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ABSTRACT 24 

Recent work in highly trained monkeys suggests that decision-making and motor control are 25 

linked processes whose regulation by urgency allows reward rate optimization. However, such 26 

urgency-based mechanism might be species-specific and/or a consequence of practice. Here I 27 

show that the unified regulation hypothesis exists in naïve human subjects. Seventeen volunteers 28 

performed a reach decision task in which blocks of trials encouraged either risky or conservative 29 

choices. Participants performed at least two sessions in which they were indirectly motivated to 30 

maximize their reward rate. Results show that subjects’ accuracy criterion decreased over time 31 

within each trial, and that decisions were earlier and less accurate in fast than slow blocks, with a 32 

larger difference in session #2 compared to session #1. A simple model in which sensory 33 

information is combined with a growing urgency signal captured these effects. Crucially, arm 34 

and eye movement vigor systematically increased as decision duration increased within blocks 35 

and the block-dependent decision policy strongly predicted the kinematics of reaching 36 

movements. These results suggest a practice-independent mechanistic link for establishing the 37 

unified control of human decision timing and action vigor in order to optimize the rate of reward. 38 

39 
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1. INTRODUCTION43 

Decision-making is ubiquitous in animal kingdom. The type of decisions humans share with 44 

other animals is mainly restricted to decisions between actions, whether these decisions rely on 45 

purely sensory or on combined value-sensory cues. Crucially, neural circuits underpinning 46 

decisions between actions have been remarkably conserved through evolution. For instance, 47 

animals as old as lampreys possess the same basal ganglia machinery, in terms of connectivity, 48 

ion channels, transmitters and co-transmitters, as mammals (1,2). 49 

Most recent theoretical and experimental work suggests that action selection and execution are 50 

tightly linked processes that share neural substrates (3,4). This “embodied” decision concept (5,6) 51 

diverges from the classical view, inherited from cognitive psychology, in which perception, 52 

decision and action are considered as temporally separate and serial processes (7,8). Embodied 53 

decision-making makes very good ecological sense: options are always multiple, specified by 54 

spatio-temporal information and highly dynamic in nature (9). Consequently, the mechanisms 55 

that serve decisions made during interactive behavior must have been designed to be very fast 56 

and flexible. For instance, individuals are free to adjust the time they invest in deciding versus 57 

moving. This is crucial because the actual subjective value of a given activity is not only 58 

determined by the immediate rewards and efforts associated with that activity but also by the 59 

amount of time invested in it. Therefore, what is ultimately most adaptive is to choose actions 60 

that maximize one’s global reward rate (10,11), which occurs when the decision and action 61 

processes are sufficiently accurate but not overly time consuming. Thus, nearly all decision 62 

scenarios present decision-makers with a speed-accuracy trade-off (SAT) during both decision 63 

and action. 64 
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Thenceforth, how to determine the deliberation duration and the movement speed that optimize 65 

reward rate? On one hand, my colleagues and I, among others, have proposed that control of 66 

decision urgency is critical for reward rate maximization (12–17). Urgency is a context-67 

dependent, motor-related signal that grows over the time course of a deliberation. It pushes the 68 

decision-related neural activity toward the commitment threshold, thus preventing spending too 69 

much time on a choice when sensory evidence is weak and outcome uncertain (18,19). On the 70 

other hand, it has been convincingly shown that movement properties are determined according 71 

to economical rules, showing modulations of vigor and variability depending on reward 72 

probability and delay (20–24). My previous work also demonstrated that, in trained monkeys, 73 

urgency not only controls decision-making timing, but also the speed of the following motor 74 

commands: reaching movements expressing urgent decisions were faster compared to 75 

movements expressing informed, evidence-based decisions. Interestingly, the urgency effect on 76 

movement execution did not appear to be effector-specific, as it also affected to some extent the 77 

speed of saccadic eye movements, despite the fact that oculomotor behavior was not constrained 78 

in the task and did not affect reward rate (25,26).  79 

Consistent with a role in the simultaneous modulation of multiple processes, it has been proposed 80 

that the neural correlates of the urgency signal lie in the basal ganglia (27–29), a set of 81 

subcortical nuclei forming segregated neuroanatomical loops with nearly every parts of the brain. 82 

Accordingly, urgency might provide a mechanistic link for establishing the unified control of 83 

both decision timing and action vigor in order to optimize reward rate through projections from 84 

the basal ganglia to sensorimotor regions (25,30,31). More globally, urgency might also play a 85 

key role in a wide variety of phenomena in both health and disease, ranging from personality 86 

traits such as impulsivity or apathy, to major pathological conditions such as in Parkinson’s 87 
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disease or obsessive compulsive disorders, through projections to other cortical regions, including 88 

prefrontal and limbic areas (32–34).    89 

However, most of the arguments in support of a role of urgency in goal oriented-behavior rely on 90 

data collected on highly trained monkeys who performed the same decision-making tasks for 91 

months or even years. This is a concern because some findings suggest that human and non-92 

human primates adopt different policies to make rapid decisions between actions (see for instance 93 

(35,36)). One possible explanation for this discrepancy is that decision mechanisms are truly 94 

species-specific, only permitting the species-dependent strategies that produced the behavioral 95 

differences observed in the literature. In agreement with this possibility, recent quantitative 96 

analyses of human behavior have found evidence in favor of urgency-free mechanisms of 97 

decision-making (37,38), whereas research comparing urgency versus urgency-free mechanisms 98 

in non-human primates has provided convincing support for an urgency-based decision 99 

mechanism (35,39). Another possibility is that, because monkeys are usually trained on a 100 

behavioral task over a long period of time, the large amount of practice shapes their behavior, 101 

allowing them to explore more strategies than human subjects faced with only a few experimental 102 

sessions. As a consequence, a debate recently emerged in the field in which it has been 103 

legitimately argued that urgency-based mechanisms may only be present in naturally “impatient” 104 

species like monkeys, or in highly trained individuals (11,35,36,39,40).  105 

The aim of the present work was thus to test the hypothesis that the common regulation of 106 

decision and movement durations by urgency which has been previously observed in “expert” 107 

monkeys is not species-specific, nor a consequence of overtraining. This hypothesis predicts that 108 

naïve human subjects will adopt urgency-based decision policy as soon as they will perform their 109 

first experimental session and that this policy will modulate the way they express their choices 110 
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via reaching movements. It also predicts that decision urgency will influence movements that do 111 

not directly influence reward rate, such as saccades, in the task described below.   112 

