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ABSTRACT

In recent years, forecasting activities have become an important tool in designing and optimising large-scale structure surveys. To
predict the performance of such surveys, the Fisher matrix formalism is frequently used as a fast and easy way to compute constraints
on cosmological parameters. Among them lies the study of the properties of dark energy which is one of the main goals in modern
cosmology. As so, a metric for the power of a survey to constrain dark energy is provided by the figure of merit (FoM). This is
defined as the inverse of the surface contour given by the joint variance of the dark energy equation of state parameters {w0,wa} in the
Chevallier-Polarski-Linder parameterization, which can be evaluated from the covariance matrix of the parameters. This covariance
matrix is obtained as the inverse of the Fisher matrix. The inversion of an ill-conditioned matrix can result in large errors on the
covariance coefficients if the elements of the Fisher matrix are estimated with insufficient precision. The conditioning number is a
metric providing a mathematical lower limit to the required precision for a reliable inversion, but it is often too stringent in practice
for Fisher matrices with sizes greater than 2×2. In this paper, we propose a general numerical method to guarantee a certain precision
on the inferred constraints, such as the FoM. It consists of randomly vibrating (perturbing) the Fisher matrix elements with Gaussian
perturbations of a given amplitude and then evaluating the maximum amplitude that keeps the FoM within the chosen precision. The
steps used in the numerical derivatives and integrals involved in the calculation of the Fisher matrix elements can then be chosen
accordingly in order to keep the precision of the Fisher matrix elements below this maximum amplitude. We illustrate our approach
by forecasting stage IV spectroscopic surveys cosmological constraints from the galaxy power spectrum. We infer the range of steps
for which the Fisher matrix approach is numerically reliable. We explicitly check that using steps that are larger by a factor of two
produce an inaccurate estimation of the constraints. We further validate our approach by comparing the Fisher matrix contours to
those obtained with a Monte Carlo Markov chain (MCMC) approach – in the case where the MCMC posterior distribution is close to
a Gaussian – and finding excellent agreement between the two approaches.

Key words. dark energy – cosmological parameters – large-scale structure of Universe – galaxies: statistics

1. Introduction

Since the discovery of the acceleration of the expansion of the
Universe in the late 1990s (Riess et al. 1998; Perlmutter et al.
1999), the Lambda Cold Dark Mattery (ΛCDM) model remains
the most successful model in cosmology. It provides a simple
and accurate description of the properties of the Universe, with
a very limited number of parameters that are now constrained
at the level of a few percent by using measurements from the
Planck CMB mission (Planck Collaboration VI 2020) and other
experiments (see e.g., Percival et al. 2001; Blake et al. 2011;
Alam et al. 2017; Abbott et al. 2018). The accelerated expansion
of the Universe can be explained by postulating a new form of
matter or the mechanism dubbed “dark energy”, which would be

present alongside dark matter. Dark energy dominates the energy
budget of the Universe today, making up for ∼70% of its total
energy density.

Over the past two decades, a range of dark energy experiments
have been proposed in order to study the observed cosmic accel-
eration of the Universe through various probes: optical spectro-
scopic and photometric galaxy clustering, and weak gravitational
lensing, supernovae, with galaxy clusters being the most com-
mon. In order to quantify the performance of a survey and, in
particular, its ability to constrain the properties of dark energy,
the Dark Energy Task Force (DETF) defined a metric known as
the figure of merit (FoM, Albrecht et al. 2006): a figure inversely
proportional to the surface bounded by the confidence contours
for the w0 and wa parameters from the Chevalier-Polarski-Linder
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(CPL) parameterization (Chevallier & Polarski 2001; Linder
2003). The application of the FoM is now standard for quantifying
the performance of a particular experiment that aims to constrain
the dark energy parameters.

We are currently entering the era of high-precision cos-
mology with a suite of stage IV experiments that are about to
be deployed. Currently, ongoing and forthcoming ground-based
experiments as well as space missions include: DESI1 (DESI
Collaboration 2016), Euclid2 (Laureijs et al. 2011; Amendola
et al. 2018; Euclid Collaboration 2020), LSST3 (LSST Science
Collaboration 2009; Ivezić et al. 2019; Chisari et al. 2019),
WFIRST4 (Akeson et al. 2019; Dore et al. 2019), and the SKA5

(Square Kilometre Array Cosmology Science Working Group
2020). Forecasting activities are key for predicting future con-
straints on cosmological parameters and the corresponding dark
energy FoM. Indeed, forecasts not only allow us to predict the
performance of a future survey but also aid in its design and
optimization.

There are a number of different ways to compute forecasts.
For instance, it’s possible to use a simulated realization of the
data and a Monte Carlo Markov chain (MCMC) method to sam-
ple the likelihood of the parameters of interest. This approach is
known to provide reliable estimations of the constraints on the
cosmological parameters (see e.g., Dunkley et al. 2005). How-
ever, it is often quite time-consuming, especially if there is a
wide variety of cases involved. The Fisher matrix formalism, as
adopted by the DETF, is a computationally fast approach that
allows for constraints to be obtained within a few seconds or
minutes. However, this method is dubious from the technical
point of view as the covariance matrix is obtained by inver-
sion of the Fisher matrix, whose coefficient calculations often
require the computation of derivatives and integrals, which can
lead to inaccurate results in cases where, for example, the step
sizes (as we show in subsequent sections of this paper) are not
chosen properly to ensure the appropriate precision. Moreover,
the Fisher formalism can miss contour shapes and, thus, miss
potential degeneracies (see e.g., Wolz et al. 2012) as it assumes a
Gaussian likelihood in a frequentist approach or a Gaussian pos-
terior of the parameters in a Bayesian approach; that might not be
true if, for example, the parameters are not tightly constrained by
the experiment(s). Several methods have been proposed to han-
dle these complex situations (Joachimi & Taylor 2011; Sellentin
et al. 2014; Sellentin 2015; Amendola & Sellentin 2016).

In the present study, we propose a numerical approach that
is independent of the specific problem treated, with the purpose
of testing the numerical reliability of constraints obtained within
the Fisher matrix formalism. As a working example, we con-
sider the spectroscopic galaxy clustering probe for the following
stage IV surveys: DESI, Euclid, and WFIRST-2.4. The paper is
organized as follows. In Sect. 2, we give a brief description of
the aforementioned surveys. In Sect. 3, we describe the different
tests performed in order to validate the Fisher approach: namely,
we determine the required precision to compute a valid Fisher
matrix, carry out several stability and convergence tests, and per-
form a comprehensive comparison with the MCMC approach.
In Sect. 4, we present the results and address possible ways of
numerically validating the Fisher matrix approach. Finally, we
report our conclusions in Sect. 5.

1 www.desi.lbl.gov
2 www.euclid-ec.org
3 www.lsst.org
4 https://wfirst.gsfc.nasa.gov/
5 www.skatelescope.org/

2. Surveys

2.1. Euclid

Euclid is a medium-class ESA mission that is aimed at gaining
an improved understanding of the expansion of the Universe, as
well as dark energy and dark matter. Euclid will measure the
shape of more than one billion galaxies and provide tens of mil-
lions of spectroscopic redshift. It will use two main cosmological
probes, namely galaxy clustering and weak gravitational lensing.
These will allow us to probe the dark sector of the Universe with
unprecedented precision. Euclid (Laureijs et al. 2011) targets a
FoM of 400, while also aiming to distinguish between different
theories of gravity, that is, testing general relativity against alter-
native models by measuring the exponent of the growth factor,
γ, with a precision higher than 0.02 at 1σ. Euclid will also mea-
sure the neutrino masses with a 1σ precision better than 0.03 eV.
Combined with Planck, Euclid will also probe some inflation
models through the measurement of the non-Gaussianity of ini-
tial conditions. So far, two surveys are planned: a wide one of
15 000 deg2 and a deep one of 40 deg2. The 1.2m telescope con-
tains two instruments that will allow to observe around 2 billion
galaxies and produce 50 million precise redshift measurements.
Euclid’s large format visible imager (VIS), will probe the pho-
tometric galaxy clustering in the optical wavelength range. The
near-infrared imaging and spectroscopy (NISP) instrument will
perform photometry imaging and produce spectra in the near
infrared range.

