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Abstract

We describe the second version (v2.0.0) of the code ADG that automatically (1) generates all valid off-diagonal Bogoliubov
many-body perturbation theory diagrams at play in particle-number projected Bogoliubov many-body perturbation
theory (PNP-BMBPT) and (2) evaluates their algebraic expression to be implemented for numerical applications. This is
achieved at any perturbative order p for a Hamiltonian containing both two-body (four-legs) and three-body (six-legs)
interactions (vertices). All valid off-diagonal BMBPT diagrams of order p are systematically generated from the set of
diagonal, i.e., unprojected, BMBPT diagrams. The production of the latter were described at length in Ref. [1] dealing
with the first version of ADG. The automated evaluation of off-diagonal BMBPT diagrams relies both on the application of
algebraic Feynman’s rules and on the identification of a powerful diagrammatic rule providing the result of the remaining
p-tuple time integral. The new diagrammatic rule generalizes the one already identified in Ref. [1] to evaluate diagonal
BMBPT diagrams independently of their perturbative order and topology. The code ADG is written in Python3 and uses
the graph manipulation package NetworkX. The code is kept flexible enough to be further expanded throughout the years
to tackle the diagrammatics at play in various many-body formalisms that already exist or are yet to be formulated.
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NEW VERSION PROGRAM SUMMARY
Program Title: ADG
Licensing provisions: GPLv3
Programming language: Python3
Supplementary material: Yes.
Journal reference of previous version: P. Arthuis, T. Duguet,
A. Tichai, R.-D. Lasseri and J.-P. Ebran, "ADG: Automated
generation and evaluation of many-body diagrams I. Bogoli-
ubov many-body perturbation theory", Computer Physics
Communications 240 (2019), pp. 202-227.
Does the new version supersede the previous version?: Yes.
Reasons for the new version: Incorporation of a new formalism
into the program.
Summary of revisions: Addition of off-diagonal BMBPT to
the formalisms for which diagrams can be generated, fix of a
wrong symmetry factor, move of the codebase from Python2
to Python3 while maintaining support for Python2, various
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optimizations to reduce the time and memory necessary to the
program.
Nature of problem: As formal and numerical developments in
many-body-perturbation-theory-based ab initio methods make
higher orders reachable, manually producing and evaluating all
the diagrams becomes rapidly untractable as both their number
and complexity grow quickly, making it prone to mistakes and
oversights.
Solution method: Diagonal BMBPT diagrams are encoded as
square matrices known as oriented adjacency matrices in graph
theory, and then turned into graph objects using the NetworkX
package. Off-diagonal BMBPT diagrams can then be generated
from those graphs. Checks on the diagrams and evaluation
of their time-integrated expression are eventually done on a
purely diagrammatic basis. HF-MBPT diagrams are produced
and evaluated as well using the same principle.

1. Introduction

In Ref. [1], the first version of the code ADG was de-
scribed. The code was designed to automatically (1) gener-
ate all valid Bogoliubov many-body perturbation theory
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(BMBPT) diagrams and (2) evaluate their algebraic expres-
sion to be implemented for numerical applications. This
was achieved at any perturbative order p for a Hamiltonian
containing both two-body (four-legs) and three-body (six-
legs) interactions (vertices). This code development took
place in the context of the rapidly evolving field of quantum
many-body calculations for fermionic systems, i.e., atomic
nuclei, molecules, atoms or solids. In nuclear physics in
particular, the past decade has witnessed the development
and/or the application of formalisms [2–13] among which is
Bogoliubov many-body perturbation theory [12, 14]. This
profusion of diagrammatic methods, along with the rapid
progress of computational power allowing for high-order
implementations, welcomes the development of a versatile
code capable of both generating and evaluating many-
body diagrams. This was the goal achieved in Ref. [1] for
BMBPT.

The aim of BMBPT is to tackle (near) degenerate Fermi
systems, e.g., open-shell nuclei displaying a superfluid char-
acter, by perturbatively expanding the exact solution of
the Schrödinger equation around a so-called Bogoliubov
reference state. This tremendous benefit is obtained at the
price of using a reference state that breaks U(1) global-
gauge symmetry associated with the conservation of par-
ticle number in the system. Given that the breaking of
a symmetry cannot actually be realized in a finite quan-
tum system, BMBPT calculations come with a (hopefully
mild) contamination of physical observables. In this con-
text, BMBPT must actually be seen as a first step to-
wards a more general diagrammatic method, the particle-
number projected Bogoliubov many-body perturbation the-
ory (PNP-BMBPT) [9], in which the broken symmetry is
exactly restored at any truncation order.
It is thus the goal of the present paper to extend the

formal and code developments performed in Ref. [1] to
PNP-BMBPT. For a reason that will become clear later
on, the diagrammatics at play in PNP-BMBPT is coined
as the off-diagonal BMBPT diagrammatics from which the
diagonal BMBPT diagrammatics encountered in straight
BMBPT is recovered in a particular limit, i.e., diagonal
BMBPT diagrams characterize the subset of off-diagonal
BMBPT diagrams that remains non-zero in that limit. In
this context, the new version of the code ADG is capable of
automatically (1) generating all valid off-diagonal BMBPT
diagrams and of (2) evaluating their algebraic expression
to be implemented for numerical applications. This is
achieved at any perturbative order p for a Hamiltonian
containing both two-body (four-legs) and three-body (six-
legs) interactions (vertices). The numerical tool remains
flexible enough to be expanded throughout the years to
tackle the diagrammatics at play in yet other many-body
formalisms (already existing or yet to be formulated).
The paper is organized as follows. Section 2 introduces

the basic ingredients that are needed to elaborate on the
PNP-BMBPT formalism in Sec. 3. The master equations,
the associated diagrammatics and the difficulties to over-
come in order to achieve an automated generation and

evaluation of diagrams of arbitrary orders are detailed.
Building on this, Secs. 5 and 6 detail the method devel-
opped to reach such an objective. While Sec. 9 details how
the ADG code operates, conclusions are given in Sec. 10.
Three appendices follow to provide details regarding the
formalism and the structure of the program.

2. Basic ingredients

Expansion many-body methods consist of expanding ex-
act A-body quantities, e.g., the ground-state energy, around
a reference state. By default, the reference state is natu-
rally chosen to carry the symmetry quantum numbers of
the exact target state dictacted by the Hamiltonian. As
for U(1) global gauge symmetry associated with particle-
number conservation, this typically leads to using a Slater
determinant as a reference state. In open-shell nuclei, how-
ever, the reference Slater determinant is degenerate with
respect to elementary, i.e., particle-hole, excitations, which
eventually makes the many-body expansion singular. This
singularity relates to Cooper pair’s instability associated
with the superfluid character of singly (doubly) open-shell
nuclei.
One option to address Cooper pair’s instability is to

allow the reference state to break U(1) symmetry, i.e., to
be chosen under the form of a more general Bogoliubov
product state. Doing so, the degeneracy of the Slater
determinant with respect to particle-hole excitations is
lifted and commuted into a degeneracy with respect to
symmetry transformations of the group. As a consequence,
the ill-defined (i.e., singular) expansion of exact quantities
is replaced by a well-behaved one. This task is indeed
achieved by straight BMBPT [1, 12] in a perturbative
setting.

Eventually, however, the degeneracy with respect to U(1)
transformations must also be lifted via the restoration of
the symmetry. Indeed, the breaking of a symmetry is
fictitious in finite quantum systems and can at best be
characterized as being emergent [15, 16]. In this regards,
straight BMBPT only restores the symmetry in the limit of
an all-orders resummation, and, thus, includes a symmetry
contamination at any finite order. Thus, an explicit exten-
sion of the formalism is necessary in practice to restore good
particle-number at any truncation order. Within a pertur-
bative setting, this task is achieved by PNP-BMBPT [9].
Before detailing this many-body formalism and its asso-
ciated diagrammatics, the present section introduces the
necessary ingredients.

2.1. U(1) group
Let us consider the abelian compact Lie group U(1) ≡

{S(ϕ), ϕ ∈ [0, 2π]} associated with the global rotation of
an A-body fermion system in gauge space. As U(1) is
considered to be a symmetry group of the Hamiltonian H,
commutation relations

[H,S(ϕ)] = [A,S(ϕ)] = 0 , (1)
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hold for any ϕ ∈ [0, 2π], where A denotes the particle-
number operator. We utilize the unitary representation of
U(1) on Fock space F given by

S(ϕ) = eiAϕ . (2)

One is presently interested in evaluating a ground-state
observable OA

0 whose associated operator O commutes
with H and A. Generically speaking, this means that the
eigenequations of interest in PNP-BMBPT2 are given by

O|ΨA
0 〉 = OA

0 |ΨA
0 〉 , (3)

where O ≡ H or A and where Eq. (3) explicitly stipu-
lates that energy eigenstates |ΨA

µ 〉 carry good symmetry
quantum number A.

Given these many-body eigenstates, matrix elements of
the irreducible representations (IRREPs) of U(1) are given
by

〈ΨA
µ |S(ϕ)|ΨA′

µ′ 〉 ≡ eiAϕ δAA′ δµµ′ . (4)

The volume of the group is given by

vU(1) ≡
∫ 2π

0
dϕ = 2π ,

while the orthogonality of IRREPs reads as

1
2π

∫ 2π

0
dϕ e−iAϕ e+iA′ϕ = δAA′ . (5)

Whenever a many-body state is not an eigenstate of
the particle-number operator, it is easy to demonstrate
that the eigen-component of A associated with particle-
number A can be extracted from it via the application of
the projection operator PA defined through

PA ≡ 1
2π

∫ 2π

0
dϕ e−iAϕ S(ϕ) . (6)

2.2. Bogoliubov vacuum
The set up of the many-body formalism starts with the

introduction of the Bogoliubov reference state

|Φ〉 ≡ C
∏
k

βk|0〉 , (7)

where C is a complex normalization constant and |0〉 denotes
the physical vacuum. The Bogoliubov state is a vacuum
for the set of quasi-particle operators obtained from those
associated with a basis of the one-body Hilbert space via a
unitary linear transformation of the form [17]

βk ≡
∑
p

U∗pkcp + V ∗pkc
†
p , (8a)

2While the focus is presently on ground-state quantities, extensions
of the formalism to excited states or transitions of non-scalar operators
can be envisioned.

β†k ≡
∑
p

Upkc
†
p + Vpkcp , (8b)

i.e., βk|Φ〉 = 0 for all k. One possiblity to specify the
Bogoliubov reference state |Φ〉 is to require that it solves the
Hartree-Fock-Bogoliubov (HFB) variational problem. This
fixes the transformation matrices (U, V ) [17] and delivers
the set of quasi-particle energies {Ek > 0} defining the
unperturbed part of the Hamiltonian later on (see Eqs. (27)-
(28)). We do not impose this choice here such that the
reference state and the associated unperturbed Hamiltonian
can be defined more generally.
The Bogoliubov reference state is not an eigenstate of

the particle-number operator A. Although the present
objective is to perturbatively correct |Φ〉 while exactly
restoring the particle number at any truncation order, the
fact that the reference state breaks the symmetry in the first
place requires to work with the grand potential Ω ≡ H−λA
rather than with H itself in the set up of the many-body
formalism [9], where λ denotes the chemical potential.

2.3. Normal-ordered operator

The operator O of interest typically contains one-body,
two-body and three-body terms3. The operator in the
Schrödinger representation is expressed in an arbitrary
basis of the one-body Hilbert space as

O ≡ o[2] + o[4] + o[6] (9)
≡ o11 + o22 + o33

≡ 1
(1!)2

∑
p1p2

o11
p1p2

c†p1
cp2

+ 1
(2!)2

∑
p1p2p3p4

o22
p1p2p3p4

c†p1
c†p2
cp4cp3

+ 1
(3!)2

∑
p1p2p3p4p5p6

o33
p1p2p3p4p5p6

c†p1
c†p2
c†p3
cp6cp5cp4 .

