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Abstract 

Multilamellar wall vesicles (MLWV) are an interesting class of polyelectrolyte-surfactant 

complexes (PESCs) for wide applications ranging from house-care to biomedical products. If 

MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudo-

equilibrium conditions, the resulting phase is often a mixture of more than one structure. In this 

work, we show that MLWV can be massively and reproductively prepared from a recently 

developed method involving a pH-stimulated phase transition from a complex coacervate phase 

(Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of 

a natural, or synthetic, polyamine (chitosan, poly-L-Lysine, polyethylene imine, 

polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission 

electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition 

from the Co to the MLWV phase, while optical microscopy under polarized light experiments 

and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the 

multilamellar wall structure is not perturbed by filtration and sonication, two typical methods 

employed to control size distribution in vesicles. In summary, this work highlights a new, 

robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, 

promising soft colloids with applications in the field of personal care, cosmetics and 

pharmaceutics among many others. 

 

Keywords. Polyelectrolyte-Surfactant Complex, complex coacervates, biosurfactants, 

polyelectrolytes, multilamellar walls vesicles  
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Introduction 

Polyelectrolytes and surfactants may assemble into complex structures known as 

polyelectrolyte-surfactant complexes (PESCs). When these compounds are oppositely charged, 

their self-assembly process is mainly driven by electrostatic interactions and it results in the 

formation of aggregates, which have a broad range of applications in biological materials,1–5 

drug delivery,6–8 surface modifications,9 colloid stabilization10 and flocculation11 and consumer 

health-care products. The rich mesoscopical and structural organisation of surfactants combined 

with the electrostatic interactions with polyelectrolytes give rise to a wide range of structures 

and phases.12–18 Many works reported cubic or hexagonal mesophases15,16 but also a number of 

micellar-based structures: pearl-necklace morphologies,2,19,20 interpenetrated polyelectrolyte-

wormlike/cylindrical micelles network,19,21–23 spheroidal clusters composed of densely packed 

micelles held by the polyelectrolyte, the latter known as complex coacervates (Co) when they 

form a liquid-liquid phase separation.19,24,25  

Very interesting PESCs structures are formed when the surfactant forms low curvature 

vesicular morphologies. It is in fact generally admitted that modifying vesicles by the addition 

of polyelectrolytes is an interesting, cheap and simple approach to obtain nanocapsules,23 which 

are good candidates to be used as versatile delivery systems,19,23 like gene delivery,1,22,26,27 or 

as MRI contrast agents.28 One of the first PESCs vesicular systems has been reported more than 

20 years ago in DNA-CTAB (cetytrimethylammonium bromide) systems, which were the 

precursors of a number of carriers for gene transfection and often referred to as lipoplexes, 

when cationic lipids replace surfactants in DNA complexation.29,30 If the term lipoplex supposes 

the use of nucleic acids as complexing agents, similar structures, often addressed to as onion-

like structures31 or multilamellar vesicles,13 were observed using both lipids and surfactants 

complexed by a wide range of polyelectrolytes. However, multilamellar, or onion-like, vesicles 

are rather characterized by single-wall membranes concentrically distributed from the outer to 

the inner core of the vesicle. Lipoplexes, on the contrary, are vesicular objects with a large 

lumen and a dense multilamellar wall. For this reason, in this work we employ the name 

multilamellar wall vesicles (MLWV). 

The mechanism of formation of MLWV was addressed by several authors, but a 

common agreement is not achieved, yet. Several works propose that the lipid:polyelectrolyte 

ratio controls the fusion of single-wall vesicles into MLWV,19,29,32–35 while others rather 

observe vesicular agglutination under similar conditions.36–38 In fact, a general consensus has 

not been found and a multiphasic system including agglutinated vesicles and MLWV are 

actually observed.39 The question whether or not MLWV, and PESCs in general, are 
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equilibrium structures and how they are formed is still open, especially when they are prepared 

under non-equilibrium conditions.19 To the best of our knowledge, the only works exploring a 

stimuli-induced approach in the synthesis of MLWV in particular, and PESCs in general, were 

proposed by Chiappisi et al..21,40 However, the pH variation in these works was still performed 

under pseudo-equilibrium conditions with equilibration times ranging from 2 to 15 days for 

each pH value. 

In a recent work, we have explored a Co-to-MLWV phase transition under non-

equilibrium conditions using a continuous variation in pH,41 as illustrated by Figure 1. We could 

show that in the presence of G-C18:1, an acidic microbial glycolipid biosurfactant,42,43  and 

poly-L-lysine (PLL), a cationic polyelectrolyte (PEC), the pH-stimulated micelle-to-vesicle 

phase transition of the lipid drives a continuous, isostructural and isodimensional, transition 

between complex coacervates and MLWV. PLL strongly binds to the lipid monolayers thus 

favouring (∆𝐺= -36.4 ± 1.9 kJ/mol) the formation of the multilamellar wall through both 

specific (∆𝐻= -2.8 ± 0.8 kJ/mol, electrostatic and possibly hydrogen bonding) and non-specific 

(∆𝐻= 28.9 ± 0.9 kJ/mol, entropic, hydrophobic effect) interactions, as quantified by isothermal 

titration calorimetry experiments.41 

In the present work, we generalize the method of preparing MLWV through a phase 

transition approach performed under non-equilibrium conditions and we show its performance 

in comparison to the more accepted method of vesicular agglutination. We show that the former 

can be applied to a broader set of polyelectrolytes and we explore in more detail the structure 

and size control of MLWV.  

