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ABSTRACT

Modelling the anisotropies in the cosmic infrared background (CIB) on all the scales is a challenging task because the nature of the
galaxy evolution is complex and too many parameters are therefore often required to fit the observational data. We present a new
halo model for the anisotropies of the CIB using only four parameters. Our model connects the mass accretion on the dark matter
haloes to the star formation rate. Despite its relative simplicity, it is able to fit both the Planck and Herschel CIB power spectra and
is consistent with the external constraints for the obscured star formation history derived from infrared deep surveys used as priors
for the fit. Using this model, we find that the halo mass with the maximum efficiency for converting the accreted baryons into stars
is log10 Mmax = 12.94+0.02

−0.02 M�, consistent with other studies. Accounting for the mass loss through stellar evolution, we find for an
intermediate-age galaxy that the star formation efficiency defined as M?(z)/Mb(z) is equal to 0.19 and 0.21 at redshift 0.1 and 2,
respectively, which agrees well with the values obtained by previous studies. A CIB model is used for the first time to simultaneously
fit Planck and Herschel CIB power spectra. The high angular resolution of Herschel allows us to reach very small scales, making it
possible to constrain the shot noise and the one-halo term separately, which is difficult to do using the Planck data alone. However,
we find that large angular scale Planck and Herschel data are not fully compatible with the small-scale Herschel data (for ` > 3000).
The CIB is expected to be correlated with the thermal Sunyaev-Zel’dovich (tSZ) signal of galaxy clusters. Using this halo model for
the CIB and a halo model for the tSZ with a single parameter, we also provide a consistent framework for calculating the CIB× tSZ
cross correlation, which requires no additional parameter. To a certain extent, the CIB at high frequencies traces galaxies at low
redshifts that reside in the clusters contributing to the tSZ, giving rise to the one-halo term of this correlation, while the two-halo term
comes from the overlap in the redshift distribution of the tSZ clusters and CIB galaxies. The CIB× tSZ correlation is thus found to
be higher when inferred with a combination of two widely spaced frequency channels (e.g. 143× 857 GHz). We also find that even
at ` ∼ 2000, the two-halo term of this correlation is still comparable to the one-halo term and has to be accounted for in the total
cross-correlation. The CIB, tSZ, and CIB× tSZ act as foregrounds when the kinematic SZ (kSZ) power spectrum is measured from
the cosmic microwave background power spectrum and need to be removed. Because of its simplistic nature and the low number of
parameters, the halo model formalism presented here for these foregrounds is quite useful for such an analysis to measure the kSZ
power spectrum accurately.

Key words. infrared: diffuse background – cosmic background radiation – submillimeter: galaxies – galaxies: clusters: general –
cosmology: observations – methods: data analysis

1. Introduction

The cosmic infrared background (CIB) is made up of the cumu-
lative emission of the infrared radiation from the dusty star-
forming galaxies throughout the Universe. It traces the star for-
mation history of the Universe, which spans a wide range of
redshift 0 ≤ z ∼ 6. Measurements of the CIB can thus be
used as a powerful tool to map the star formation at high red-
shifts (Knox et al. 2001). Although the CIB was first detected by
Puget et al. (1996), Lagache & Puget (2000) and Matsuhara et al.
(2000) were the first to detect and discuss the anisotropies in the
CIB that are due to unresolved extra-galactic sources. The CIB
includes correlated anisotropies that are excellent probes of the
large-scale structure of the Universe (e.g. Hanson et al. 2013).
These were first discovered by Spitzer (Lagache et al. 2007) and
were then subsequently accurately measured by Planck and Her-
schel (Planck Collaboration XXX 2014; Viero et al. 2013).

Another such tracer of the underlying dark matter distribu-
tion are massive galaxy clusters. Hot electrons in these galaxy

clusters Compton scatter the CMB photons and give rise to the
so-called thermal Sunyaev-Zel’dovich (tSZ) effect. A part of
the CIB originates in the dusty star-forming galaxies residing in
the galaxy clusters. Thus, the tSZ and the CIB are expected to be
correlated to a certain extent. This correlation has indeed been
indirectly measured and shown to be positive bypg Reichardt
et al. (2012, 2020), Dunkley et al. (2013), George et al. (2015),
and Choi et al. (2020) and thus has to be considered in the
CMB power spectrum data analysis. Planck Collaboration XXIII
(2016) also reported a measurement of the cross-correlation
between the tSZ and CIB using Planck data. In order to model
the CIB× tSZ signal, we in turn need accurate models of the CIB
anisotropies and the tSZ.