Each term okk of the particle-number conserving operatorO
is characterized by the equal number k of particle creation
and annihilation operators. The class o[2k] is nothing but
the term okk of k-body character. The maximum value
deg_max ≡ Max 2k defines the rank of the operator O.
Matrix elements are fully antisymmetric, i.e.,

okkp1...pkpk+1...p2k
= (−1)σ(P )okkP (p1...pk|pk+1...p2k) , (10)

where σ(P ) refers to the signature of the permutation P .
The notation P (. . . | . . .) denotes a separation into the k
particle-creation operators and the k particle-annihilation

3Higher-body operators can be employed as well. From the for-
mal point of view, it poses no fundamental difficulty but further
complicates the diagrammatic formalism. As for the automated gen-
eration of diagrams, it poses no fundamental difficulty but requires to
handle the memory needed to deal with the increased combinatorial
complexity.
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operators such that permutations are only considered
among members of the same group.

The next step consists of normal ordering O with respect
to the Bogoliubov vacuum |Φ〉, thus, obtaining

O ≡ O[0] +O[2] +O[4] +O[6] (11)

≡ O00 +
[
O11 + {O20 +O02}

]
+
[
O22 + {O31 +O13}+ {O40 +O04}

]
+
[
O33 + {O42 +O24}+ {O51 +O15}+ {O60 +O06}

]
= O00

+ 1
(1!)2

∑
k1k2

O11
k1k2

β†k1
βk2

+ 1
2!
∑
k1k2

{
O20
k1k2

β†k1
β†k2

+O02
k1k2

βk2βk1

}
+ 1

(2!)2

∑
k1k2k3k4

O22
k1k2k3k4

β†k1
β†k2

βk4βk3

+ 1
3!1!

∑
k1k2k3k4

{
O31
k1k2k3k4

β†k1
β†k2

β†k3
βk4

+O13
k1k2k3k4

β†k1
βk4βk3βk2

}
+ 1

4!
∑

k1k2k3k4

{
O40
k1k2k3k4

β†k1
β†k2

β†k3
β†k4

+O04
k1k2k3k4

βk4βk3βk2βk1

}
+ 1

(3!)2

∑
k1k2k3k4k5k6

O33
k1k2k3k4k5k6

β†k1
β†k2

β†k3
βk6βk5βk4

+ 1
2! 4!

∑
k1k2k3k4k5k6

{
O42
k1k2k3k4k5k6

β†k1
β†k2

β†k3
β†k4

βk6βk5

+O24
k1k2k3k4k5k6

β†k1
β†k2

βk6βk5βk4βk3

}
+ 1

5!1!
∑

k1k2k3k4k5k6

{
O51
k1k2k3k4k5k6

β†k1
β†k2

β†k3
β†k4

β†k5
βk6

+O15
k1k2k3k4k5k6

β†k1
βk6βk5βk4βk3βk2

}
+ 1

6!
∑

k1k2k3k4k5k6

{
O60
k1k2k3k4k5k6

β†k1
β†k2

β†k3
β†k4

β†k5
β†k6

+O06
k1k2k3k4k5k6

βk6βk5βk4βk3βk2βk1

}
,

(12)

where the expressions of the matrix elements of each oper-
ator Oij in terms of those of the operators okk and of the
(U, V ) matrices can be found in Ref. [18] for terms up to O[4]

and in Ref. [19] for O[6]. Each term Oij is characterized by
its number i (j) of quasi-particle creation (annihilation) op-
erators. Because O has been normal-ordered with respect

to |Φ〉, all quasi-particle creation operators (if any) are lo-
cated to the left of all quasi-particle annihilation operators
(if any). The class O[2k] groups all the terms Oij of effective
k-body character, i.e., with i+ j = 2k. The operator being
overall unchanged by the normal-ordering procedure, its
rank deg_max ≡ Max 2k remains itself unchanged. Matrix
elements are fully antisymmetric, i.e.,

Oijk1...kiki+1...ki+j
= (−1)σ(P )OijP (k1...ki|ki+1...ki+j) . (13)

More details and properties can be found in Refs. [9, 18, 19].
State-of-the-art many-body calculations are typically

performed within the normal-ordered two-body (NO2B)
approximation [20–23]. However, the naive adaptation
of the NO2B approximation to many-body formalisms
based on a particle-number breaking reference state, which
would results in neglecting the residual three-body part
O[6], has been shown to be fundamentally inappropriate.
As a result, a particle-number conserving normal-ordered
two-body (PNO2B) approximation was designed [19]. The
net effect of the PNO2B approximation is to modify in a
specific way the matrix elements at play in O[4] in addition
to fully neglecting O[6]. In the present work, however,
the diagrammatic is anyway worked out in presence of the
effective three-body part, i.e., in presence of six-legs vertices
(see below), which significantly increases the number of
possible diagrams at a given order and the complexity of
their topology. Correspondingly, the code can eventually
be run with or without including the effective three-body
part of the operators.

3. Many-body formalism

3.1. Projective eigenequations
Taking the Hermitian conjugate of Eq. (3) and right-

multiplying by an arbitrary auxiliary state |Θ〉 (such that
〈ΨA

0 |Θ〉 , 0), one obtains a projective equation of the form

OA
0 = 〈Ψ

A
0 |O|Θ〉
〈ΨA

0 |Θ〉
. (14)

Choosing |Θ〉 ≡ |Φ〉 and expanding 〈ΨA
0 | around it leads

to straight, i.e., symmetry-breaking, BMBPT [1]. In the
present work, the auxiliary state is taken as |Θ〉 ≡ PA|Φ〉
such that the symmetry is explicitly restored by the pres-
ence of the projection operator PA even after expanding
and truncating 〈ΨA

0 | around the Bogoliubov reference state.
In this context, Eq. (14) becomes

OA
0 = 〈Ψ

A
0 |OPA|Φ〉
〈ΨA

0 |PA|Φ〉
, (15)

such that inserting Eq. (6) as well as introducing the so-
called off-diagonal norm and operator kernels

N (ϕ) ≡ 〈ΨA
0 |Φ(ϕ)〉 , (16a)

O(ϕ) ≡ 〈ΨA
0 |O|Φ(ϕ)〉 , (16b)
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where |Φ(ϕ)〉 ≡ S(ϕ)|Φ〉 denotes the gauge-rotated refer-
ence state, leads to the working form

OA
0 =

∫ 2π
0 dϕ e−iAϕO(ϕ)∫ 2π
0 dϕ e−iAϕN (ϕ)

. (17)

Equation (17) constitutes the master equation on which
the PNP-BMBPT formalism is built. In absence of the pro-
jection operator, one recovers BMBPT’s master equation
under the form

OA
0 = O(0) , (18)

where intermediate normalization N (0) = 〈ΨA
0 |Φ〉 = 1 with

the unrotated Bogoliubov reference state has been used.
Equations (17) and (18) are obviously equivalent in the
exact limit but differ as soon as 〈ΨA

0 | is expanded around
〈Φ| and truncated.

3.2. Imaginary-time formalism
Introducing the evolution operator in imaginary time4

U(τ) ≡ e−τΩ , (19)

with τ real, allows one to write the ground state as56

|ΨA
0 〉 = lim

τ→∞
|Ψ(τ)〉 ≡ lim

τ→∞

U(τ)|Φ〉
〈Φ|U(τ)|Φ〉 , (20)

where 〈Φ|Ψ(τ)〉 = 1 for all τ . With this definition at hand,
the off-diagonal kernels entering Eq. (17) read as

N (ϕ) ≡ N(ϕ)
N(0) = lim

τ→∞

〈Φ|U(τ)|Φ(ϕ)〉
〈Φ|U(τ)|Φ〉 , (21a)

O(ϕ) ≡ O(ϕ)
N(0) = lim

τ→∞

〈Φ|U(τ)O|Φ(ϕ)〉
〈Φ|U(τ)|Φ〉 . (21b)

The off-diagonal kernels N(ϕ) and O(ϕ) are the many-
body quantities to be approximated via a viable expansion
method from which N(0) and O(0) can be obtained as a
particular case [1, 12].

3.3. Norm kernel
The off-diagonal norm kernel plays a particular role given

that it does not actually involve a non-trivial operator,
which makes its perturbative expansion different from the
expansion of an operator kernel [9]. In fact, it can be

4The time is given in units of MeV−1.
5The result is obtained by inserting a complete set of energy

eigenstates in both the numerator and the denominator.
6The chemical potential λ is fixed such that ΩA0

0 for the targeted
particle number A0 is the lowest value of all ΩA

µ over Fock space,
i.e., it penalizes systems with larger number of particles such that
ΩA0

0 < ΩA
µ for all A > A0 while maintaining at the same time that

ΩA0
0 < ΩA

µ for all A < A0. This is practically achievable only if EA
0

is strictly convex in the neighborhood of A0, which is generally but
not always true for atomic nuclei.

trivially related to the particle-number operator kernel
through

d

dϕ
N (ϕ) = iA(ϕ) . (22)

Accessing N (ϕ) via the integration of Eq. (22) ensures that
Eq. (3) applied to O ≡ A and rewritten as Eq. (17) delivers
the expected result AA

0 = A even when A(ϕ) is computed
approximately through, e.g., perturbation theory. Indeed,
as long as Eq. (22) is enforced, one has∫ 2π

0 dϕ e−iAϕA(ϕ)∫ 2π
0 dϕ e−iAϕN (ϕ)

= −i
∫ 2π

0 dϕ e−iAϕ d
dϕN (ϕ)∫ 2π

0 dϕ e−iAϕN (ϕ)

= +i
∫ 2π

0 dϕ [ ddϕe−iAϕ]N (ϕ)∫ 2π
0 dϕ e−iAϕN (ϕ)

= A ,

which is the required result for the symmetry of present
interest to be exactly restored. Further introducing the
factorization of an arbitrary operator kernel

O(ϕ) ≡ o(ϕ)N (ϕ) (23)

where o(ϕ) denotes the connected/linked part of the op-
erator kernel [9], one arrives at the first-order ordinary
differential equation (ODE) fulfilled by the norm kernel

d

dϕ
N (ϕ)− i a(ϕ)N (ϕ) = 0 , (24)

whose closed-form solution reads as

N (ϕ) = e
i
∫ ϕ

0
dφ a(φ)

. (25)

From the computation of a(ϕ), the off-diagonal norm kernel
is consistently obtained. Eventually, the connected/linked
part o(ϕ) of an operator kernel O(ϕ) is the sole quantity
one needs to effectively focus on in order to implement the
complete PNP-BMBPT formalism. As a matter of fact,
it is not by chance given that, as will be discussed below,
o(ϕ) is size-extensive and properly scales with system size,
which translates into the fact that it effectively displays a
connected expansion.