2.2. Dark Energy Spectroscopic Instrument (DESI)

Known as the successor of the stage III BOSS and eBOSS
surveys (Dawson et al. 2013, 2016), DESI is a Stage IV
ground-based dark energy experiment whose primary objec-
tives are measuring the baryonic acoustic oscillations (BAO)
and constraining the growth of structure through redshift space
distortions measurements. It will allow for the estimation of the
deviations from Gaussianity through the fNL parameter. DESI
will also measure the neutrinos masses with a precision of
0.02 eV at 1σ, for a maximum scale of kmax < 0.2 h Mpc−1. It
will scan a 14 000 deg2 sky area and measure more than 30 mil-
lion spectra from four galaxy populations: the bright galaxies
(BGS) at low redshift (until z ≤ 0.6), the luminous red galax-
ies (LRGs) composed of highly biased objects at intermediate
redshift z < 1, the bright emission lines galaxies (ELGs) up to
z = 1.7 (which can only be detected at high resolution since the
OII doublet must be well-resolved), and the quasi-stellar objects
(QSOs). The latter group allows us to trace both the matter dis-
tribution at high redshift and the neutral hydrogen by the Ly − α
absorption in the spectra. DESI is now underway and will con-
duct observations over five years (2019–2023) using the Mayall
four-meter telescope at Kitt Peak.

2.3. Wide Field Infrared Survey Telescope (WFIRST)

WFIRST is a NASA near-infrared imaging and low-resolution
spectroscopy observatory that, similarly to Euclid, aims to
address fundamental questions about the accelerated expansion
of the Universe. WFIRST will determine the expansion his-
tory of the Universe and structure growth in order to constrain
dark energy and modified gravity models. To estimate the dark
energy equation of state, WFIRST will perform weak lensing,
along with measurements of supernovae distance and baryonic
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Table 1. Redshift range, binning choices, and density of galaxies for the
surveys used in this work.

Surveys zmin zmean zmax dN(zmean)/dΩdz[deg−2]

DESI(BGS) 0 0.125 0.25 3029
0.25 0.375 0.5 528

DESI(ELGs) 0.5 0.6 0.7 309
0.7 0.8 0.9 2124

Euclid
0.9 1.05 1.2 2287
1.2 1.35 1.5 1574
1.5 1.65 1.8 764

WFIRST-2.4
1.8 1.95 2.1 6718
2.1 2.25 2.4 1368
2.4 2.55 2.7 781

Notes. For more details on survey specifications, see Sect. 3.

acoustic oscillations. In this work, we use the spectroscopic
probe of WFIRST-2.4, a 2000 deg2 survey that will observe more
than 20 million galaxies in the redshift range of 1 ≤ z ≤ 3.

3. Methodology

3.1. The surveys combination specification

In general, using a single probe of a stage IV survey does
not constrain cosmological parameters well enough to get a
Gaussian posterior distribution, in which case testing simply
the Fisher formalism is meaningless. However, when the con-
straints are very tight, the posterior is likely to be close to
gaussian. For this reason, we chose to investigate the Fisher
formalism in a case where we can anticipate a Gaussian poste-
rior (an assumption that is checked by the MCMC forecast used
for the full validation of the method). In order to substantially
improve the constraints, we therefore combine Euclid, DESI,
and WFIRST-2.4. However, we note that DESI and WFIRST-2.4
cover Euclid’s entire redshift range. Hence, if we want to fully
and consistently combine these three surveys, computing the
cross-correlation power spectra between those surveys is nec-
essary. For the purposes of our study, we do not wish to consider
the cross-spectra, therefore, we have to remove all the DESI and
WFIRST-2.4 redshift bins that overlap with Euclid. In practice,
we perform the full spectroscopic Euclid forecasts in the red-
shift range of 0.9 ≤ z ≤ 1.8, the DESI forecasts at low redshift
0 < z < 0.9, and the WFIRST-2.4 forecasts at high redshift
1.8 < z < 2.7. Moreover, between z = 0.6 and z = 0.9 the ELGs,
LRGs, and QSOs populations from DESI also overlap. Each of
these populations has a different bias and their cross-power spec-
tra would have to be computed as well. For simplicity, we only
consider the ELGs population at z = {0.6, 0.9} because it has the
highest density of galaxies and potentially offers the best con-
straints on the parameters. At z < 0.6, we consider the BGS
population.

We consider four redshift bins for the DESI survey with the
following binning: 2 redshift bins for the BGS population cen-
tered at z = {0.125, 0.375} with a redshift size ∆z = 0.25 and 2
redshift bins for the ELGs population centered at z = {0.6, 0.8}
with ∆z = 0.2. Both Euclid and WFIRST-2.4 utilise 3 red-
shift bins with ∆z = 0.3, centered at z = {1.05, 1.35, 1.65} and
z = {1.95, 2.25, 2.55}, respectively. The full binning procedure is
summarized in Table 1.

Table 2. Fiducial values for the cosmological parameters (M1
approach).

Cosmological parameter Fiducial value

Ωb 0.05
h 0.67
Ωm 0.32
ns 0.96
ΩDE 0.68
w0 −1
wa 0
σ8 0.83

3.2. Two approaches towards Fisher matrix cosmological
constraints

In this work, we follow two approaches for the Fisher matrix
forecast of cosmological constraints using the galaxy clustering
probe. We describe these two approaches, dubbed M1 and M2,
below.

3.2.1. M1 approach

In the first approach, M1, the cosmological model considered, is
an extension of the ΛCDM model in which we assume a variable
dark energy equation of state parameter described by the CPL
parameterization. Furthermore, we allow for non-flatness by
letting ΩDE vary. We also assume massless neutrinos. The full
set of cosmological parameters is:

θcosmo : {Ωb, h,Ωm, ns,ΩDE,w0,wa, σ8} .

The cosmological parameters are the quantities of direct interest
here. Ωb, h,Ωm, ns are parameters that modulate the shape of the
power spectrum. Ωb is the baryon density parameter. The h is the
reduced Hubble constant defined as h = H0/(100 km s−1 Mpc−1),
where H0 is the present day Hubble parameter. Ωm is the matter
density parameter, and ns the spectral scalar index. The ΩDE is
the dark energy content directly linked to the curvature of the
universe and (w0, wa) represent, respectively, the dark energy
equation of state at z = 0 and its derivative with respect to
scale factor at z = 0, in the so-called CPL form (Chevallier
& Polarski 2001; Linder 2003). The equation of state is then
given by:

w(z) = w0 + wa
z

1 + z
. (1)

The σ8 parameter gives the amplitude of matter fluctuations
in the linear regime on a scale of 8 h−1 Mpc. Furthermore, at
each redshift bin, we consider two nuisance parameters: the
logarithm of the product between the bias and σ8(z), namely,
ln(bσ8), and the shot noise, Pshot(z), due to the finite self-pair
counts in two-point statistics. The shot noise affects the power
spectrum by adding a white systematic component increasing
thus the statistical uncertainties. We consider 10 redshift bins,
zi, thus, the total number of nuisance parameters amounts
to 20:

θnuisance = {ln(bσ8(zi)), Pshot(zi)}.

The cosmological parameters fiducial values are summarized
in Table 2 and the nuisance parameters are given in Table 3.
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Table 3. Fiducial values for the nuisance parameters.

Nuisance parameter Fiducial value

ln(bσ8(0.125)) −0.157865
ln(bσ8(0.375)) 0.052047
ln(bσ8(0.6)) −0.830210
ln(bσ8(0.8)) −0.947904
ln(bσ8(1.05)) −0.305297
ln(bσ8(1.35)) −0.293715
ln(bσ8(1.65)) −0.302905
ln(bσ8(1.95)) −0.321325
ln(bσ8(2.25)) −0.342024
ln(bσ8(2.55)) −0.364400
Pshot(z) 0.0

Notes. They are strictly identical for both approaches: M1 and M2.
The bias values are taken from DESI Collaboration (2016), Euclid
Collaboration (2020), Green et al. (2011) and Spergel et al. (2013).
The shot noise fiducial value is the same at each redshift bins.