On large angular scales, we can use the fact that the clus-
tering of the CIB traces the large-scale distribution of matter
in the Universe up to some bias factor. This makes modelling
the CIB anisotropies on large angular scales quite straightfor-
ward, as reported in for example Planck Collaboration XXX
(2014) and Maniyar et al. (2018). However, in order to describe
the anisotropies on both the large and small angular scales
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coherently, a “halo model” approach as developed by Cooray &
Sheth (2002) is generally used. With the assumption inside the
halo model that all the galaxies reside in the dark matter haloes,
the clustering can be considered as the sum of two components:
one-halo term (P1h), which takes the small-scale clustering due
to the correlations between the galaxies within the same halo
into account; and two-halo term (P2h), which accounts for the
clustering on large scales due to the correlations between galax-
ies in different haloes. Along with the assumption that all the
dark matter lies within the collapsed and symmetric haloes, four
ingredients are required to characterise the galaxy power spec-
trum within the halo modelling context: the number density of
the haloes per unit mass given by the halo mass function; the
halo bias between the haloes and the dark matter; the spatial dis-
tribution of the dark matter inside a halo given by the halo den-
sity profile; and the halo occupation distribution (HOD), which
is a prescription for filling the dark matter haloes with galaxies.

The first generation of the models built to interpret the CIB
anisotropies was based either on a HOD model or a combination
of models of emissivities of the infrared galaxies and a linear
bias (Knox et al. 2001; Lagache et al. 2007; Amblard & Cooray
2007; Viero et al. 2009; Planck Collaboration XVIII 2011;
Amblard et al. 2011; Xia et al. 2012). These approaches ass-
umed that the emissivity density is traced by the galaxy number
density, implying that all galaxies contribute equally to the emis-
sivity, regardless of their host halo masses. This would mean that
all the galaxies have the same luminosity. However, as has been
pointed out by Shang et al. (2012), both the luminosity and clus-
tering of the galaxies are closely related to the host halo mass. In
general, galaxies situated in more massive haloes are more lumi-
nous as a result of a higher stellar mass, and they are also more
clustered. When this effect is neglected, the clustering signal on
smaller angular scales might be interpreted as being due to a very
high number of satellite haloes (which was the case for Amblard
et al. 2011) compared to what is found in numerical simulations
(discussion in Viero et al. 2013).

Subsequently, several studies such as Shang et al. (2012),
Viero et al. (2013), and Planck Collaboration XXX (2014)
have improved upon the previous halo models by considering
a link between the galaxy luminosity (L) and the host halo mass
(Mh) in their model (through a L−Mh relation). Although their
approach is able to fit the CIB power spectra, their description
of the infrared galaxies is quite simple (e.g. a single spectral
energy distribution, SED, for all galaxy types, but with evolv-
ing dust temperature or without scatter on the L−Mh relation).
These models are useful to derive quantities such as the halo
mass for the most efficient star formation, but it is hard to test
their validity because a good fit can be obtained easily because
of the high number of free parameters in these models. Without
considering any priors, the predictions of these models for phys-
ical quantities such as the star formation rate density (SFRD)
moreover do not match the corresponding constraints from the
linear model or galaxy surveys (e.g. Planck Collaboration XXX
2014). This shows the need for physically motivated models that
in addition to the power spectra can provide a good fit or predic-
tion for other physical quantities such as the SFRD. Béthermin
et al. (2013) used a semi-empirical model based on the observed
relation between the stellar mass M∗ and the SFR, which they
linked to the corresponding halo mass using abundance match-
ing. This model gives CIB power spectra that are consistent with
the measurements. Inspired by their findings of the SFR/BAR
relation with respect to the halo mass (where BAR represents
the baryonic accretion rate), we develop a simpler halo model
for the CIB anisotropies with just four parameters. Our model

connects the mass accretion onto the dark matter haloes to the
corresponding SFR.

The tSZ is measured through the so-called Compton param-
eter (y; Sect. 4). The Planck Collaboration provided an all-
sky map of this Compton y parameter and an estimate of
the tSZ angular power spectrum up to ` ≈ 1300 (Planck
Collaboration XXI 2014; Planck Collaboration XXII 2016).
Bolliet et al. (2018) used these data to constrain the cosmological
parameters (equation of state of the dark energy w in particular)
along with the tSZ parameter. We use this halo model of the tSZ
to calculate the tSZ power spectra.

Addison et al. (2012) calculated the CIB−tSZ correlation
within the halo model framework. They first presented a for-
malism to calculate this correlation using a CIB halo model that
does not account for the dependence of the source flux on the
halo mass, and then expanded their formalism to account for
this effect. However, the CIB halo model they finally consid-
ered (from Xia et al. 2012) to calculate the CIB−tSZ correlation
does not account for the aforementioned L−Mh dependency. We
present a halo model formalism to calculate the CIB× tSZ cross-
correlation using our new halo model for the CIB and the halo
model for the tSZ from Bolliet et al. (2018).