4. Perturbation theory

4.1. Partitioning
The grand potential is split into an unperturbed part Ω0

and a residual part Ω1

Ω = Ω0 + Ω1 . (26)

For a given number of interacting fermions, the key is
to choose Ω0 with a low-enough symmetry for its ground
state |Φ〉 to be non-degenerate with respect to elementary
excitations. For open-shell superfluid nuclei, this leads
to choosing an operator Ω0 that breaks particle-number
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conservation, i.e., while Ω commutes with U(1) transforma-
tions, we are interested in the case where Ω0, and thus Ω1,
do not. More specifically, the partioning is defined through

Ω0 ≡ Ω00 + Ω̄11 , (27a)
Ω1 ≡ Ω20 + Ω̆11 + Ω02

+ Ω40 + Ω31 + Ω22 + Ω13 + Ω04

+ Ω60 + Ω51 + Ω42 + Ω33 + Ω24 + Ω15 + Ω06 ,
(27b)

with Ω̆11 ≡ Ω11 − Ω̄11 and where the normal-ordered one-
body part of Ω0 is diagonal, i.e.,

Ω̄11 ≡
∑
k

Ekβ
†
kβk , (28)

with Ek > 0 for all k.
Introducing many-body states generated via an even

number of quasi-particle excitations of the Bogoliubov vac-
uum

|Φk1k2...〉 ≡ β†k1
β†k2

. . . |Φ〉 , (29)

the unperturbed grand potential Ω0 is fully characterized
by its complete set of orthonormal eigenstates in Fock space

Ω0 |Φ〉 = Ω00 |Φ〉 , (30a)
Ω0 |Φk1k2...〉 =

[
Ω00 + εk1k2...

]
|Φk1k2...〉 , (30b)

where the strict positivity of unperturbed excitations
εk1k2... ≡ Ek1 + Ek2 + . . . characterizes the lifting of the
particle-hole degeneracy authorized by the spontaneous
breaking of U(1) symmetry in open-shell nuclei at the
mean-field level.
In the particular case where |Φ〉 solves the HFB varia-

tional problem, one has that Ω20 = Ω̆11 = Ω02 = 0 such
that Ω1 reduces to Ω[4] + Ω[6]. This choice defines the
canonical version of (PNP-)BMBPT and reduces signifi-
cantly the number of non-zero diagrams to be considered.
However, we do not make this a priori hypothesis such that
the reference state |Φ〉 and the corresponding unperturbed
grand potential Ω0 can be defined more generally, eventu-
ally leading to the appearance of non-canonical diagrams
involving Ω20, Ω̆11 and Ω02 vertices.

On the basis of the above splitting of Ω, one introduces
the interaction representation of operators in the quasi-
particle basis, e.g.,

O31(τ) ≡ e+τΩ0O31e−τΩ0 (31)

= 1
3!

∑
k1k2k3k4

O31
k1k2k3k4

β†k1
(τ)β†k2

(τ)β†k3
(τ)βk4(τ) ,

where

βk(τ) ≡ e+τΩ0 βk e
−τΩ0 = e−τEk βk , (32a)

β†k(τ) ≡ e+τΩ0 β†k e
−τΩ0 = e+τEk β†k . (32b)

4.2. Perturbative expansion
Expanding the evolution operator in powers of Ω1 [24]

U(τ) ≡ e−τΩ

= e−τΩ0 Te−
∫ τ

0
dτΩ1(τ)

, (33)

where T denotes the time-ordering operator7, one ob-
tains [9] the expansion of interest8

o(ϕ) ≡ lim
τ→∞

〈Φ|U(τ)O|Φ(ϕ)〉
〈Φ|U(τ)|Φ(ϕ)〉

= lim
τ→∞

〈Φ|Te−
∫ τ

0
dtΩ1(t)

O|Φ(ϕ)〉c

= 〈Φ|O|Φ(ϕ)〉

− 1
1!

∫ +∞

0
dτ1〈Φ|T [Ω1 (τ1)O(0)] |Φ(ϕ)〉c

+ 1
2!

∫ +∞

0
dτ1dτ2〈Φ|T [Ω1 (τ1) Ω1 (τ2)O(0)] |Φ(ϕ)〉c

− ... , (34)

where the lower index c refers to the restriction to con-
nected terms, i.e., contributions arising from the application
of Wick’s theorem in which the associated string of con-
tractions necessarily involves all the operators at play in
the many-body matrix element under consideration. The
time-independent operator O could be inserted at no cost
within the time-ordering by providing it with a fictitious
and harmless time dependence t = 0. Indeed, all Ω1 (τk)
operators appear to the left of O and occur at a larger time
given that their corresponding time variables are positive.

Invoking perturbation theory consists of truncating the
Taylor expansion of the time-evolution operator in Eq. (34).
Gathering all terms up to order p, o(ϕ) sums matrix ele-
ments of products of up to p+1 time-dependent operators9.
The running time variables are integrated over from 0 to
τ → +∞ whereas the time label attributed to the operator
O itself remains fixed at t = 0, i.e., contributions of order p
contain a p-tuple time integral that needs to be performed
to generate the end result under the required form.

Given the off-diagonal character of the kernels, each ma-
trix element in Eq. (34) is computed via the application
of off-diagonal Wick’s theorem [25], which is applicable
to matrix elements of operators between any two (non-
orthogonal) left and right product states. As a result, dia-
grams at play invoke a set of four off-diagonal unperturbed
propagators defined in the quasi-particle basis {βk;β†k} as

G
+−(0)
k1k2

(τ1, τ2;ϕ) ≡
〈Φ|T[β†k1

(τ1)βk2(τ2)]|Φ(ϕ)〉
〈Φ|Φ(ϕ)〉 , (35a)

7The time-ordering operator orders a product of operators in
decreasing order according to their time labels (i.e., larger times to the
left) and multiplies the result with the signature of the permutation
used to achieve the corresponding reordering.

8In agreement with Eq. (18), straight BMBPT is recovered from
Eq. (34) for ϕ = 0 given that OA

0 = O(0) = o(0) in this formalism.
9The expansion starts at order p = 0 that corresponds to the term

containing no Ω1 operator and no time integral in Eq. (34).
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G
−−(0)
k1k2

(τ1, τ2;ϕ) ≡ 〈Φ|T[βk1(τ1)βk2(τ2)]|Φ(ϕ)〉
〈Φ|Φ(ϕ)〉 , (35b)

G
++(0)
k1k2

(τ1, τ2;ϕ) ≡
〈Φ|T[β†k1

(τ1)β†k2
(τ2)]|Φ(ϕ)〉

〈Φ|Φ(ϕ)〉 , (35c)

G
−+(0)
k1k2

(τ1, τ2;ϕ) ≡
〈Φ|T[βk1(τ1)β†k2

(τ2)]|Φ(ϕ)〉
〈Φ|Φ(ϕ)〉 . (35d)

By virtue of the off-diagonal elementary contractions
worked out in Appendix A.4, the four off-diagonal propa-
gators are equal to

G
+−(0)
k1k2

(τ1, τ2;ϕ) = −e−(τ2−τ1)Ek1 θ(τ2 − τ1) δk1k2 , (36a)

G
−−(0)
k1k2

(τ1, τ2;ϕ) = +e−τ1Ek1 e−τ2Ek2 R−−k1k2
(ϕ) , (36b)

G
++(0)
k1k2

(τ1, τ2;ϕ) = 0 , (36c)

G
−+(0)
k1k2

(τ1, τ2;ϕ) = +e−(τ1−τ2)Ek1 θ(τ1 − τ2) δk1k2 , (36d)

where both normal propagators are actually related via an-
tisymmetry under the exchange of time and quasi-particle
labels. The higher generality and complexity of the off-
diagonal BMBPT diagrammatics of present interest com-
pared to the straight BMBPT diagrammatics discussed in
Ref. [1] is due to the presence of the anomalous propagator
G−−(0)(ϕ) that carries the full gauge-angle dependence. In
particular, the possibility to form anomalous propagators
significantly increases the combinatorics [9]. Eventually,
the two diagrammatics coincide in the limit ϕ = 0 given
that G−−(0)(0) = 0. All in all, the present extension of the
ADG code amounts to dealing with this higher generality
and complexity, which itself originates from the presence
of different left and right vacua in the off-diagonal kernel
o(ϕ) (see Eq. (34)).

Equal-time propagators can solely arise from contracting
two quasi-particle operators belonging to the same normal-
ordered operator displaying creation operators to the left
of annihilation ones. As a result, one finds that [9]

G
+−(0)
k1k2

(τ, τ ;ϕ) ≡ 0 , (37a)

G
−−(0)
k1k2

(τ, τ ;ϕ) ≡ +e−τ(Ek1 +Ek2 )R−−k1k2
(ϕ) , (37b)

G
++(0)
k1k2

(τ, τ ;ϕ) ≡ 0 , (37c)

G
−+(0)
k1k2

(τ, τ ;ϕ) ≡ 0 , (37d)

such that the sole non-zero equal-time contraction, and
thus the sole contraction of an interaction vertex onto itself,
is of anomalous character. Correspondingly, no contraction
of an interaction vertex onto itself can occur in the diagonal
case, i.e., for ϕ = 0.

4.3. Diagrammatic representation
The pedestrian application of the off-diagonal Wick’s the-

orem becomes quickly cumbersome as the order p increases.
Furthermore, it leads to computing independently many
contributions that are in fact identical. By identifying the
corresponding pattern, one can design a diagrammatic rep-
resentation of the various contributions and evaluate their

O[0] =
O00

O[2] =

O11

+

O20

+

O02

O[4] =

O22

+

O31

+

O13

+

O40

+

O04

O[6] =

O33

+

O42

+

O24

+

O51

+

O15

+

O60

+

O06

Figure 1: Canonical diagrammatic representation of normal-ordered
contributions to the operator O in the Schrödinger representation.

algebraic expressions such that a single diagram captures
all identical contributions at once. In order to achieve this
goal, one must first introduce the diagrammatic represen-
tation of the building blocks.
The operator O expressed in the quasi-particle basis is

displayed in the Schrödinger representation in Fig. 1 as a
sum of Hugenholtz vertices denoting its various normal-
ordered contributions Oij . The antisymmetrized matrix
element Oijk1...kiki+1...ki+j

must be assigned to the corre-
sponding square vertex, where i (j) denotes the number
of lines traveling out of (into) the vertex and representing
quasi-particle creation (annihilation) operators. The oper-
ator O(τ) in the interaction representation possesses the
same diagrammatic except that a time τ is attributed to
each of the vertices, i.e., to each of the lines coming in or
out of them.
In the canonical representation used in Fig. 1, all ori-

ented lines go up, i.e., lines representing quasi-particle
creation (annihilation) operators appear above (below) the
vertex. Accordingly, indices k1 . . . ki must be assigned con-
secutively from the leftmost to the rightmost line above
the vertex, while ki+1 . . . ki+j must be similarly assigned
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k1 k2

k3 k4

+O22
k1k2k3k4 =

k3 k4 k2
k1

+O22
k1k2k3k4 =

k3 k2 k4
k1

−O22
k1k2k3k4

Figure 2: Rules to apply when departing from the canonical dia-
grammatic representation of a normal-ordered operator. Oriented
lines can be rotated through the dashed line but not through the full
line.

Ω[0] =
Ω00

Ω[2] =

Ω11

+

Ω20

+

Ω02

Ω[4] =

Ω22

+

Ω31

+

Ω13

+

Ω40

+

Ω04

Ω[6] =

Ω33

+

Ω42

+

Ω24

+

Ω51

+

Ω15

+

Ω60

+

Ω06

Figure 3: Canonical diagrammatic representation of normal-ordered
contributions to the grand potential operator Ω in the Schrödinger
representation.

consecutively to lines below the vertex. In the diagram-
matic representation of the observable OA

0 , it is however
possible for a line to propagate downwards. This can be
obtained unambiguously starting from the canonical repre-
sentation of Fig. 1 at the price of adding a specific rule. As
illustrated in Fig. 2 for the diagram representing O22, lines
must only be rotated through the right of the diagram,
i.e., going through the dashed line, while it is forbidden to
rotate them through the full line. Additionally, a minus
sign must be added to the amplitude Oijk1...kiki+1...ki+j

as-
sociated with the canonical diagram each time two lines
cross as illustrated in Fig. 2.