3.2.2. Approach M2

In the second approach, M2, adopted in the Euclid Collaboration
(2020), four quantities which determine the shape of the power
spectrum are treated as independent of the cosmological param-
eters. We call these four quantities the shape parameters. The
other quantities, the angular diameter distance, Da(z), the Hub-
ble rate, H(z), and the growth rate of cosmic structure, f (z) are
called the redshift dependent (RD) parameters. With the addition
of three redshift-dependent parameters and 2 redshift-dependent
nuisance parameters (the same as in M1) per redshift bin, for ten
redshift bins, this amounts to 30 redshift dependent parameters
and 20 nuisance parameters. The full set consists of 54 parame-
ters (see Table 4):

θshape : {ωb, h, ωm, ns}

θrd+nuisance : {ln(Da(zi)), ln(H(zi)), ln( fσ8(zi)), ln(bσ8(zi)), Pshot(zi)}.

The nuisance parameters are identical in the two approaches. As
in the Euclid Collaboration (2020), we estimate the constraints
of the physical baryon density (ωb = Ωbh2), and the physical
matter density (ωm = Ωmh2) parameters. In the M2 approach,
the constraints on the final cosmological parameters (θcosmo) are
obtained from the 54 parameters stated above by projection. We
also note that taking the logarithm of the parameters helps to sta-
bilize matrix inversion by reducing the dynamic range between
minimum and maximum eigenvalues, as described in Euclid
Collaboration (2020).

3.3. The Fisher matrix formalism

The Fisher matrix formalism (see Coe 2009 for a pedagogical
introduction) is commonly used in cosmology to forecast the
Gaussian uncertainties of a set of model parameters under some
constraints. The Fisher approach relies on the assumption of
Gaussian posterior distribution. The Fisher matrix corresponding
to the information on cosmological parameters provided by a
galaxy clustering survey is given by (Tegmark 1997; Tegmark
et al. 1998):

Fαβ =
1

8π2

∫ 1

−1
dµ

∫ kmax

kmin

k2dk

×
∂ ln Pobs(z, k, µ)

∂α

∂ ln Pobs(z, k, µ)
∂β

Veff(z, k, µ), (2)

Table 4. Fiducial values of the shape and redshift dependent parameters
for the approach M2.

Parameter Fiducial value

ωb 0.022445
h 0.67
ωm 0.143648
ns 0.96
ln(Da(0.125)) 6.177874
ln(H(0.125)) 4.268284
ln( fσ8(0.125)) −0.757651
ln(Da(0.375)) 7.00907
ln(H(0.375)) 4.411368
ln( fσ8(0.375)) −0.714737
ln(Da(0.6)) 7.264910
ln(H(0.6)) 4.548941
ln( fσ8(0.6)) −0.730402
ln(Da(0.8)) 7.378986
ln(H(0.8)) 4.672001
ln( fσ8(0.8)) −0.767895
ln(Da(1.05)) 7.452405
ln(H(1.05)) 4.821969
ln( fσ8(1.05)) −0.830894
ln(Da(1.35)) 7.488258
ln(H(1.35)) 4.992418
ln( fσ8(1.35)) −0.916615
ln(Da(1.65)) 7.494160
ln(H(1.65)) 5.150878
ln( fσ8(1.65)) −1.004727
ln(Da(1.95)) 7.483737
ln(H(1.95)) 5.297446
ln( fσ8(1.95)) −1.090957
ln(Da(2.25)) 7.463977
ln(H(2.25)) 5.432989
ln( fσ8(2.25)) −1.173509
ln(Da(2.55)) 7.438762
ln(H(2.55)) 5.558599
ln( fσ8(2.55)) −1.251760

where α and β run over the parameters we vary. k is the total
wave vector magnitude in Mpc−1, µ the cosine of the angle to the
line of sight, and Veff(z, k, µ) the effective volume of the survey:

Veff(z, k, µ) = Vs(z)
[

n(z)Pobs(z, k, µ)
n(z)Pobs(z, k, µ) + 1

]2

, (3)

with n(z) the number density of galaxies in each redshift bin and
Vs(z) the volume of each redshift bin. The observed power spec-
trum Pobs(z, k, µ), taking into account nonlinear effects is given
by:

Pobs(z, k, µ) =
1

q2
⊥q‖

(
[bσ8(z) + fσ8(z)µ2]2

1 + [ f (z)kµσp(z)]2

)
×

Pdw(z, k, µ)
σ2

8(z)
Fz(z, k, µ) + Pshot(z). (4)

The first term represents the Alcock-Paczynski (AP) volume
dilation effect that reflects spurious anisotropies in the power
spectrum which arises when assuming a cosmology (that might
be different from the true cosmology) to convert redshifts into
distances. The coefficient q‖ = Href(z)/H(z) is given by the ratio
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between the Hubble parameter in the true cosmology and the one
in the reference cosmology. The coefficient q⊥ = Da(z)/Da,ref(z)
is given by the ratio between the angular distance in the refer-
ence cosmology and the one in the true cosmology. The term,
between parentheses, contains the linear redshift space distor-
tions due to the growth of structure and finger-of-God effects
that aim to describe the nonlinear damping due to the velocity
dispersion of satellite galaxies inside host halos. Then, σp =

1/(6π2)
∫

Pm(k, z)dk represents the linear theory velocity dis-
persion that can be computed from the linear matter spectrum
Pm(k, z). The third term, Pdw, is the dewiggled power spectrum
(Eisenstein & Hu 1998, 1999) that takes into account the nonlin-
earities in the matter power spectrum. The fourth term, Fz, repre-
sents the uncertainties coming from the spectroscopic precision
of the survey under consideration and Pshot(z) the residual shot
noise. For a comprehensive description of the observed power
spectrum model introduced above, we recommend the recent
Euclid paper on validated forecasts (Euclid Collaboration 2020),
where the specific form of the function Fz as well as the rescal-
ing of k and µ due to the AP effect are given in Eqs. (74)–(79).
In terms of nonlinearities, we should note that the model used
accounts for the finger-of-God effect as well as for the damping
of the BAO feature. More details can be found in Sect. 3.2.2 of
Euclid Collaboration (2020).

We move on to describing the estimation of the uncertain-
ties using the Fisher matrix formalism. The inverse of the Fisher
matrix gives the covariance matrix that represents the likelihood
curvature evaluated at the fiducial values of α and β. According
to the Cramér-Rao inequality, the square root of each covariance
matrix diagonal elements gives the 1σ lower bound constraint
for each parameter (marginalized over all other parameters)
where the posterior distribution is Gaussian:

σα =
√

(F−1)αα. (5)

In order to compute the Fisher matrix we use SpecSAF (Spec-
troscopic Super Accurate Forecast), a modified and improved
version of a code first used in Tutusaus et al. (2016). SpecSAF
computes high point stencil derivatives with a very high level of
precision. This code is linked to CAMB (Lewis et al. 2000) and
CLASS (Lesgourgues 2011) to compute the matter power spec-
tra and allows the user to directly compute the FoM and plot the
contours. We note that SpecSAF is one of the validated codes
used in Euclid Collaboration (2020).