 

Figure 1 – Phase transition and structures obtained by mixing G-C18:1 and PEC (chitosan, poly-L-lysine, 

polyallylamine or polyethylenimine) upon a rapid variation of pH. G-C18:1 is negatively charged between 

about pH 4 and alkaline pH, while PECs are positively charged below pH ~10 (depending on the exact pKa, 

given in the materials and method section). Complex coacervates (Co) composed of G-C18:1 and PEC form 
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at pH ~10. They progressively rearrange into MLWV and dissociate below pH ~4, where G-C18:1 forms a 

lamellar (L) phase coexisting with free polymer chains.41 

 

Experimental section 

Chemicals 

In this work we use microbial glycolipids G-C18:1, made of a single β-D-glucose 

hydrophilic headgroup and a C18 fatty acid tail (monounsaturation in position 9,10). From 

alkaline to acidic pH, the former undergoes a micelle-to-vesicle phase transition.42 Syntheses 

of glucolipid G-C18:1 are described in Ref 44 and 43, where the typical 1H NMR spectra and 

HPLC chromatograms are given. The compound used in this work have a molecular purity of 

more than 95%. 

The polyelectrolytes used in this work are chitosan, obtained from the deacetylation of 

chitin from crusteans’ shells, poly-L-lysine, widely used in biomedical field, polyallylamine 

and polyethylenimine. Chitosan oligosaccharide lactate (CHL) (Mw ≈ 5 KDa, pKa ~6.5)45 with 

a deacetylation degree >90%, poly-L-lysine (PLL) hydrobromide (Mw ≈ 1-5 KDa, pKa ~10-

10.5)46 and polyallyllamine hydrochloride (PAH) (Mw ≈ 1-5 KDa, pKa ~9.5),46 

polyethylenimine (PEI) hydrochloride (linear, Mw≈ 4 KDa, pKa ~8)47 are purchased from 

Sigma-Aldrich. We also employ a polyampholite, gelatin (Aldrich, type A, from porcine skin, 

Mw ≈ 50-100 KDa, isoelectric point 7-9), as a control. All other chemicals are of reagent grade 

and are used without further purification. 

 

Preparation of stock solutions 

G-C18:1 (C= 5 mg.mL-1, C= 20 mg.mL-1), CHL (C= 2 mg.mL-1), PLL (C= 5 mg.mL-1, 

C= 20 mg.mL-1), PEI (C= 5 mg.mL-1), PAH (C= 2 mg.mL-1) and gelatin (C= 5 mg.mL-1) stock 

solutions (V= 10 mL) are prepared by dispersing the appropriate amount of each compound in 

the corresponding amount of Milli-Q-grade water. The solutions are stirred at room temperature 

(T= 23 ± 2 °C) and the final pH is increased to 11 by adding a few μL of NaOH (C= 0.5 M or 

C= 1 M).  

 

Preparation of samples 

Samples are prepared by mixing appropriate volume ratios of G-C18:1 stock solutions 

at pH 11 and cationic polyelectrolyte (PEC) stock solutions, as defined in Table 1. The final 

total volume is generally set to V= 1 mL or V= 2 mL, the solution pH is about 11 and the final 

concentrations are given in Table 1. The pH of the mixed lipid-PEC solution is eventually 
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decreased by the addition of 1-10 µL of a HCl solution at C= 0.5 M or C= 1 M. The rate at 

which pH is changed is generally not controlled although it is in the order of several µL.min-1. 

Differently than in other systems,48,49 we did not observe unexpected effects on the PESC 

structure to justify a tight control over the pH change rate. 

 

 

 

 

 

Table 1 - Relative volumes of G-C18:1 and PEC solutions to mix to obtain given concentrations 

Volume Concentration 

G-C18:1 stock 

solution / mL 

PEC stock 

solution / mL 
Water / mL 

CG-C18:1 / 

mg.mL-1 
CPEC / mg.mL-1 

0.5 

0.5 0 2.5 or 10 2.5 or 10 

0.25 0.25 2.5 1.25 

0.125 0.375 2.5 0.625 

 

Dynamic light scattering measurements (DLS)  

DLS experiments are performed using a Malvern Zetasizer Nano ZS90 (Malvern 

Instruments Ltd, Worcestershire, UK) equipped with a 4 mW He–Ne laser at a wavelength of 

633 nm. Measurements were made at 25 °C with a fixed angle of 90° and three acquisitions per 

sample. 

pH-resolved in situ Small angle X-ray scattering (SAXS) 

In situ SAXS experiments during pH variation are performed at room temperature on 

two different beamlines. The B21 beamline at Diamond Light Source Synchrotron (Harwell, 

England) is employed using an energy of E= 13.1 keV and a fixed sample-to-detector (Eiger 

4M) distance of 2.69 m. The Swing beamline at Soleil Synchrotron (Saint-Aubin, France) is 

employed using an energy of E= 12 keV and a fixed sample-to-detector (Eiger X 4M) distance 

of 1.995 m. For all experiments: the q-range is calibrated to be contained between ~5.10-3 < 

q/Å-1 < ~4.5.10-1; raw data collected on the 2D detector are integrated azimuthally using the in-

house software provided at the beamline and so to obtain the typical scattered intensity I(q) 

profile, with q being the wavevector (𝑞 = 4𝜋 sin 𝜃
𝜆⁄ , where 2θ is the scattering angle and λ is 



Published in the Journal of Colloid and Interface Science - DOI: 10.1016/j.jcis.2020.07.021 

6 
 

the wavelength). Defective pixels and beam stop shadow are systematically masked before 

azimuthal integration. Absolute intensity units are determined by measuring the scattering 

signal of water (Iq=0= 0.0163 cm-1).  