Since the grand canonical potential Ω is involved in the
evaluation of any observable OA

0 , its own diagrammatic
representation is needed and displayed in Fig. 3. The only
difference with Fig. 1 relates to the use of dots rather than
square symbols to represent the vertices. The same is easily
done for other operators of interest, i.e., H and A. It is to
be noted that Ω1 has the same diagrammatic representation
as Ω except that Ω00 must be omitted and Ω11 replaced
by Ω̆11, which requires to use a different symbol for that
particular vertex10.
As the off-diagonal Wick theorem contracts pairs of

quasi-particle operators together, the lines entering the
diagrammatic representation of operators are eventually
connected in the computation of the kernel o(ϕ), thus,
forming elementary contractions. Consequently, the four
unperturbed propagators at play also need to be repre-
sented diagrammatically, which is done in Fig. 4. Here,
the convention is that the left-to-right reading of a ma-
trix element corresponds to the up-down reading of the
diagram.

4.4. Diagrams generation
With the building blocks at hand, off-diagonal BMBPT

Feynman diagrams representing the contributions to o(ϕ)
are generated by assembling them according to a set of
topological rules [9]

1. A Feynman diagram of order p consists of p vertices
Ωikjk(τk), ik + jk = 2, 4 or 6, along with one vertex
Omn(0), m + n = 0, 2, 4 or 6, that are connected
by fermionic quasi-particle lines, i.e., via non-zero
propagators G+−(0), G−+(0) or G−−(0).

2. Each vertex is labeled by a time variable while each
line is labeled by two time labels associated with the
two vertices the line is attached to.

3. Generating all contributions to Eq. (34) requires to
form all possible diagrams, i.e., contract quasi-particle
lines attached to the vertices in all possible ways while
fulfilling the following restrictions.
(a) Restrict equal-time propagators starting and end-

ing at the same vertex to anomalous propagators.
In the diagonal case, i.e., for ϕ = 0, no such
self-contraction may occur.

(b) Restrict the set to connected diagrams, i.e., omit
diagrams containing parts that are not connected
to each other by either propagators or vertices.
This implies in particular that the vertex O00

with no line can only appear at order p = 0.
(c) Because of the time-ordering relations carried

by the propagators (see Eq. (36)), normal lines

10We omit to use a different symbol for Ω̆11 in the following although
it must be clear that the vertex with one line coming in and one
line coming out does represent Ω̆11 whenever it originates from the
perturbative expansion of the evolution operator. This may be
confusing whenever O = Ω since in this case there can also be a
vertex Ω11 at fixed time t = 0.
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k1 τ1

k2 τ2

k1 τ1

k2 τ2

k1 τ1

k2 τ2

k1 τ1

k2 τ2

G
+−(0)
k1k2

(τ1, τ2;ϕ) G−−(0)
k1k2

(τ1, τ2;ϕ) G++(0)
k1k2

(τ1, τ2;ϕ) G
−+(0)
k1k2

(τ1, τ2;ϕ)

Figure 4: Diagrammatic representation of the four unperturbed elementary one-body propagators Ggg′(0)(ϕ). The convention is that the
left-to-right reading of a matrix element corresponds to the up-down reading of the diagram.

linking a set of vertices must not form an ori-
ented loop. For two given vertices Ωikjk(τk) and
Ωik′ jk′ (τk′), it means that normal lines must prop-
agate between them in the same direction. Corre-
spondingly, normal lines connected to the generic
operator O at fixed time 0 must go out of it,
i.e., upwards in time. Anomalous lines do not
carry time-ordering relations and are, thus, not
concerned by these restrictions. In the diagonal
limit, i.e., ϕ = 0, where no anomalous line may
be formed, the above constraint imposes that
contributing vertices Omn(0) can only have lines
going out, i.e., one necessarily has n = 0.

(d) Restrict the set to vacuum-to-vacuum diagrams
forming a set of closed loops with no external, i.e.,
unpaired, lines. This condition, together with the
fact that G++(0)(ϕ) is identically zero, strongly
constrains which normal-ordered parts Ωikjk(τk)
and Omn(0) of the p+ 1 involved operators can
be combined, i.e., the condition

na ≡
p∑
k=1

(jk − ik) + n−m ≥ 0 ,

must be fulfilled. The number na corresponds to
the number of anomalous propagators G−−(0)(ϕ)
in the diagram. In the diagonal limit for which
G−−(0)(0) = 0, the set of combined operators are
further reduced to na = 0.

(e) Restrict the set to topologically distinct time-
unlabelled diagrams, i.e., time-unlabelled dia-
grams that cannot be obtained from one another
via a mere displacement, i.e., translation, of the
vertices.

4.5. Diagram evaluation

4.5.1. Feynman expression
The way to translate off-diagonal BMBPT Feynman

diagrams into their mathematical expressions follows a set
of algebraic rules

1. Each of the p + 1 vertices contributes a factor, e.g.,
Ωij
k1...kiki+1...ki+j

with the sign convention detailed in
Sec. 4.3.

k1

k2

k3

k4

G
−−(0)
k4k3

(τ, τ ;ϕ)
O13
k1k2k3k4

τ

Figure 5: Convention to draw and read anomalous self-contractions.
The example is given for a vertex Ω13 displaying a self-contraction.

2. Each of the

nb ≡

(
p∑
k=1

(jk + ik) + n+m

)
/2 ,

lines contributes a factor Ggg
′(0)

k1k2
(τk, τk′), where g and

g′ characterize the type of elementary propagator the
line corresponds to. According to Eq. (36), each of
the na anomalous propagators carries an exponential
function of the two time labels and an anomalous
contraction R−−k1k2

(ϕ) while each of the nb−na normal
propagators carries an exponential function and a step
function of the two time labels.

3. A normal line can be interpreted as G−+(0) or G+−(0)

depending on the ascendant or descendant reading of
the diagram. Similarly, the ordering of quasi-particle
and time labels of a propagator depends on the ascen-
dant or descendant reading of the diagram. All the
lines involved in a given diagram must be interpreted
in the same way, i.e., sticking to an ascendant or de-
scendant way of reading the diagram all throughout.
In the present work, the chosen convention corresponds
to reading diagrams from top to bottom, which fur-
ther relates to reading the many-body matrix element
it originates from in Eq. (34) in a left-right fashion.
It is the convention employed to represent the four
propagators in Fig. 4.

4. The reading of an anomalous line linking two different
vertices is unambiguous as long as one stick to the
up-down convention displayed in Fig. 4. However, the
up-down reading of a self-contraction is potentially
ambiguous depending on the way the line is actually

9



drawn. As illustrated in Fig. 5, one must further
fix a convention based on the insertion of a fictitious
semi-straight, e.g., horizontal line originating from the
vertex that the self-contraction is forbidden to cross.
Taking the semi-straight line as a reference point, the
quasi-particle indices must be attributed to the equal-
time propagator in the order the lines are crossed when
going around the vertex in a clockwise fashion.

5. All quasi-particle labels must be summed over while all
running time variables must be integrated over from 0
to τ → +∞.

6. A sign factor (−1)p+nc , where p denotes the order of
the diagram and nc denotes the number of crossing
lines in the diagram, must be considered11. The overall
sign results from multiplying this factor with the sign
associated with each matrix element.

7. Each diagram comes with a numerical prefactor ob-
tained from the following combination
(a) A factor 1/(ne)! must be considered for each

group of ne equivalent lines. Equivalent lines
must all begin and end at the same vertices (or
vertex, for anomalous propagators starting and
ending at the same vertex), and must correspond
to the same type of contractions, i.e., they must
all correspond to propagators characterized by
the same superscripts g and g′ in addition to
having identical time labels.

(b) Given the previous rule, an extra factor 1/2 must
be considered for each anomalous propagator that
starts and ends at the same vertex.

(c) A symmetry factor 1/ns must be considered in
connection with exchanging the time labels of
the vertices in all possible ways, counting the
identity as one. The factor ns corresponds to the
number of ways exchanging the time labels pro-
vides a time-labelled diagram that is topologically
equivalent to the original one.

In order to illustrate the typical expression of off-diagonal
Feynman BMBPT diagrams and to anticipate several key
characteristics, let us compute the three second-order dia-
grams displayed in Fig. 6, i.e.,

PO2.2.1 = 1
4
∑
ki

Ω02
k3k4

Ω22
k3k4k1k2

O20
k1k2

× lim
τ→∞

∫ τ

0
dτ1dτ2 θ(τ2 − τ1) (38a)

× e−τ2εk3k4 e−τ1ε
k3k4
k1k2

PO2.2.2 = 1
2
∑
ki

Ω02
k3k5

Ω13
k3k1k2k4

O20
k1k2

R−−k5k4
(ϕ)

× lim
τ→∞

∫ τ

0
dτ1dτ2 θ(τ2 − τ1) (38b)

11In case a line is drawn such that it crosses itself, the crossing(s)
must be omitted when evaluating p.

× e−τ2εk3k5 e−τ1ε
k3
k1k2k4

PO2.2.3 = 1
4
∑
ki

Ω02
k5k6

Ω04
k1k2k4k3

O20
k1k2

R−−k6k4
(ϕ)R−−k5k3

(ϕ)

× lim
τ→∞

∫ τ

0
dτ1dτ2 (38c)

× e−τ2εk5k6 e−τ1εk1k2k3k4 ,

where the extended notation

εkakb...kikj ...
≡ Eki + Ekj + . . .− Eka − Ekb − . . . , (39)

was introduced. In each case, the sign, the combinato-
rial factors and the three matrix elements directly reflect
Feynman’s algebraic rules listed above and are easy to
interpret. Eventually, the final form of the integrand origi-
nates from expliciting the nb = 4 propagators via Eq. (36),
which induces the presence of one off-diagonal elementary
contractions per anomalous propagator.

The three chosen diagrams display the same overall topol-
ogy12, i.e., while the vertex O20 is at fixed time 0, the vertex
Ω22/Ω13/Ω04 is at running time τ1 and the Ω02 vertex is
at running time τ2. However, the three diagrams differ
in their number of anomalous lines and, as such, clearly
illustrate key consequences of going from diagonal to off-
diagonal BMBPT. The first diagram, PO2.2.1, contains no
anomalous line (na = 0) and already occurs in straight, i.e.,
diagonal, BMBPT13. By turning the second vertex Ω22 into
Ω13 (Ω04), PO2.2.2 (PO2.2.3) contains na = 1 (na = 2)
anomalous line(s) between the second and the third vertices.
As a consequence, the integrands display typical structures
that need to be scrutinized for the following.

• The fact that the two running variables τ1 and τ2 are
positive is directly encoded into the boundary of the
double integral.

• In PO2.2.1, the explicit step function characterizes the
time ordering induced between Ω22 and Ω02 vertices
by the two normal propagators connecting them. This
step function, i.e., time ordering, remains at play in
PO2.2.2 given than one normal line still connects the
second and third vertices. Contrarily, the absence of
step function in PO2.2.3 characterizes the fact that
Ω04 and Ω02 are solely connected via anomalous prop-
agators that do not induce any time-ordering relation
between them. While in the first two cases the integral
over τ1 depends on the integral over τ2, both integrals
are independent from each other in PO2.2.3.

• Grouping appropriately the exponential functions com-
ing from the four propagators, the integrand displays
one exponential factor per running time, i.e., per

12The number of quasi-particle indices on which summation is
performed increases by one per anomalous propagator due to the fact
that the matrix R−−(ϕ) is not diagonal in quasi-particle space.