3.4. Precision of the Fisher matrix formalism

In order to obtain reliable final constraints from the covariance
matrix, we have to estimate the precision needed for the Fisher
elements themselves to achieve a given precision (for instance, a
relative precision lower than 10% for the square root of elements
of the diagonal of the covariance matrix). This problem is related
to the conditioning of the Fisher matrix that needs to be inverted.
The condition number ,CN , of a matrix, A, is known to provide
an upper limit to the precision, δx, of the determination of the
solution, x, of the equation, Ax = b, where b is a vector. That
is, the elements of b and A have to be known with enough pre-
cision such that δbi/bi ≤ (1/CN) δx/x. That is, if the condition
number is large, even a very small error in b will result in a large
error in x. The condition number (Belsley et al. 2005) is given
by the ratio between the largest eigenvalue to the smallest eigen-
value. This is however an upper limit that can be far too stringent
in practice: as an example, in our case, the condition number in
approach M1 is 1.3 × 105, while in the M2 approach, the con-

dition number is 4.4 × 1011. This formally calls for a precision
of ∼10−6 and ∼10−13 to ensure an accuracy of 10% in the final
constraints. However, a diagonal matrix (provided that no term
in the diagonal vanishes) is well-conditioned in practice, even
if the condition number is very large. Therefore, for a matrix
with size significantly greater that 2 × 2, the condition number
does not provide useful information on the conditioning of the
matrix. This observation has important consequences in prac-
tice, as the elements of the Fisher matrix are generally computed
from numerical derivatives whose required precision has to be
determined in order to achieve reliable results on the covariance.
To better quantify the precision needed for reliable constraints
we introduce a simple method that consists of “vibrating” each
element of the Fisher matrix as follows:

Fvibrated
αβ = Fαβ(1 + εN(0, 1)), (6)

with α and β as the indices which run over all unique pairs of
parameters. N(0, 1) is a normal distribution centered at 0 with
variance 1 and ε the amplitude of the perturbations. In order to
keep the Fisher matrix symmetric, we only perturb the lower tri-
angle part of the Fisher and compute the symmetric part across
the diagonal. The coefficients in the Fisher matrix are computed
from Boltzmann codes and are therefore subjects to correlated
noise. In our approach, this correlation is lost during the Fisher
matrix vibration. In the approach M1, we apply the perturbations
for 2000 amplitudes, ε, regularly logspaced in the range 10−12–
10−1. To ensure enough statistical data and reduce the Poisson
noise, we produce 10 000 vibrated Fisher matrix per epsilon val-
ues. In the M2 approach, this procedure is more expensive in
terms of computational time. We therefore reduced the number
of ε values to 600 in the range 10−6–10−1 and we produced 2000
vibrated Fisher matrices per ε value. The constraints obtained
with each vibrated Fisher matrix are then compared with the
original Fisher matrix by computing the relative error. For each
parameter, we compute the number of draws that gives an agree-
ment level on the constraints at the chosen precision (10% in our
case) or better.

The tolerated precision is the largest value of ε for which
68% of the constraints on each parameter remain lower than the
chosen precision (10% in our case). The results are illustrated in
Fig. 1 for the cosmological parameters in the M1 approach. In
the M2 approach, the size of the matrix is too large, so in Fig. 2
we only show the shape parameters and the redshift-dependent
parameters for a single redshift bin (z = 1.35).

3.5. Stability and convergence tests

The stability and convergence of numerical derivatives can be
an important issue and testing it is an essential validation step.
Fortunately, testing the stability of the derivative of the observed
power spectrum over any parameter is straightforward and deter-
mines the appropriate step sizes to use and which ones to avoid.
However, the stability itself does not prove that a numerical
derivative is correctly computed since it only shows to what
extent the derivative changes as a function of step size. Ide-
ally, a convergence test, which consists in computing the rel-
ative error between the analytical derivative and the numerical
one, also has to be performed. Unfortunately, directly exploiting
the convergence with a relative error test is not possible when
the derivatives cannot be computed analytically. This is the case
for most of the parameters we consider in this study. For the
cosmological parameters, we need to use a Boltzmann code and
the semi-analytical form of the derivatives over Da(z) and H(z)
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Fig. 1. Vibration matrix: approach M1. The values are expressed in absolute values. Each cell containing 1 has to be taken as a lower bound value
of the limit because we take 1 as the threshold perturbation amplitude.

contain derivatives of the matter power spectrum over the scale k
(dP/dk). Here, we follow an alternative approach to test deriva-
tive convergence by considering three different numerical meth-
ods to compute the derivatives: the 3, 5, and 7 point-centered
schemes. With the 3 (respectively 5, 7) scheme being the method
in which we use 3 (respectively 5, 7) perturbed points of the
function f (x) to determine the numerical derivative at x, we
assume that the 7 points derivative is very near the true value
when an appropriate step size is chosen. We compare the 7-point
with the 3- and 5-point stencil for different step sizes and look for
the best agreement between the two derivatives; in other words,
we carry out convergence tests between the 3- and the 5-point
stencil towards the 7 points stencil by comparing the relative
error between the 7-point stencil and the 3- and 5-point sten-
cils. More generally, the convergence is always faster with the
high-stencil derivatives method than with the low-stencil deriva-
tives, which means that the optimum for the 5-point stencil often
occurs at larger step values than the 3-point stencil. However,
this does not hold in all cases. For instance, applying this method
to a highly noisy or oscillatory function can lead to erroneous
results and finding stable behaviors would not be possible. It is
therefore very useful to plot the functions under consideration in
order to identify any such features.

3.6. The MCMC sampling

In order to consolidate the reliability of our Fisher matrix con-
straints, we compare them with MCMC constraints. As is well
known, the MCMC sampling is much more time-consuming
than the Fisher matrix computation due to the computational
time needed to obtain the power spectrum at each iteration.
Moreover, by construction, a Markov chain cannot be paral-
lelized, as each draw depends on the previous displacement;
however, it is possible to launch several chains at the same
time to sample the parameter space more effectively. Consider-
ing a set of data and a model equipped with a set of parameters
Θ, the MCMC allows us to use Bayesian inference and model
comparison:

P(Θ|data) =
P(data|Θ)P(Θ)

P(data)
, (7)

with P(Θ|data) the posterior distribution, which provides the
constraints and the joint covariance between all the parameters
considered, P(data|Θ) the Likelihood, P(Θ) the prior that we take
to be flat in the present study, and P(data) the Bayesian evidence
that can be safely ignored as it is a constant of no interest in our
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Fig. 2. Vibration matrix: approach M2. We note that some values are identical because we decreased the resolution of the perturbation amplitude
range.

situation. Thus, the previous equation can be reduced to:

P(Θ|data) ∝ P(data|Θ). (8)

We compute the posterior distribution with the MCMC
module of SpecSAF using the Metropolis-Hastings algorithm
(Metropolis & Ulam 1949; Robert 2015). This is described in
more detail in Appendix A. We test the chains convergence using
the Gelman-Rubin diagnostic (Gelman & Rubin 1992; Brooks &
Gelman 1998) described in Appendix B. Our data are modeled
by the a realization of our fiducial model given by Eq. (4).

3.7. MCMC Comparison

The full validation of the Fisher matrix approach is per-
formed with a direct comparison with the results from the
MCMC chains. We sample the two parameter spaces of the two
approaches and compare the relative error given by the covari-
ance matrix of the sampling and the inverse of the Fisher matrix.
We also visualize the Fisher contours versus the MCMC sam-
pling. As we use exactly the same specifications for both meth-
ods, we expect to get the same constraints with a relative error
lower than 10% as long as the posterior distribution remains
gaussian and doesn’t present any degeneracies.

4. Results

4.1. Precision requirements

The vibration matrices for M1 and M2 are presented in Figs. 1
and 2, respectively. We can clearly see that the sensitivity of the
constraints depends on the element vibrated. According to Fig. 1,
the diagonal elements are the most sensitive, more specifically,
Ωm, ΩDE and wa. For our working requested precision (10%),
these three parameters require a precision between 0.06% and
0.09%; for the other parameters, the diagonal elements required
precision spreads between 0.1% and 0.4%; the nondiagonal ele-
ments are less cumbersome: some of them can even change by
a factor of 2 without affecting the constraints (for instance Ωb
vs [ΩDE, w0, wa, σ8]). Most of the nondiagonal elements can be
computed with a precision worse than 1%.

The Fisher matrix produced following the M2 approach
(Fig. 2) shows a greater sensitivity to vibration than the M1
approach, which is in line with their different condition numbers.
The diagonal element, h, seems to be the most sensitive param-
eter with a required precision around 0.0012%, which is, how-
ever, much less stringent than what the condition number would
suggest (∼10−11%). The background quantities and ωm require
a precision around 0.015%, while ωb and ns are one order of
magnitude more tolerant, with a target precision of 0.2%. The
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Fig. 3. Stability and convergence tests towards the 7-point stencil for wa and ln(Da(1.35)) at a given k and µ at z = 1.35. Upper left panel: stability
of wa; upper right panel: stability of ln(Da(1.35)); bottom left panel: convergence of ωm; bottom right panel: convergence of ln(Da(1.35)). Blue:
3-point stencil, red: 5-point stencil, green: 7-point stencil.

off-diagonal elements show a higher tolerance for perturbations,
however, it is only the background elements versus [Ωb, ns] that
demonstrate a vibration tolerance higher than one percent.