The same sample experimental setup is employed on both beamlines: the sample 

solution (V= 1 mL) with the lipid and PEC at their final concentration and pH ~11 is contained 

in an external beaker under stirring. The solution is continuously flushed through a 1 mm glass 

capillary using an external peristaltic pump. The pH of the solution in the beaker is changed 

using an interfaced push syringe, injecting microliter amounts of a 0.5 M HCl solution. pH is 

measured using a micro electrode (Mettler-Toledo) and the value of pH is monitored live and 

manually recorded from the control room via a network camera pointing at the pH-meter located 

next to the beaker in the experimental hutch. Considering the fast pH change kinetics, the error 

on the pH value is ± 0.2.  

 

 

Polarized Light Microscopy (PLM) 

PLM experiments are performed with a transmission Zeiss AxioImager A2 POL optical 

microscope. A drop of the given sample solution is deposited on a slide covered with a cover 

slip. The microscope is equipped with a polarized light source, crossed polarizers and an 

AxioCam CCD camera. 

 

Cryogenic transmission electron microscopy (cryo-TEM) 

Cryo-TEM experiments are carried out on an FEI Tecnai 120 twin microscope operated 

at 120 kV and equipped with a Gatan Orius CCD numeric camera. The sample holder is a Gatan 

Cryoholder (Gatan 626DH, Gatan). Digital Micrograph software is used for image acquisition. 

Cryofixation is done using a homemade cryofixation device. The solutions are deposited on a 

glow-discharged holey carbon coated TEM copper grid (Quantifoil R2/2, Germany). Excess 

solution is removed and the grid is immediately plunged into liquid ethane at -180°C before 

transferring them into liquid nitrogen. All grids are kept at liquid nitrogen temperature 

throughout all experimentation. Images were analyzed using Fiji software, available free of 

charge at the developer’s website.50 

 

Results 

In recent publications,41,51 we have explored the complex coacervation between 

microbial glycolipids and PEC. For this reason, this aspect is only briefly shown here. Cryo-
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TEM images presented in Figure 2 show the structure of PEC-complexed G-C18:1 complex 

coacervates above pH 7. Above this value, we expect the G-C18:1 to be negatively charged and 

PEC positively charged, whereas the apparent pKa of G-C18:1 is expected to be between 6 and 

7, similarly to oleic acid,52 and the pKa of PECs being provided in the materials and methods 

section. Irrespective of the selected PEC, all systems show spheroidal colloids of variable size 

in the 100 nm range. One can identify two types of structures, both typical of complex 

coacervates:24,25,51,53 dense aggregated structures, shown in Figure 2a,c and very similar to what 

was found by us41,51 and others,24 are attributed to dehydrated, densely-packed, micelles tightly 

interacting with the polyelectrolyte; a biphasic medium composed of spheroidal, poorly-

contrasted, polymer-rich, colloids embedded in a textured, surfactant-rich, medium. The latter 

were also reported by us41,51 and others.53,54 In all cases, Co phase is a PESC forming in the 

micellar region of the surfactant’s phase diagram and having the specificity of a liquid-liquid 

phase separation,19,25 compared to other supramicellar PESCs undergoing a solid-liquid phase 

separation.19 

 

 

Figure 2 – Cryo-TEM images of PESC solutions in the complex coacervate phase composed of G-C18:1 lipid 

complexed with a) CHL (pH 7.16), b) PLL (pH 9.16), c) PAH (pH 8.96) and d) PEI (pH 9.02). CG-C18:1= CPEI= 

2.5 mg.mL-1, CCHL= 1 mg.mL-1, CPAH= 0.25 mg.mL-1, CPLL= 1.25 mg.mL-1 

 

a)

c)

b)

d)
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The difference between dense and poorly-contrasted structures is PEC-independent and 

it is more related to the stage of coacervation. At an early stage, colloids with a relatively low 

electron density form and coexist with a rich micellar phase. Free micelles progressively 

interact with residual polymer chains. At a later, entropy-driven (dehydration and counterion 

release),55 stage of coacervation, droplets with a higher electron density massively form. 

Unfortunately, neither the texture of the particles nor their internal structure can be easily 

controlled as they strongly depend on the type of PEC, its stiffness, charge density, stage of 

coacervation and even kinetics. For these reasons, isolating a specific structure in a Co phase 

can be challenging and we have ourselves found coexisting dense and poorly-contrasted 

structures,41 thus preventing any reasonable structure-composition generalization concerning 

the images presented in Figure 2. 

