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Recent work in highly trained monkeys suggests that decision-making and motor control are linked processes whose regulation by urgency allows reward rate optimization. However, such urgency-based mechanism might be species-specific and/or a consequence of practice. Here I show that the unified regulation hypothesis exists in naïve human subjects. Seventeen volunteers performed a reach decision task in which blocks of trials encouraged either risky or conservative choices. Participants performed at least two sessions in which they were indirectly motivated to maximize their reward rate. Results show that subjects' accuracy criterion decreased over time within each trial, and that decisions were earlier and less accurate in fast than slow blocks, with a larger difference in session #2 compared to session #1. A simple model in which sensory information is combined with a growing urgency signal captured these effects. Crucially, arm and eye movement vigor systematically increased as decision duration increased within blocks and the block-dependent decision policy strongly predicted the kinematics of reaching movements. These results suggest a practice-independent mechanistic link for establishing the unified control of human decision timing and action vigor in order to optimize the rate of reward.

INTRODUCTION

Decision-making is ubiquitous in animal kingdom. The type of decisions humans share with other animals is mainly restricted to decisions between actions, whether these decisions rely on purely sensory or on combined value-sensory cues. Crucially, neural circuits underpinning decisions between actions have been remarkably conserved through evolution. For instance, animals as old as lampreys possess the same basal ganglia machinery, in terms of connectivity, ion channels, transmitters and co-transmitters, as mammals [START_REF] Grillner | The basal ganglia downstream control of brainstem motor centres-an evolutionarily conserved strategy[END_REF][START_REF] Grillner | The Basal Ganglia Over 500 Million Years[END_REF].

Most recent theoretical and experimental work suggests that action selection and execution are tightly linked processes that share neural substrates [START_REF] Cisek | Cortical mechanisms of action selection: the affordance competition hypothesis[END_REF][START_REF] Gold | The Neural Basis of Decision Making[END_REF]. This "embodied" decision concept [START_REF] Cisek | On the challenges and mechanisms of embodied decisions[END_REF][START_REF] Lepora | Embodied Choice: How Action Influences Perceptual Decision Making[END_REF] diverges from the classical view, inherited from cognitive psychology, in which perception, decision and action are considered as temporally separate and serial processes [START_REF] Pylyshyn | Computation and Cognition: Toward a Foundation for Cognitive Science[END_REF][START_REF] Padoa-Schioppa | Neurobiology of Economic Choice: A Good-Based Model[END_REF]. Embodied decision-making makes very good ecological sense: options are always multiple, specified by spatio-temporal information and highly dynamic in nature [START_REF] Gibson | The ecological approach to visual perception[END_REF]. Consequently, the mechanisms that serve decisions made during interactive behavior must have been designed to be very fast and flexible. For instance, individuals are free to adjust the time they invest in deciding versus moving. This is crucial because the actual subjective value of a given activity is not only determined by the immediate rewards and efforts associated with that activity but also by the amount of time invested in it. Therefore, what is ultimately most adaptive is to choose actions that maximize one's global reward rate [START_REF] Bogacz | Do humans produce the speed-accuracy trade-off that maximizes reward rate?[END_REF][START_REF] Balci | Acquisition of decision making criteria: reward rate ultimately beats accuracy[END_REF], which occurs when the decision and action processes are sufficiently accurate but not overly time consuming. Thus, nearly all decision scenarios present decision-makers with a speed-accuracy trade-off (SAT) during both decision and action.

Thenceforth, how to determine the deliberation duration and the movement speed that optimize reward rate? On one hand, my colleagues and I, among others, have proposed that control of decision urgency is critical for reward rate maximization [START_REF] Ditterich | Evidence for time-variant decision making[END_REF][START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Standage | Gain Modulation by an Urgency Signal Controls the Speed-Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit[END_REF][START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Malhotra | Overcoming indecision by changing the decision boundary[END_REF][START_REF] Malhotra | Time-varying decision boundaries: insights from optimality analysis[END_REF]. Urgency is a contextdependent, motor-related signal that grows over the time course of a deliberation. It pushes the decision-related neural activity toward the commitment threshold, thus preventing spending too much time on a choice when sensory evidence is weak and outcome uncertain [START_REF] Thura | Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making[END_REF][START_REF] Kira | A Neural Implementation of Wald's Sequential Probability Ratio Test[END_REF]. On the other hand, it has been convincingly shown that movement properties are determined according to economical rules, showing modulations of vigor and variability depending on reward probability and delay [START_REF] Shadmehr | Temporal Discounting of Reward and the Cost of Time in Motor Control[END_REF][START_REF] Shadmehr | Movement Vigor as a Reflection of Subjective Economic Utility[END_REF][START_REF] Haith | Evidence for Hyperbolic Temporal Discounting of Reward in Control of Movements[END_REF][START_REF] Choi | Vigor of Movements and the Cost of Time in Decision Making[END_REF][START_REF] Summerside | Vigor of reaching movements: reward discounts the cost of effort[END_REF]. My previous work also demonstrated that, in trained monkeys, urgency not only controls decision-making timing, but also the speed of the following motor commands: reaching movements expressing urgent decisions were faster compared to movements expressing informed, evidence-based decisions. Interestingly, the urgency effect on movement execution did not appear to be effector-specific, as it also affected to some extent the speed of saccadic eye movements, despite the fact that oculomotor behavior was not constrained in the task and did not affect reward rate [START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF][START_REF] Thura | Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs[END_REF].

Consistent with a role in the simultaneous modulation of multiple processes, it has been proposed that the neural correlates of the urgency signal lie in the basal ganglia [START_REF] Bogacz | The neural basis of the speed-accuracy tradeoff[END_REF][START_REF] Forstmann | Cortico-striatal connections predict control over speed and accuracy in perceptual decision making[END_REF][START_REF] Thura | The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment[END_REF], a set of subcortical nuclei forming segregated neuroanatomical loops with nearly every parts of the brain.

Accordingly, urgency might provide a mechanistic link for establishing the unified control of both decision timing and action vigor in order to optimize reward rate through projections from the basal ganglia to sensorimotor regions [START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF][START_REF] Reppert | Modulation of Saccade Vigor during Value-Based Decision Making[END_REF][START_REF] Yoon | Control of movement vigor and decision making during foraging[END_REF]. More globally, urgency might also play a key role in a wide variety of phenomena in both health and disease, ranging from personality traits such as impulsivity or apathy, to major pathological conditions such as in Parkinson's disease or obsessive compulsive disorders, through projections to other cortical regions, including prefrontal and limbic areas [START_REF] Carland | The Urge to Decide and Act: Implications for Brain Function and Dysfunction[END_REF][START_REF] Yttri | A Proposed Circuit Computation in Basal Ganglia: History-Dependent Gain: Proposed Circuit Computation in Basal Ganglia[END_REF][START_REF] Mazzoni | Why Don't We Move Faster? Parkinson's Disease, Movement Vigor, and Implicit Motivation[END_REF].