To this aim, I conducted an experiment where participants performed a reach decision task in 113 

which (1) deliberation duration is controlled by subjects and is dissociated from commitment 114 

time, allowing an accurate investigation of these two distinct processes, including the 115 

quantification of the sensory information used by subjects at time of commitment and the 116 

inference of the urgency level at that time; (2) sensory information continuously evolves during 117 

the time course of a trial, an ecological feature allowing to make distinct predictions about the 118 

decision mechanism involved (see (15,18)); (3) the timing parameters can be manipulated in 119 

order to encourage speed-accuracy trade-off adjustments, allowing to test the effect of such SAT 120 

context on decision and movement policies; (4) decisions are expressed with reaching 121 

movements and oculomotor behavior is unconstrained, allowing to assess the effect of decision 122 

policy on motor control. 123 

2. MATERIALS AND METHODS 124 

2.1 Participants 125 

Twenty healthy, human subjects (ages: 18-41; 14 females; all right handed) participated in this 126 

study. All gave their consent before starting the experiment. The ethics committee of Inserm 127 

(IRB00003888) approved the protocol on March 19th 2019. Each participant was asked to 128 

perform two experimental sessions. They received a monetary compensation (20 euros per 129 

completed session) for participating in this study. Among them, seventeen (ages: 20-41; 13 130 

females) completed at least two sessions and have thus been included in the present dataset. 131 

2.2 Setup 132 

The subjects sat in an armchair and made planar reaching movements using a lever held in their 133 
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right hand. A digitizing tablet (GTCO CalComp) continuously recorded the lever horizontal and 134 

vertical positions (125 Hz with 0.013cm accuracy). Target stimuli and cursor feedback were 135 

projected by a DELL P2219H LCD monitor (60 Hz refresh rate) onto a half-silvered mirror 136 

suspended 26 cm above and parallel to the digitizer plane, creating the illusion that targets floated 137 

on the plane of the tablet. Unconstrained eye movements and pupil area were recorded using an 138 

infrared camera (ISCAN, sampling rate of 120 Hz). 139 

2.3 Tasks 140 

The subjects performed a modified version of the tokens task (Figure 1A, 41). They were faced 141 

with a visual display consisting of three blue circles (1.5 cm radius) placed horizontally at a 142 

distance of 6 cm of each other (the “decision” stimuli). In the central blue circle 15 small tokens 143 

were randomly arranged. Positioned 12 cm below, three black circles, organized horizontally as 144 

well, defined the “movement” stimuli. While the central black circle radius was kept constant at 145 

0.75 cm, the size of the lateral black circles and their distance from the central circle could vary 146 

in blocks of trials: Size was set to be either 0.75 or 1.5 cm of radius, and distance from the central 147 

circle was varied to be either 6 or 12 cm (see below).  148 

A trial was initiated when the subject moved the lever into the small black central circle (starting 149 

position) and stayed immobile for 500ms. At this time the tokens started to jump, one by one, 150 

every 200ms in one of the two possible lateral blue circles. The subjects’ task was to decide 151 

which of the two lateral blue circles would receive the majority of the tokens at the end of the 152 

trial. They reported their decisions by moving the lever into the lateral black circle corresponding 153 

to the side of the chosen blue circle. Importantly, subjects were allowed to make and report their 154 

choice at any time between the first and the last jump. Arm movement duration could not exceed 155 

800ms, preventing overtly expressed changes of mind. Once the choice was reported, the 156 
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remaining tokens jumped more quickly to their final targets. In separate blocks of trials, this post-157 

decision interval was set to either 20ms (“fast” blocks) or to 150ms (“slow” blocks). After 158 

holding the lever in the target for 500ms, a visual feedback about decision success or failure (the 159 

chosen decision circle turning either green or red, respectively) was provided after the last token 160 

jump. A 1500ms period (the inter-trial interval) preceded the following trial. 161 

Before and after the tokens task described above, each subject also performed 100 trials (2 blocks 162 

of 25 trials before and 2 blocks of 25 trials after the tokens task) of a simple choice, delayed 163 

reaction time task (DR task). This task was identical to the tokens task except that there was only 164 

one lateral decision circle displayed at the beginning of the trial (either at the right or at the left 165 

side of the central circle with 50% probability) and all tokens moved from the central circle to 166 

this unique circle at a GO signal occurring after a variable delay (1000 ± 150ms). This task was 167 

used to estimate of the sum of the delays attributable to sensory processing of the stimulus 168 

display as well as to response initiation. 169 

2.4 Instructions 170 

In a given session, subjects were asked to complete one slow block and one fast block of the 171 

tokens task. To complete a block, subjects had to make 160 correct choices, indirectly motivating 172 

them to optimize successes per unit of time. After the first block completed, a short break was 173 

offered to the subject. Within each block, the size of the movement targets and their distance 174 

from the starting circle were varied every 40 trials. The influence of the reaching target properties 175 

on subjects’ behavior is not described in the present paper.  176 

In order to test the effect of practice on decision/movement policy, subjects performed two 177 

sessions (test-retest design), one per day and each of them separated by a maximum of seven 178 

days. In session #1 subjects first performed the tokens task in the slow block, followed by the fast 179 
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block. To prevent any block-related confounding effect, the order of block presentation was 180 

reversed in session #2. Before the first session, I explicitly described to the subjects the principle 181 

of each block, specifying that deciding quickly in the fast block was more advantageous in terms 182 

of time saving than in the slow block (because of the larger acceleration of the remaining tokens) 183 

but that hasty behavior could also lead to more erroneous decisions. Subjects were thus informed 184 

that they could volitionally adjust their behavior depending on the block condition but they were 185 

not penalized for behaving exactly the same way in the two blocks. A short recall was provided 186 

before starting the second session. Because subjects were informed that they had to complete a 187 

given number of correct responses, they were all aware that they were presented with a 188 

speed/accuracy trade-off in this task.  189 

A “familiarization” period consisting of performing 20 tokens task trials was proposed at the 190 

beginning of the first session, mainly allowing subjects to get familiar and comfortable with the 191 

manipulation of the lever on the tablet.  192 

Among the 21 subjects who participated in this study, two have been tested six and seven times, 193 

still performing one session a day with no more than seven days between two successive 194 

sessions. For these two “longitudinal” subjects, the order of block presentation was varied before 195 

each new session. 196 

2.5 Data analysis 197 

The tokens task allows to calculate, at each moment in time, the success probability pi(t) 198 

associated with choosing each target i. For instance, for a total of 15 tokens, if at a particular 199 

moment in time the right target contains NR tokens, whereas the left contains NL tokens, and there 200 

are NC tokens remaining in the center, then the probability that the target on the right will 201 

ultimately be the correct one (i.e., the success probability of guessing right) is as follows: 202 
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To characterize the success probability profile for each trial, I calculated this quantity (with 204 

respect to the target ultimately chosen by the subject) for each token jump (Fig. 1B). All subjects 205 

faced the same sequence of trials, in which I interspersed among fully random trials (20% of the 206 

trials in which each token is 50% likely to jump into the right or into the left lateral circle) three 207 

special types of trials characterized by particular temporal profiles of success probability. 208 