13This diagram is the one denoted as PO2.2 in Fig. 6 of Ref. [1].
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0

τ1

τ2

PO2.2.1

k1 k2

k3 k4

+Ω02
k3k4

+O20
k1k2

+Ω22
k3k4k1k2

k4

k5

0

τ1

τ2

PO2.2.2

k1 k2

k3

+Ω02
k3k5

+O20
k1k2

+Ω13
k3k1k2k4

k3

k5

k4

k6

0

τ1

τ2

PO2.2.3

k1 k2

+Ω02
k5k6

+O20
k1k2

+Ω04
k1k2k4k3

Figure 6: Selected second-order off-diagonal Feynman BMBPT diagrams.

Ωikjk(τk) vertex. The relevant energy factor εkakb...kikj ...

multiplying the variable τk in this exponential function
denotes the sum/difference of quasi-particle energies
associated with the lines entering/leaving the corre-
sponding vertex.

The three diagrams exemplify the fact that the off-diagonal
BMBPT diagrammatics differentiates itself by the presence
of anomalous lines that, depending on the situation, may
change the time-ordering structure between the vertices
compared to the diagonal BMBPT diagram displaying the
same overall topology.

4.5.2. Time-integrated expression
The expression obtained via the application of Feynman’s

algebraic rules does not yet constitute the form needed for
the numerical implementation of the formalism. While
the sign, the combinatorial factor and the matrix elements
will remain untouched, the p-tuple time integral must be
performed in order to obtain the needed expression.

A major part of Ref. [1] was dedicated to the automated
computation of the p-tuple time integrals via the introduc-
tion of the so-called time-structure diagram (TSD) under-
lying any given BMBPT diagram of arbitrary order and
topology. We thus refer to Ref. [1] for the general theory of
TSDs and will come back later on to its implementation for
more general off-diagonal BMBPT diagrams. For now, it
is sufficient to focus on the main consequence of the above
analysis, i.e., while the presence of one anomalous line in
PO2.2.2 does not change its time structure compared to
PO2.2.1, turning the other propagator connecting the sec-
ond and third vertices into an anomalous line does modify
it. Consequently, while the TSD associated to diagrams
PO2.2.1 and PO2.2.2 is T2.1 (see Fig. 12), it becomes T2.2
for PO2.2.3. Generically denoting as ak the energy factor
multiplying the time label τk in the integrand, the integrals
associated with the examples given in Eq. (38) are

T2.1 = lim
τ→∞

∫ τ

0
dτ1dτ2 θ(τ2 − τ1)e−a1τ1e−a2τ2

= 1
a2(a1 + a2) , (40a)

T2.2 = lim
τ→∞

∫ τ

0
dτ1dτ2 e

−a1τ1e−a2τ2

= 1
a1a2

, (40b)

the first (second) of which applies to PO2.2.1 and PO2.2.2
(PO2.2.3).

In order to obtain the final, i.e. time-integrated, expres-
sion of each of the three diagrams, the factors a1 and a2
must be expressed back in terms of quasi-particle energies.
As discussed in Ref. [1] for diagonal BMBPT diagrams,
and as generalized to off-diagonal BMBPT diagrams be-
low, the specific combinations of these factors emerging
from the TSDs correspond necessarily to positive sums
of quasi-particle energies that can be straightforwardly
extracted from the diagram itself. Combining Eqs. (38)
and (40) before inserting the appropriate combinations of
quasi-particle energies, one eventually obtains the desired
expressions under the form

PO2.2.1 = 1
4
∑
ki

Ω02
k3k4

Ω22
k3k4k1k2

O20
k1k2

εk1k2εk3k4

,

PO2.2.2 = 1
2
∑
ki

Ω02
k3k5

Ω13
k3k1k2k4

O20
k1k2

εk1k2k4k5εk3k5

R−−k5k4
(ϕ) ,

PO2.2.3 = 1
4
∑
ki

Ω02
k5k6

Ω04
k1k2k4k3

O20
k1k2

εk1k2k3k4εk5k6

R−−k6k4
(ϕ)R−−k5k3

(ϕ) .

4.6. Towards higher orders
Off-diagonal BMBPT diagrams of order p = 0 and 1

have been generated and evaluated manually for two-body
operators, i.e., operators summing O[k] with k ≤ 4 [9]. The
twenty corresponding diagrams are displayed in Fig. 7 for
illustration. Among these twenty diagrams, only the three
diagrams in the first column (na = 0) remain in straight,
i.e., diagonal, BMBPT that has been dealt with in the first
version of the ADG code [1].

While it was already challenging to automatically gener-
ate and evaluate diagonal BMBPT diagrams of arbitrary or-
ders and topologies, off-diagonal BMBPT obviously reaches
yet another level of complexity related to the proliferation
of diagrams, itself increasing with the perturbative order,
associated with the possibility to form off-diagonal propa-
gators. In this context, the step accomplished in Ref. [1]
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Figure 7: Zero- and first-order off-diagonal Feynman BMBPT diagrams. Diagrams are grouped vertically according to the number na of
anomalous lines they contain.

will however happen to be of tremendous help to achieve
the automatic generation and evaluation of the off-diagonal
BMBPT diagrams.

5. Generation of off-diagonal BMBPT diagrams

The automated generation of diagonal BMBPT Feyn-
man diagrams via elements of graph theory was explained
at length in Ref. [1]. We do not repeat it here and re-
fer the reader to Ref. [1] for details. As a matter of fact,

the strategy presently employed is not to follow a similar
method to generate off-diagonal diagrams from scratch
but rather to take advantage of having already done so
for the diagonal ones, i.e., to start from the order p di-
agonal BMBPT diagrams to systematically produce their
off-diagonal partners.

5.1. Basic analysis

Given that diagonal BMBPT diagrams constitute the
base line for generating the off-diagonal ones, the eleven
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Figure 8: Zero-, first- and second-order diagonal Feynman BMBPT
diagrams generated from operator vertices containing four legs at
most, i.e., with deg_max = 4.

zero-, first- and second-order diagonal BMBPT diagrams
generated from operator vertices containing four legs at
most are displayed in Fig. 8 for reference. One recognizes in
particular the three zero- and first-order diagrams PO0.1,
PO1.1 and PO1.2 already appearing in Fig. 7 with a slightly
different denomination whose aim is to group all diagrams
originating from the same diagonal diagram.
Diagonal and off-diagonal diagrams of order p derive

from the same many-body matrix element in Eq. (34), the

emergence of both categories at once being authorized by
the fact that the ket is gauge rotated. The latter feature
leads to the necessity to consider contractions between pairs
of quasi-particle annihilation operators in addition to only
contracting one creation and one annihilation operators in
the strict diagonal limit. Starting from diagonal BMBPT
diagrams of order p, the complete set of off-diagonal di-
agrams can thus be obtained via the application of two
basic operations
1. adding self-contractions to each vertex, while changing

the nature of the vertex accordingly, until the sum of
lines entering and leaving the vertex is equal to the
rank deg_max of the associated operator.

2. incrementally changing normal propagators linking
two vertices into anomalous ones. This is achieved
by turning the arrow associated with an outgoing line
in the original propagator into an incoming line, thus
modifying the concerned vertex accordingly.

Let us now exemplified the two above operations that must
eventually be applied systematically.

Considering the zero-order diagonal diagram PO0.1.1(1)

in Fig. 7 (i.e., PO0.1 in Fig. 8), and a two-body operator
O (deg_max = 4), the vertex O00 has no line entering or
leaving it. Replacing it by O02 and O04, one generates two
valid off-diagonal diagrams containing one and two anoma-
lous contractions denoted as PO0.1.1(2) and PO0.1.1(3) in
Fig. 7. One can proceed similarly starting from the first-
order diagram denoted as PO1.1.1(1) in Fig. 7 (i.e., PO1.1
in Fig. 8). Adding a self-contraction to each of the two
vertices provides three additional off-diagonal diagrams
containing one or two anomalous lines and denoted as
PO1.1.1(4), PO1.1.2(1) and PO1.1.2(4) in Fig. 7.
To illustrate the second operation, let us consider the

first-order diagonal diagram PO1.2.1(1) in Fig. 7 (i.e., PO1.2
in Fig. 8). This diagram contains four normal lines be-
tween the two vertices, each of which can be transformed
into an anomalous line. Doing so generates four addi-
tional topologically-distinct off-diagonal diagrams denoted
as PO1.2.1(2), PO1.2.1(3), PO1.2.1(4) and PO1.2.1(5) in
Fig. 7.
Combining the transformation of normal lines into

anomalous lines and the addition of self-contractions, one
obtains the other topologically distinct off-diagonal dia-
grams displayed in Fig. 7.

5.2. Similarity-transformed operator
An important feature is that the bottom vertex Om0

appearing in diagonal BMBPT diagrams is always at fixed
time zero. Consequently, off-diagonal diagrams generated
by adding self-contractions to it and/or by transforming
a normal line leaving it into an anomalous line entering it
possess the same time structure as the diagonal diagram
it derives from. Indeed, a self-contraction carries no time
dependence and thus cannot impact the time structure of
the diagram. Furthermore, the fact that all Ωij vertices are
at higher times than Om0 remains true even if all the lines

13



PO0.1.1
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Figure 9: Zero- and first-order effective off-diagonal BMBPT dia-
grams recasting the twenty displayed in Fig. 7.

attached to the bottom vertex are changed into anomalous
ones such that the time structure is invariant under this
transformation.
A key consequence of the above observations is that all

diagrams differing only by the number of self-contractions
onto the bottom vertex and/or the number of anomalous
propagators connected to it can be grouped into a single
diagram in which the bottom vertex is replaced by its
similarity transformed partner at gauge angle ϕ [9]

Õ(ϕ) ≡ e−Z(ϕ)OeZ(ϕ) , (42)

where Z(ϕ) is the Thouless operator, see Appendix A.3.
As explained at length in Appendix B, the transformed
operator Õ(ϕ) possesses the same formal structure as the
initial operator O. As such, it is decomposed as a sum of
terms Õmn(ϕ) with the same overall rank as O, i.e.,m+n ≤
deg_max. The only difference relates to the definition
of the (gauge-dependent) matrix elements entering each
term Õmn(ϕ). The expression of these matrix elements
in terms of the original ones were provided in Ref. [9] for
deg_max = 4.
Exploiting this key observation, one can reduce drasti-

cally the number of effective diagrams at play. Employing
the transformed operator for the bottom vertex and for-
bidding any anomalous line to connect to it, the twenty
off-diagonal diagrams displayed in Fig. 7 are recasted into
the four effective off-diagonal diagrams displayed in Fig. 9.
This feature being generic, the recasting procedure extends
to any order p.

5.3. Systematic scheme
The analysis provided above puts us in position to

state the systematic rules used to generate all effective
off-diagonal BMBPT diagrams of order p from the diag-
onal ones. Starting from a diagonal BMBPT diagram of
order p
1. replace the bottom vertex Om0 by its transformed

partner Õm0(ϕ),
2. for each energy vertex Ωij

(a) transform l outgoing arrows into incoming arrows
to form l anomalous lines while turning the vertex
into Ωi−lj+l, with l ∈ N, until i− l = 0,

(b) add k self-contractions while turning the vertex
into Ωij+2k, with k ∈ N, until i + j + 2k =
deg_max,

3. retain only topologically distinct diagrams.