However, most of the arguments in support of a role of urgency in goal oriented-behavior rely on data collected on highly trained monkeys who performed the same decision-making tasks for months or even years. This is a concern because some findings suggest that human and nonhuman primates adopt different policies to make rapid decisions between actions (see for instance [START_REF] Boehm | Of monkeys and men: Impatience in perceptual decision-making[END_REF][START_REF] Evans | When humans behave like monkeys: Feedback delays and extensive practice increase the efficiency of speeded decisions[END_REF]). One possible explanation for this discrepancy is that decision mechanisms are truly species-specific, only permitting the species-dependent strategies that produced the behavioral differences observed in the literature. In agreement with this possibility, recent quantitative analyses of human behavior have found evidence in favor of urgency-free mechanisms of decision-making [START_REF] Evans | The computations that support simple decision-making: A comparison between the diffusion and urgency-gating models[END_REF][START_REF] Voskuilen | Comparing fixed and collapsing boundary versions of the diffusion model[END_REF], whereas research comparing urgency versus urgency-free mechanisms in non-human primates has provided convincing support for an urgency-based decision mechanism [START_REF] Boehm | Of monkeys and men: Impatience in perceptual decision-making[END_REF][START_REF] Hawkins | Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making[END_REF]. Another possibility is that, because monkeys are usually trained on a behavioral task over a long period of time, the large amount of practice shapes their behavior, allowing them to explore more strategies than human subjects faced with only a few experimental sessions. As a consequence, a debate recently emerged in the field in which it has been legitimately argued that urgency-based mechanisms may only be present in naturally "impatient" species like monkeys, or in highly trained individuals [START_REF] Balci | Acquisition of decision making criteria: reward rate ultimately beats accuracy[END_REF][START_REF] Boehm | Of monkeys and men: Impatience in perceptual decision-making[END_REF][START_REF] Evans | When humans behave like monkeys: Feedback delays and extensive practice increase the efficiency of speeded decisions[END_REF][START_REF] Hawkins | Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making[END_REF][START_REF] Palestro | Some task demands induce collapsing bounds: Evidence from a behavioral analysis[END_REF].

The aim of the present work was thus to test the hypothesis that the common regulation of decision and movement durations by urgency which has been previously observed in "expert" monkeys is not species-specific, nor a consequence of overtraining. This hypothesis predicts that naïve human subjects will adopt urgency-based decision policy as soon as they will perform their first experimental session and that this policy will modulate the way they express their choices via reaching movements. It also predicts that decision urgency will influence movements that do not directly influence reward rate, such as saccades, in the task described below.

To this aim, I conducted an experiment where participants performed a reach decision task in which (1) deliberation duration is controlled by subjects and is dissociated from commitment time, allowing an accurate investigation of these two distinct processes, including the quantification of the sensory information used by subjects at time of commitment and the inference of the urgency level at that time; (2) sensory information continuously evolves during the time course of a trial, an ecological feature allowing to make distinct predictions about the decision mechanism involved (see [START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Thura | Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making[END_REF]); (3) the timing parameters can be manipulated in order to encourage speed-accuracy trade-off adjustments, allowing to test the effect of such SAT context on decision and movement policies; (4) decisions are expressed with reaching movements and oculomotor behavior is unconstrained, allowing to assess the effect of decision policy on motor control.

MATERIALS AND METHODS

Participants

Twenty healthy, human subjects (ages: 18-41; 14 females; all right handed) participated in this study. All gave their consent before starting the experiment. The ethics committee of Inserm (IRB00003888) approved the protocol on March 19 th 2019. Each participant was asked to perform two experimental sessions. They received a monetary compensation (20 euros per completed session) for participating in this study. Among them, seventeen (ages: 20-41; 13 females) completed at least two sessions and have thus been included in the present dataset.

Setup

The subjects sat in an armchair and made planar reaching movements using a lever held in their right hand. A digitizing tablet (GTCO CalComp) continuously recorded the lever horizontal and vertical positions (125 Hz with 0.013cm accuracy). Target stimuli and cursor feedback were projected by a DELL P2219H LCD monitor (60 Hz refresh rate) onto a half-silvered mirror suspended 26 cm above and parallel to the digitizer plane, creating the illusion that targets floated on the plane of the tablet. Unconstrained eye movements and pupil area were recorded using an infrared camera (ISCAN, sampling rate of 120 Hz).

Tasks

The subjects performed a modified version of the tokens task (Figure 1A, 41). They were faced with a visual display consisting of three blue circles (1.5 cm radius) placed horizontally at a distance of 6 cm of each other (the "decision" stimuli). In the central blue circle 15 small tokens were randomly arranged. Positioned 12 cm below, three black circles, organized horizontally as well, defined the "movement" stimuli. While the central black circle radius was kept constant at 0.75 cm, the size of the lateral black circles and their distance from the central circle could vary in blocks of trials: Size was set to be either 0.75 or 1.5 cm of radius, and distance from the central circle was varied to be either 6 or 12 cm (see below).

A trial was initiated when the subject moved the lever into the small black central circle (starting position) and stayed immobile for 500ms. At this time the tokens started to jump, one by one, every 200ms in one of the two possible lateral blue circles. The subjects' task was to decide which of the two lateral blue circles would receive the majority of the tokens at the end of the trial. They reported their decisions by moving the lever into the lateral black circle corresponding to the side of the chosen blue circle. Importantly, subjects were allowed to make and report their choice at any time between the first and the last jump. Arm movement duration could not exceed 800ms, preventing overtly expressed changes of mind. Once the choice was reported, the remaining tokens jumped more quickly to their final targets. In separate blocks of trials, this postdecision interval was set to either 20ms ("fast" blocks) or to 150ms ("slow" blocks). After holding the lever in the target for 500ms, a visual feedback about decision success or failure (the chosen decision circle turning either green or red, respectively) was provided after the last token jump. A 1500ms period (the inter-trial interval) preceded the following trial.

Before and after the tokens task described above, each subject also performed 100 trials (2 blocks of 25 trials before and 2 blocks of 25 trials after the tokens task) of a simple choice, delayed reaction time task (DR task). This task was identical to the tokens task except that there was only one lateral decision circle displayed at the beginning of the trial (either at the right or at the left side of the central circle with 50% probability) and all tokens moved from the central circle to this unique circle at a GO signal occurring after a variable delay (1000 ± 150ms). This task was used to estimate of the sum of the delays attributable to sensory processing of the stimulus display as well as to response initiation.