This paper is structured as follows. We begin in Sect. 2 by
presenting our halo model for the CIB anisotropies and subse-
quently present the CIB×CMB lensing correlation within this
framework. Section 3 then presents the constraints on the CIB
model parameters through the data and corresponding results. In
Sect. 4 we provide the halo model for the tSZ. Finally, in Sect. 5
we present the halo model formalism for the CIB× tSZ correla-
tion and the predictions for its power spectra and angular scale
dependence1. Conclusions are given in Sect. 6. Appendices A–C
provide details of the CIB halo model formalism and the com-
parison between the Planck and Herschel CIB power spectrum
data.

When required, we used a Chabrier mass function (Chabrier
2003) and the Planck 2015 flat ΛCDM cosmology (Planck
Collaboration XIII 2016) with Ωm = 0.33 and H0 =
67.47 km s−1 Mpc−1.

2. New halo model for the CIB power spectrum

The starting point for our model is the accretion of matter onto
the dark matter haloes. We then connect the accretion of the
baryonic gas onto the dark matter haloes to the SFR correspond-
ing to these haloes. The SFR is defined separately for the central
and satellite galaxies in a halo. Using the SFR from a given halo,
we then calculate the emissivity of all the haloes of mass Mh at a
given redshift, which then is used to calculate the angular power
spectrum of the CIB anisotropies.

The angular power spectrum of the CIB anisotropies is
defined as

〈δIν`mδIν
′

`′m′〉 = Cν×ν′

` × δ``′δmm′ , (1)

where ν is the frequency of the observation and Iν is the intensity
of the CIB measured at that frequency. The intensity is a function
of the comoving emissivity j through

Iν =

∫
dχ
dz

a j(ν, z)dz

=

∫
dχ
dz

a j̄(ν, z)
(
1 +

δ j(ν, z)
j̄(ν, z)

)
dz, (2)

1 Code for calculating the CIB, tSZ, and CIB× tSZ power spectra
is made available online at https://github.com/abhimaniyar/
halomodel_cib_tsz_cibxtsz
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where χ(z) is the comoving distance to redshift z, and a =
1/(1 + z) is the scale factor of the Universe, and δ j(ν, z) are the
emissivity fluctuations of the CIB. We expand the Eq. (2) this
way between the mean value and its fluctuations because Eq. (1)
shows that the power spectrum is calculated using the fluctua-
tions around the mean value. Combining Eqs. (1) and (2), and
using the Limber approximation (Limber 1954) for the flat sky,
which helps us avoid the spherical Bessel function calculations
and makes the computation easier, we therefore obtain

Cν×ν′

` =

∫
dz
χ2

dχ
dz

a2 j̄(ν, z) j̄(ν′, z)Pν×ν′

j (k = `/χ, z), (3)

where at a given redshift, Pν×ν′

j is the 3D power spectrum of the
emissivity and is defined as

〈δ j(k, ν)δ j(k′, ν′)〉 = (2π)3 j̄(ν) j̄(ν′)Pν×ν′

j (k)δ3(k − k′). (4)

Thus we have to calculate δ j to obtain the CIB angular power
spectrum. For this purpose we connect (Sect. 2.3) the SFR of the
haloes with the specific emissivity d jν

d log Mh
(Mh, z) and integrate

it over all the halo masses and redshift range to obtain the CIB
power spectra.

2.1. From accretion onto the dark matter haloes to SFR

The dark matter haloes grow in mass over time through dif-
fuse accretion and mergers with other lower mass haloes (e.g.
Fakhouri et al. 2010). Accretion and merger processes are also
responsible for the growth of stellar mass in galaxies through
galaxy-galaxy mergers and through accretion of the gas. The
baryonic gas accreted by a given dark matter halo would form
stars depending upon certain factors. This is the starting point
of our model. As we mentioned earlier, previous studies used a
parametric L−Mh relation to derive the power spectra. Instead
of assuming an L−Mh relation with an evolution in redshift,
we connect the accretion rate onto a dark matter halo described
above with the corresponding SFR. This gives us an SFR−Mh
relation that in substance is similar to an L−Mh relation. The
difference between our approach and that of others is a more
physical starting point of the parametrisation.

This approach is physically motivated. This link between the
accreted baryons and SFR is quite natural. The stars form out
of the gas reservoirs within their host galaxies that reside in the
dark matter haloes. The amount of gas at a given time depends
upon the amount of gas accreted by the host dark matter halo.
We assumed that this accreted gas is converted into stars with an
efficiency that is a function of the mass of the halo and redshift.
We used a lognormal parametrisation between the halo mass and
the ratio of the SFR and the baryonic accretion rate BAR for a
halo (i.e. SFR/BAR)

SFR
BAR

(Mh, z) = η = ηmax e
−

(log Mh−log Mmax)2

2σ2
Mh

(z)
, (5)

where Mh is the halo mass, Mmax represents the mass with the
highest star formation efficiency ηmax, and σMh (z) is the variance
of the lognormal, which here represents the range of masses over
which the star formation is efficient. SFR/BAR represents the
efficiency (η) of the dark matter halo of a given mass (Mh) at a
redshift (z) to convert the accreted baryonic mass into stars.