 

 

Figure 3 – Cryo-TEM images of a MLWV phase composed of acidic G-C18:1 lipid complexed with a) CHL 

(pH 4.87), b) PLL (pH 4.70), c) PAH (pH 4.25) and d) PEI (pH 5.33). CG-C18:1= CPEI= CPLL= 2.5 mg.mL-1, 

CCHL= 1 mg.mL-1, CPAH= 0.25 mg.mL-1. e) Zoomed cryo-TEM image of [G-C18:1 + PLL] mixture and its 

corresponding profile (f) allowing the determination of the interlamellar distance. Cryo-TEM data have 

been analyzed using Fiji software.50 

At pH below 7, vesicular structures with multilamellar walls (MLWV phase) are 

observed by cryo-TEM for all PEC samples (Figure 3 and Figure S 1). These structures are 

closely-related to a lipoplex-type phase rather than to an onion-like phase: the latter is composed 

of concentric single-wall vesicles, while the former keeps a free lumen and a thick multilamellar 
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wall.29 Figure 3 also shows a strong packing of the multilamellar walls as well as a strong 

interconnection between adjacent vesicular objects, in agreement with lipoplexes and other 

MLWV reported in the literature.23 The walls are constituted of alternating sandwiched layers 

composed of tightly packed polyelectrolyte chains and interdigitated monolayers of G-C18:1.41 

d-spacing can be directly estimated from cryo-TEM images (Figure 3e,f) and we find a set of 

values of d= 33.7 ± 4.95 Å for the PLL system and d= 31.6 ± 3.00 Å, 25.3 ± 4.60 Å and 41.1 ± 

0.30 Å respectively for CHL, PAH and PEI systems. Within the error, these values are 

compatible with interdigitated G-C18:1 layers,41–43 of which the thickness can be estimated to 

be about 25 Å by applying the Tanford relationship,56 but also close to what is classically 

recorded for lipoplexes.22,23,33 One may note that the multilamellar walls of the PECSs involving 

PEI (Figure 3d) appear more disordered than for other PESCs. At the moment, we do not have 

a clear explanation for that and we actually believe it to be an artifact due to freezing, because 

the full width at half maximum of the corresponding lamellar peak in SAXS experiments is Δq 

~2.10-3 Å-1, the same value found for the PLL system. 

Cryo-TEM images recorded on the Co (Figure 2) and MLWV (Figure 3) phases show 

that the Co-to-MLWV transition is a general property of G-C18:1 PESCs: it strictly depends on 

the lipid phase behavior, while the polyelectrolyte only guarantees the cohesion between the 

lipid membranes. We highlighted elsewhere41 by pH-resolved in situ SAXS experiments an 

explicit isostructural and isodimensional continuity in the Co-to-MLWV phase transition: the 

broad correlation peak at q= 0.171 Å-1 (d-spacing of 36.7 Å) of the coacervate phase coexists 

with the sharp diffraction peak of the MLWV phase at q1= 0.178 Å-1 (d-spacing of 35.3 Å) in a 

narrow range around pH 7.41 Restructuring is driven by the progressive hydrogenation of the 

carboxylate group and the resulting conformational change of the lipid, which favors the 

formation of low curvature colloids, while inter-lipid repulsive electrostatic interactions 

disappear in the meanwhile.  
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Figure 4 - SAXS profiles of [G-C18:1 + PLL] PESCs at a) basic and b) acidic pH with G-C18:1:PLL 

concentration ratios in mg.mL-1: A= 2.5:5, B= 10:10, C= 2.5:2.5.  c-e) 2D SAXS contour plots of G-

C18:1:PLL concentration ratios in mg.mL-1: c) 2.5:2.5, d) 2.5:5 and e) 2.5:2.5. pH is varied from basic to 

acidic. 

 

SAXS profiles presented Figure 4 show two different behaviors of the mixture [G-C18:1 

+ PLL]: at basic pH (Figure 4a), a broad correlation peak is observed at about q= 0.17 Å-1 for 

all lipid:PLL ratios, where the peak can be more pronounced either with concentration (B 

profile) or lipid:PLL ratio (A profile). SAXS profiles B and C were previously assigned to 

complex coacervates, and more details on the structure of the Co phase can be found in Ref. 41. 

In similar systems, the slope at low q was shown to be indicative of the shape of the PESC;40 

here, the slope is below -3. If such values are typical of fractal interfaces,57,58 we cannot 

unfortunately draw any conclusion on the structure of the complex coacervates, most likely 

because the Co phase in these systems is heterogeneous.41 

Below pH 7 (Figure 4b), a sharp diffraction peak and its first harmonics are visible 

respectively around q1= 0.17 Å-1 and q2= 0.34 Å-1,  characteristic of the (100) and (200) 

reflections of a lamellar order in the walls, described previously and shown in Figure 3. The d-

spacing of 37 Å is in agreement with the ones deduced from cryo-TEM (Figure 3e,f). Similar 

results are obtained at different lipid:PLL ratios (Figure 4c,d) but also for other PEC. Figure S 

2 presents the SAXS signals of [G-C18:1 + CHL] solutions at basic and acidic pH, compared 

to the control solutions of [G-C18:1] and [CHL] alone as well as their arithmetic sum. If at 

acidic pH the signature of the lamellar wall of the mixture compared to the controls is out of 
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doubt, the signal at basic pH is less straightforward to interpret, due to the scattering of CHL 

alone, known to precipitate above pH 7.59 This result is similar to what was found for acidic 

deacetylated sophorolipids;41,51 however, considering the fact that cryo-TEM experiments 

suggest the presence of complex coacervates, we cannot exclude their formation, although their 

content may constitute a small minority, if compared to the PLL-based PESCs in the same pH 

range. Another argument for the formation of Co in the presence of CHL will be given later.  