To summarize, compared to the M1 approach, the Fisher
matrix produced in the M2 approach is generally at least two
orders of magnitude more sensitive for the most sensitive param-
eters and one order of magnitude more sensitive for the less
sensitive ones. These final figures are poorly reflected by the
condition number of each approach. The above vibration matrix
approach allows us to quantify the precision requested for the
elements in the Fisher matrix to achieve the requested precision
on the constraints of interest, namely, the FoM in our case. This
effective precision is hard to anticipate otherwise: the condition
number provides a mathematical lower limit to it. However, for a
simple 2× 2 diagonal matrix, it is clear that the precision needed
for each element is just the one sought after with regard to the
constraints, while the condition number (being the product of the
eigenvalues) can be arbitrary large. The precision requested for
the elements in the Fisher matrix is therefore intimately related
to the internal structure of the Fisher matrix.

In the next section, we examine the step sizes necessary to
achieve the requested accuracy on the Fisher matrix elements.

4.2. Stability and convergence

In order to compute the elements of the Fisher matrix (Eq. (2)),
we have to compute several integral quantities involving the
derivatives. The precision on these elements is therefore directly

related to the precision that can be achieved on these com-
putations, determined by the step sizes used and the numeri-
cal schemes used in these derivations. In the following, all the
parameters step sizes shown are relative to their correspond-
ing fiducial value, except for wa and Pshot and that is because
their fiducial values is zero. Moreover, we chose to illustrate one
shape parameter and one redshift dependent parameter in the fol-
lowing plots because the derivatives behavior between the shapes
parameters is similar as well as the derivative behavior between
the redshift-dependent parameters. We have therefore examined
the precision obtained on each of these elements by first exam-
ining the precision reached when the step size varies. In order to
illustrate this, we provide illustration for derivatives against step
size, which are representative of general behavior. The upper
panels of Fig. 3 illustrate the stability of the square of the deriva-
tive of ln P(k, µ) with respect to wa at (k, µ) = (0.0121, 0.5)
and lnDa at (k, µ) = (0.098,−0.1) (blue: 3-point stencil, red:
5-point stencil, green: 7-point stencil), at z = 1.35. The upper
left panel demonstrates the cosmological parameters stability
behavior. The stability of the derivative is reached when the
slope of the derivative value over the step size is close to zero
(when the curve shows a horizontal behavior) while decreasing
the step size. These derivatives are usually relatively stable in the
step size range [10−4, 10−1] for each derivative. The truncation
errors remain small in all of the range for most of the deriva-
tives. We note that for the low step values, instabilities occur
due to rounding errors. The upper-right panel is representative
of the typical stability behavior of ln(H(z)) and ln(Da(z)). For
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Fig. 4. Optimal/Limit steps histograms for Ωb (M1). Upper left panel: optimal steps for the 3-point derivatives; upper right panel: optimal steps
for the 5-point derivatives; bottom left panel: critical steps for the 3-point derivatives; bottom right panel: critical steps for the 3-point derivatives.

step sizes higher than 3× 10−3, instabilities begin to arise for the
3-point stencil. The truncation errors dominate and increase the
total error budget. The instability range for the 5- and 7-point
derivatives is smaller: typically around 1 × 10−2. The lower pan-
els (Fig. 3) represent the corresponding derivative convergence
tests with respect to the 7-point derivatives; namely, the rela-
tive error between the 7-point stencil and the (3, 5) point sten-
cil in (blue, red). Generally, convergence tests are carried out
to compare the relative error between the analytical solution of
a derivative and solutions obtained numerically when we vary
the step size. The minimum relative error between the analyti-
cal form and the numerical solutions corresponds to the optimal
step 6 that ensures the most accurate derivative. Because we can-

6 See Appendix C for a summary of the main definitions relevant for
this work.

not compute the analytical form of most of the derivatives pre-
sented here, we carry out convergence tests of the 5- and the
3-point stencil using the 7-point stencil results as a reference
since the latter is theoretically more accurate. In the bottom-left
panel, the 3-point derivative achieves its convergence when the
step is equal to 10−2. The optimal step for the 5-point stencil
is around 1 × 10−1 at most. Concerning the angular diameter
distance (bottom right panel), the 3-point convergence level is
achieved down to a step of 3 × 10−7, whereas for the 5-point
derivatives, it is around 5×10−5. Figure 3 shows that the conver-
gence is always reached after the stability if we decrease the step
size. For instance, let’s take a closer look on Fig. 3 right panel
(ln Da(1.35)). If we observe the stability and the corresponding
convergence plots at a step of 10−1, we see that the convergence
and the stability aren’t reached yet. Now if we start to decrease
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Fig. 5. Optimal/Limit steps histograms for ln(H(1.35)) (M2). Upper left panel: optimal steps for the 3-point derivatives; upper right panel:
optimal steps for the 5-point derivatives; bottom left panel: critical steps for the 3-point derivatives; bottom right panel: critical steps for the
3-point derivatives.

Table 5. Step values (approach M1): 5-point derivatives.

Parameter Ωb h Ωm ns ΩDE w0 wa σ8

Optimal step 3e−2 1e−2 2e−2 1e−1 4e−2 2e−2 8e−2 1e−2
Critical step 1e−5 1e−1 1e−1 1e−1 1e−1 1e−5 2e−5 1e−12
Hypercritical step 1e−5 1e−1 1e−1 1e−1 1e−1 1e−5 1e−5 1e−12

the step size, we see that the stability is reached around a step of
10−2 because the slope of the curve becomes near to 0. However,
the corresponding convergence plot still shows an error of 100%
between the 7-point stencil and the 5- and 3-point stencils. If we
continue to decrease the step size, the minimum of convergence
occurs at 10−4 for the 5-point stencil and 3.10−7 for the 3-point

Table 6. Step values (approach M2): 5-point derivatives.

Parameter ωb h ωm ns ln(Da(z)) ln(H(z))

Optimal step 2e−2 1e−2 2e−2 1e−1 1e−4 1e−4
Critical step 2e−2 1e−2 2e−2 1e−1 1e−2 1e−2
Hypercritical step 2e−2 1e−2 2e−2 1e−1 2e−2 2e−2

stencil. This feature always appears as we can see it as well on
the left panel of Fig. 3 (at least for the 3-point stencil because
we took a maximum step value of 10−1).

Considering that (k, µ) is a (1000, 1000) grid in our forecasts
(and we have multiple redshift bins), we preferably need to study
convergence in the full grid instead of a specific (k, µ) value.
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Fig. 6. Fisher approach M1 (blue) contours with optimal step sizes vs. Fisher approach M1 (red) with optimal step sizes contours projected from
the model M2. Smaller contours are set in front. Here, the contours are nearly identical, with minor numerical differences putting one contour in
front of the other nearly randomly.

Table 7. Relative errors on the cosmological parameter constraints
between the M1 and M2 approaches (both with optimal step sizes) after
projection to the θcosmo parameter set.

Parameter Relative error (%)

Ωb 1.857e−3
h 2.332e−3
Ωm −2.176e−2
ns 2.155e−2
ΩDE −1.137e−3
w0 −7.339e−3
wa −1.573e−3
σ8 −5.706e−3

Notes. In both cases, the covariance matrices are marginalized over the
nuisance parameters.