The choice of the lognormal shape is quite logical. Sev-
eral studies (e.g. Viero et al. 2013; Planck Collaboration XXX
2014; Maniyar et al. 2018) have found that the dark matter

haloes within the mass range 1012−1013 M� form the stars most
efficiently. With an empirical model, Béthermin et al. (2013)
showed in their Fig. 17 that the star formation efficiency as a
function of instantaneous halo mass is highest in haloes with
masses ∼1012 M�. This mass does not change considerably over
a range of redshifts, whereas the efficiency falls off drastically for
masses above and below the most efficient mass. This effect can
be understood physically. Below the mass for which star forma-
tion is most efficient, the gravitational potential of the dark mat-
ter halo is lower and the supernovae feedback is strong enough
to remove the gas from the galaxy (e.g. Silk 2003) and thereby
decreases the star formation. On the other side of the spectrum, at
higher masses, the cooling time of the gas becomes much longer
than the free-fall time (e.g. Kereš et al. 2005). This suppression
of the isotropic cooling of the gas could be due to the energy
injection in the halo atmosphere by active galactic nuclei (AGN),
which in turn suppresses the star formation (e.g. Somerville et al.
2008). Therefore we assumed a lognormal shape for the SFR
efficiency whereby the star formation is highest for halo mass
Mmax, and a significant contribution to the SFR comes from a
range of masses around Mmax driven by σMh , and the SFR falls
off considerably on very high and very low masses.

For a given halo mass at a given redshift, the BAR is
given as

BAR(Mh, z) = 〈Ṁ(Mh, z)〉 ×Ωb(z)/Ωm(z), (6)

where Ωb and Ωm are the dimensionless cosmological bary-
onic density and total matter density, respectively (thus, the ratio
of the two gives the baryonic matter fraction at a given red-
shift, which is in fact constant with redshift because they have
the same evolution with redshift). Ṁ(Mh, z) is the mass growth
rate. Fakhouri et al. (2010) provided the mean and median mass
growth rates of haloes of mass Mh at redshift z. We used the
mean mass growth rate, given as

〈Ṁ〉mean = 46.1 M� yr−1
(

Mh

1012 M�

)1.1

× (1 + 1.11z)
√

Ωm(1 + z)3 + ΩΛ. (7)

This approach assumes that there is no “gas reservoir effect”,
that is, the accreted gas is immediately converted into stars and is
not collected over time to form reservoirs in Daddi et al. (2010)
and around galaxies (Cantalupo et al. 2012). It has been shown
(e.g. Saintonge et al. 2013; Béthermin et al. 2015; Dessauges-
Zavadsky et al. 2015) that the depletion timescale, which is the
ratio of the mass of the molecular gas to the SFR, ranges from
∼0.5−1 Gyr, which is much shorter than the typical galaxy evo-
lution timescales (several billion years). Thus, the gas reservoir
effect is not expected to affect the results over the long timescale
that we considered here. Along the same lines, it is also assumed
that no recycled gas (i.e. the gas expelled by the supernovae)
contributes to the star formation (semi-analytical models of e.g.
Cousin et al. 2015, 2019 showed that feedback from supernovae
can play a part in regulating star formation). In spite of these
assumptions, we show that this simple physical model describes
the CIB power spectra well.

In our model, we consider the maximum efficiency ηmax and
mass of maximum efficiency Mmax to be independent of red-
shift, that is, they do not evolve with redshift. However, we let
σMh evolve with redshift. The motivation for letting σMh evolve
with redshift is that we wished to accommodate the star for-
mation from massive haloes at higher redshifts and reduce it at
lower redshifts. It has been observed (Popesso et al. 2015) that
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at lower redshifts (z ≤ 1.5−2), star formation is quite inefficient
in massive haloes (typical galaxy cluster environments), that is,
at low redshifts, massive haloes contain mostly passive galax-
ies. In contrast, it has been shown that at high-redshift massive
galaxies (often residing in the proto-clusters, i.e., the progenitors
of the clusters at redshift zero) can have efficient star formation
(e.g. Miller et al. 2018; Wang et al. 2018). Because the lognor-
mal parametrisation leaves a tail on the high mass end, it might
mimic this effect, and the choice of the this shape is therefore
justified.