While the method is straightforward, it is indeed impor-
tant to discard topologically equivalent diagrams generated
through this brute-force procedure. Anticipating it, one
can actually reduce the need to check for all of them, which
is particularly beneficial given that the corresponding test
scales factorially with the number of vertices in the dia-
grams. The first step in our algorithm being to generate
off-diagonal diagrams from a given straight BMBPT one,
one avoids producing topologically equivalent diagrams in
the subset of children in the following way:

• As normal propagators are turned anomalous, the
list of initial equivalent lines is recorded taking into
account possible vertex exchanges. Doing so, only
unique permutations of normal propagators are turned
into anomalous ones.

• Once this first set of diagrams is generated, adding
self-contractions on them can only create topologically
equivalent diagrams when doing so on topologically
equivalent vertices. As such, one first looks out for
such vertices, and makes sure to add self-contractions
on unique combinations of vertices.

Once order-p diagrams are generated in this way, checks
for topologically equivalent diagrams are still required. This
is due to the fact that by turning normal propagators
anomalous, one creates new topologies that might in fact
arise from several straight BMBPT diagrams. Some dia-
grams can be excluded from this check though, starting
from the ones containing only normal propagators, i.e.,
straight BMBPT ones, which have been tested beforehand.
This exclusion can be extended to diagrams in which the
only anomalous lines are self-contractions, i.e., straight
BMBPT diagrams with extra anomalous self-contractions,
as the structure of propagators exchanged between vertices
has not been affected. Applying the discussed method
eventually results in the number of diagrams displayed in
Tab. 1.

5.4. Drawing associated BMBPT diagrams
Once the off-diagonal BMBPT diagrams have been pro-

duced, it is important to be able to represent them graphi-
cally. As in Ref. [1], the BMBPT diagrams are created as
objects generated via the Python package NetworkX [26],
allowing for an efficient and easy to handle storage of the
necessary information. It is then easy to read these objects
and extract the information necessary to produce the draw-
ing instructions in the form of FeynMP [27] commands.
The routines designed in Ref. [1] only had to be adapted
to allow the drawing of anomalous propagators and self-
contractions. As an example, the output displaying the
drawing instructions of the off-diagonal BMBPT diagram
displayed in Fig. 14 is given in Fig. 10.

6. Evaluation of off-diagonal BMBPT diagrams

Having the capacity to generate all off-diagonal BMBPT
Feynman diagrams of order p, the next challenge is to
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Order 0 1 2 3 4
Straight BMBPT deg_max = 4 1 2 8 59 568

deg_max = 6 1 3 23 396 10 716
Off-diagonal BMBPT deg_max = 4 1 3 33 602 14 977

deg_max = 6 1 6 189 13 046 . . .

Table 1: Number of diagonal and effective off-diagonal BMBPT diagrams generated from operators containing at most four (deg_max = 4) or
six (deg_max = 6) legs.

systematically derive their expression. Doing so on the
basis of Feynman’s algebraic rules is rather straightforward.
However, it leaves the p-tuple time integral to perform in
order to obtain the time-integrated expression of interest.
In Ref. [1], an algorithm was found to overcome this chal-
lenge for diagonal BMBPT diagrams at play in straight
BMBPT without prior knowledge of the perturbative order
or of the topology of the diagram. This eventually led
to the identification of a novel diagrammatic rule. The
present section details how the method only needs to be
slightly generalized in order to realize the same objective for
off-diagonal BMBPT diagrams at play in PNP-BMBPT.

6.1. Time-structure diagrams
Obtaining the result of p-tuple time integrals in an au-

tomatic fashion was made possible via the introduction of
the time-structure diagram underlying any given diagonal
BMBPT diagram of arbitrary order and topology. We refer
to Ref. [1] for the general theory of TSDs and only com-
ment here on the specificities encountered when dealing
with more general off-diagonal BMBPT diagrams.

The key point was already alluded to in Sec. 4.5 and
relates to the impact anomalous lines may have on the
TSD attributed to a given off-diagonal BMBPT diagram.
The main features are

• The running time labels (τ1, . . . , τp) are positive such
that each Ω vertex entertains at least an ordering
relation with the bottom vertex Õ(ϕ) independently
of the network of lines running through the BMBPT
diagram. Consequently, the TSD remains necessarily
connected, independently of its topology.

• Contrarily to normal lines, anomalous lines do not
induce any time ordering relation. This means that,
while two Ω vertices connected by at least one normal
line are time ordered, it is not the case if they are solely
connected via anomalous propagators. Consequently,
a link connecting two Ω vertices in the TSD associated
to a diagonal BMBPT diagram will disappear when
the two vertices become only connected via anoma-
lous propagators in an off-diagonal partner diagram14.

14As a TSD stores only the minimal information associated with
time-ordering relations, such a disappearance may parallel the oc-
curence of one or several new links with respect to the TSD of the
diagonal BMBPT diagram. Hence TSDs must always be produced
starting from a given off-diagonal BMBPT diagram and not from the
TSD of its parent BMBPT diagram.

Whenever an Ω vertex ends up entertaining no time re-
lation with any other due to the replacement of normal
lines by anomalous ones, it becomes directly linked to
the bottom vertex Õ(ϕ) in the associated TSD.

• The addition of a self contraction to any given Ω vertex
does not change the time structure of the diagram and
thus the associated TSD.

In conclusion, the presence of anomalous lines may, de-
pending on the situation, change the TSD associated to an
off-diagonal BMBPT diagram compared to the diagonal
diagram displaying the same topology. Eventually, the
TSD associated to an off-diagonal BMBPT diagram can
be obtained through the following steps

1. copy the off-diagonal BMBPT diagram,
2. remove all the anomalous propagators,
3. replace the normal propagators by links,
4. add a link between the bottom vertex at time 0 and

every other vertex if such a link does not exist,
5. for each pair of vertices, consider all paths linking

them and only retain the longest one,
6. match the label aq associated to a given vertex in the

TSD diagram to the sum/difference of quasi-particle
energies associated with the lines entering/leaving the
corresponding vertex in the BMBPT diagram.

The only difference with the procedure followed for strictly
diagonal BMBPT diagrams [1] relates to step 2 that triv-
ially stipulates to strip off anomalous propagators if any.

The procedure is illustrated in Fig. 11 for a third-order di-
agonal BMBPT diagram and for the particular off-diagonal
diagram generated from it by turning the two normal lines
connecting vertex Ω40 to one of the two Ω04 vertices into
anomalous lines. Cleared of other informations, the TSDs
tranparently characterize the time-ordering structure under-
lying the diagrams. In the first one, the three Ωij vertices
are at higher times than O40 such that the two Ω04 vertices
are at higher times than Ω40 without being ordered with
respect to one another. From the graph theory viewpoint,
the corresponding TSD is a tree, i.e., it contains no cycle,
with two branches. In the second diagram, the fact that
the two lines connecting Ω40 to (one of the two) Ω04 are
anomalous relaxes the time-ordering between both vertices
and, as a result, changes the nature of the associated TSD,
i.e., a3 is now directly linked to the bottom vertex
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shrink(.7);
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endshrink;
enddef;}
\fmfcmd{style_def prop_mm expr p =
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Figure 10: FeynMP instructions to draw the off-diagonal BMBPT
diagram displayed in Fig. 14.

6.2. Discussion
It is mandatory to generate the TSD from its underly-

ing BMBPT diagram. Indeed, only in this case can the
rank deg_max of the operators at play be employed to con-
strain the topology of the diagrams, eventually dictating
the topology of allowed TSDs. Furthermore, going from
diagonal to off-diagonal BMBPT diagrams may not only
change the nature of the TSD associated to a particular
diagram but also increase the list of active TSDs at a given
order.
With this in mind and following the above rules,

the 1/1/2/5 TSDs of order 0/1/2/3 associated to off-
diagonal BMBPT diagrams generated from operators with
deg_max = 4 or deg_max = 6 have been produced15 and sys-

15The two TSDs appearing in Fig. 11 are denoted, respectively, as
T3.3 and T3.2 (with a cyclic permutation of (a1, a2, a3)) in Fig. 12.

→

→ →

a3

a1
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→

→ →

a3

a1

a2

Figure 11: Production of the TSDs associated with a third-order
diagonal BMBPT diagram and with an off-diagonal diagram obtained
from it by turning two among the eight normal lines into anomalous
ones.

tematically displayed in Fig. 12. Interestingly, restricting
one-self to diagonal BMBPT diagrams and deg_max = 4,
T3.4 would have to be removed from the set of active
TSDs, i.e., going from diagonal to off-diagonal BMBPT or
going from deg_max = 4 to deg_max = 6 adds one allowed
third-order TSD.

6.3. From the TSD back to the BMBPT diagram
In the end, different BMBPT diagrams of order p can

have the same TSD, i.e., the same underlying time struc-
ture. At the same time, off-diagonal BMBPT diagrams
originating from the same diagonal diagram may have dif-
ferent TSDs, i.e., different underlying time structures. Once
the TSD has been extracted from the BMBPT diagram of
interest, its computation follows the algorithm detailed in
Ref. [1]. In particular, the treatment of a non-tree TSD
requires to turn it first into a sum of tree TSDs.
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Figure 12: Zero-, first-, second- and third-order TSDs corresponding
to off-diagonal BMBPT diagrams generated from operators containing
four or six legs at most, i.e., with deg_max = 4 or deg_max = 6.

Once the expression of a tree TSD of order p has been
obtained, the goal is to generate the actual time-integrated
expression of the BMBPT diagrams associated to it. Rather
than replacing the individual factors aq, q = 1, . . . , p, by
their expressions for each BMBPT diagram, one introduces
the notion of subdiagram, or subgraph, to directly obtain
their combinations appearing in the denominator of the
time-integrated expression of interest. In Ref. [1], a sub-
diagram of a diagonal BMBPT diagram was defined as a
diagram composed by a subset of vertices plus the propa-
gators that are exchanged between them. As each vertex
label aq in a TSD eventually stands for the sum/difference
of quasi-particle energies associated with the lines enter-
ing/leaving the vertex in the associated BMBPT diagram,
the combination of these labels denotes the sum/difference
of quasi-particle energies associated with the lines enter-
ing/leaving the subdiagram grouping the corresponding
vertices.

In the present context of off-diagonal BMBPT diagrams,
one only needs to slightly generalize the notion of subdia-
grams in order to apply the algorithm stipulated in Ref. [1]
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Figure 13: Fully-labelled third-order diagonal and off-diagonal
BMBPT diagrams displayed in Fig. 11 and their associated TSDs.
The bottom vertex corresponds to Õ40(ϕ).

in order to determine the factors entering the denominator
of the time-integrated expression of the diagram. Thus
a subdiagram of an off-diagonal BMBPT diagram is now
defined as a diagram composed by a subset of vertices plus
the normal propagators that are exchanged between them.
This definition is obviously consistent with the one intro-
duced in Ref. [1] for strictly diagonal BMBPT diagrams
given that the latter solely contain normal propagators.
With this definition at hand, the energy denominator

resulting from a BMBPT diagram associated with a tree
TSD is obtained in the following way
1. Consider a vertex but the bottom one in the BMBPT

diagram,
(a) determine all its descendants using the TSD,
(b) form a subdiagram using the vertex and its de-

scendants,
(c) sum the quasi-particle energies corresponding to

the lines entering the subdiagram,
(d) add the corresponding factor to the denominator

expression,
2. Go back to 1. until all vertices have been exhausted.

Given that anomalous lines are excluded from the definition
of a subdiagram, they systematically count as entering the
subdiagram whenever they connect to a vertex belonging
to it.

Let us illustrate the diagrammatic rule by focusing on the
two third-order BMBPT diagrams16 displayed in Fig. 13.