Figure 4c-e show the pH-resolved in situ contour plots of [G-C18:1 + PLL] PESCs at 

various lipid:PLL ratio and with CHL. They are recorded between pH 10 and 3 and focus on 

the high-q region of the SAXS pattern, sensitive to the structural Co-to-MLWV phase transition. 

All pH-resolved in situ contour plots in Figure 4 show three common features: 1) the Co-to-

MLWV transition between pH 8 and 7, where q1 and q2 refer to the first and second order peaks 

of the lamellar wall; 2) a low-q shift of q1 and q2 when pH decreases to about 4.5, indicating a 

swelling of the lamellar period, and 3) a loss of the signal between about pH 4.5 and pH 3.5, 

below which a constant peak at higher q-values (generally around q= 0.2 Å-1) appears. These 

phenomena were quantitatively described in more detail in Ref. 41 and will only be summarized 

hereafter.  

When fully deprotonated at basic pH, G-C18:1 is in a high curvature, micellar, 

environment (Co phase). This state, represented by the drawing superimposed on Figure 4d, is 

proven by both cryo-TEM and the broad correlation peak at about q0= 0.17 Å-1. After crossing 

the transition pH range between 8 and 7, the number of negative charges decreases and G-C18:1 

is entrapped in a low-curvature, interdigitated layer, environment. The continuity between q0 

and q1 strongly suggests an isostructural and isodimensional transition between the micelle and 

membrane configurations, without any loss of the interaction with the polyelectrolyte. This is 

also sketched on Figure 4d. When the pH is decreased further, the COOH content increases and 

thus the membrane charge density decreases. The interlamellar distance consequently increases 

due to the repulsive pressure exerted by the charged polyelectrolyte, which undergoes hydration 

and increase internal electrostatic repulsion.2,60,61 When hydrogenation of carboxylate groups 

reach a certain extent, attractive interaction with PLL can no longer hold the membranes 

together and MLWV then lose their long-range lamellar order, which results in their complete 

disruption and the concomitant expulsion of PLL. Below pH 3, this mechanism leads to the 

precipitation of a polyelectrolyte-free lamellar, L, phase, which is also observed for PEC-free 

G-C18:1 solutions.41 

A closer look at the experiments in Figure 4 indicates two additional features. The pH 

stability domain of the MLWV phase seems to vary with the lipid:PLL ratio. Comparison of 
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Figure 4c and Figure 4d, respectively recorded at lipid:PLL= 1:1 and 1:2 reveal that the q1 peak 

of the MLWV phase is observed between pH 8 and 7. At the 1:2 ratio the MLWV phase starts at 

about pH 8 while at the 1:1 ratio the MLWV phase is only visible at pH below 7. At higher 

concentrations (C= 10 mg.mL-1), but still for a 1:1 ratio, the stability frontier seems to be shifted 

at pH of about 7.5.41 Although we do not have enough data to draw a general trend, it is well-

known that the lipid:polyelectrolyte ratio reflects the negative:positive charge ratio and for this 

reason it has a direct impact on the electroneutrality, thus affecting a number of structural 

features of PESCs: the wall thickness of the multilamellar structure,21,62 the PESC morphology 

and colloidal stability.19 For instance, order is noticeably improved when the charge ratio 

approaches 1:1,63 and micelle-polyelectrolyte complex coacervation can be favored or not.64 

This ratio is particularly crucial to control the properties of the lipoplexes and thus their 

applications: lipid/DNA ratio was reported to influence both the formation of lipoplexes and 

the release of DNA65 and gene transfer activity.66 Many authors have shown that the 

lipid:polyelectrolyte ratio actually controls the formation of MLWV structures19,29,32–35 over 

agglutinated single-wall vesicles,36–38 but in fact it is more likely that a general consensus has 

not been found, yet, and reality often consists in a mixtures of MLWV and agglutinated 

vesicles,39 although many authors do not specify it. One of the reasons that could explain such 

discrepancy is the parallel influence of several other parameters like the charge density on both 

the lipid membrane and in the polyelectrolytes, the rigidity of the latter, the bending energy of 

the lipid membrane, the ionic strength and so on.14,19 In the present case, it is important to note 

that: 1) G-C18:1 forms a stable MLWV phase with all PEC tested in this work and of different 

origin (biobased vs. synthetic) and rigidity. 2) MLWV are stable in the neutral pH range, which 

can be a good opportunity for applications in the biomedical field, for instance.  

An interesting remark concerns the long-range order inside the vesicular multilamellar 

walls. The width of the lamellar peak around q ~0.2 Å-1 is more than ten times larger for the 

CHL (Figure 4e, Δq ~3.10-2 Å-1) than the PLL (Figure 4c,d, Δq ~2.10-3 Å-1) system, either 

suggesting an average smaller size of the lamellar domains or a poorer lamellar order in the 

case of the MLWV obtained from CHL. The reason behind such difference could be the 

bulkiness and stiffness of CHL with respect to PLL,32 but one should recall from Figure 2 and 

related discussion that [G-C18:1 + CHL] solutions do not form an extensive Co phase. We have 

already made the hypothesis that the Co phase is necessary to form the MLWV phase,41 and we 

will reinforce this assumption in the next part of this work.  
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Figure 5 – pH-resolved in situ 2D SAXS contour plots of a) gelatin (C= 2.5 mg.mL-1) and b) [G-C18:1 + 

gelatin] mixture (CG-C18:1= CGelatin= 2.5 mg.mL-1). 