Thus we let σMh evolve with redshift as

σMh (z) = σMh0 − τ ×max(0, zc − z), (8)

where zc is a redshift below which σMh evolves with redshift,
σMh0 is the value of σMh above zc, and τ is the parameter driving
this evolution with redshift (τ here should not be confused with
the optical depth parameter from the CMB analysis). Following
the reasoning mentioned before, this evolution was applied only
for haloes with masses greater than the mass of maximum effi-
ciency Mmax and below redshift zc, that is, the parametrisation is
not a symmetrical lognormal below redshift zc. The width of the
lognormal is smaller at the side of the curve with haloes higher
in mass than Mmax below redshift zc. However, above redshift zc,
the parametrisation is a symmetrical lognormal with no evolu-
tion in the width of the lognormal σMh0 . We fixed zc = 1.5. Other
values for zc were tried and gave approximately the same results,
but the model with zc = 1.5 provided the best fit for the SFRD
history.

2.2. SFR for the haloes and subhaloes

For a given value of the halo mass and redshift, we can calcu-
late η using Eq. (5) and multiply it by the corresponding BAR
calculated using Eq. (6) to obtain the SFR, that is,

SFR(Mh, z) = η(Mh, z) × BAR(Mh, z). (9)

This is the procedure with which the SFR can be obtained
for the haloes. To calculate the SFR for the subhaloes resid-
ing within these haloes, the procedure is slightly modified. We
first assumed that for a given halo with mass Mh, the sub-
halo masses (msub) range from Mmin to Mh. In this analysis, we
fixed Mmin = 105 M�. A change of the minimum mass between
104 M� and 108 M� changes the calculation of the power spectra
only negligibly. The SFR for the subhaloes can be estimated in
two ways. The first way is an approach similar to the one for the
haloes, which is calculating the efficiency η and then multiplying
with the BAR value to obtain the SFR, that is, replacing Mh by
msub in Eq. (9). This assumes the same lognormal parametrisa-
tion of η for subhaloes as of the central haloes. The other way to
estimate the SFR in subhaloes is

SFRsub = SFRc ×
msub

Mh
, (10)

that is, the SFR for the subhalo is obtained by weighing the
halo SFR (SFRc) by the ratio of subhalo to halo mass. For every
subhalo of a given halo, we estimated the SFR with both these
approaches and took the smaller of the two as representative of
the SFR for the subhalo.

The reasoning for this is explained in Fig. 1. We first con-
sider case 1 in the figure. In this case, the main halo has a mass
(∼1012.9 M�) very near to the efficiency peak of star formation
(for this particular choice of parameters for the lognormal), that
is, the central galaxy forms stars very efficiently (see Eq. (9)).

Fig. 1. Lognormal parametrisation (Eq. (5)) between the halo mass
(M�) and ratio between the SFR and the baryonic accretion rate, η. We
show two extreme cases: haloes near the efficiency peak contain sub-
haloes with very low mass (case 1), and very massive haloes that con-
tain subhaloes near the efficiency peak (case 2). If the same recipe were
used to calculate the satellite galaxy SFR in these two cases, unphysical
values might result within the assumptions of our model, and therefore
we suggest two different ways to calculate the SFR for satellite galaxies
(Sect. 2.2).

This halo has subhaloes ranging from 105 M�−1012.9 M�. We
take the case of a subhalo with mass <1011 M�. As was pointed
out before, subhaloes with very low mass have a low gravi-
tational potential, and it is hard for them to hold on to the
gas inside against the pressure from supernova feedback, for
instance. Thus, they are expected to have low star formation.
This is satisfied in case 1 because at lower masses, the efficiency
is indeed very low and is not expected contribute significantly to
the total SFR of the halo. In this case, the SFR for the subhaloes
can therefore be directly estimated by substituting the halo mass
(Mh) by subhalo mass (msub) in Eq. (9). As an example, for a
subhalo of mass 1011 M� belonging to a central halo of mass
1012.9 M�, the SFR calculated using Eq. (9) is 2% of the value
that we derive for the SFR obtained using Eq. (10), and we there-
fore take the former as the SFR value.