16The results obtained in Eq. (41) for the three second-order di-
agrams displayed in Fig. 6 are straightforwardly recovered by the
application of the diagrammatic rule.
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1. The denominator in the time-integrated expression of
the first diagram is obtained through the following
steps
(a) The vertex at time τ1 in the BMBPT diagram cor-

responds to vertex a1 in the TSD. Its descendants
are vertices a2 and a3 corresponding to BMBPT
vertices at times τ2 and τ3, respectively. The sum
of quasi-particle energies associated to the lines
entering the subgraph grouping the three ver-
tices is εk1k2k3k4 , thus, providing the first factor
entering the denominator.

(b) The vertex at time τ2 in the BMBPT diagram
corresponds to vertex a2 in the TSD. It has no
descendant such that the corresponding subgraph
reduces to itself. The sum of quasi-particle ener-
gies associated to the lines entering the subgraph
is εk1k2k5k6 , thus providing the second factor en-
tering the denominator.

(c) The vertex at time τ3 in the BMBPT diagram
correspond to vertex a3 in the TSD. It has no
descendant such that the corresponding subgraph
reduces to itself. The sum of quasi-particle ener-
gies associated to the lines entering the subgraph
is εk3k4k7k8 , thus, providing the last factor enter-
ing the denominator.

(d) Eventually, the complete denominator reads as

εk1k2k3k4 εk1k2k5k6 εk3k4k7k8 ,

where each factor corresponds to a positive sum
of quasi-particle energies.

2. The denominator of the second, off-diagonal, diagram
containing two anomalous lines and corresponding to
a different TSD is obtained as
(a) The vertex at time τ1 in the BMBPT diagram

corresponds to vertex a1 in the TSD. Contrarily
to the previous case, vertex a3 is not a descen-
dant of a1 anymore as is visible from the TSD
such that the subgraph of interest solely groups
a1 and a2. The sum of quasi-particle energies
associated to the lines entering the subgraph in
the BMBPT diagram is εk1k2k7k8 , thus, providing
the first factor entering the denominator.

(b) The situation of the vertex at time τ2 in the off-
diagonal BMBPT diagram is strictly the same as
in the previous diagonal one. Consequently, the
associated factor in the denominator is εk1k2k5k6 .

(c) As in the diagonal BMBPT diagram, the ver-
tex at time τ3 has no descendant in the off-
diagonal BMBPT diagram. Consequently, the
subgraph corresponding to vertex a3 reduces to
itself. However, because the two anomalous lines
carry two quasi-particle labels each, the sum of
quasi-particle energies associated to the lines en-
tering the subgraph has now become εk3k4k9k10 .

(d) Eventually, the complete denominator reads as

εk1k2k7k8 εk1k2k5k6 εk3k4k9k10 ,

k4

k5 k6

k7

k1 k2

k3

τ2

0

τ1

a2

a1

Figure 14: Fully-labelled second-order off-diagonal BMBPT diagram
and its associated TSD.

where each factor corresponds to a positive sum
of quasi-particle energies.

For completeness, let us work out another example high-
lighting additional features of interest, i.e., the second-order
off-diagonal diagram displayed in Fig. 14 together with its
associated TSD17. Applying the diagrammatic rule, one
obtains

1. The vertex at time τ1 in the BMBPT diagram corre-
sponds to vertex a1 in the TSD. Because it remains
one normal line connecting to the vertex at time τ2,
a2 is indeed its descendant. The subgraph of inter-
est thus groups a1 and a2. Due to the more general
definition of subgraphs at play in the context of off-
diagonal BMBPT, the anomalous line connecting the
two vertices is excluded from it, together with the self
contraction on the upper vertex. Consequently, the
sum of quasi-particle energies associated to the lines
entering the subgraph is εk1k2k4k5k6k7 , thus, providing
the first factor entering the denominator.

2. The vertex at time τ2 in the BMBPT diagram corre-
sponds to vertex a2 in the TSD. It has no descendant
such that the corresponding subgraph reduces to it-
self, excluding the self contraction that the vertex
exchanges with itself. The sum of quasi-particle en-
ergies associated to the lines entering the subgraph
is εk3k5k6k7 , thus providing the second factor entering
the denominator.

3. Eventually, the complete denominator reads as

εk1k2k4k5k6k7 εk3k5k6k7 .

7. Output of the ADG program

The typical output of the code associated with an off-
diagonal BMBPT diagram is:

17It is worth noting that the TSD of the off-diagonal diagram of
interest is unchanged compared to the diagonal diagram it is generated
from. However, the companion diagram with one more anomalous
line joining the first and second Ω vertices relates to a different TSD.
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Diagram 3.3:.

PO2.3.3 = lim
τ→∞

(−1)2

2(3!)
∑
ki

Õ40
k1k2k3k4

(ϕ)Ω04
k1k2k3k5

Ω04
k6k4k7k8

×R−−k6k5
(ϕ)R−−k8k7

(ϕ)

×
∫ τ

0
dτ1dτ2θ(τ2 − τ1)e−τ1εk1k2k3k5 e−τ2εk4k6k7k8

= (−1)2

2(3!)
∑
ki

Õ40
k1k2k3k4

(ϕ)Ω04
k1k2k3k5

Ω04
k6k4k7k8

εk1k2k3k5
εk4k6k8k7

×R−−k6k5
(ϕ)R−−k8k7

(ϕ)

→ T1:

T1 = 1
a1a2

a1 = εk1k2k3k5

a2 = εk4k6k7k8

8. Connection to time-ordered diagrammatics

In Ref. [1], time-unordered and time-ordered diagram-
matics emerging, respectively, from the time-dependent
and the time-independent formulations of straight, i.e.,
diagonal, BMBPT were compared at length. The main
outcome of the analysis related to the capacity of the time-
unordered diagrammatics to resum at once large classes
of time-ordered diagrams. Correspondingly, it was shown
that the new diagrammatic rule allowing for the direct
obtention of the time-integrated results on the basis of
time-unordered diagrams generalizes the resolvent rule at
play for time-ordered diagrams.
As in Ref. [1], the formal and numerical developments

presented in this paper rely on the time-dependent formu-
lation of PNP-BMBPT [9]. While it is traditionally more
customary to design many-body perturbation theories on
the basis of a time-independent formalism [28], this task
has so far not been attempted for PNP-BMBPT. While
the end result has to be the same, the partitioning18 of
the complete order-p contribution to the observable OA

0
will differ in both approaches. In the absence of the time-
ordered diagrammatics associated to PNP-BMBPT, we
cannot proceed to the same analysis as done in Ref. [1]
for straight BMBPT. Leaving this analysis for the future,

18A valid partitioning relates to splitting the complete order p in a
sum of terms that are individually proportional to a fraction of the
form 1/(εki...kj . . . εku...kv ) with p energy factors in the denominator.
Any other form does not constitute a valid partitioning in the present
context.

it can however be anticipated that time-unordered off-
diagonal BMBPT diagrams will feature the same capacity
to resum large classes of time-ordered diagrams at play in
the, yet-to-be-formulated19, time-independent version of
PNP-BMBPT.

9. Use of the ADG program

ADG has been designed to work on any computer with
a Python3 distribution, and successfully tested on recent
GNU/Linux distributions and on MacOS. Additionally to
Python, setuptools and distutils packages must already
be installed, which is the case on most standard recent
distributions. Having pip installed eases the process but
is not technically required. The NumPy, NetworkX and
SciPy libraries are automatically downloaded during the
install process. Additionally, one needs a LATEX distribution
installed with the PDFLATEX compiler for ADG to produce
the pdf file associated to the output if desired.

9.1. Installation
9.1.1. From the Python Package Index
The easiest way to install20 ADG is to obtain it from

the Python Package Index21 by entering the following
command

pip3 install adg

Provided setuptools is already installed, pip takes care of
downloading and installing ADG as well as NumPy, SciPy
and NetworkX. Once a new version of ADG is released, one
can install it by entering the command

pip3 install --upgrade adg

9.1.2. From the source files
Once the ADG source files are downloaded from the CPC

library or the GitHub repository22, one must enter the
project folder and either run

pip3 install .

or

python3 setup.py install

With this method, pip23 also takes care of downloading
and installing NumPy, NetworkX and SciPy.

19The fact that anomalous propagators/contractions are not di-
agonal in their quasi-particle indices should lead to a rather uncon-
ventional time-ordered diagrammatics that shall itself lead to an
interesting variant of the resolvent rule.

20As the previous version of ADG was developped with Python2,
the installation will be made next to the previous version, though
it should not cause any problem using it. Users who would want
to uninstall the previous version first might do it by entering pip2
uninstall adg.

21https://pypi.org/project/adg/
22https://github.com/adgproject/adg
23Depending on the system, it might be necessary either to use the

"–user" flag to install it only for a specific user or to run the previous
command with "sudo -H" to install it system-wide.
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9.2. Run the program
9.2.1. Batch mode

The most convenient way to use ADG is to run it in batch
mode with the appropriate flags. For example, to run the
program and generate off-diagonal BMBPT diagrams at
order 3 for example, one can use

adg -o 3 -t PBMBPT -d -c

where the -o flag is for the order, -t for the type of theory,
-d indicates that the diagrams must be drawn and -c that
ADG must compile the LATEX output. A complete list of
the program’s options can be obtained via the program’s
documentation (see Sec. 9.4) or through

adg -h

Currently, ADG can be run either in relation to HF-MBPT
by using -t MBPT, to straight BMBPT by using -t BMBPT
or to off-diagonal BMBPT by using -t PBMBPT. Though the
algorithms described in the previous sections can be used
regardless of the diagrams’ orders, ADG has been arbitrarily
restricted to order 10 or lower to avoid major overloads of
the system. Future users are nevertheless advised to first
launch calculations at low orders (2, 3 or 4 typically) as
the time and memory needed for computations rise rapidly
with the perturbative order.

9.2.2. Interactive mode
As an alternative to the batch mode, ADG can be run on

a terminal by entering the command

adg -i

A set of questions must be answered using the keyboard
to configure and launch the calculation. The interactive
mode then proceeds identically to the batch mode.

9.3. Steps of a program run
Let us briefly recapitulate the different steps of a typical

ADG run

• Run options are set either by using the command-line
flags entered by the user or during the interactive
session via keyboard input.

• ADG creates a list of adjacency matrices for the appro-
priate theory and perturbative order using NumPy,
and feeds them to NetworkX that creates MultiDi-
Graph objects.

• Checks are performed on the list of graphs to remove
topologically equivalent or ill-defined graphs.

• The list of topologically unique graphs is used to pro-
duce Diagram objects that store the graph as well as
some of its associated properties depending on the the-
ory (HF status, excitation level, etc.). For off-diagonal
BMBPT, this is done in two-steps, first genereating
the straight BMBPT ones. The expression associated
to the graphs are eventually extracted.

• The program prints on the terminal the number of
diagrams per category and writes the LATEX output file,
the details of which depend on the options selected
by the user, as well as a list of adjacency matrices
associated to the diagrams. Other output files may
be produced, depending on the theory and the user’s
input.

• If asked by the user, the program performs the
PDFLATEX compilation.

• Unnecessary temporary files are removed and the pro-
grams exits.

9.4. Documentation
9.4.1. Local documentation
Once the source files have been downloaded, a quick

start guide is available in the README.md file. Once ADG is
installed, it is possible to read its manpages through

man adg

or a brief description of the program and its options through

adg -h

A more detailed HTML documentation can be generated di-
rectly from the source files by going into the docs directory
and running

make html

The documentation is then stored in docs/build/html,
with the main file being index.html. A list of other possi-
ble types of documentation format is available by running

make help

9.4.2. Online documentation
The full HTML documentation is available online un-

der https://adg.readthedocs.io/, and help with even-
tual bugs of the program can be obtained by opening
issues on the GitHub repository at https://github.com/
adgproject/adg.