Subjects were not told about the existence of these trials. 30 % of trials were so-called “easy” 209 

trials, in which tokens tended to move consistently toward one of the circles, quickly driving the 210 

success probability pi(t) for each toward either 0 or 1. There were several variations of easy trials 211 

(see the criteria in Figure 1C), and the average success probability profile is shown in Figure 1C 212 

(green curve). Another 30% of trials were “ambiguous” (Fig. 1C, blue-green curve), in which the 213 

initial token movements were balanced, making the pi(t) function close to 0.5 until late in the 214 

trial. The last special trial type was called “misleading” trials (20%) in which the 2-3 first tokens 215 

jumped into the incorrect circle and the remaining ones into the correct circle. In all cases, even 216 

when the temporal profile of success probability of a trial was predesigned, the actual correct 217 

target was randomly selected on each trial. 218 

To estimate the time at which subjects committed to their choice (decision time, DT) on each trial 219 

in the tokens task, I detected the time of movement onset (based on reach kinematics, defining 220 

subject’s reaction time, RT) and subtracted the subject’s mean sensory-motor delays (SM) 221 

estimated from the DR task performed on the same day. Decision duration was computed as the 222 
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duration between decision time and the first token jump. I then used Equation 1 to compute for 223 

each trial the success probability at the time of the decision (SP; Fig. 1B).  224 

To quantify subjects’ performance, I first calculated the reward rate (RR), using a local definition 225 

(15,22) which corresponds to the expected number of correct choices per unit of time. This is 226 

computed as follows: 227 

 228 
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where SPn is the probability that the choice made on trial n was correct, DTn is the time taken to 229 

make the decision, SM is the sensori-motor delays (constant for a given session), MTn is the 230 

movement time, RDn is the duration of the remaining token jumps after the target is reached, and 231 

ITI is the inter-trial interval (fixed at 1500ms). Then from the average reward rate computed in 232 

each block I calculated the average number of correct choices per minute and deducted from it 233 

the time necessary to complete 160 correct choices in each of the slow and fast conditions. 234 

Calculation of subjects’ accuracy criterion at decision time relies on the available sensory 235 

evidence at that time. Because it is very unlikely that subjects can calculate Equation 1, I 236 

computed a simple “first order” approximation of sensory evidence as the sum of log-likelihood 237 

ratios (SumLogLR) of individual token movements as follows (41, page 11567, provides more 238 

details on this analysis): 239 
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where p(ek|S) is the likelihood of a token event ek (a token jumping into either the selected or 240 

unselected target) during trials in which the selected target S is correct, and p(ek|U) is its 241 
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likelihood during trials in which the unselected target U is correct. The SumLogLR metric is thus 242 

proportional to the difference in the number of tokens which have moved in each circle before the 243 

moment of decision. To characterize the decision policy of a given subject in a given block of 244 

trials, I binned trials as a function of the total number of tokens that moved before the decision, 245 

and calculated the average SumLogLR for each bin.  246 

All arm and eye movement data were analyzed off-line using MATLAB (MathWorks). Reaching 247 

characteristics were assessed using subjects’ movement kinematics. Horizontal and vertical 248 

position data were first differentiated to obtain a velocity profile and then filtered using a sixth 249 

order low-pass filter with a frequency cutoff of 15 Hz. Onset and offset of movements were 250 

determined using a 3 cm/s velocity threshold. Peak velocity was determined as the maximum 251 

value between these two events. Reaching movement vigor was estimated by dividing the 252 

movement peak velocity by its amplitude. Therefore, according to this local definition, a 253 

movement is more vigorous than another if for the same amplitude, its peak velocity is higher. 254 

During both the tokens and the DR tasks, subjects eye movements were unconstrained. After 255 

each session, an offline recalibration of the raw eye position signals was performed (taking the 256 

average eye position in the DR task as a reference), after which eye data were first differentiated, 257 

filtered using a sixth-order low-pass filter with a frequency cut-off of 50 Hz and then up-sampled 258 

at 1000 Hz using a cubic spline interpolation method. The beginning and end of saccades were 259 

identified using an adaptive velocity threshold algorithm (varying as a function of the signal-to-260 

noise ratio). Because the two decision circles were arranged horizontally from each other, most 261 

saccades were mainly horizontal during the deliberation process. I thus only analyzed the 262 

horizontal component of saccades made by subjects during the deliberation period. Moreover, to 263 

be included in the analyses, saccades had to have an amplitude between 20 and 34 degrees of 264 



 13

visual angle (corresponding to saccades made between the two lateral circles), a peak velocity 265 

between 400 and 900 degrees/s, a duration above 50ms, and be executed after the first token 266 

jump and before the estimate of the subject’s decision time. 267 

2.6 Computational modeling 268 

Mathematically, an urgency-based decision mechanism can be implemented in different ways, 269 

but the best match between the neurophysiological data and model predictions is provided by a 270 

short-time constant integration process with a gain of the sensory signals, which increases over 271 

time during deliberation (18,41). To simulate the decision data, I thus used a minimal 272 

implementation of the urgency gating model (15,41), in which evidence is multiplied by a 273 

linearly increasing urgency signal, and then compared with a fixed threshold. This mechanism 274 

roughly corresponds to a threshold that continuously collapses over the time course of a decision 275 

while sensory gain is kept stable. Because in the present task there is no stimulus noise, I 276 

discarded the low-pass filtering stage of the sensory evidence and calculated it simply as the 277 

difference in the number of tokens in each target (25). The result can be expressed as follows: 278 

 12 = 3�2 − �4526 ∙ 8(9 + :;< < # (4) 

where yi is the “neural activity” for choices to target i, Ni is the number of tokens in target i, t is 279 

the number of seconds elapsed since the start of the trial, m and b are the slope and y-intercept of 280 

the urgency signal, and []+ denotes half-wave rectification (which sets all negative values to 281 

zero). When yi for any target crosses the threshold T, that target is chosen. Two sources of 282 

internal variability were introduced into the model. Inter-trial variability was simulated by 283 

multiplying the urgency signal by a factor that was normally distributed with mean = 1 and SD = 284 

0.1. Intra-trial variability was simulated by jittering the decision time by a term that was normally 285 

distributed with mean zero and SD of 0.2 s.  286 



14

This simple model has only two free (but constrained, see below) parameters: m and b (the 287 

threshold T is just a scaling factor). To fit the data, I set T = 1 and then performed an exhaustive 288 

grid search for all (2050) combinations of m and b where m ranged from 0 to 0.40, and b ranged 289 

from -1.2 to 0.76. This was performed separately for each block type, with data combined across 290 

all trials, and the quality of fit was assessed using the mean-squared-error between the sum of 291 

log-likelihood ratios as a function of time (Equation 3) generated by the model and data for all 292 

decision times in the interval between 0 and 3.0s. After finding the best pair of parameters for 293 

each dataset using the grid search, I performed a bootstrap consisting of randomly picking trials 294 

with replacement among the original dataset within each block to determine a new best pair of 295 

parameters with the grid search method. After repeating this procedure 500 times, I computed the 296 

mean shape (linear function based on m and b parameters) ± SD of the urgency functions from 297 

the best parameters distribution.  298 

Thus, contrary to most investigations of SAT control in which the threshold value differs between 299 