In the second case, the main halo is quite massive (>1014 M�)
and far away from the efficiency peak. It therefore does not have
strong star formation. However, in this case, this halo can contain
a subhalo with a mass of about the efficiency peak (∼1012.9 M�).
According to Eq. (9), when we substitute Mh by msub, this sub-
halo will have a significant amount of star formation. Again, as
pointed out earlier, the gas inside massive haloes is quite hot,
and there are mechanisms at play (e.g. X-ray heating and AGN
feedback) that suppress the gas cooling and hence make it dif-
ficult to form stars. Moreover, the central massive galaxies in
these haloes can strip the gas out of the satellite galaxies in the
subhaloes and thus decrease star formation. These subhaloes are
therefore not expected to contribute significantly to the SFR, in
contrast to what would be obtained with Eq. (9). This inherently
assumes instantaneous quenching, that is, the satellite galaxies
are quenched at the same time as the central galaxies in a given
parent halo. If we were to explicitly avoid this assumption, we
would need to introduce an additional quenching parameter as
a function of subhalo mass and redshift. This would result in
one or two additional parameters for the model. However, as we
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mentioned earlier, our main purpose here is to build a very sim-
ple halo model of the CIB with as few parameters as possible.
One way to correct for this in these cases therefore is to weight
the SFR of the main halo by the mass fraction of the correspond-
ing subhalo, that is, use Eq. (10) to obtain the SFR of the sub-
halo. The SFR in this case would be lower than the rate obtained
using Eq. (9) (substituting Mh by msub, of course). Again as an
example, for a subhalo of mass 1012.9 M� belonging to a central
halo of mass 1014 M�, the SFR calculated using Eq. (9) is twice
higher than the value we obtain for the SFR with Eq. (10) at
z = 2, and we therefore take the latter as the SFR value.

Although Eqs. (9) and (10) seem useful to estimate the SFR
for subhaloes when we have cases similar to cases 1 and 2, for
every halo we therefore estimate the SFR for the corresponding
subhaloes using both these methods at every redshift and select
the SFR with the lower value. This automatically takes care of
the extreme cases and helps us avoid adding more parameters to
the model.

2.3. SFR to CIB power spectra

The one-halo term for the CIB power spectrum takes the cluster-
ing of the galaxies within a halo of mass Mh into account and was
calculated following Béthermin et al. (2013) (where k = `/χ),

C1h
`,ν,ν′ =

∫ ∫
dχ
dz

(
a
χ

)2 [
d jν,c

d log Mh

d jν′,sub

d log Mh
u(k,Mh, z)

+
d jν′,c

d log Mh

d jν,sub

d log Mh
u(k,Mh, z)

+
d jν,sub

d log Mh

d jν′,sub

d log Mh
u2(k,Mh, z)

]
×

(
d2N

d log MhdV

)−1

dzd log Mh, (11)

where d2N
d log MhdV = dn

d log Mh
is the halo-mass function, u(k,Mh, z) is

the Fourier transform of the density profile describing the den-
sity distribution inside the halo (here we consider the density
distribution to be a Navarro-Frenk-White (NFW) profile Navarro
et al. 1997), and d j(ν,z)

d log Mh
is the specific emissivity of the central

and satellite subhaloes at a given frequency and redshift for a
given halo mass as defined in Béthermin et al. (2013). After we
calculate the specific emissivity term for the central and satellite
terms, it is therefore straightforward to calculate the one-halo
power spectrum. For simplicity, we omitted the Mh and z depen-
dence from d jν,c

d log Mh
and d jν,sub

d log Mh
terms from all the equations.

For the central galaxies, the differential emissivity is calcu-
lated as

d jν,c
d log Mh

(Mh, z) =
d2N

d log MhdV
×χ2(1+z)×

SFRdc

K
×S eff

ν (z), (12)

where S eff
ν (z) is the effective SED of the infrared galaxies at

a given redshift for a given frequency. SFRc is the SFR for
the central galaxies with a given halo mass (Eq. (9)). K is
the Kennicutt constant (K = SFR/LIR), which has a value of
1× 10−10 M� yr−1 L−1

� for a Chabrier IMF, and LIR is the infrared
luminosity (8−1000 µm).

For the satellite galaxies in the subhaloes (Béthermin et al.
2013),

d jν,sub

d log Mh
(Mh, z) =

d2N
d log MhdV

× χ2(1 + z)

×

∫
dN

d log msub
(msub|Mh)

SFRsub

K

× S eff
ν (z) × d log msub, (13)

where dN
d log msub

is the subhalo mass function for the satellite
galaxies with a subhalo mass msub. The effective SEDs S eff

ν (z)
for the satellite galaxies are assumed to be the same as those
of the central galaxies. The SFRsub is calculated using Eqs. (9)
and (10), and the smaller of the two values is taken as the SFR
value for those galaxies.

In our analysis, we assumed the halo mass function from
Tinker et al. (2008) and the subhalo mass function from
Tinker & Wetzel (2010). S eff

ν (z) are the same as we used for the
linear clustering model of the CIB anisotropies from Maniyar
et al. (2018). They were computed using the method presented in
Béthermin et al. (2013), but assuming the new updated SEDs cal-
ibrated with Herschel data presented in Béthermin et al. (2015,
2017). A stacking analysis was used to measure the evolution
of the average mid-infrared to milimeter emission of the mas-
sive star-forming galaxies up to z = 4. With this technique, we
found that for the main-sequence galaxies we used in the anal-
ysis, the mean intensity of the radiation field, which is strongly
correlated with the dust temperature, rises with redshift. Thus
the dust in these new SED templates is warmer at z > 2 than in
the previous templates used in Béthermin et al. (2013). We pre-
fer these templates over the other templates (e.g. from Gispert
et al. 2000 using FIRAS measurements) because they reproduce
all recent measurements of galaxy counts from the mid-IR to the
radio wavelength range, including counts per redshift slice.