Instructions

In a given session, subjects were asked to complete one slow block and one fast block of the tokens task. To complete a block, subjects had to make 160 correct choices, indirectly motivating them to optimize successes per unit of time. After the first block completed, a short break was offered to the subject. Within each block, the size of the movement targets and their distance from the starting circle were varied every 40 trials. The influence of the reaching target properties on subjects' behavior is not described in the present paper.

In order to test the effect of practice on decision/movement policy, subjects performed two sessions (test-retest design), one per day and each of them separated by a maximum of seven days. In session #1 subjects first performed the tokens task in the slow block, followed by the fast block. To prevent any block-related confounding effect, the order of block presentation was reversed in session #2. Before the first session, I explicitly described to the subjects the principle of each block, specifying that deciding quickly in the fast block was more advantageous in terms of time saving than in the slow block (because of the larger acceleration of the remaining tokens) but that hasty behavior could also lead to more erroneous decisions. Subjects were thus informed that they could volitionally adjust their behavior depending on the block condition but they were not penalized for behaving exactly the same way in the two blocks. A short recall was provided before starting the second session. Because subjects were informed that they had to complete a given number of correct responses, they were all aware that they were presented with a speed/accuracy trade-off in this task.

A "familiarization" period consisting of performing 20 tokens task trials was proposed at the beginning of the first session, mainly allowing subjects to get familiar and comfortable with the manipulation of the lever on the tablet. Among the 21 subjects who participated in this study, two have been tested six and seven times, still performing one session a day with no more than seven days between two successive sessions. For these two "longitudinal" subjects, the order of block presentation was varied before each new session.

Data analysis

The tokens task allows to calculate, at each moment in time, the success probability pi(t) associated with choosing each target i. For instance, for a total of 15 tokens, if at a particular moment in time the right target contains NR tokens, whereas the left contains NL tokens, and there are NC tokens remaining in the center, then the probability that the target on the right will ultimately be the correct one (i.e., the success probability of guessing right) is as follows:
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To characterize the success probability profile for each trial, I calculated this quantity (with respect to the target ultimately chosen by the subject) for each token jump (Fig. 1B). All subjects faced the same sequence of trials, in which I interspersed among fully random trials (20% of the trials in which each token is 50% likely to jump into the right or into the left lateral circle) three special types of trials characterized by particular temporal profiles of success probability.

Subjects were not told about the existence of these trials. 30 % of trials were so-called "easy" trials, in which tokens tended to move consistently toward one of the circles, quickly driving the success probability pi(t) for each toward either 0 or 1. There were several variations of easy trials (see the criteria in Figure 1C), and the average success probability profile is shown in Figure 1C (green curve). Another 30% of trials were "ambiguous" (Fig. 1C, blue-green curve), in which the initial token movements were balanced, making the pi(t) function close to 0.5 until late in the trial. The last special trial type was called "misleading" trials (20%) in which the 2-3 first tokens jumped into the incorrect circle and the remaining ones into the correct circle. In all cases, even when the temporal profile of success probability of a trial was predesigned, the actual correct target was randomly selected on each trial.

To estimate the time at which subjects committed to their choice (decision time, DT) on each trial in the tokens task, I detected the time of movement onset (based on reach kinematics, defining subject's reaction time, RT) and subtracted the subject's mean sensory-motor delays (SM) estimated from the DR task performed on the same day. Decision duration was computed as the duration between decision time and the first token jump. I then used Equation 1 to compute for each trial the success probability at the time of the decision (SP; Fig. 1B).

To quantify subjects' performance, I first calculated the reward rate (RR), using a local definition [START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Haith | Evidence for Hyperbolic Temporal Discounting of Reward in Control of Movements[END_REF] which corresponds to the expected number of correct choices per unit of time. This is computed as follows:
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where SPn is the probability that the choice made on trial n was correct, DTn is the time taken to make the decision, SM is the sensori-motor delays (constant for a given session), MTn is the movement time, RDn is the duration of the remaining token jumps after the target is reached, and ITI is the inter-trial interval (fixed at 1500ms). Then from the average reward rate computed in each block I calculated the average number of correct choices per minute and deducted from it the time necessary to complete 160 correct choices in each of the slow and fast conditions. Calculation of subjects' accuracy criterion at decision time relies on the available sensory evidence at that time. Because it is very unlikely that subjects can calculate Equation 1, I computed a simple "first order" approximation of sensory evidence as the sum of log-likelihood ratios (SumLogLR) of individual token movements as follows (41, page 11567, provides more details on this analysis):
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where p(ek|S) is the likelihood of a token event ek (a token jumping into either the selected or unselected target) during trials in which the selected target S is correct, and p(ek|U) is its likelihood during trials in which the unselected target U is correct. The SumLogLR metric is thus proportional to the difference in the number of tokens which have moved in each circle before the moment of decision. To characterize the decision policy of a given subject in a given block of trials, I binned trials as a function of the total number of tokens that moved before the decision, and calculated the average SumLogLR for each bin.

All arm and eye movement data were analyzed off-line using MATLAB (MathWorks). Reaching characteristics were assessed using subjects' movement kinematics. Horizontal and vertical position data were first differentiated to obtain a velocity profile and then filtered using a sixth order low-pass filter with a frequency cutoff of 15 Hz. Onset and offset of movements were determined using a 3 cm/s velocity threshold. Peak velocity was determined as the maximum value between these two events. Reaching movement vigor was estimated by dividing the movement peak velocity by its amplitude. Therefore, according to this local definition, a movement is more vigorous than another if for the same amplitude, its peak velocity is higher.

During both the tokens and the DR tasks, subjects eye movements were unconstrained. After each session, an offline recalibration of the raw eye position signals was performed (taking the average eye position in the DR task as a reference), after which eye data were first differentiated, filtered using a sixth-order low-pass filter with a frequency cut-off of 50 Hz and then up-sampled at 1000 Hz using a cubic spline interpolation method. The beginning and end of saccades were identified using an adaptive velocity threshold algorithm (varying as a function of the signal-tonoise ratio). Because the two decision circles were arranged horizontally from each other, most saccades were mainly horizontal during the deliberation process. I thus only analyzed the horizontal component of saccades made by subjects during the deliberation period. Moreover, to be included in the analyses, saccades had to have an amplitude between 20 and 34 degrees of visual angle (corresponding to saccades made between the two lateral circles), a peak velocity between 400 and 900 degrees/s, a duration above 50ms, and be executed after the first token jump and before the estimate of the subject's decision time.