SAT conditions, here the decision threshold is fixed and the variation of the context-dependent 300 

distance between the starting point and this threshold is captured by adjustments of the urgency 301 

signal, both between and within blocks of trials.  302 

3. RESULTS303 

3.1 Global performance 304 

In the tokens task, the overall percentage of correct choices of subjects performing the first 305 

session was 79% ± 4.9 (slow block: 80% ± 5.7 – range: 68-86%; fast block: 78% ± 5.3 – range: 306 

66-85%). Their performance slightly increased during the second session: 81% ± 4.0 (slow block:307 

83% ± 3.3 – range: 73-87%; fast block: 80% ± 5.4 – range: 71-91%). 308 

3.2 Decision duration and success probability 309 
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As expected, subjects’ behavior was strongly influenced by the specific pattern of token 310 

movements within a trial (i.e. trial difficulty), regardless of the session or the block condition. As 311 

a typical example, Figure 2A,B shows decision durations and success probabilities of a subject 312 

faced with easy and ambiguous trials during the tokens task. Decisions were faster and success 313 

probabilities higher in easy trials compared to ambiguous trials (Wilcoxon-Mann-Whitney test, 314 

p<0.0001 for all comparisons).   315 

During their first session, the majority of subjects did not behave differently (in terms of decision 316 

duration and success probability) in the slow and the fast blocks of trials. Decision durations and 317 

probabilities of success were not statistically different between the blocks in 9 and 10 out of 17 318 

subjects, respectively (Fig. 2C, WMW test, p<0.05). By contrast, in sessions #2, the vast majority 319 

of subjects decided faster (14/17) and with a lower probability of success (13/17) in the fast block 320 

compared to the slow block, as shown in Figure 2C (WMW test, p<0.05). Figure 2B shows this 321 

effect for a typical subject in easy and ambiguous trials (compare top and bottom panels). It is 322 

interesting to note that this adjustment of behavior between the two sessions consisted in an 323 

increase of decision durations, mainly in the slow block, leading to the largest difference of 324 

decision duration and success probability between the blocks in sessions #2 compared to sessions 325 

#1 (average durations at the population level in slow versus fast blocks: 1103ms versus 962ms in 326 

sessions #1 and 1277ms versus 1012ms in sessions #2, Fig. 2D).  327 

3.3 Sensory evidence at commitment time 328 

To estimate the amount of sensory evidence the subjects needed to commit to their choices (i.e. 329 

their accuracy criterion), I computed the sum of the log-likelihood ratios (SumLogLR) at decision 330 

time, indicating the available sensory evidence for the chosen target at the time of the decision 331 

(see 41 and 2.5 in Materials and Methods), as a function of decision duration for the two block 332 
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conditions and for the two sessions separately (Fig. 3A). On average, the accuracy criterion of 333 

subjects performing their first session was significantly higher during slow blocks than fast 334 

blocks (ANCOVA, SumLogLR, block effect, F(1,345)=5.93, p=0.02). This difference was 335 

increased during sessions #2 (SumLogLR, block effect, F(1,332)=30.26, p<0.001), especially for 336 

decisions made between the fourth and the 9th token jump, i.e. the majority of decisions: 80% 337 

and 74% of slow and fast decisions, respectively (SumLogLR, block effect, F(1,198)=52.2, 338 

p<0.001). This indicates that the subjects were more willing to tolerate less sensory evidence to 339 

make their choices in the fast blocks compared to the slow blocks. I also found that except for 340 

very fast decisions (<800ms), the level of sensory evidence that subjects required before 341 

committing to a choice decreased as a function of decision duration, in both blocks and in both 342 

sessions (SumLogLR, time effect, F(1,266)=62.8, p<0.001 in sessions #1; F(1,271)=159.3, p<0.001 in 343 

sessions #2). Crucially, the difference of accuracy criterion between the blocks performed in 344 

sessions #2 was large and robust between subjects for decisions ranging from 800 to 1400ms and 345 

then tended to vanish for longer choices (SumLogLR, block x time interaction, F(1,271)=6.8, 346 

p=0.01). Figure 3B illustrates this phenomenon for each subject by comparing the average 347 

available sensory evidence at decision time between blocks when they decided after 4 or 10 token 348 

jumps. This “converging” effect was not observed for data collected in sessions #1 (SumLogLR, 349 

block x time interaction, F(1,266)=0.18, p=0.67). 350 

3.4 The urgency-gating mechanism 351 

A decreasing accuracy criterion can be implemented in mathematical models through an 352 

increasing gain of neural activity and a fixed firing threshold, as supported by recent 353 

computational and neurophysiological results (see 4.1 in Discussion). I thus used the urgency-354 

gating model (41) to find, separately for each block and each session, the slope and intercept of 355 
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urgency that produced the best estimate of the SumLogLR curve (in the least-mean-squared error 356 

sense) with data combined across trials. The best fitting parameters are shown in Figure 3C,D, 357 

along with the mean and standard deviation of the parameters estimated based on a bootstrap 358 

procedure. Although the simple assumption of a rectified linear urgency signal only 359 

approximately captured the shape of the SumLogLR curves for data collected in sessions #1, the 360 

quality of fit was remarkably good for sessions #2 data, as shown in Figure 3C (left). For these 361 

sessions, the urgency functions that best reproduce the data show a similar pattern: In the slow 362 

block, the urgency has a lower y-intercept but a higher slope than in the fast block. Consequently, 363 

although the urgency signal is initially lower in the slow block, the two functions eventually 364 

converge ~2100ms after the start of token movements. This makes sense because the difference 365 

in the amount of time potentially saved in the fast blocks versus slow blocks decreases as the 366 

number of remaining tokens decreases. Thus, later in the trial there is less of an advantage to 367 

behave differently in the two blocks. This results remarkably matches what my colleagues and I 368 

previously observed in highly trained monkeys performing the same task (25). 369 

3.5 Rate of correct responses and expected time to complete the task 370 

In this task, spending time to collect more sensory evidence usually improves accuracy. This is 371 

important because subjects had to make 320 correct decisions to complete each of the two 372 

sessions. However, as time is passing, the loss in terms of rate of correct choices may exceed the 373 

benefit of potentially gaining accuracy (see equation 2 in Methods), especially in a dynamic 374 

environment in which one does not know whether better evidence will ever come. The urgency 375 

signal has been hypothesized as an efficient way to prevent spending too much time on uncertain 376 

choices, resulting in reward rate optimization (12–17), what ultimately matters the most for 377 

subjects engaged in multiple trials decision-making tasks (10,11). How did adjustments of the 378 
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urgency signal affect subjects’ rate of reward (i.e. their expected time to complete the task)? 379 