The Fourier transform of the NFW profile is given as (e.g.
van den Bosch et al. 2013)

u(k,Mh, z) =
3δ200

200c3

(
cos(µ)

[
Ci(µ + µc) − Ci(µ)

]
+ sin(µ)

[
Si(µ + µc) − Si(µ)

]
−

sin(µc)
µ + µc

)
, (14)

where it is to be noted that c is not the speed of light;
it is the so-called halo concentration parameter defined as
c(Mh, z) ≡ r200(Mh, z)/r?(Mh, z), with r?(Mh, z) being a char-
acteristic radius (see e.g. Navarro et al. 1997) and r200 being the
radius containing the mass giving 200 times the critical density
of the Universe at a redshift (some studies use the average den-
sity instead of the critical density; we used the critical density),
Ci(x) and Si(x) are standard cosine and sine integrals, respec-
tively, µ ≡ kr?, where δ200 is a dimensionless amplitude, which
can be expressed in terms of the halo concentration parameter as

δ200 =
200

3
c3

ln(1 + c) − c
1+c
· (15)

The two-halo term for the power spectrum of the CIB takes the
clustering between galaxies in two different haloes of mass Mh
and M′h into account and is calculated as (Béthermin et al. 2013)
(where k = `/χ)

C2h
`,ν,ν′ =

∫ ∫ ∫
dχ
dz

(
a
χ

)2 [
d jν,c

d log Mh
+

d jν,sub

d log Mh
u(k,Mh, z)

]
×

[
d jν′,c

d log M′h
+

d jν′,sub

d log M′h
u(k,Mh, z)

]
× b(Mh, z)b(M′h, z)Plin(k, z)d log Mh d log M′h dz, (16)
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where b(Mh, z) is the halo bias prescription given by Tinker
et al. (2010), Plin(k, z) is the linear matter power spectrum, which
we calculated using CAMB2. We used the u(k,Mh, z) term only
for the subhaloes. This means that in our analysis, the central
galaxy is assumed to be at the centre of the halo and the satellite
galaxies in the subhaloes are distributed according to the NFW
profile. The clustering term given by b(Mh, z)b(M′h, z)Plin(k, z)
provides the cross-power spectrum between two different haloes
(Mh and M′h) under the assumption (Cooray & Sheth 2002)
P(k,Mh,M′h) = b(Mh, z)b(M′h, z)Plin(k, z). We can simplify
Eq. (16) by defining

Dν(k, z) =

∫
b(Mh, z)

[
d jν,c

d log Mh
+

d jν,sub

d log Mh
u(k,Mh, z)

]
d log Mh,

(17)
which is the emissivity of the halo weighted by the correspond-
ing bias. Therefore Eq. (16) becomes (where k = `/χ)

C2h
`,ν,ν′ =

∫
dχ
dz

(
a
χ

)2

Dν(k, z)D′ν(k, z)Plin(k, z)dz. (18)

This way of calculating the two-halo term significantly reduces
the time because it reduces the number of integrals. It is also use-
ful when the CIB−CMB lensing cross-correlation is calclutated
(see Sect. 2.5). Finally, we have

CCIB,clustered
`,ν,ν′

= C1h
`,ν,ν′ + C2h

`,ν,ν′ , (19)

and
CCIB,tot
`,ν,ν′

= C1h
`,ν,ν′ + C2h

`,ν,ν′ + Cshot
`,ν,ν′ . (20)

Here CCIB,clustered
`,ν,ν′

and CCIB,tot
`,ν,ν′

describe the clustered and total CIB
anisotropy power spectrum, respectively. Cshot

`,ν,ν′ is the shot-noise
component, which we cannot predict using our halo model for-
malism here. The shot-noise component is scale independent and
thus has a constant flat power spectrum for a given frequency
combination. We thus fit for this constant directly at every fre-
quency channel as described in Sect. 3.1.

2.4. ρSFR

When the formalism for calculating the CIB angular power spec-
trum in the halo modelling context is defined, it is desirable that
the halo model is able to fit or reproduce statistical properties of
dusty star-forming galaxies, such as the infrared (IR) SFRD of
the Universe. In the context of our halo model, the SFRD for the
central galaxies is calculated as

SFRDc(z) =

∫
d2N

d log MhdV
× SFR(Mh, z) × d log Mh, (21)

and for the satellite galaxies in the subhaloes, it reads

SFRDsub(z) =

∫
d2N

d log MhdV

×

(∫
dN

d log msub
× SFR(msub, z) × d log msub

)
× d log Mh, (22)

where SFR(msub, z) is the satellite galaxy SFR calculated as
explained in Sect. 2.2.