Computational modeling

Mathematically, an urgency-based decision mechanism can be implemented in different ways, but the best match between the neurophysiological data and model predictions is provided by a short-time constant integration process with a gain of the sensory signals, which increases over time during deliberation [START_REF] Thura | Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making[END_REF][START_REF] Cisek | Decisions in Changing Conditions: The Urgency-Gating Model[END_REF]. To simulate the decision data, I thus used a minimal implementation of the urgency gating model [START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Cisek | Decisions in Changing Conditions: The Urgency-Gating Model[END_REF], in which evidence is multiplied by a linearly increasing urgency signal, and then compared with a fixed threshold. This mechanism roughly corresponds to a threshold that continuously collapses over the time course of a decision while sensory gain is kept stable. Because in the present task there is no stimulus noise, I discarded the low-pass filtering stage of the sensory evidence and calculated it simply as the difference in the number of tokens in each target [START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF]. The result can be expressed as follows:
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where yi is the "neural activity" for choices to target i, Ni is the number of tokens in target i, t is the number of seconds elapsed since the start of the trial, m and b are the slope and y-intercept of the urgency signal, and [] + denotes half-wave rectification (which sets all negative values to zero). When yi for any target crosses the threshold T, that target is chosen. Two sources of internal variability were introduced into the model. Inter-trial variability was simulated by multiplying the urgency signal by a factor that was normally distributed with mean = 1 and SD = 0.1. Intra-trial variability was simulated by jittering the decision time by a term that was normally distributed with mean zero and SD of 0.2 s.

This simple model has only two free (but constrained, see below) parameters: m and b (the threshold T is just a scaling factor). To fit the data, I set T = 1 and then performed an exhaustive grid search for all (2050) combinations of m and b where m ranged from 0 to 0.40, and b ranged from -1.2 to 0.76. This was performed separately for each block type, with data combined across all trials, and the quality of fit was assessed using the mean-squared-error between the sum of log-likelihood ratios as a function of time (Equation 3) generated by the model and data for all decision times in the interval between 0 and 3.0s. After finding the best pair of parameters for each dataset using the grid search, I performed a bootstrap consisting of randomly picking trials with replacement among the original dataset within each block to determine a new best pair of parameters with the grid search method. After repeating this procedure 500 times, I computed the mean shape (linear function based on m and b parameters) ± SD of the urgency functions from the best parameters distribution.

Thus, contrary to most investigations of SAT control in which the threshold value differs between SAT conditions, here the decision threshold is fixed and the variation of the context-dependent distance between the starting point and this threshold is captured by adjustments of the urgency signal, both between and within blocks of trials.

RESULTS

Global performance

In the tokens task, the overall percentage of correct choices of subjects performing the first session was 79% ± 4.9 (slow block: 80% ± 5.7 -range: 68-86%; fast block: 78% ± 5.3 -range: 66-85%). Their performance slightly increased during the second session: 81% ± 4.0 (slow block: 83% ± 3.3 -range: 73-87%; fast block: 80% ± 5.4 -range: 71-91%).

Decision duration and success probability

As expected, subjects' behavior was strongly influenced by the specific pattern of token movements within a trial (i.e. trial difficulty), regardless of the session or the block condition. As a typical example, Figure 2A,B shows decision durations and success probabilities of a subject faced with easy and ambiguous trials during the tokens task. Decisions were faster and success probabilities higher in easy trials compared to ambiguous trials (Wilcoxon-Mann-Whitney test, p<0.0001 for all comparisons).

During their first session, the majority of subjects did not behave differently (in terms of decision duration and success probability) in the slow and the fast blocks of trials. Decision durations and probabilities of success were not statistically different between the blocks in 9 and 10 out of 17 subjects, respectively (Fig. 2C, WMW test, p<0.05). By contrast, in sessions #2, the vast majority of subjects decided faster (14/17) and with a lower probability of success (13/17) in the fast block compared to the slow block, as shown in Figure 2C (WMW test, p<0.05). Figure 2B shows this effect for a typical subject in easy and ambiguous trials (compare top and bottom panels). It is interesting to note that this adjustment of behavior between the two sessions consisted in an increase of decision durations, mainly in the slow block, leading to the largest difference of decision duration and success probability between the blocks in sessions #2 compared to sessions #1 (average durations at the population level in slow versus fast blocks: 1103ms versus 962ms in sessions #1 and 1277ms versus 1012ms in sessions #2, Fig. 2D).

Sensory evidence at commitment time

To estimate the amount of sensory evidence the subjects needed to commit to their choices (i.e. their accuracy criterion), I computed the sum of the log-likelihood ratios (SumLogLR) at decision time, indicating the available sensory evidence for the chosen target at the time of the decision (see 41 and 2.5 in Materials and Methods), as a function of decision duration for the two block conditions and for the two sessions separately (Fig. 3A). On average, the accuracy criterion of subjects performing their first session was significantly higher during slow blocks than fast blocks (ANCOVA, SumLogLR, block effect, F(1,345)=5.93, p=0.02). This difference was increased during sessions #2 (SumLogLR, block effect, F(1,332)=30.26, p<0.001), especially for decisions made between the fourth and the 9th token jump, i.e. the majority of decisions: 80% and 74% of slow and fast decisions, respectively (SumLogLR, block effect, F(1,198)=52.2, p<0.001). This indicates that the subjects were more willing to tolerate less sensory evidence to make their choices in the fast blocks compared to the slow blocks. I also found that except for very fast decisions (<800ms), the level of sensory evidence that subjects required before committing to a choice decreased as a function of decision duration, in both blocks and in both sessions (SumLogLR, time effect, F(1,266)=62.8, p<0.001 in sessions #1; F(1,271)=159.3, p<0.001 in sessions #2). Crucially, the difference of accuracy criterion between the blocks performed in sessions #2 was large and robust between subjects for decisions ranging from 800 to 1400ms and then tended to vanish for longer choices (SumLogLR, block x time interaction, F(1,271)=6.8, p=0.01). Figure 3B illustrates this phenomenon for each subject by comparing the average available sensory evidence at decision time between blocks when they decided after 4 or 10 token jumps. This "converging" effect was not observed for data collected in sessions #1 (SumLogLR, block x time interaction, F(1,266)=0.18, p=0.67).