Figure 4A shows that on average, fast blocks were completed faster than slow blocks (17min30s 380 

versus 21min in sessions #1; 17min30s versus 20min12s in sessions #2; WMW tests, p<0.0001 381 

for the two comparisons). Interestingly, the main difference between the two sessions concerns 382 

the slow block, with a reduction of the expected time to complete the task based on choice 383 

behavior between sessions. This result, initially surprising with respect to the observation that 384 

decision durations in slow blocks increased in sessions #2 compared to sessions #1, means that 385 

subjects took longer to decide, leading to higher success probabilities, thus less errors and finally 386 

less required trials to complete the task. This result is also consistent with the modelling results 387 

where the urgency shape was mainly adjusted between sessions in the slow block of trials (Fig. 388 

3D). Together, these results suggest that subjects adjusted their decision policy (in terms of 389 

decision duration and success probability) by shaping their urgency signal between blocks and 390 

sessions in order to ultimately optimize their rate of reward. This is further supported by data 391 

from the two subjects who performed six and seven sessions in the tokens task. In these two 392 

subjects, decision durations and success probabilities evolved and differed between blocks 393 

through sessions, resulting in a constant and block-independent decrease of the expected time to 394 

complete the task (Fig. 4B). 395 

3.6 Reaching behavior 396 

Did decision policy affect reach movement kinematics? Figure 5A shows distributions of one 397 

subject’s decision durations in each of the two block conditions and in each of the two sessions. 398 

This subject made slower choices in the slow block compared to the fast block but only in session 399 

#2. Figure 5B shows the velocity profiles of her reaching movements in the same conditions, for 400 

the two potential start-target distances (see 2.3 in Materials and Methods). Regardless of that 401 
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distance, velocity of the reaching movements executed to report the choices were faster in the fast 402 

block compared to the slow block, but only in session #2. At the population level, I found that 403 

peak velocity of reaching movements was significantly higher in fast block than in slow block in 404 

8 out of 17 subjects in sessions #1 and in 9 out of 17 subjects in sessions #2 (Fig. 6A top panels, 405 

WMW test, p<0.05). When velocity was divided by amplitude to get an estimation of movement 406 

vigor, I found that vigor was higher in fast block than in slow block in 12 out of 17 subjects in 407 

sessions #1 and in 14 out of 17 subjects in sessions #2 (Fig. 6A middle panels, WMW test, 408 

p<0.05). When considering movement duration, which might be the metric that matters the most 409 

for subjects trying to optimize their rate of reward, I found that movements were overall shorter 410 

in fast blocks compared to slow blocks, especially in sessions #2 (9/17, WMW test, p<0.05, Fig 411 

6A bottom panels). To assess whether a relationship between the difference of decision durations 412 

between blocks and the corresponding movement metrics exists (as suggested by data depicted on 413 

Fig. 5), I computed a Pearson correlation coefficient between the difference of decision durations 414 

between blocks and the difference of movement metrics (peak velocity, vigor and duration) 415 

between blocks across subjects (Fig. 6B). Results show no significant correlation in sessions #1, 416 

although a trend is visible for movement duration (Pearson r=0.46, p = 0.06). By contrast, a 417 

significant correlation between the adjustments of decision durations and movement peak 418 

velocity (r = -0.54, p = 0.03) and duration (r = 0.61, p = 0.009) has been found in sessions #2 419 

data. In both cases, it is worth noting that the linear model predicts a ~0 difference of kinematics 420 

between blocks when the difference of decision durations is close to 0 too. A trend, but not 421 

significant (r = -0.42, p = 0.09), has been found for movement vigor. To summarize, I found that 422 

the largest the difference of decision duration between the blocks of sessions #2, the largest the 423 

difference of movement kinematics between those two same blocks.    424 
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This observation suggests that decision urgency, the signal that determines subjects’ deliberation 425 

duration, also affects movement properties. If so, we should also observe the signature of urgency 426 

on movement kinematics within blocks of trials, when data are sorted as a function of decision 427 

duration. More precisely, if movement kinematics is fully determined by decision urgency, we 428 

should observe (based on the urgency shapes estimated in Fig. 3D) (1) an overall increase 429 

(decrease) of velocity and vigor (duration) as a function of decision duration regardless of the 430 

block condition, (2) higher (lower) velocity and vigor (duration) in fast block compared to slow 431 

block, and (3) largest differences between blocks in all metrics for the longest decisions in 432 

sessions #1 but largest differences between blocks for the shorter decisions in sessions #2. These 433 

three predictions are validated for the effect of decision duration on reaching velocity during 434 

sessions #1 (Fig. 7, top left panel): peak velocities increased with decision duration (ANCOVA, 435 

peak velocity, time effect: F(1,345) = 7.65, p = 0.006), velocities were higher in fast blocks 436 

compared to slow blocks (block effect: F(1,345) = 9.49, p = 0.002) and this difference tended to be 437 

larger for long decisions compared to short decisions, despite the interaction between time and 438 

block was not significant (time x block interaction: F(1,345) = 1.8, p = 0.18). In sessions #2 (Fig. 7, 439 

top right panel), the first two predictions are also validated, with an increase of reaching peak 440 

velocities as decision durations increased (peak velocity, time effect: F(1,332) = 5.89, p = 0.01) and 441 

higher velocities in fast blocks compared to slow blocks (peak velocity, time effect: F(1,332) = 442 

7.96, p = 0.005). However, there was no significant interaction between time and block on peak 443 

velocities (peak velocity, time x block interaction: F(1,345) = 0.26, p = 0.611), indicating that the 444 

largest difference of urgency level between the two blocks estimated at the beginning of the trial 445 

did not fully translate on reaching peak velocities. The same effects were observed when vigor of 446 

movement was analyzed instead of peak velocity (Fig. 7, middle panels). When movement 447 

duration was considered, the same effects were observed regardless of the two sessions: 448 
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movement durations significantly decreased as decision durations increased (movement duration, 449 

time effect: F(1,345) = 31, p < 0.001 in sessions #1; F(1,332) = 21, p < 0.001 in sessions #2) and 450 

reaching durations were longer in slow block compared to fast blocks (time effect: F(1,345) = 8.3, p 451 

= 0.004 in sessions #1; F(1,332) = 7.3, p = 0.007 in sessions #2). While data seem to indicate that 452 

difference between blocks was larger for short decisions compared to slow decisions (in both 453 

sessions #1 and #2) there was no significant interactions between blocks and decision time on 454 

movement duration. Taken together, the above results suggest that decision urgency strongly, but 455 

not fully, determine reaching movement properties in the token task.   456 

3.7 Oculomotor behavior 457 

In the tokens task, eye movements were unconstrained and had no influence on reward rate. 458 