 

The data collected so far show that G-C18:1 interacts with all polyelectrolytes tested in 

this work and that its micelle-to-vesicle phase transition drives the Co-to-MLWV transition. As 

one could reasonably expect, and actually confirmed by ITC,41 strong specific electrostatic 

interactions, electrostatic n nature, between the positively charged PEC and negatively charged 

G-C18:1 drive the PESC formation across the entire pH range. To test the solidity of the PESCs 

synthesis using G-C18:1 and PECs, we employ gelatin, a polyampholyte, as a possible 

alternative to polyelectrolytes and which could be interesting to prepare biobased PESCs. We 

use a commercial (Aldrich) source of gelatin type A, a natural protein of isoelectric point 

between 7.0-9.0, below which the charge becomes positive. Figure 5 shows pH-resolved in situ 

contour plots of gelatin and [G-C18:1 + gelatin] samples. The control gelatin sample in Figure 

5a shows no specific contribution across the entire pH range between 0.1 < q / Å-1 < 0.4. 

Interestingly, the [G-C18:1 + gelatin] sample presented in Figure 5b does not show any signal 

either in the same pH and q range, except for the systematic signal of the lamellar, L, phase of 

G-C18:1 below pH 4.41,42  

Despite an expected positive charge density of gelatin, the in situ SAXS experiment 

shows no sign of the Co phase above pH 7, indicating that the charge density is probably too 

low to interact with negatively charged G-C18:1 micelles. Although somewhat unexpected 

because interactions with negatively charged sodium dodecyl sulfate micelles across a wide 

compositional and pH range were reported in other studies,67 this result is not a surprise. What 
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it is more interesting from a mechanistic point of view is the lack of the MLWV phase below 

pH 7. Given its isoelectric point, type A gelatin is positively charged below pH 7 and it is then 

expected to interact with G-C18:1 negative membranes.  

In this work we have used a broad set of polyelectrolytes, of which the different 

chemical nature let us explore various aspects of their interactions with G-C18:1. If the nature 

of the polyelectrolyte (stiffness, charge density, …) is known to strongly affect the morphology 

and structure of PESCs,14,32 in this work we show that: 1) when the Co and MLWV phases are 

formed, the structure of the corresponding colloidal structures is very similar, whichever the 

polyelectrolyte used, even if local phenomena like swelling or long-range order may vary from 

one polyelectrolyte to another. 2) The Co and MLWV phases are only obtained with 

polyelectrolytes with a net positive charge, that is polycations. 3) The MLWV phase is always 

preceded by the Co phase, which seems to be a necessary condition to drive the isostructural 

and isodimensional Co-to-MLWV transition. This phenomenon does not occur when gelatin is 

employed and where the MLWV phase is not observed. On the contrary, the MLWV phase is 

obtained for the CHL system, despite the fact that we do not have a proof by SAXS of the Co 

phase. In this regard, we must outline that the SAXS signal for the [G-C18:1 + CHL] system at 

basic pH is dominated by the precipitated CHL phase, which we think to be in major amount 

but not the only phase. Cryo-TEM shows the presence of an unknown fraction of complex 

coacervates, which we believe to be source of the MLWV phase at pH below 7. We also believe 

that the higher disorder of the MLWV phase in the [G-C18:1 + CHL] system (broader first order 

diffraction peak compared to the PLL-derived MLWV in Figure 4e) could be attributed to the 

smaller fraction of the initial Co phase. In other words, the presence of a less ordered MLWV 

phase in the CHL system could then the indirect proof that probably a small fraction of the Co 

phase forms in the CHL system. 

 

Quantitativity and size control 

 If the synthesis of PESCs involving vesicles and polyelectrolytes, and eventually 

forming MLWV, has long been addressed in the literature,37,68,69 very few studies, if none, 

address the issue of quantitativity in relationship to the mechanism of formation. In particular, 

the synthesis of MLWV from a continuous isostructural phase transition from a coacervate 

phase has not been addressed before, because MLWV are generally obtained by mixing vesicles 

and polyelectrolytes in solution.19,29,32–35,37 If some authors state that the formation of MLWV 

is driven by the lipid:polyelectrolyte ratio, other authors show that a mix of agglutinated 

vesicles and MLWV are actually obtained.38,39 Other procedures could probably be followed to 
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increase this control when working with pre-formed vesicles, such as the insertion of the 

polymer into the hydrophobic vesicle bilayer, which was reported in the case of polycations 

bearing pendant hydrophobic groups.37,70 However, it was found that such interaction could be 

accompanied by lateral lipid segregation, highly accelerated transmembrane migration of lipid 

molecules (polycation-induced flip-flop), incorporation of adsorbed polycations into vesicular 

membrane as well as aggregation and disruption of vesicles.70 

To evaluate the amount of MLWV with respect to agglutinated vesicles, we compare 

the sample obtained by continuous Co-to-MLWV phase transition with a sample obtained by 

the more classical approach consisting in mixing G-C18:1 single-wall vesicles and 

polyelectrolyte, the main one employed in the literature of MLWV. If SAXS can prove the 

presence of a multilamellar structure, it cannot be easily employed to quantify and discriminate 

between the two structures. For this reason, instead of SAXS, we evaluate the content of 