The urgency-gating mechanism

A decreasing accuracy criterion can be implemented in mathematical models through an increasing gain of neural activity and a fixed firing threshold, as supported by recent 

Rate of correct responses and expected time to complete the task

In this task, spending time to collect more sensory evidence usually improves accuracy. This is important because subjects had to make 320 correct decisions to complete each of the two sessions. However, as time is passing, the loss in terms of rate of correct choices may exceed the benefit of potentially gaining accuracy (see equation 2 in Methods), especially in a dynamic environment in which one does not know whether better evidence will ever come. The urgency signal has been hypothesized as an efficient way to prevent spending too much time on uncertain choices, resulting in reward rate optimization [START_REF] Ditterich | Evidence for time-variant decision making[END_REF][START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Standage | Gain Modulation by an Urgency Signal Controls the Speed-Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit[END_REF][START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Malhotra | Overcoming indecision by changing the decision boundary[END_REF][START_REF] Malhotra | Time-varying decision boundaries: insights from optimality analysis[END_REF], what ultimately matters the most for subjects engaged in multiple trials decision-making tasks [START_REF] Bogacz | Do humans produce the speed-accuracy trade-off that maximizes reward rate?[END_REF][START_REF] Balci | Acquisition of decision making criteria: reward rate ultimately beats accuracy[END_REF]. How did adjustments of the urgency signal affect subjects' rate of reward (i.e. their expected time to complete the task)?

Figure 4A shows that on average, fast blocks were completed faster than slow blocks (17min30s versus 21min in sessions #1; 17min30s versus 20min12s in sessions #2; WMW tests, p<0.0001 for the two comparisons). Interestingly, the main difference between the two sessions concerns the slow block, with a reduction of the expected time to complete the task based on choice behavior between sessions. This result, initially surprising with respect to the observation that decision durations in slow blocks increased in sessions #2 compared to sessions #1, means that subjects took longer to decide, leading to higher success probabilities, thus less errors and finally less required trials to complete the task. This result is also consistent with the modelling results where the urgency shape was mainly adjusted between sessions in the slow block of trials (Fig. 3D). Together, these results suggest that subjects adjusted their decision policy (in terms of decision duration and success probability) by shaping their urgency signal between blocks and sessions in order to ultimately optimize their rate of reward. This is further supported by data from the two subjects who performed six and seven sessions in the tokens task. In these two subjects, decision durations and success probabilities evolved and differed between blocks through sessions, resulting in a constant and block-independent decrease of the expected time to complete the task (Fig. 4B).

Reaching behavior

Did decision policy affect reach movement kinematics? Figure 5A shows distributions of one subject's decision durations in each of the two block conditions and in each of the two sessions.

This subject made slower choices in the slow block compared to the fast block but only in session #2. Figure 5B shows the velocity profiles of her reaching movements in the same conditions, for the two potential start-target distances (see 2.3 in Materials and Methods). Regardless of that distance, velocity of the reaching movements executed to report the choices were faster in the fast block compared to the slow block, but only in session #2. At the population level, I found that peak velocity of reaching movements was significantly higher in fast block than in slow block in 8 out of 17 subjects in sessions #1 and in 9 out of 17 subjects in sessions #2 (Fig. 6A top panels, WMW test, p<0.05). When velocity was divided by amplitude to get an estimation of movement vigor, I found that vigor was higher in fast block than in slow block in 12 out of 17 subjects in sessions #1 and in 14 out of 17 subjects in sessions #2 (Fig. 6A middle panels, WMW test, p<0.05). When considering movement duration, which might be the metric that matters the most for subjects trying to optimize their rate of reward, I found that movements were overall shorter in fast blocks compared to slow blocks, especially in sessions #2 (9/17, WMW test, p<0.05, Fig

6A bottom panels). To assess whether a relationship between the difference of decision durations

between blocks and the corresponding movement metrics exists (as suggested by data depicted on Fig. 5), I computed a Pearson correlation coefficient between the difference of decision durations between blocks and the difference of movement metrics (peak velocity, vigor and duration) between blocks across subjects (Fig. 6B). Results show no significant correlation in sessions #1, although a trend is visible for movement duration (Pearson r=0.46, p = 0.06). By contrast, a significant correlation between the adjustments of decision durations and movement peak velocity (r = -0.54, p = 0.03) and duration (r = 0.61, p = 0.009) has been found in sessions #2 data. In both cases, it is worth noting that the linear model predicts a ~0 difference of kinematics between blocks when the difference of decision durations is close to 0 too. A trend, but not significant (r = -0.42, p = 0.09), has been found for movement vigor. To summarize, I found that the largest the difference of decision duration between the blocks of sessions #2, the largest the difference of movement kinematics between those two same blocks.

This observation suggests that decision urgency, the signal that determines subjects' deliberation duration, also affects movement properties. If so, we should also observe the signature of urgency on movement kinematics within blocks of trials, when data are sorted as a function of decision duration. More precisely, if movement kinematics is fully determined by decision urgency, we should observe (based on the urgency shapes estimated in Fig. 3D) (1) an overall increase (decrease) of velocity and vigor (duration) as a function of decision duration regardless of the block condition, (2) higher (lower) velocity and vigor (duration) in fast block compared to slow block, and (3) largest differences between blocks in all metrics for the longest decisions in sessions #1 but largest differences between blocks for the shorter decisions in sessions #2. These three predictions are validated for the effect of decision duration on reaching velocity during sessions #1 (Fig. 7, top left panel): peak velocities increased with decision duration (ANCOVA, peak velocity, time effect: F(1,345) = 7.65, p = 0.006), velocities were higher in fast blocks compared to slow blocks (block effect: F(1,345) = 9.49, p = 0.002) and this difference tended to be larger for long decisions compared to short decisions, despite the interaction between time and block was not significant (time x block interaction: F(1,345) = 1.8, p = 0.18). In sessions #2 (Fig. 7, top right panel), the first two predictions are also validated, with an increase of reaching peak velocities as decision durations increased (peak velocity, time effect: F(1,332) = 5.89, p = 0.01) and higher velocities in fast blocks compared to slow blocks (peak velocity, time effect: F(1,332) = 7.96, p = 0.005). However, there was no significant interaction between time and block on peak velocities (peak velocity, time x block interaction: F(1,345) = 0.26, p = 0.611), indicating that the largest difference of urgency level between the two blocks estimated at the beginning of the trial did not fully translate on reaching peak velocities. The same effects were observed when vigor of movement was analyzed instead of peak velocity (Fig. 7, middle panels). When movement duration was considered, the same effects were observed regardless of the two sessions: movement durations significantly decreased as decision durations increased (movement duration, time effect: F(1,345) = 31, p < 0.001 in sessions #1; F(1,332) = 21, p < 0.001 in sessions #2) and reaching durations were longer in slow block compared to fast blocks (time effect: F(1,345) = 8.3, p = 0.004 in sessions #1; F(1,332) = 7.3, p = 0.007 in sessions #2). While data seem to indicate that difference between blocks was larger for short decisions compared to slow decisions (in both sessions #1 and #2) there was no significant interactions between blocks and decision time on movement duration. Taken together, the above results suggest that decision urgency strongly, but not fully, determine reaching movement properties in the token task.

Oculomotor behavior

In the tokens task, eye movements were unconstrained and had no influence on reward rate.