Nevertheless, if the urgency signal is a global, unspecific arousal signal as suggested in previous 459 

studies (42–44), then that signal may also invigorate the saccades made during the course of the 460 

decision process (25). To test this prediction, I focused my analysis on saccades made between 461 

the two lateral circles during the deliberation period. For technical reasons, data from 13 out of 462 

17 subjects have been included in this analysis. This dataset consists of 1452 trials and 2930 463 

saccades in the slow blocks, 1339 trials and 2600 saccades in the fast blocks. When all saccades 464 

made before the decision were grouped as a function of their latency with respect to the start of 465 

token movements, results showed a highly significant increase of peak velocity, amplitude and 466 

duration over the time course of trials, in both blocks and both sessions (Fig. 8, ANCOVAs, 467 

effect of time on saccade peak velocity, amplitude and duration, p < 0.01). For instance, the 468 

average peak velocity of saccades increased from 500 deg/s around deliberation onset to more 469 

than 600 deg/s after 2s of deliberation. However, in sharp contrast with what has been observed 470 

on reaching movements, there was no significant difference of saccade velocity, amplitude or 471 
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duration between slow and fast blocks of trials, as one would have predicted if the urgency signal 472 

strongly influences saccade properties. Only significant interactions between block and time for 473 

duration and amplitude of saccades made in sessions #2 were found (duration, time x block 474 

interaction: F(1,225) = 5.6, p = 0.02; amplitude, time x block interaction: F(1,225) = 6.6, p = 0.01), 475 

with the increase of saccade duration and amplitude with deliberation time only occurring in the 476 

fast block.  477 

4. DISCUSSION 478 

In the present study, I tested the hypothesis that naïve human subjects faced with a probabilistic, 479 

changing evidence decision-making task trade speed against accuracy to maximize their rate of 480 

reward by adjusting an urgency signal, and that this urgency signal also influences the way 481 

subjects overtly report their decisions via arm movements. The results support the hypothesis, 482 

showing a context-dependent correlation between two phenomena traditionally considered 483 

separate: the accuracy criterion for decisions and the duration of movements used to report them. 484 

This observation is consistent with what has been previously demonstrated in intensely trained 485 

macaque monkeys in the same experimental design: urgency, possibly computed in the basal 486 

ganglia (27–29), not only controls decision-making timing, but also influences the speed of the 487 

following motor commands, whether movements directly influence reward rate or not (25,26).  488 

4.1 Urgency-based decision-making 489 

Traditional models of decision-making assume a simple mechanism in which sensory information 490 

is temporally integrated until a static choice threshold is crossed (45,46). Importantly, all these 491 

models assume that the speed-accuracy trade-off is controlled by the distance between the initial 492 

activity of the integrators (i.e. the baseline) and the response threshold: lowering the threshold in 493 

some blocks of trials leads to faster responses at the expense of an increase in error rate in these 494 
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blocks. More recently, computational work has included an “urgency” component in the decision 495 

process in order to explain data in ecological scenarios and to propose a more satisfying 496 

mechanistic explanation of how decisions between actions are implemented in the brain (12,13). 497 

Urgency is usually considered as an evidence-independent component of neural decision signal 498 

activity that expedites choice commitment under uncertainty (12,13,47). As a consequence, 499 

urgency-based decision models have been shown to better account for reward rate maximization, 500 

what ultimately matters the most for subjects engaged in goal-oriented behavior (11), than classic 501 

accumulation to static threshold models (12–17). Such urgency signal can be (roughly 502 

equivalently) accommodated in mathematical models either as a dynamic adjustment to the 503 

quantity of evidence required to trigger commitment (i.e. a collapsing decision threshold (39)) or, 504 

more consistently with neurophysiological observations (13,18,48), as a rising signal that is 505 

combined to sensory evidence until a fixed decision threshold is crossed (e.g. the urgency-gating 506 

model (41)), altogether forming time-variant models of decision-making. The present work 507 

replicates the observation that a context-dependent urgency-based decision policy is adopted by 508 

human subjects facing changing conditions, a result first described in the original study that used 509 

the tokens task (41) and later in variants of this task (15,49,50). It also provides several important 510 

additional observations: (1) the decision policy within and between speed-accuracy trade-off 511 

conditions is fine-tuned through practice, coinciding with an increase of the subjects’ rate of 512 

reward and (2) the decision policy strongly influences the way subjects report their choices via 513 

reaching movements. These two observations and their implications are discussed in the 514 

following sections.  515 

4.2 Human versus monkey behavior 516 
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A significant amount of support for time-variant models comes from the neurophysiological 517 

literature exploring decision-making strategies in non-human primates (13,18,19,51), raising the 518 

possibility that urgency-based decision policy is specific to “impatient” species, such as monkeys 519 

(35,39). For instance, Hawkins and colleagues found that static threshold models (assuming no 520 

urgency) make a better description of some human data sets than time-variant models whereas 521 

the urgency-gating model is more accurate in predicting monkeys’ behavior (39). It is indeed 522 

possible that naive human subjects instinctively prioritize precision over all other objectives 523 

(perhaps because of pride) and thus set a low level of urgency to guarantee high percentages of 524 

correct responses, even at a high cost of time. By contrast, monkeys, as impulsive animals in 525 

nature, would typically make very rapid decisions, betting more on the overall success (and 526 

reward) rate instead of performance per se (52).  527 

The present data do not support this hypothesis, as most subjects adopted an urgency-based 528 

decision policy (i.e. a dropping accuracy criterion) that was adjusted depending on the reward 529 

rate context of the task irrespective of the session they performed (Fig. 3). More investigations 530 

are needed in order to assess whether or not these conclusions are generalizable to other studies, 531 

as it is likely that decision-making mechanisms are at least partially task dependent. However, 532 

they are consistent with numerous recent studies (but see (37,38)) that have demonstrated that 533 

naïve human decision-makers decrease their accuracy criterion as time is passing within a trial 534 

when making successive decisions between actions, whether these decisions are guided by 535 

sensory or value cues (15–17,40–44,53–56). 536 

4.3 Effect of practice on decision policy  537 

Logically, the effect of practice history has been put forward as another explanation for differences 538 

in decision policies within and across animal species (11,36,39,52). A large amount of practice 539 



 25

necessarily shaping subjects’ behavior, it would allow them (usually monkeys) to explore more 540 

strategies than subjects (usually humans) faced with only a few experimental sessions. However, 541 

the present results show that most of the subjects made urgency-based decisions as soon as they 542 

performed their first experimental session (Fig. 3A). Such urgency-native behavior is in agreement 543 

with a recent study in which time-variant models provided better fits than time-invariant ones to 544 

data from two classic response time paradigms, regardless of subjects’ practice load (40). 545 