The upper panels of Fig. 4 summarize the optimal steps corre-
sponding to the convergence level of the square of the deriva-
tive of ln P(k, µ) with respect to Ωb (3-point stencil: upper left

panel; 5-point stencil: upper right panel) at z = 1.35. Concern-
ing the 3-point stencil, the optimal step size is located around
values on the order of 10−2 at large scales and (10−2, 10−3) at
small scales. For the 5-point stencil, it is in the range of 10−1–
10−2 at large scales and 10−1–10−3 at small scales. The bottom
panels of Fig. 4 demonstrate the Ωb critical step size giving a
relative error comparable to the elements (Ωb,Ωb) of the vibra-
tion matrix. In other words, this is a map of the Ωb step sizes
that can potentially lead to an error of 10% on the final con-
straints. As we have already seen, the truncation errors are small
for the cosmological parameters and so, here we show steps that
are in the rounding errors regime (see Appendix C for these
and other definitions relevant to the work). The 3-point stencil
shows some rounding issues for steps going from 10−5 (large
scales) to 10−3 (small scales). With regard to the 5-point sten-
cil, the rounding issues occurs for steps from 10−6 (large scales)
to 10−3 (small scales). The 5-point stencil shows more toler-
ance than the 3-point stencil. For cosmological parameters with
a 5-point method with steps around 10−2 is the safest way to
compute derivatives. There is no dependence of the step size on
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Table 8. MCMC vs Fisher relative errors (in percentage) for the model
M1.

Parameters Optimal Critical Hcritical

Ωb −1.201 5.302 6.143
h −4.059 3.467 4.351
Ωm −1.999 −0.294 3.013
ns −1.759 −1.790 0.146
ΩDE −4.723 5.899 11.916
w0 −3.214 6.133 19.704
wa −5.183 13.365 34.022
σ8 −3.341 −3.305 −2.256
ln(bσ8(0.125)) −3.418 1.033 5.306
Pshot(0.125)) −3.523 −3.223 −2.736
ln(bσ8(0.375)) −3.067 4.248 11.174
Pshot(0.375)) −2.804 −1.042 1.760
ln(bσ8(0.6)) −2.404 0.551 3.896
Pshot(0.6)) −3.692 −3.563 −3.249
ln(bσ8(0.8)) −3.492 1.258 5.734
Pshot(0.8)) −2.419 −2.177 −1.063
ln(bσ8(1.05)) −4.591 0.531 4.042
Pshot(1.05)) −3.411 −2.883 −2.725
ln(bσ8(1.35)) −3.732 0.679 3.312
Pshot(1.35)) −3.149 −2.626 −2.643
ln(bσ8(1.65)) −3.487 0.002 2.108
Pshot(1.55)) −3.866 −3.480 −3.592
ln(bσ8(1.95)) −2.445 0.388 2.568
Pshot(1.95)) −4.662 −3.730 −3.730
ln(bσ8(2.25)) −1.965 −0.012 1.236
Pshot(2.25)) −0.671 −0.378 −0.427
ln(bσ8(2.55)) −4.628 −3.197 −2.449
Pshot(2.55)) −2.801 −2.566 −2.605

Notes. Hcritical stands for the set of hypercritical steps described in the
text.

µ in the M2 model because the derivatives only depend on the
matter power spectrum. However, this dependence arises in the
M1 model through the Alcock-Paczynski effect.

Figure 5 shows the optimal (upper panel) and the critical
(bottom panel) step size for ln(H(1.35)) for the 3-point (left) and
5-point (right) stencil derivative. The optimal step size mainly
lies around 10−6 for the 3-point stencil (even 1.5 × 10−7 in cer-
tain cells). The 5-point stencil mainly shows convergence from
10−5 to a few 10−4. Regarding the critical step size, here we took
the truncation error as a limit because of its dominance when
we compute derivatives over background quantities. The criti-
cal range for the 3-point derivatives extends from 10−1 to 10−4,
while for the 5-point stencil, the range is 10−1 to a few 10−3. The
lower bound of the critical range is one order of magnitude lower
for the 5-point stencil. For the background quantities, taking low
step sizes is a good option for computing accurate derivatives.
The rounding errors remain much less dominant than the trunca-
tion errors.

Ideally, it would be best to use an optimal step size for each
value of the k and µ. However, from Figs. 4 and 5, we find
that, when possible, a single step size should be selected, which
will work efficiently over the whole parameter space. This sin-
gle optimal step size should be below the critical value all over
the parameter space. Tables 5 and 6 summarize the steps chosen
for the M1 and M2 approaches using the 5-point method. For
cosmological parameters, a step between 10−1 and 10−2 is

Table 9. MCMC vs Fisher relative errors (in percentage) for the M2
approach.

Parameters Optimal Critical Hcritical

ωb −4.044 9.118 61.864
h −5.467 2.818 51.171
ωm −5.183 8.614 60.223
ns −2.302 5.236 14.492
ln(Da(0.125)) −4.134 2.398 30.746
ln(H(0.125)) −4.108 2.378 31.556
ln( fσ8(0.125)) −2.270 1.044 15.818
ln(bσ8(0.125)) −4.901 3.204 44.078
Pshot(0.125)) −3.641 −3.351 −4.703
ln(Da(0.375)) −5.320 3.814 51.556
ln(H(0.375)) −5.070 3.932 50.975
ln( fσ8(0.375)) −3.949 0.883 23.873
ln(bσ8(0.375)) −5.460 3.955 56.284
Pshot(0.375)) −3.494 −1.875 −1.224
ln(Da(0.6)) −3.538 3.266 33.064
ln(H(0.6)) −3.888 3.262 36.254
ln( fσ8(0.6)) −3.062 3.093 32.527
ln(bσ8(0.6)) −4.265 3.307 39.351
Pshot(0.6)) −1.530 −1.374 −2.117
ln(Da(0.8)) −4.993 4.691 56.769
ln(H(0.8)) −4.845 4.799 57.621
ln( fσ8(0.8)) −5.187 3.423 52.354
ln(bσ8(0.8)) −5.230 4.365 57.019
Pshot(0.8)) −1.685 −0.413 −39.840
ln(Da(1.05)) −5.359 4.207 64.246
ln(H(1.05)) −5.483 4.532 64.077
ln( fσ8(1.05)) −5.123 2.736 50.217
ln(bσ8(1.05)) −5.658 4.088 62.095
Pshot(1.05)) −2.900 −2.942 −4.709
ln(Da(1.35)) −5.119 4.441 64.000
ln(H(1.35)) −4.976 5.192 64.010
ln( fσ8(1.35)) −5.474 1.986 48.206
ln(bσ8(1.35)) −5.302 4.551 62.316
Pshot(1.35)) −3.530 −3.712 −60.378
ln(Da(1.65)) −4.991 4.625 60.693
ln(H(1.65)) −5.091 5.129 60.626
ln( fσ8(1.65)) −4.595 2.038 40.691
ln(bσ8(1.65)) −5.400 4.585 60.985
Pshot(1.65)) −3.073 −3.430 −6.134
ln(Da(1.95)) −4.837 2.849 54.337
ln(H(1.95)) −4.953 4.029 54.718
ln( fσ8(1.95)) −4.187 0.337 30.715
ln(bσ8(1.95)) −5.276 3.921 58.407
Pshot(1.95)) −2.426 −3.054 −7.641
ln(Da(2.25)) −3.534 3.803 41.734
ln(H(2.25)) −3.913 4.231 42.031
ln( fσ8(2.25)) −1.690 0.720 14.056
ln(bσ8(2.25)) −4.566 4.405 51.277
Pshot(2.25)) −1.741 −2.232 −6.015
ln(Da(2.55)) −2.590 3.662 31.678
ln(H(2.55)) −3.687 3.179 32.003
ln( fσ8(2.55)) 0.659 1.863 7.551
ln(bσ8(2.55)) −4.272 4.030 44.289
Pshot(2.55) −1.889 −2.294 −5.557

Notes. Hcritical refers to the hypercritical steps choice described in the
main text.
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Fig. 7. Fisher contours: M1 approach, for the optimal (green), critical (blue), and hypercritical (red) steps. The contours are significantly affected
when using an inappropriate step size, although the 1D likelihoods remain pretty stable.

enough to compute accurate derivatives. For background quan-
tities, we use 10−4. We added the critical steps and hypercriti-
cal steps. The former corresponds to a choice of step size that
ensures a precision on the derivatives better than the chosen
level, while the latter is not expected to lead to the requested
precision. The hypercritical steps are the same as the criti-
cal steps except for wa, whose step size is twice smaller (M1
approach) in order to increase the numerical noise; we also mul-
tiply, by a factor of 2, the steps of the background quantities
(M2 approach) to increase the truncation errors. The constraints
obtained by these 3 step cases are compared with the MCMC
sampling.