Nevertheless, if the urgency signal is a global, unspecific arousal signal as suggested in previous studies [START_REF] Murphy | Global gain modulation generates time-dependent urgency during perceptual choice in humans[END_REF][START_REF] Hauser | Beta-Blocker Propranolol Modulates Decision Urgency During Sequential Information Gathering[END_REF][START_REF] Steinemann | Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy[END_REF], then that signal may also invigorate the saccades made during the course of the decision process [START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF]. To test this prediction, I focused my analysis on saccades made between the two lateral circles during the deliberation period. For technical reasons, data from 13 out of 17 subjects have been included in this analysis. This dataset consists of 1452 trials and 2930 saccades in the slow blocks, 1339 trials and 2600 saccades in the fast blocks. When all saccades made before the decision were grouped as a function of their latency with respect to the start of token movements, results showed a highly significant increase of peak velocity, amplitude and duration over the time course of trials, in both blocks and both sessions (Fig. 8, ANCOVAs, effect of time on saccade peak velocity, amplitude and duration, p < 0.01). For instance, the average peak velocity of saccades increased from 500 deg/s around deliberation onset to more than 600 deg/s after 2s of deliberation. However, in sharp contrast with what has been observed on reaching movements, there was no significant difference of saccade velocity, amplitude or duration between slow and fast blocks of trials, as one would have predicted if the urgency signal strongly influences saccade properties. Only significant interactions between block and time for duration and amplitude of saccades made in sessions #2 were found (duration, time x block interaction: F(1,225) = 5.6, p = 0.02; amplitude, time x block interaction: F(1,225) = 6.6, p = 0.01), with the increase of saccade duration and amplitude with deliberation time only occurring in the fast block.

DISCUSSION

In the present study, I tested the hypothesis that naïve human subjects faced with a probabilistic, changing evidence decision-making task trade speed against accuracy to maximize their rate of reward by adjusting an urgency signal, and that this urgency signal also influences the way subjects overtly report their decisions via arm movements. The results support the hypothesis, showing a context-dependent correlation between two phenomena traditionally considered separate: the accuracy criterion for decisions and the duration of movements used to report them.

This observation is consistent with what has been previously demonstrated in intensely trained macaque monkeys in the same experimental design: urgency, possibly computed in the basal ganglia [START_REF] Bogacz | The neural basis of the speed-accuracy tradeoff[END_REF][START_REF] Forstmann | Cortico-striatal connections predict control over speed and accuracy in perceptual decision making[END_REF][START_REF] Thura | The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment[END_REF], not only controls decision-making timing, but also influences the speed of the following motor commands, whether movements directly influence reward rate or not [START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF][START_REF] Thura | Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs[END_REF].

Urgency-based decision-making

Traditional models of decision-making assume a simple mechanism in which sensory information is temporally integrated until a static choice threshold is crossed [START_REF] Ratcliff | A Theory of Memory Retrieval[END_REF][START_REF] Ratcliff | Diffusion Decision Model: Current Issues and History[END_REF]. Importantly, all these models assume that the speed-accuracy trade-off is controlled by the distance between the initial activity of the integrators (i.e. the baseline) and the response threshold: lowering the threshold in some blocks of trials leads to faster responses at the expense of an increase in error rate in these blocks. More recently, computational work has included an "urgency" component in the decision process in order to explain data in ecological scenarios and to propose a more satisfying mechanistic explanation of how decisions between actions are implemented in the brain [START_REF] Ditterich | Evidence for time-variant decision making[END_REF][START_REF] Churchland | Decision-making with multiple alternatives[END_REF].

Urgency is usually considered as an evidence-independent component of neural decision signal activity that expedites choice commitment under uncertainty [START_REF] Ditterich | Evidence for time-variant decision making[END_REF][START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Reddi | The influence of urgency on decision time[END_REF]. As a consequence, urgency-based decision models have been shown to better account for reward rate maximization, what ultimately matters the most for subjects engaged in goal-oriented behavior [START_REF] Balci | Acquisition of decision making criteria: reward rate ultimately beats accuracy[END_REF], than classic accumulation to static threshold models [START_REF] Ditterich | Evidence for time-variant decision making[END_REF][START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Standage | Gain Modulation by an Urgency Signal Controls the Speed-Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit[END_REF][START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Malhotra | Overcoming indecision by changing the decision boundary[END_REF][START_REF] Malhotra | Time-varying decision boundaries: insights from optimality analysis[END_REF]. Such urgency signal can be (roughly equivalently) accommodated in mathematical models either as a dynamic adjustment to the quantity of evidence required to trigger commitment (i.e. a collapsing decision threshold ( 39)) or, more consistently with neurophysiological observations [START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Thura | Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making[END_REF][START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF], as a rising signal that is combined to sensory evidence until a fixed decision threshold is crossed (e.g. the urgency-gating model (41)), altogether forming time-variant models of decision-making. The present work replicates the observation that a context-dependent urgency-based decision policy is adopted by human subjects facing changing conditions, a result first described in the original study that used the tokens task [START_REF] Cisek | Decisions in Changing Conditions: The Urgency-Gating Model[END_REF] and later in variants of this task [START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Carland | Evidence against perfect integration of sensory information during perceptual decision making[END_REF][START_REF] Derosiere | Motor cortex disruption delays motor processes but not deliberation about action choices[END_REF]. It also provides several important additional observations: (1) the decision policy within and between speed-accuracy trade-off conditions is fine-tuned through practice, coinciding with an increase of the subjects' rate of reward and (2) the decision policy strongly influences the way subjects report their choices via reaching movements. These two observations and their implications are discussed in the following sections.

Human versus monkey behavior

A significant amount of support for time-variant models comes from the neurophysiological literature exploring decision-making strategies in non-human primates [START_REF] Churchland | Decision-making with multiple alternatives[END_REF][START_REF] Thura | Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making[END_REF][START_REF] Kira | A Neural Implementation of Wald's Sequential Probability Ratio Test[END_REF][START_REF] Hanks | Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task[END_REF], raising the possibility that urgency-based decision policy is specific to "impatient" species, such as monkeys [START_REF] Boehm | Of monkeys and men: Impatience in perceptual decision-making[END_REF][START_REF] Hawkins | Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making[END_REF]. For instance, Hawkins and colleagues found that static threshold models (assuming no urgency) make a better description of some human data sets than time-variant models whereas the urgency-gating model is more accurate in predicting monkeys' behavior [START_REF] Hawkins | Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making[END_REF]. It is indeed possible that naive human subjects instinctively prioritize precision over all other objectives (perhaps because of pride) and thus set a low level of urgency to guarantee high percentages of correct responses, even at a high cost of time. By contrast, monkeys, as impulsive animals in nature, would typically make very rapid decisions, betting more on the overall success (and reward) rate instead of performance per se [START_REF] Thura | How to discriminate conclusively among different models of decision making?[END_REF].