MLWV between the two methods of preparation by combining cryo-TEM with optical 

microscopy using crossed polarizers. If cryo-TEM can differentiate between agglutination and 

MLWV, its high magnification is poorly compatible with good statistics, unless a large number 

of images are recorded. On the contrary, optical microscopy using cross polarizers is the ideal 

technique to differentiate, on the hundreds of micron scale, between MLWV and agglutinated 

vesicles: multilamellar structures (but not single-wall vesicles) show a characteristic maltese 

cross pattern71 under crossed polarizers, found both in concentric lamellar emulsions72 and in 

spherical lamellar structures.73 

Cryo-TEM of samples obtained from a Co-to-MLWV phase transition was shown in 

Figure 4 and, as already commented above, they show a massive presence of vesicular 

structures having multilamellar walls, as also confirmed by the corresponding SAXS data 

presented in Figure 4. Figure 6 shows two representative microscopy images of a typical sample 

prepared with the same approach; images are collected under white (a,d) and polarized light 

with polarizers at 0°-90° (b,e) and 45°-135° (c,f). The system is characterized by a large number 

of vesicles highly heterogeneous in size but all below ~10 μm. Under polarized light and crossed 

polarizers, the entire material displays a typical maltese cross colocalized with each vesicle. 

Despite the aggregation of the vesicles, also observed with cryo-TEM, maltese crosses are well-

defined and nicely separated and each identifying single multilamellar wall vesicles. The entire 

material displays such a characteristic birefringency, strongly suggesting a quantitative 

presence of MLWV. 
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Figure 6 – Optical microscopy images recorded on a [G-C18:1 + PLL] solution (CG-C18:1= CPLL= 2.5 mg.mL-

1) at pH 3.9 obtained from a Co-to-MLWV phase transition. a,d) white light and polarized light with cross 

polarizers set at b,e) 0-90° and c,f) 45-135°. 

 

The experiment consisting in mixing acidic solutions (pH 3.8) of pre-formed G-C18:1 

single-wall vesicles and PLL is shown in Figure 7. A preliminary investigation by optical 

microscopy results in a different behavior and distribution of signal with respect to the sample 

obtained through the Co-to-MLWV phase transition. Figure 7a shows representative images of 

a sample being constituted of aggregated objects, each of size below 1 μm, expected for G-

C18:1 vesicles.43 The corresponding images recorded using crossed polarizers (Figure 7b,d) 

show a broad, undefined, birefringency associated to the aggregates with little, if no, content of 

maltese crosses. The featureless, generalized, birefringency signal suggests that MLWV are 

either not formed or they form in small amounts, in good agreement with the data presented by 

others.38,39 This assumption is confirmed by cryo-TEM images recorded on the same system 

and showing a mixture of structures including agglutinated vesicles but also “cabbage-like” and 

multilamellar structures (Figure 7e-f). 

The massive presence of MLWV structures obtained through the phase transition 

process compared to the mixture of structure obtained from a direct mixing of pre-formed 

vesicles-polyelectrolyte solutions confirms the crucial role of the complex coacervates in the 

formation of MLWV: coacervation seems to be a requirement to the extensive formation of 

vesicular structures with multilamellar walls.41 This is also in agreement with the data obtained 

from the [G-C18:1 + gelatin] system presented in Figure 5 and prepared using the pH variation 

approach. Also in that case, the absence of a complex coacervate phase had as a consequence 
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the absence of the MLWV phase. An additional piece of evidence comes from the CHL system, 

in which the limited amount of the Co phase generates a more disordered MLWV phase. 

Combination of the data obtained with gelatin and employing the in situ pH variation with the 

data obtained by mixing vesicle and polyelectrolyte solutions at a given pH demonstrates the 

importance of the precursor Co phase during the phase change method in order to obtain a 

massive presence of MLWV structures. 

 

Figure 7 – a-d) Optical microscopy images recorded on a mixture of [G-C18:1] single-wall vesicles and 

[PLL] solutions (CG-C18:1= CPLL= 2.5 mg.mL-1) both prepared at pH= 3.8. a,c) white light and b,d) polarized 

light with cross polarizers set at 0-90°. Images in e,f) are recorded on the same sample by mean of cryo-

TEM. 

 

If the Co-to-MLWV phase transition is able to quantitatively produce MLWV, its main 

drawback is the poor control over their size distribution, as shown both by TEM and optical 

microscopy. To improve this point, we employed filtration (Figure 8a-c) and sonication (Figure 

8d-f), these methods being known to efficiently control vesicles size distribution,74 but unclear 
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whether or not they have any deleterious impact on the MLWV structure. According to the 

cryo-TEM data in Figure 8a-c, filtration (pore size, φ= 450 nm) promotes the stabilization of 

colloidally-stable spherical MLWV, of which the diameter seems to be contained between 50 

nm and about 300 nm, in agreement with the filter pore size. Concerning the effect of sonication, 

Figure 8d-f also shows a large number of spherical, un-aggregated, MLWV colloids, although 

the diameter appears to be bigger of several hundred nanometers if compared to the filtered 

sample. The cryo-TEM results are confirmed by intensity-filtered DLS experiments, presented 

in Figure 8g. The as-prepared sample (black curve) shows a MLWV distribution centered at 

716 nm, while the filtered sample shows a distribution centered at 460 nm. To better evaluate 

the impact of sonication, we tested the influence of sonication time and according to DLS data 

(Figure 8g) we find that at t= 30’ the size distribution is centered at higher diameter values and 

it is even broader than the as-prepared sample. Applying the same sonication conditions, but 

over a longer period of time (t= 1’ or t= 1’30’’), it is possible to reduce the MLWV diameter 

even if the size distribution is broader than the filtration approach, in agreement with the cryo-

TEM data. 