Nevertheless, the present data also show some degree of experience-dependent adjustment of 546 

urgency level: first, subjects lowered their baseline urgency level in the slow block of session #2 547 

compared to session #1 (Figs 2D and 3D). This is interesting because it means that naïve subjects 548 

started to perform the task in a rather “impulsive” mode and then only became more conservative 549 

with practice. Remarkably, after only one session, the shapes of the subject’s urgency functions 550 

looked on average very similar to the ones of two highly trained monkeys in the exact same task 551 

(compare Fig. 3D and Fig. 3B in 25): difference of urgency between blocks was larger for short 552 

decisions compared to long decisions, which is the good strategy to adopt in this task where the 553 

difference in the amount of time potentially saved between blocks diminishes as tokens are jumping 554 

in a trial. Second, in the two subjects tested six and seven times, decision policy (decision duration 555 

and success probability) constantly evolved through sessions, possibly reflecting the fine-tuning of 556 

the block-dependent urgency functions permitting the minimization of the time necessary to 557 

complete each session (i.e. to maximize the rate of reward, Fig. 4B). In a recent study, Evans and 558 

Hawkins (36) addressed a similar question with respect to the decision-making process, looking at 559 

whether human subjects performing a motion discrimination task were more likely to adopt 560 

collapsing thresholds after practice and/or feedback delays. Interestingly, they found that 561 

participants adopted fixed thresholds before practice and without feedback delays, but that they 562 

behaved according to an urgency-based mechanism from the first session if the decision feedback 563 
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was slightly delayed in time, mirroring a response deadline context. Crucially, in this feedback 564 

delayed condition, steepness of collapsing thresholds almost continuously increased through the 565 

successive sessions performed by the subjects.  566 

4.4 An unified mechanism of control during decision and action? 567 

The slight evolution of subjects’ decision strategy between the two sessions provides us with a 568 

good opportunity to investigate the strength of that policy effect on movement kinematics. 569 

Indeed, a simple way to explain the correlation between decision criterion and movement 570 

kinematics in the tokens task is to suppose that the vigor of movements is in part influenced by 571 

the level of the urgency signal at decision time (30,31). But how strong is this influence and why 572 

would that common regulation exist? On one hand, the effect of block on the kinematics of 573 

movements executed to report these decisions was more pronounced in session #2 compared to 574 

session#1 (Fig. 6A). Because the difference of urgency level between blocks was larger in 575 

session #2 compared to session #1 as well, one may propose that the urgency signal at the time of 576 

commitment strongly determines kinematics of the ensuing movements. But on the other hand, 577 

the non-significant correlation between decision duration and movement parameters in sessions 578 

#1 forces us to tone this proposal down. Moreover, when the effect of decision duration on 579 

movement properties is investigated within blocks, modulations of movement speed, vigor or 580 

duration appear similar irrespective of the session (Fig. 7). If movement kinematics was directly 581 

under the control of decision urgency, one would have observed session-dependent differences of 582 

movements metrics between and within blocks, with modulations resembling the shape of the 583 

urgency functions estimated based on subjects’ decision behavior. Taken together, these 584 

observations suggest that although decision urgency strongly and innately influences movement 585 

kinematics, decision-making and movement control are not strictly unified processes (57).   586 
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A link between deliberation and movement kinematics makes perfect sense in the context of 587 

reward rate maximization. In the tokens task, the tokens remaining in the central circle start to 588 

accelerate only after the cursor enters the chosen target. As a consequence, the longer the 589 

movement, the longer the period separating its completion from reward. Thus, because reward 590 

rate is influenced by the time spent executing the movement, urgency might exert a compensatory 591 

influence on handling time, such that the cost of investing additional time in deliberation will be 592 

partially offset by a decrease in the duration of the movements used to report the choice. In 593 

agreement with this hypothesis, it has been shown that human movements are parameterized 594 

following economical rules: expectation of reward increases speed of movements, whereas 595 

expectation of effort decreases this speed (20–24). This possibility would also explain why a 596 

motor system that does not directly impact the rate of reward in this task (i.e. the oculomotor 597 

system) does not appear as strongly modulated by urgency as one directly involved in reward rate 598 

maximization (i.e. the reaching motor system, Figs. 7 and 8). 599 

4.5 A neurophysiological mechanism to optimize the rate of reward 600 

The neural mechanisms that contribute to the optimization of the reward rate are poorly 601 

understood. Several arguments point toward the sensorimotor territory of the basal ganglia (BG) 602 

as a brain region that could compute a global signal capable of determining both decision and 603 

movements speed in order to optimize this rate. First, the BG integrate rich sensory and motor 604 

information from the neocortex with reward-related dopaminergic signals. This information is 605 

further processed throughout the BG nuclei where a dramatic reduction in neuron number occurs, 606 

thereby contributing to the formation of a low-dimensional integrated signal that could efficiently 607 

modulate neuronal activity in the entire neocortex through recurrent dynamics (29,58). Second, 608 

electrophysiological recordings in the sensorimotor regions of the globus pallidus and dorsal 609 
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striatum (output and input of the BG, respectively) of behaving non-human primates and rodents 610 

are consistent with the hypothesis that the BG motivate voluntary behavior, including the urgency 611 

to decide (29,59) and the vigor of movements (60–62). Last, a reduction in goal-directed 612 

movement speed is common to non-human primates with BG output inactivation, human subjects 613 

with lesions in their BG and patients suffering from Parkinson's Disease (33,34,63) . In the latter 614 

case, slowness of cognition, including decision-making, is often reported (64). 615 

4.6 A « trait-like » view of urgency 616 

A limitation of the present study, as often in the study of primate cognition and behavior, relates 617 

to the fact that subjects might have employed various strategies to solve the task depending on 618 

their personality. The large inter-subject variability observed in terms of decision duration 619 

supports this possibility (Fig. 2C-2D). Strikingly, the average decision duration ranged from 620 

~700ms to about 1600ms depending on subjects, despite the fact that these participants faced the 621 

same trials under identical conditions. This strongly suggest some “trait” levels of decision 622 

urgency, consistently with what has been found during movement behavior: some subjects 623 

perform movements up to four times faster than others (30,57,65). Thus, even though such 624 

variability might at first sight blur any conclusive statement about a “standard” decision 625 

mechanism employed by subjects to solve the tokens task, it could instead provide fundamental 626 

insights regarding subjects’ personality traits. My colleagues and I indeed recently proposed that 627 

decision-makers might control diverse behavioral outputs based on a urgency-mechanism whose 628 