The present data do not support this hypothesis, as most subjects adopted an urgency-based decision policy (i.e. a dropping accuracy criterion) that was adjusted depending on the reward rate context of the task irrespective of the session they performed (Fig. 3). More investigations are needed in order to assess whether or not these conclusions are generalizable to other studies, as it is likely that decision-making mechanisms are at least partially task dependent. However, they are consistent with numerous recent studies (but see [START_REF] Evans | The computations that support simple decision-making: A comparison between the diffusion and urgency-gating models[END_REF][START_REF] Voskuilen | Comparing fixed and collapsing boundary versions of the diffusion model[END_REF]) that have demonstrated that naïve human decision-makers decrease their accuracy criterion as time is passing within a trial when making successive decisions between actions, whether these decisions are guided by sensory or value cues [START_REF] Thura | Decision making by urgency gating: theory and experimental support[END_REF][START_REF] Malhotra | Overcoming indecision by changing the decision boundary[END_REF][START_REF] Malhotra | Time-varying decision boundaries: insights from optimality analysis[END_REF][START_REF] Palestro | Some task demands induce collapsing bounds: Evidence from a behavioral analysis[END_REF][START_REF] Cisek | Decisions in Changing Conditions: The Urgency-Gating Model[END_REF][START_REF] Murphy | Global gain modulation generates time-dependent urgency during perceptual choice in humans[END_REF][START_REF] Hauser | Beta-Blocker Propranolol Modulates Decision Urgency During Sequential Information Gathering[END_REF][START_REF] Steinemann | Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy[END_REF][START_REF] Gluth | Deciding When to Decide: Time-Variant Sequential Sampling Models Explain the Emergence of Value-Based Decisions in the Human Brain[END_REF][START_REF] Farashahi | Dynamic combination of sensory and reward information under time pressure[END_REF][START_REF] Bhui | Testing Optimal Timing in Value-Linked Decision Making[END_REF][START_REF] Miletić | Caution in decision-making under time pressure is mediated by timing ability[END_REF].

Effect of practice on decision policy

Logically, the effect of practice history has been put forward as another explanation for differences in decision policies within and across animal species [START_REF] Balci | Acquisition of decision making criteria: reward rate ultimately beats accuracy[END_REF][START_REF] Evans | When humans behave like monkeys: Feedback delays and extensive practice increase the efficiency of speeded decisions[END_REF][START_REF] Hawkins | Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making[END_REF][START_REF] Thura | How to discriminate conclusively among different models of decision making?[END_REF]. A large amount of practice necessarily shaping subjects' behavior, it would allow them (usually monkeys) to explore more strategies than subjects (usually humans) faced with only a few experimental sessions. However, the present results show that most of the subjects made urgency-based decisions as soon as they performed their first experimental session (Fig. 3A). Such urgency-native behavior is in agreement with a recent study in which time-variant models provided better fits than time-invariant ones to data from two classic response time paradigms, regardless of subjects' practice load [START_REF] Palestro | Some task demands induce collapsing bounds: Evidence from a behavioral analysis[END_REF].

Nevertheless, the present data also show some degree of experience-dependent adjustment of urgency level: first, subjects lowered their baseline urgency level in the slow block of session #2 compared to session #1 (Figs 2D and3D). This is interesting because it means that naïve subjects started to perform the task in a rather "impulsive" mode and then only became more conservative with practice. Remarkably, after only one session, the shapes of the subject's urgency functions looked on average very similar to the ones of two highly trained monkeys in the exact same task (compare Fig. 3D and Fig. 3B in 25): difference of urgency between blocks was larger for short decisions compared to long decisions, which is the good strategy to adopt in this task where the difference in the amount of time potentially saved between blocks diminishes as tokens are jumping in a trial. Second, in the two subjects tested six and seven times, decision policy (decision duration and success probability) constantly evolved through sessions, possibly reflecting the fine-tuning of the block-dependent urgency functions permitting the minimization of the time necessary to complete each session (i.e. to maximize the rate of reward, Fig. 4B). In a recent study, Evans and Hawkins (36) addressed a similar question with respect to the decision-making process, looking at whether human subjects performing a motion discrimination task were more likely to adopt collapsing thresholds after practice and/or feedback delays. Interestingly, they found that participants adopted fixed thresholds before practice and without feedback delays, but that they behaved according to an urgency-based mechanism from the first session if the decision feedback was slightly delayed in time, mirroring a response deadline context. Crucially, in this feedback delayed condition, steepness of collapsing thresholds almost continuously increased through the successive sessions performed by the subjects.

An unified mechanism of control during decision and action?

The slight evolution of subjects' decision strategy between the two sessions provides us with a good opportunity to investigate the strength of that policy effect on movement kinematics.

Indeed, a simple way to explain the correlation between decision criterion and movement kinematics in the tokens task is to suppose that the vigor of movements is in part influenced by the level of the urgency signal at decision time [START_REF] Reppert | Modulation of Saccade Vigor during Value-Based Decision Making[END_REF][START_REF] Yoon | Control of movement vigor and decision making during foraging[END_REF]. But how strong is this influence and why would that common regulation exist? On one hand, the effect of block on the kinematics of movements executed to report these decisions was more pronounced in session #2 compared to session#1 (Fig. 6A). Because the difference of urgency level between blocks was larger in session #2 compared to session #1 as well, one may propose that the urgency signal at the time of commitment strongly determines kinematics of the ensuing movements. But on the other hand, the non-significant correlation between decision duration and movement parameters in sessions #1 forces us to tone this proposal down. Moreover, when the effect of decision duration on movement properties is investigated within blocks, modulations of movement speed, vigor or duration appear similar irrespective of the session (Fig. 7). If movement kinematics was directly under the control of decision urgency, one would have observed session-dependent differences of movements metrics between and within blocks, with modulations resembling the shape of the urgency functions estimated based on subjects' decision behavior. Taken together, these observations suggest that although decision urgency strongly and innately influences movement kinematics, decision-making and movement control are not strictly unified processes [START_REF] Reppert | Movement vigor as a traitlike attribute of individuality[END_REF].