These experiments show that control of the size distribution of MLWV is possible using 

standard methods employed in liposome science without perturbing the multilamellar wall 

structure. 
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Figure 8 - Cryo-TEM images of a [G-C18:1 + PLL] solution (pH=5, CG-C18:1= CPLL= 2.5 mg.mL-1) prepared 

using the Co-to-MLWV approach and a-c) filtered through a φ= 450 nm pores membrane or  d-f) sonicated 

(ultrasound, US, technical data: t= 1’, P= 40 W, Ampl.= 40%, freq.= 100%). g) profiles of the as prepared 

(black curve), filtered (φ= 450 nm pores membranes, red curve) and sonicated (US, technical data: P= 40 

W, Ampl.= 40%, freq.= 100%, time is given on graph) MLWV samples 
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This work addresses the synthesis of multilamellar wall vesicles (MLWV) using a 

recently developed method involving a pH-stimulated transition from a complex coacervate 

phase (Co) instead of a polyelectrolyte-driven vesicle agglutination, classically-employed in 

the preparation of MLWV polyelectrolyte surfactant complexes (PESCs). We use a 

combination of a stimuli-responsive microbial glycolipid biosurfactant and a polyelectrolyte, 

mainly polyamines (either synthetic or natural). The deacetylated acidic C18:1 glucolipid, G-

C18:1, undergoes a micelle-to-vesicle phase transition from alkaline to acidic pH. In the 

alkaline pH domain, its phase behavior is mainly characterized by negatively-charged micelles. 

In the presence of a positively charged polyelectrolyte, G-C18:1 forms a Co phase. Upon 

lowering pH below the micelle-vesicle boundary, in situ SAXS experiments show a continuous 

isostructural and isodimensional transition between the Co and MLWV phase. The acidification 

process reducing the negative charge density, the micellar aggregates embedded in the Co phase 

undergo a decrease in the local curvature, which drives the transition from spheres to 

membranes, made of interdigitated G-C18:1 molecules. The membrane has a residual negative 

charge density, responsible for the strong electrostatic interaction with the polyelectrolyte, 

crucial to maintain the membranes together. At lower pH, the membrane charge density 

becomes low and interactions with the polyelectrolyte decrease. This phenomenon promotes 

intra-chain electrostatic repulsion interactions and eventually encourage the lamellar region to 

swell. Finally, when the membrane reaches neutrality, polymeric repulsion becomes strong 

enough to disassemble the lamellae. The polyelectrolyte will most likely be entirely solvated 

and at sufficiently low pH (< 3) the G-C18:1 precipitates in the form of a lamellar phase, 

possibly free of the polyelectrolyte, a behavior characteristic of the control lipid solution at the 

same pH.  

We employ four polyelectrolytes, synthetic and natural and with different characteristics 

of rigidity and charge density (chitosan, poly-L-Lysine, polyethylene imine, polyallylamine); 

however, the nature of the polyelectrolyte does not seem to be a relevant parameter concerning 

the fate of the transition, as otherwise found for most PESCs. This may be explained by the 

strong proximity between the lipid and the polyelectrolyte throughout the isostructural Co-to-

MLWV transition. If the method described in this work does not allow a tight control over the 

size distribution of MLWV, we also find that the multilamellar wall structure is stable against 

filtration and sonication, two common methods employed to control the size of vesicles. Last 

but not least, we show that if we employ the classical approach consisting in mixing pre-formed 

vesicles with a cationic polyelectrolyte solution at a given pH, we find a much broader structural 
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diversity, including agglutinated single-wall vesicles, multilamellar but also cabbage-like 

structures, in agreement with previous literature studies. 

 

 

All in all, this work establishes the ground for the preparation of a new generation of 

fully biobased, stimuli-responsive, PESCs, of which the potential fields of applications could 

span from cosmetics to home-care products. 
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Figure S 1 - Additional cryo-TEM images and zooms on layers of MLWV made of G-C18:1 (2.5 mg.mL-1) + 

a) CHL (1 mg.mL-1 , pH 4.87) , b) PAH (0.25 mg.mL-1, pH 4.25), c) PEI (2.5 mg.mL-1, pH 5.33) and d) PLL 

(2.5 mg.mL-1, pH 4.70) 
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Figure S 2 - SAXS profiles of [G-C18:1] (black) and [CHL] (red) control and [G-C18:1 + CHL] (blue) 

solutions (CG-C18:1= 2.5 mg.mL-1, CCHL= 1 mg.mL-1) at a) pH= 4.73 and b) pH= 8.81. The green [G-C18:1] + 

[CHL] profiles correspond to the arithmetic sum of [G-C18:1] + [CHL] individual SAXS profiles. 
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