10. Conclusions

The motivations underlining our work were explained at
length in Ref. [1] where the first version of the code ADG
was described. The long-term rationale relates to the pos-
sibility to automatically (i) generate and (ii) algebraically
evaluate diagrams in various quantum many-body methods
of interest. In Ref. [1], the focus was put on Bogoliubov
many-body perturbation theory (BMBPT) that has been
recently formulated [9] and first implemented at low or-
ders [12] to tackle (near) degenerate Fermi systems, e.g.,
open-shell nuclei displaying a superfluid character. Given
the need to tackle three-nucleon interactions, i.e., six-leg
vertices, in nuclear physics and the implementation of high-
order contributions authorized by the rapid progress of
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computational power, the first version of the code ADG
makes possible to generate all valid BMBPT diagrams and
to evaluate their algebraic expression to be implemented
in a numerical application. This is realized at an arbitrary
order p for a Hamiltonian containing both two-body (four-
legs) and three-body (six-legs) interactions (vertices). The
formal advances and the numerical methods necessary to
achieve this goal can be found in Ref. [1].
Bogoliubov MBPT perturbatively expands the exact

solution of the Schrödinger equation around a so-called
Bogoliubov reference state, i.e., a general product state
breaking U(1) global-gauge symmetry associated with the
conservation of good particle number in the system. This
results into a (hopefully small) symmetry contamination as
soon as the expansion is truncated in actual calculations.
Given that the breaking of a symmetry cannot actually
be realized in a finite quantum system, U(1) symmetry
must eventually be restored at any truncation order, which
is made possible thanks to the recent formulation of the
particle-number projected Bogoliubov many-body pertur-
bation theory (PNP-BMBPT) [9] that extends straight
BMBPT on the basis of a more general diagrammatic
expansion.
Consequently, the present paper details the systematic

generation and evaluations of diagrams at play in PNP-
BMBPT operated by the second version (v2.0.0) of the
code ADG. While the automated evaluation of the diagrams
only requires a mere extension of the diagrammatic rule
unrevealed in Ref. [1], the method used to first generate
all allowed diagrams is different from the one employed in
Ref. [1]. Taking advantage of the capacity of the code ADG
to already produce all valid BMBPT diagrams of order
p, the set of rules to generate all those at play in PNP-
BMBPT from those appearing in BMBPT was identified
and implemented.
Eventually, the second version of the code ADG is kept

flexible enough to be expanded throughout the years to
tackle the diagrammatics at play in yet other many-body
formalisms that either already exist or are yet to be formu-
lated.
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Appendix A. Reference states

Appendix A.1. Bogoliubov vacuum
We consider the Bogoliubov reference state defined as

|Φ〉 ≡ C
∏
k

βk|0〉 , (A.1)

where quasi-particle operators are related to particle ones
through a Bogoliubov transformation(

β
β†

)
= W †

(
c
c†

)
=
(
U† V †

V T UT

)(
c
c†

)
. (A.2)

The product state |Φ〉 is a vacuum for the set of quasi-
particle operators, i.e., βk|Φ〉 = 0 for all k.

Appendix A.2. Rotated Bogoliubov vacuum
One introduces the gauge-rotated Bogoliubov vacuum

|Φ(ϕ)〉 ≡ R(ϕ)|Φ〉 ≡ C
∏
k

β̄k|0〉 , (A.3)

where rotated quasi-particle operators are defined through(
β̄

β̄†

)
(ϕ) ≡ R(ϕ)

(
β
β†

)
R−1(ϕ) (A.4)

≡Wϕ †
(
c
c†

)
,

with the associated Bogoliubov transformation reading as

Wϕ † ≡
(
Uϕ † V ϕ †

V ϕT UϕT

)
(A.5)

=
(
U†e−iϕ V †e+iϕ

V T e−iϕ UT e+iϕ

)
.

Appendix A.3. Thouless transformation between vacua
As stipulated by Eq. (A.3), |Φ(ϕ)〉 is obtained from |Φ〉

via the unitary transformation R(ϕ) whose generator is A.
One can rather express |Φ(ϕ)〉 via a non-unitary Thouless
transformation of |Φ〉 according to [29]

|Φ(ϕ)〉 ≡ 〈Φ|Φ(ϕ)〉eZ(ϕ)|Φ〉 , (A.6)

where the one-body Thouless operator

Z(ϕ) ≡ 1
2
∑
k1k2

Z20
k1k2

(ϕ)β†k1
β†k2

(A.7)

only contains a pure excitation part over |Φ〉. The corre-
sponding Thouless matrix

Z20(ϕ) ≡ N∗(ϕ)M∗−1(ϕ) (A.8)

is expressed in terms of the Bogoliubov transformation
connecting quasi-particle operators of |Φ(ϕ)〉 to those of
|Φ〉 (

β̄

β̄†

)
(ϕ) ≡ W†(ϕ)

(
β
β†

)
, (A.9)
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where

W†(ϕ) = Wϕ †W

≡
(
M†(ϕ) N†(ϕ)
NT (ϕ) MT (ϕ)

)
(A.10)

=
(
Uϕ †U + V ϕ †V V ϕ †U∗ + Uϕ †V ∗

V ϕTU + UϕTV UϕTU∗ + V ϕTV ∗

)
.

Appendix A.4. Elementary contractions

The elementary contractions of quasi-particle operators
that are in use when employing the off-diagonal Wick
theorem [25] are given by

R(ϕ) ≡
( 〈Φ|β†β |Φ(ϕ)〉

〈Φ|Φ(ϕ)〉
〈Φ|β β |Φ(ϕ)〉
〈Φ|Φ(ϕ)〉

〈Φ|β†β†|Φ(ϕ)〉
〈Φ|Φ(ϕ)〉

〈Φ|β β†|Φ(ϕ)〉
〈Φ|Φ(ϕ)〉

)

≡
(
R+−(ϕ) R−−(ϕ)
R++(ϕ) R−+(ϕ)

)
=
(

0 −Z20(ϕ)
0 1

)
. (A.11)

Most of the above contractions are easily obtained by us-
ing the fact that |Φ〉 is the vacuum of the quasi-particle
operators, i.e., βk|Φ〉 = 〈Φ|β†k = 0 for all k. The single non-
trivial (anomalous) contraction is obtained on the basis of
standard Wick’s theorem as

R−−k1k2
(ϕ) = 〈Φ|βk1βk2 |Φ(ϕ)〉

〈Φ|Φ(ϕ)〉
= 〈Φ|βk1βk2e

Z(ϕ)|Φ〉

= 1
2
∑
kk′

Z20
kk′(ϕ)〈Φ|βk1βk2β

†
kβ
†
k′ |Φ〉

= 1
2
(
Z20
k2k1

(ϕ)− Z20
k1k2

(ϕ)
)

= −Z20
k1k2

(ϕ) , (A.12)

and is zero in the diagonal case, i.e., R−−k1k2
(0) = 0.

Appendix B. Transformed operator Õ(ϕ)

The gauge-dependent similarity transformed operator24

of O is defined through

Õ(ϕ) ≡ e−Z(ϕ)OeZ(ϕ) . (B.1)

Taking as an example one term in the normal-ordered
expression of O, e.g.,

Oij ≡ 1
i!

1
j!
∑

k1...ki+j

Oijk1...ki+j
β†k1

. . . β†kiβki+j . . . βki+1 ,

24The Hermitian character of an operator O is lost by the applica-
tion of similarity transformation.

its transformed partner reads as 25

Õ(ij)(ϕ) ≡ e−Z(ϕ)OijeZ(ϕ) (B.2)

= 1
i!

1
j!
∑

k1...ki+j

Oijk1...ki+j
β̃†k1

. . . β̃†ki β̃ki+j . . . β̃ki+1 ,

where the transformed quasi-particle operators are

β̃k(ϕ) ≡ e−Z(ϕ)βke
Z(ϕ)

= βk − [Z(ϕ), βk] + 1
2! [Z(ϕ), [Z(ϕ), βk]] + . . .

= βk +
∑
k′

Z20
kk′(ϕ)β†k′ , (B.3a)

β̃†k(ϕ) ≡ e−Z(ϕ)β†ke
Z(ϕ)

= β†k − [Z(ϕ), β†k] + 1
2! [Z(ϕ), [Z(ϕ), β†k]] + . . .

= β†k , (B.3b)

were use was made of the elementary commutators[
β†kβ

†
k′ , βk1

]
= β†kδk′k1 − β

†
k′δkk1 , (B.4a)[

β†kβ
†
k′ , β

†
k1

]
= 0 . (B.4b)

Exploiting Eq. (B.3) and normal ordering the resulting
terms with respect to |Φ〉, the transformed operator in
Eq. (B.2) is eventually written as

Õ(ij)(ϕ) ≡
i+j∑
m=i

j∑
n=0

m+n≤i+j

1
m!

1
n!

×
∑

k1...km+n

Õ
mn(ij)
k1...km+n

(ϕ)β†k1
. . . β†kmβkm+n . . . βkm+1 ,

(B.5)

thus defining a sum of normal-ordered terms. Each term
has at least as many quasi-particle creation operators (i)
as the original operator Oij and possibly up to the total
number of original quasi-particle operators (i + j). The
number of annihilation operators ranges from 0 to the
original number (j) such that the overall number of quasi-
particle operators is bound to remain between i and i+j in
each term. One notices that the only structural difference
between the original and the transformed normal-ordered
operators relates to the fact that matrix elements of the
latter depend on the gauge angle. Of course, the original
operator is recovered in the unrotated limit, i.e., Õ(0) = O.

Applying the above procedure to the complete operator
O provides the normal-ordered form of the transformed
operator

Õ(ϕ) ≡ Õ[0](ϕ) + Õ[2](ϕ) + Õ[4](ϕ) + Õ[6](ϕ) , (B.6)

25The notation Õ(ij)(ϕ) denotes the transformed operator of Oij
such that the upper label (ij) is a sole reminder of the normal-ordered
nature of the original operator but does not characterize the normal-
ordered nature of the transformed operator. Contrarily, Õmn(ϕ) does
denote the normal-ordered part of the transformed operator Õ(ϕ) of
O containing m (n) quasi-particle creation (annihilation) operators.
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in which the term Õnm(ϕ) collects various contributions
Õnm(ij)(ϕ). Each term Õnm(ϕ) possesses the same op-
erator structure as the corresponding term in Eq. (11),
except that the original matrix elements are replaced by
gauge-dependent ones, e.g., O31

k1k2k3k4
is formally replaced

by Õ31
k1k2k3k4

(ϕ). The expressions of the matrix elements
of each normal-ordered contribution Õnm(ϕ) in terms of
the matrix elements of the original normal-ordered contri-
butions to an operator O with deg_max = 4 can be found
in Ref. [9].

Appendix C. Changelog

Since the previous main version of ADG, the main modi-
fications to the software have focused on:

• Adding the particle-number projected BMBPT formal-
ism.

• Fixing an error in the vertex-exchange symmetry factor
in BMBPT diagrams arising for diagrams with at least
three equivalent vertices.

• Porting the code to Python3 while maintaining com-
patibility with Python2.7.

• Changing the matrices data structures to NumPy ar-
rays.

• Removing deprecated calls to NetworkX.

• Various optimisations to the BMBPT diagram genera-
tion process.

• Reducing the memory requirements of diagrams.

• Fixing several errors in the documentation.

• Fixing the installation process for additional depen-
dencies.
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