A link between deliberation and movement kinematics makes perfect sense in the context of reward rate maximization. In the tokens task, the tokens remaining in the central circle start to accelerate only after the cursor enters the chosen target. As a consequence, the longer the movement, the longer the period separating its completion from reward. Thus, because reward rate is influenced by the time spent executing the movement, urgency might exert a compensatory influence on handling time, such that the cost of investing additional time in deliberation will be partially offset by a decrease in the duration of the movements used to report the choice. In agreement with this hypothesis, it has been shown that human movements are parameterized following economical rules: expectation of reward increases speed of movements, whereas expectation of effort decreases this speed [START_REF] Shadmehr | Temporal Discounting of Reward and the Cost of Time in Motor Control[END_REF][START_REF] Shadmehr | Movement Vigor as a Reflection of Subjective Economic Utility[END_REF][START_REF] Haith | Evidence for Hyperbolic Temporal Discounting of Reward in Control of Movements[END_REF][START_REF] Choi | Vigor of Movements and the Cost of Time in Decision Making[END_REF][START_REF] Summerside | Vigor of reaching movements: reward discounts the cost of effort[END_REF]. This possibility would also explain why a motor system that does not directly impact the rate of reward in this task (i.e. the oculomotor system) does not appear as strongly modulated by urgency as one directly involved in reward rate maximization (i.e. the reaching motor system, Figs. 7 and8).

A neurophysiological mechanism to optimize the rate of reward

The neural mechanisms that contribute to the optimization of the reward rate are poorly understood. Several arguments point toward the sensorimotor territory of the basal ganglia (BG) as a brain region that could compute a global signal capable of determining both decision and movements speed in order to optimize this rate. First, the BG integrate rich sensory and motor information from the neocortex with reward-related dopaminergic signals. This information is further processed throughout the BG nuclei where a dramatic reduction in neuron number occurs, thereby contributing to the formation of a low-dimensional integrated signal that could efficiently modulate neuronal activity in the entire neocortex through recurrent dynamics [START_REF] Thura | The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment[END_REF][START_REF] Dudman | The basal ganglia: from motor commands to the control of vigor[END_REF]. Second, electrophysiological recordings in the sensorimotor regions of the globus pallidus and dorsal striatum (output and input of the BG, respectively) of behaving non-human primates and rodents are consistent with the hypothesis that the BG motivate voluntary behavior, including the urgency to decide [START_REF] Thura | The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment[END_REF][START_REF] Pasquereau | Shaping of Motor Responses by Incentive Values through the Basal Ganglia[END_REF]) and the vigor of movements [START_REF] Turner | Basal ganglia contributions to motor control: a vigorous tutor[END_REF][START_REF] Yttri | Opponent and bidirectional control of movement velocity in the basal ganglia[END_REF][START_REF] Rueda-Orozco | The striatum multiplexes contextual and kinematic information to constrain motor habits execution[END_REF] . Last, a reduction in goal-directed movement speed is common to non-human primates with BG output inactivation , human subjects with lesions in their BG and patients suffering from Parkinson's Disease [START_REF] Yttri | A Proposed Circuit Computation in Basal Ganglia: History-Dependent Gain: Proposed Circuit Computation in Basal Ganglia[END_REF][START_REF] Mazzoni | Why Don't We Move Faster? Parkinson's Disease, Movement Vigor, and Implicit Motivation[END_REF][START_REF] Desmurget | Motor Sequences and the Basal Ganglia: Kinematics, Not Habits[END_REF] . In the latter case, slowness of cognition, including decision-making, is often reported (64).

A « trait-like » view of urgency

A limitation of the present study, as often in the study of primate cognition and behavior, relates to the fact that subjects might have employed various strategies to solve the task depending on their personality. The large inter-subject variability observed in terms of decision duration supports this possibility (Fig. 2C-2D). Strikingly, the average decision duration ranged from ~700ms to about 1600ms depending on subjects, despite the fact that these participants faced the same trials under identical conditions. This strongly suggest some "trait" levels of decision urgency, consistently with what has been found during movement behavior: some subjects perform movements up to four times faster than others [START_REF] Reppert | Modulation of Saccade Vigor during Value-Based Decision Making[END_REF][START_REF] Reppert | Movement vigor as a traitlike attribute of individuality[END_REF][START_REF] Berret | Vigour of self-paced reaching movement: cost of time and individual traits[END_REF]. Thus, even though such variability might at first sight blur any conclusive statement about a "standard" decision mechanism employed by subjects to solve the tokens task, it could instead provide fundamental insights regarding subjects' personality traits. My colleagues and I indeed recently proposed that decision-makers might control diverse behavioral outputs based on a urgency-mechanism whose "default" setting is proper to each individual but varies across them (32).

CONCLUSION

Taken together, the present results suggest that urgency might provide the mechanistic link for establishing a strong (but not perfect) control of decision timing and action vigor in "non-expert" human subjects in order to optimize the rate of reward. Because it has been proposed that urgency controls the timing of both decisions and movements through projections from the basal ganglia to sensorimotor regions [START_REF] Bogacz | The neural basis of the speed-accuracy tradeoff[END_REF][START_REF] Forstmann | Cortico-striatal connections predict control over speed and accuracy in perceptual decision making[END_REF][START_REF] Thura | The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment[END_REF][START_REF] Murphy | Global gain modulation generates time-dependent urgency during perceptual choice in humans[END_REF][START_REF] Steinemann | Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy[END_REF][START_REF] Yttri | Opponent and bidirectional control of movement velocity in the basal ganglia[END_REF], it might also influence many other aspects of motivated behavior through projections to other cortical regions, including prefrontal and limbic areas. Urgency could thereby accounts for inter-individual differences in a variety of specific traits, and possibly even some symptoms of neurological disorders (32-34). 

FIGURE CAPTIONS

  computational and neurophysiological results (see 4.1 in Discussion). I thus used the urgencygating model[START_REF] Cisek | Decisions in Changing Conditions: The Urgency-Gating Model[END_REF] to find, separately for each block and each session, the slope and intercept of urgency that produced the best estimate of the SumLogLR curve (in the least-mean-squared error sense) with data combined across trials. The best fitting parameters are shown in Figure3C,D, along with the mean and standard deviation of the parameters estimated based on a bootstrap procedure. Although the simple assumption of a rectified linear urgency signal only approximately captured the shape of the SumLogLR curves for data collected in sessions #1, the quality of fit was remarkably good for sessions #2 data, as shown in Figure3C(left). For these sessions, the urgency functions that best reproduce the data show a similar pattern: In the slow block, the urgency has a lower y-intercept but a higher slope than in the fast block. Consequently, although the urgency signal is initially lower in the slow block, the two functions eventually converge ~2100ms after the start of token movements. This makes sense because the difference in the amount of time potentially saved in the fast blocks versus slow blocks decreases as the number of remaining tokens decreases. Thus, later in the trial there is less of an advantage to behave differently in the two blocks. This results remarkably matches what my colleagues and I previously observed in highly trained monkeys performing the same task[START_REF] Thura | Context-Dependent Urgency Influences Speed-Accuracy Trade-Offs in Decision-Making and Movement Execution[END_REF].
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