4.3. Consistency: Approach M1 versus approach M2

In this section, we test the consistency of our results by
comparing the two approaches, M1 and M2. This can be
achieved by projecting the Fisher matrix from the M2
parameter space to the M1 parameter space. First, we con-
sider the initial set of parameters given by the model M2

(these are: Pinitial[ωb, h, ωm, ns, ln(Da(0.125)), ln(H(0.125)),
ln( fσ8(0.125)), ln(bσ8(0.125)), Pshot(0.125), . . ., ln(Da(2.55)),
ln(H(2.55)), ln( fσ8(2.55)), ln(bσ8(2.55)), Pshot(2.55)]) and the
final set of parameters (model M1), that is Pfinal[Ωb, h, Ωm, ns,
ΩDE, w0, wa, σ8, ln(bσ8(0.125)), Pshot(0.125), . . ., ln(bσ8(2.55)),
Pshot(2.55)]. We can project the initial Fisher matrix to the final
one by simply using the chain rule (Wang 2006; Wang et al.
2010). The marginalization over the nuisance parameters can be
done before or after the projection. In the latter case, they have
to be taken into account during the projection:

Ffinali j =
∑
αβ

∂Pinitialα

∂Pfinali

(
Finitialαβ

) ∂Pinitialβ

∂Pfinal j

, (9)

where indices i and j run over all unique pairs of parameters
corresponding to the final model (we build the other half of the
final Fisher matrix by computing the symmetric by mirroring
over the diagonal). Indices α and β run over all parameter pairs
corresponding to the M1 approach. We summarize the con-
straints relative errors obtained from the comparison between the
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Fig. 8. Fisher contours: M2 approach, for the optimal (green), critical (blue), and hypercritical (red) steps. In this case, the use of critical step size
leads to contours close the ones obtained with the optimal step size, while the hypercritical (twice the critical one) leads most of the contours to be
incorrect, as well as most of the 1D likelihood.

standard M1 approach computation against the constraints after
projection from the parameters introduced in the M2 approach
in Table 7. Both covariances are marginalized over the nuisance
parameters. We find that the two methods are in very good agree-
ment, with the relative errors not exceeding ∼0.02%. The corre-
sponding contours are shown in Fig. 6. As we can see, they are
nearly perfectly superimposed. Therefore, the final Fisher matri-
ces are highly consistent in the two approaches.

4.4. Fisher matrix and MCMC comparison

The relative errors between the MCMC and the Fisher con-
straints are presented in Tables 8 and 9. With the optimal steps,
the relative error is lower than 5.5% for both models. With the
critical steps, the wa relative error exceeds 10% (model M1). The
other parameters have errors ranging from 2 × 10−3 to ∼6%. In
the second approach, every step agrees well with the MCMC
with the highest relative error of 9.118%. Choosing hypercrit-
ical steps leads to significant disagreement with the MCMC
constraints. In the M1 approach, three cosmological parameters

(ΩDE, w0 and wa) and one nuisance parameter (ln(bσ8(0.375)))
do not fulfill the 10% agreement requirement level. The rela-
tive error on wa reaches 34%. In the M2 approach, the results
are even worse, with most of the parameters having errors above
50%. Figures 7 and 8 show the Fisher contours using the opti-
mal, critical, and hypercritical steps set. The covariances are
marginalized over the nuisance parameters. For convenience, we
only show the cosmological parameters for the M1 approach,
and the cosmological as well as one redshift bin (z = 1.35) for
the approach M2. In the M1 approach, as seen in Fig. 7, the Ωb,
h, Ωm, ns and σ8 constraints are very stable for the 3-step set.
The ΩDE parameter shows a slight difference between the 3-step
set. The dark energy parameters, w0 and wa, show more appre-
ciable differences, especially wa. In the M2 approach (Fig. 8) we
can only see a few differences between the optimal and the crit-
ical steps set. However, the set of hypercritical steps gives very
different results on all parameters except ns and Pshot(z)). The
constraints are heavily overestimated (the uncertainties are too
small) and fill around one third of the two other surface contours.
We emphasize here that the only difference between the critical
steps and the hypercritical steps is a factor of 2 on the steps for
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Fig. 9. MCMC vs Fisher optimal (red) contours: model M1.

only one parameter in the M1 approach and two parameters on
the M2 approach. The transition from the stable derivatives to
the unstable derivatives is very sharp.

Checking the Fisher matrix derived constraints against the
MCMC can give valuable information regarding the precision of
the Fisher matrix estimation. However, this is not enough to vali-
date the full procedure. Indeed, two multi-dimensional inference
methods can result in the same constraints for each individual
parameter, but with a different contour orientation. In order to
ensure that this is not the case, the full posterior distribution has
to be compared so we may check that all the contours orienta-
tions are similar. Figures 9 and 10 present the MCMC poste-
rior distributions against the Fisher matrix ones (red lines) using
the optimal steps settings. All the Fisher contours have the same
orientation as the MCMC contours. Thus, the full procedure is
validated. It is important to note that, fortunately, using one opti-
mal step for all (k, µ, z) values is sufficient to have a very good
level of agreement with the MCMC. That is to say, no adaptive
derivatives approach is required. Moreover, the main differences
between the Fisher and the MCMC contours come from slight

non-Gaussianities on the posterior distribution. On some likeli-
hood histograms in Figs. 9 and 10 we can see that the posterior
from the MCMC follows “perfectly” one side of the Fisher, but
not the other one (for instance, h in the M1 approach). This fea-
ture is less visible in the M2 approach likely due to the high
number of accepted points in the MCMC chain, but it is still
there, for example, in the case of ns.

5. Conclusions

In this paper, we investigate how to perform a comprehen-
sive and robust validation of Fisher matrix forecasts by using a
combination of three Stage IV spectroscopic surveys. We built
vibration matrices for two different approaches for a fiducial cos-
mological model: a non-flat ΛCDM extended model where the
dark energy equation of state follows the CPL parameterization
which has two free variables: w0 and wa. In the first approach
(M1), the Fisher matrix is obtained directly for the cosmological
parameters, while in the second approach (M2), the background
quantities are varied independently from the shape parameters,
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Fig. 10. MCMC vs Fisher optimal (red) contours: approach M2.

resulting in a much larger matrix; the final constraints are pro-
jected on the same parameter space for both approaches. We also
found that the larger Fisher matrix is globally more sensitive to
perturbations (as reflected by its high condition number). For
instance, the Hubble parameter, h, is two orders of magnitude
more sensitive in the second approach.

We studied the stability of the numerical derivatives over the
cosmological parameters and found that the truncation error is
particularly small within the step ranges considered. Cosmolog-
ical parameters remain stable in the step range from 1 × 10−1

to 3 × 10−4. Lower step values increase the rounding errors and
result in higher total errors. Taking “large” steps is the safest
way to perform the derivatives with respect to the cosmological
parameters. The background quantities behave differently. The
rounding errors remain small in all the step ranges considered.
However, steps larger than 1×10−2 for a 5-point stencil derivative
give unstable results. Taking “large” steps for the background
quantities is not safe because the differentiated function can
oscillate on a scale smaller than the step size; this is exactly what
must be avoided when computing the numerical derivatives. The
convergence tests with respect to the 7-point stencil derivatives

are performing better for the 5-point stencil. The convergence is
reached between one and two orders of magnitude before the 3-
point stencil case, and similarly for the convergence level. The
safe steps window range of the 5-point stencil is then wider.

