 

    

South America : 
admixed 107 96 0,9986 0,8972 0,0118 84 0,9921 0,7850 0,0197 92 0,9982 0,8598 0,0127 

    

Africa native 444 391 0,9995 0,8806 0,0029 242 0,9917 0,5450 0,0124 374 0,9994 0,8423 0,0033     
Africa admixed 56 52 0,9982 0,9286 0,0210 45 0,9953 0,8036 0,0268 52 0,9981 0,9286 0,0210     

Europe 383 368 0,9998 0,9608 0,0030 253 0,9916 0,6606 0,0123 364 0,9998 0,9504 0,0029     

Haplogroup 
(Haplo sample) 

 CombYplex total CombYplex M1 CombYplex M2 Y-filer 

Total Hg 503 n GD/HD DC MP n GD/HD DC MP n GD/HD DC MP n GD/HD DC MP 

E1a 15 14 0,9956 0,9333 0,0756 12 0,9891 0,8000 0,0933 13 0,9919 0,8667 0,0844 10 0,8889 0,6667 0,2000 

E1b1a 275 244 0,9992 0,8873 0,0049 192 0,9958 0,6982 0,0093 238 0,9989 0,8655 0,0053 228 0,9988 0,8291 0,0056 

E1b1b 12 12 1 1 0,0833 11 0,9931 0,9166 0,0972 11 0,9931 0,9167 0,0972 10 0,9877 0,8333 0,1111 
F 7 7 1 1 0,1429 7 1 1 0,1429 7 1,0000 1 0,1428 7 1 1 0,1429 
G 9 9 1 1 0,0987 8 0,9843 0,8750 0,1562 9 1,0000 1 0,0987 9 1 1 0,1250 
I 14 13 0,9949 0,9286 0,0816 13 0,9949 0,9285 0,0816 13 0,9949 0,9286 0,0816 14 1 1 0,0714 
J 12 12 1 1 0,0833 11 0,9931 0,9167 0,0972 12 1,0000 1 0,0833 11 0,9931 0,9167 0,0972 
R1b1a1a2 159 152 0,9997 0,9560 0,0070 97 0,9810 0,6100 0,0291 151 0,9996 0,9497 0,0070 142 0,9989 0,8931 0,0081 
N = Number of samples; n = number of distinct haplotypes; HD: haplotype diversity (gene diversity); DC: discrimination capacity; MP, match probability 
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Table 3. Prediction scores (%) for seven haplogroup classes using three machine learning methods (SVM, Random Forest, k Nearest 

Neighbors) and LDA on four Y-STR datasets (CombYplex, M1, M2, Y-filer kit). For LDA, 10 individuals have been removed for Y-

filer kit due to missing data; DYS502 has been removed from M1 analyses due to the lack of polymorphism. 

Table 3. 

 

Haplogroup N Method Prediction score (in %) 

   Full CombYplex M1 M2 Y-filer 

E1a-M33 15 SVM 100 100 100 100 

  Random Forest 97 99 83 99 

  k Nearest 
Neighbors 

(kNN) 

67 100 67 67 

  LDA 100 100 100 97 

E1b1a 275 SVM 100 99 97 99 

  Random Forest 100 100 97 100 

  k Nearest 
Neighbors 

(kNN) 

99 100 97 100 

  LDA 99 97 98 100 

E1b1b 12 SVM 67 33 67 67 
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  Random Forest 28 28 28 54 

  k Nearest 
Neighbors 

(kNN) 

33 33 33 33 

  LDA 62 61 55 75 

All E collapsed 302 SVM 100 100 96 96 

  Random Forest 100 100 97 100 

  k Nearest 
Neighbors (kNN) 

99 100 93 100 

G 9 SVM 67 67 0 67 

  Random Forest 71 75 5 69 

  k Nearest 
Neighbors 

(kNN) 

67 67 0 33 

  LDA 100 88 67 88 

I 14 SVM 100 100 100 75 

  Random Forest 99 98 79 74 

  k Nearest 
Neighbors 

(kNN) 

75 100 75 75 

  LDA 95 94 81 44 

J 12 SVM 100 100 67 67 

  Random Forest 98 100 13 39 
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  k Nearest 
Neighbors 

(kNN) 

67 100 0 67 

  LDA 100 100 14 67 

R1b1a1a2-M269 159 SVM 95 98 93 98 

  Random Forest 97 95 97 98 

  k Nearest 
Neighbors 

(kNN) 

100 98 95 98 

 
 LDA 100 100 99 96 

Average 
496 

SVM 97 96 92 95 

Random Forest 97 96 90 95 

k Nearest 
Neighbors 

(kNN) 

73 97 52 68 

LDA 94 91 73 81 
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Table 4. Prediction scores (%) for twelve haplogroup classes using the two best machine learning methods (SVM and Random 

Forest) on four Y-STR datasets (CombYplex, M1, M2, Y-filer kit). 

Table 4. 
 
 

Haplogroup N Method Prediction score (in %) 

   CombYplex M2 only Y-filer 

E1a-M33 15 SVM 100 100 100 

  Random Forest 98 90 99 

E1b1a1-M2* 44 SVM 45 27 27 

  Random Forest 58 46 37 

E1b1a7-M191 17 SVM 40 60 80 

  Random Forest 40 40 60 

E1b1a7a-U174 79 SVM 75 80 90 

  Random Forest 81 70 87 

E1b1a8a-U209 66 SVM 75 62 56 

  Random Forest 72 74 70 
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E1b1a8a1-U290 69 SVM 35 47 47 

  Random Forest 56 59 63 

E1b1b1-M35* 10 SVM 100 67 67 

  Random Forest 68 32 48 

G-M201 9 SVM 67 33 67 

  Random Forest 88 28 92 

I 14 SVM 100 75 75 

  Random Forest 100 83 72 

J 12 SVM 100 33 33 

  Random Forest 100 32 43 

R1b1a1a2-M269 134 SVM 85 85 94 

  Random Forest 97 99 91 

R1b1a1a2a1a2a1b1a1-M167 25 SVM 86 29 0 

  Random Forest 84 60 58 

Average 494 
SVM 71 64 67 

Random Forest 79 71 74 
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