“default” setting is proper to each individual but varies across them (32).  629 

5. CONCLUSION630 

Taken together, the present results suggest that urgency might provide the mechanistic link for 631 

establishing a strong (but not perfect) control of decision timing and action vigor in “non-expert” 632 
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human subjects in order to optimize the rate of reward. Because it has been proposed that urgency 633 

controls the timing of both decisions and movements through projections from the basal ganglia 634 

to sensorimotor regions (27–29,42,44,61), it might also influence many other aspects of 635 

motivated behavior through projections to other cortical regions, including prefrontal and limbic 636 

areas. Urgency could thereby accounts for inter-individual differences in a variety of specific 637 

traits, and possibly even some symptoms of neurological disorders (32–34). 638 

639 
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6. FIGURE CAPTIONS640 

641 

Figure 1 – The tokens task 642 

A. Time course of a trial in the tokens task. Blue circles illustrate the decision stimuli. Tokens643 

successively jump from the central circle to one of the two lateral circles. Black circles show the 644 

movement stimuli. Subjects move a lever (cross) from a central “start” circle to one of the two 645 

lateral targets, depending on their choice. Reaching targets size and distance could vary in blocks 646 

of trials (effects of target features are not investigated in the present paper, see 2.3 in Methods) B. 647 

Temporal profile of success probability in an example trial. During deliberation, response 648 

preparation and execution, tokens jump every 200ms. The estimated time of the decision (DT) is 649 

computed by subtracting the subject’s mean sensory-motor delay (SM) estimated in the delayed 650 

reach task from movement onset time (RT), allowing computation of the success probability (SP) 651 

at that moment. After movement completion, the remaining tokens jump more quickly in their 652 

assigned lateral circles, either every 150ms (“slow” block, blue) or 20ms (“fast” block, red). For 653 

clarity reasons, only 10 out of 15 jumps are illustrated on this trial SP profile. C. Average success 654 

probability profiles of easy (green) and ambiguous (blue-green) trials. Criteria (black marks) 655 

were used to define these special trials interspersed among fully random trials. For instance, a 656 

trial is classified as “easy” if SP > 0.6 after the first token jump (i.e. if the first token jumps into 657 

the correct circle), SP > 0.7 after 3 jumps, etc. A trial is classified as ambiguous is SP = 0.5 after 658 

the second jump, SP between 0.38 and 0.65 after 3 jumps, SP between 0.55 and 0.65 after 5 659 

jumps, etc.  660 
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661 

Figure 2 – Effect of trial difficulty and SAT context on decision policy 662 

A. Distribution of subject S18 decision duration (left panels) and success probability (right663 

panels) during easy (green) and ambiguous (blue-green) trials performed in either the slow (top 664 

panels) or fast (bottom panels) blocks of the tokens task during her first experimental session. 665 

Colored arrows illustrate the means of the distributions. B. Same as A for subject S18 data 666 

collected in session #2. C. Average decision times (left panels) and success probabilities (right 667 

panels) of each subject during slow (x-axis) and fast (y-axis) blocks performed in the first (top 668 

panels) and the second (bottom panels) session. Blue pluses indicate the mean and SE for 669 

subjects for whom the difference was significant (WMW test, p<0.05). D. Average decision times 670 

(left panel) and success probabilities (right panel) across the population as a function of the 671 

session number and the block condition. Dots illustrate individual data. 672 

673 
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674 

Figure 3 – Urgency-gating mechanism 675 

A. Average estimate of subjects’ accuracy criterion (calculated as the SumLogLR) at decision676 

time as a function of decision duration (in 200ms bins) during slow (blue) and fast (red) blocks in 677 

sessions #1 (left panel) and #2 (right panels). Faded lines illustrate individual data. B. Average 678 

SumlogLR at decision time of each subject during slow (x-axis) and fast (y-axis) blocks either 679 

after 4 (top panels) or 10 (bottom panels) token jumps, during sessions #1 (left panels) and 680 

sessions #2 (right panels). C. Average ± SE SumLogLR computed across all trials compared, 681 

separately for each block type, with the SumLogLR computed using the best-fit urgency-gating 682 

model (dotted line ± SE) with a simple linearly increasing urgency function, shown in D. Left 683 

panels show data collected in sessions #1, right panels illustrate data collected in sessions #2. D. 684 

Urgency functions estimated based on the best fit of the urgency-gating model (bold lines) and 685 

mean ± SD urgency functions estimated based on a bootstrap procedure (thin lines and shaded 686 

areas) for each block type (blue: slow; red: fast) and each session (left: sessions #1; right: 687 

sessions #2).688 
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689 

Figure 4 – Effect of SAT context and practice on reward rate 690 

A. Average expected time to complete a block of trials across the population as a function of the691 

session number and the block condition. Dots illustrate individual data. B. Evolution of mean (± 692 

SE) decision durations (top panels), success probabilities (middle panels) and mean expected 693 

time to complete a block of trials (bottom panels) during slow (blue) and fast (red) blocks as a 694 

function of session number in subject S2 (left panels) and S3 (right panels). 695 

696 
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 697 

Figure 5 – Example of movement modulation as a function of decision duration  698 

A. Distributions of subject S18 decision duration in the slow and fast blocks of session #1 and 699 

session #2. B. Reach velocity profiles of subject S18 in the slow (blue) and fast (red) blocks of 700 

session #1 (light colors) and #2 (dark colors). 701 

 702 

 703 
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 704 

Figure 6 – Correlation between decision duration and reach kinematics 705 

A. Average reaching movement peak velocity (top panels), vigor (middle panels) and duration 706 

(bottom panels) of each subject during slow (x-axis) and fast (y-axis) blocks performed in the 707 

first (left panels) and the second (right panels) session. Blue (red) pluses indicate the mean and 708 

SE for subjects for whom data is larger (smaller) in the slow block compare to the fast block and 709 

the difference was significant (WMW test, p<0.05). B. Difference of decision duration between 710 

slow and fast blocks for each subject (x-axis) as a function of the difference of reaching 711 

movement peak velocity (top panels), vigor (middle panels) or duration (bottom panels) in the 712 

same two blocks (y-axis) performed in either the first (left panel) of the second (right panel) 713 

session. The grey line corresponds to a linear regression through the data. The solid (dotted) grey 714 

line illustrates a significant (non-significant) correlation between the data.  715 
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716 

Figure 7 – Effects of decision context and duration on reach kinematics 717 

Mean (±SE) of the peak velocity (top panels), vigor (middle panels) and duration (bottom panels) 718 

of arm movement computed across subjects and binned according to decision duration in 200ms 719 

bins, in the slow (blue) and fast (red) block of trials for data collected in sessions #1 (left panels) 720 

and #2 (right panels). 721 
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 722 

Figure 8 – Effects of decision context and duration on saccade kinematics 723 

Mean (±SE) of the peak velocity (top panels), amplitude (middle panels) and duration (bottom 724 

panels) of saccadic eye movement computed across subjects and binned according to elapsing 725 

time in 200ms bins, in the slow (blue) and fast (red) block of trials for data collected in sessions 726 

#1 (left panels) and #2 (right panels).  727 
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