A comparison with the MCMC sampling shows the effi-
ciency of the Fisher formalism even with non-adaptive deriva-
tives, at least in the case where the posterior distribution is close
to Gaussian. Although the optimal steps change with k and µ,
choosing a unique step size for all the parameters does not pro-
duce appreciably larger errors that would significantly alter the
forecasts. Furthermore, we considered a 1000 × 1000 (k, µ) grid
which, multiplied by the number of redshift bins, amounts to
computing 107 derivatives per parameter. One of the reasons for
the stability comes from the fact that the contribution of the large
scales on the derivatives is very small compared to the small
scales contribution. Thus, taking optimal steps from high k val-
ues remains the best option. We have also seen that the transition
between stable and unstable contours is quite sharp. Changing a
step size by a factor of 2 in the wrong direction can give unstable
contours.
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Identifying and explaining the derivatives behavior and the
effects on the constraints is difficult without the tests presented
in this work. Our strategy allows for a comprehensive and robust
validation of the constraints derived from the Fisher matrix for-
malism through a numerical method.
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Appendix A: The Metropolis-Hastings sampler

Here we describe the steps to sample the parameter space from
the SpecSAFMCMC module:
1. We initialize each parameter at its fiducial value and compute

the corresponding observed power spectrum (Eq. (4)).
2. We draw a new parameter set from a multivariate normal

distribution (mean = current parameter set) and compute the
new observed power spectrum. The multivariate normal dis-
tribution is the one given by the inverse of the Fisher matrix
for the same specifications (i.e., the covariance matrix).

3. We perform a χ2 test in order to get the sum of the square
errors:

χ2
new =

∑
z,k,µ

(ln Pobs,new(z, k, µ)−ln Pobs,previous(z, k, µ))2

σp(z, k, µ)2 , (A.1)

with σp(k, µ, z) the errors of the logarithm of the observed
power spectrum given by Seo & Eisenstein (2003):

σp = 2π

√
2

Veff(z, k, µ)k2∆k∆µ

(
1 + n(z)Pobs,fid

n(z)Pobs,fid

)
, (A.2)

with n(z) the mean density of galaxies at a given redshift bin.
4. We finally compute the likelihood ratio:

LR = exp(−0.5(χ2
new − χ

2
previous)). (A.3)

5. We draw a random number RN in the interval [0, 1] from a
uniform distribution.

6. We compare LR and RN :
– if LR ≥RN the parameter set is accepted and the new param-
eter set is updated.
– else the parameter set is not accepted and the new parame-
ter set is not updated.

7. We loop over 2–6.
Finally we stop the chains using the Gelman-Rubin diagnos-

tic, described in Appendix B.

Appendix B: The Gelman-Rubin diagnostic

The Gelman-Rubin diagnostic aims to monitor MCMC outputs
for parallelized chains. The convergence test computes a con-
stant, (R−1), proportional to the ratio of the parameters variance
of one chain to the mean parameters variances of the independent
chains. The mean of the empirical variance within each chain W
is defined as:

W =
1

M(N − 1)

N∑
i=1

P∑
α=1

(vαi − v̂α)2, (B.1)

with M the number of chains, P the number of parameters and N
the number of accepted points for each chain; v̂α represents the
mean value drawn of a parameter α for one chain and vαi the i-th
α value drawn. The between-chain variance B is given by:

Table B.1. (R − 1) values for approach M1.

Parameter (R − 1) value

Ωb 4.518e−4
h 1.900e−3
Ωm 3.657e−4
ns 6.984e−4
ΩDE 1.807e−3
w0 4.007e−5
wa 3.765e−4
σ8 1.528e−4
ln(bσ8(0.125) 1.316e−3
Pshot(0.125) 4.903e−5
ln(bσ8(0.375) 1.091e−3
Pshot(0.375) 7.877e−4
ln(bσ8(0.6) 5.615e−4
Pshot(0.6) 8.707e−5
ln(bσ8(0.8) 7.964e−4
Pshot(0.8) 1.920e−4
ln(bσ8(1.05) 7.551e−4
Pshot(1.05) 1.213e−3
ln(bσ8(1.35) 8.478e−3
Pshot(1.35) 1.458e−3
ln(bσ8(1.65) 5.064e−4
Pshot(1.65) 1.003e−3
ln(bσ8(1.95) 4.007e−4
Pshot(1.95) 1.635e−3
ln(bσ8(2.25) 2.594e−4
Pshot(2.25) 7.626e−4
ln(bσ8(2.55) 1.823e−2
Pshot(2.55) 9.062e−4

B
N

=
1

(M − 1)

P∑
α=1

(vαi − v̂)2. (B.2)

The weighted sum of W and B is written as:

V =
N − 1

N
W +

B
N

(
1 +

1
N

)
. (B.3)

Finally, the R number is defined as:

R =

√
d̂ + 3

d̂ + 1

V
W
≥ 1, (B.4)

with d̂ the degrees of freedom estimate of a given distribu-
tion. The convergence is reached once (R − 1) < 0.03 “(i.e., R
must be sufficiently close to 1)”. We provide the (R − 1) values
obtained for the approaches M1 and M2 in Tables B.1 and B.2,
respectively.
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Table B.2. (R − 1) values for approach M2.

Parameter (R − 1) value

ωb 1.811e−2
h 1.820e−2
ωm 1.820e−2
ns 1.827e−2
ln(Da(0.125)) 1.812e−2
ln(H(0.125)) 1.827e−2
ln( fσ8(0.125)) 1.819e−2
ln(bσ8(0.125)) 1.819e−2
Pshot(0.125) 1.817e−2
ln(Da(0.375)) 1.808e−2
ln(H(0.375)) 1.817e−2
ln( fσ8(0.375)) 1.802e−2
ln(bσ8(0.375)) 1.819e−2
Pshot(0.375) 1.808e−2
ln(Da(0.6)) 1.821e−2
ln(H(0.6)) 1.825e−2
ln( fσ8(0.6)) 1.811e−2
ln(bσ8(0.6)) 1.828e−2
Pshot(0.6) 1.809e−2
ln(Da(0.8)) 1.807e−2
ln(H(0.8)) 1.810e−2
ln( fσ8(0.8)) 1.816e−2
ln(bσ8(0.8)) 1.813e−2
Pshot(0.8) 1.815e−2
ln(Da(1.05)) 1.818e−2
ln(H(1.05)) 1.814e−2
ln( fσ8(1.05)) 1.825e−2
ln(bσ8(1.05)) 1.818e−2
Pshot(1.05) 1.811e−2
ln(Da(1.35)) 1.814e−2
ln(H(1.35)) 1.819e−2
ln( fσ8(1.35)) 1.811e−2
ln(bσ8(1.35)) 1.821e−2
Pshot(1.35) 1.822e−2
ln(Da(1.65)) 1.822e−2
ln(H(1.65)) 1.815e−2
ln( fσ8(1.65)) 1.825e−2
ln(bσ8(1.65)) 1.821e−2
Pshot(1.65) 1.804e−2
ln(Da(1.95)) 1.820e−2
ln(H(1.95)) 1.820e−2
ln( fσ8(1.95)) 1.821e−2
ln(bσ8(1.95)) 1.823e−2
Pshot(1.95) 1.812e−2
ln(Da(2.25)) 1.820e−2
ln(H(2.25)) 1.820e−2
ln( fσ8(2.25)) 1.826e−2
ln(bσ8(2.25)) 1.820e−2
Pshot(2.25) 1.827e−2
ln(Da(2.25)) 1.820e−2
ln(H(2.55)) 1.816e−2
ln( fσ8(2.55)) 1.811e−2
ln(bσ8(2.55)) 1.823e−2
Pshot(2.55) 1.830e−2

Appendix C: General definitions

In this last part of the appendix, we summarize the main defini-
tions relevant for this work.

Optimal step. Step size providing the minimum relative
error between the analytical form and the numerical solutions.
It ensures the most accurate derivative.

Critical step. Step size that can potentially lead to an error of
10% on the final constraints.

Hypercritical step. Step size that can potentially lead to
catastrophic errors (several dozen percent) on the final con-
straints.

Truncation error. Error introduced by considering too large
step sizes. The approximation of computing the derivative with
a finite amount of terms is in this case no longer valid.

Rounding error. Error introduced by considering too small
step sizes. The finite precision floating point numbers used
on computers cannot distinguish between numbers that are too
close.

Vibration matrix. Matrix providing the largest value of the
vibration for which 68% of the constraints on each parameter
remain smaller than the chosen precision.
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