Thus, the total SFRD is calculated by adding Eqs. (21)
and (22) as
SFRD(z) = SFRDc(z) + SFRDsub(z). (23)
2 http://camb.info/

2.5. CIB–CMB lensing cross-correlation

The large-scale distribution of the matter in the Universe gravita-
tionally deflects the CMB photons that freely propagate toward
us from the last scattering surface. This phenomenon is called
gravitational lensing, and it leaves imprints on the tempera-
ture and polarisation anisotropies of the CMB. Because the
CIB is an excellent tracer of the large-scale structure of the
Universe (Maniyar et al. 2019), its anisotropies are expected
to be strongly correlated with the CMB lensing, which has
indeed been observed and measured (Planck Collaboration
XVIII 2014). Within the context of our halo model, we can cal-
culate this CIB−CMB lensing cross-correlation as (Béthermin
et al. 2013) (where k = `/χ)

Cνφ
`

=

∫
dχ
dz

(
a
χ

)
Dν(k, z)Φ(`, z)Plin(k, z)dz, (24)

where Φ(`, z) is given by (Challinor & Lewis 2005)

Φ(`, z) =
3
`2 Ωm

(H0

c

)2 χ

a

(
χ? − χ

χ?χ

)
, (25)

In this equation, χ? is the comoving distance to the last scatter-
ing surface, Ωm is the matter density parameter, H0 is the value
of the Hubble parameter today, and a is the scale factor of the
Universe. The measurement of this cross-correlation is not used
in our likelihood to fit the CIB model parameters, but we show
that our best-fit model accurately predicts this cross-correlation.

3. Constraints on the model through data

3.1. Observational constraints on the power spectra

We used the CIB angular power spectra as measured by Planck
Collaboration XXX (2014). The measurements were obtained
by cleaning the CMB and Galactic dust from the Planck fre-
quency maps. They were further corrected for the SZ and spu-
rious CIB contamination induced by the CMB template, as
discussed in Planck Collaboration XXX (2014). We used the
measurements at the four highest frequencies (217, 353, 545, and
857 GHz from the HFI instrument). The CIB×CIB power spec-
tra were corrected for absolute calibration difference between the
PR1 and PR2 data release of Planck. Absolute calibration uncer-
tainties for PR2 are equal to 6.1% and 6.4% at 545 and 857 GHz
(5% of which comes from planet models), respectively (Planck
Collaboration VIII 2016). However, it has been shown that the
planet calibration agrees with CMB calibrations within 1.5% for
545 GHz (Planck Collaboration Int. XLVI 2016).

We also used the CIB power spectra measurement from
Herschel/SPIRE data at 600, 857, and 1200 GHz provided by
Viero et al. (2013). Bertincourt et al. (2016) calculated the cross-
calibration factors between the power spectra measured by Viero
et al. (2013) at 600 and 857 GHz and the power spectra mea-
sured by Planck Collaboration XXX (2014) at 545 and 857 GHz.
They are 1.047±0.0069 and 1.003±0.0080, respectively (for the
Planck PR2 data release). Absolute calibration uncertainties for
these SPIRE data are 9.5%.

Planck and Herschel measurements are given with the νIν =
constant photometric convention. As a result, the power spec-
tra computed by the model need to be colour-corrected from
the CIB SEDs to this convention. These colour corrections are
1.119, 1.097, 1.068, and 0.995 at 217, 353, 545, and 857 GHz,
respectively, for Planck (Planck Collaboration XXX 2014). They
are equal to 0.974, 0.989, and 0.988 for 600, 857, and 1200 GHz
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channels of Herschel/SPIRE, respectively, using the extended
relative spectral response function (Lagache et al. 2020). The
CIB power spectra were then corrected as

Cmodel
`,ν,ν′ × ccν × ccν′ = Cmeasured

`,ν,ν′ . (26)

The CIB power spectra error bars do not account for the
absolute calibration uncertainties. To account for these uncer-
tainties, Béthermin et al. (2011) introduced a calibration factor
f νcal for galaxy number counts. Using a similar approach here,
we set a Gaussian prior on these calibration factors for every
frequency channel. The Herschel power spectra were cross-
calibrated with respect to the Planck power spectra, therefore we
fixed the calibration factors at the Planck frequencies at 1 and set
Gaussian priors on calibration factors f νcal for 600 and 857, and
1200 GHz channels from Herschel/SPIRE with an initial value
of 1.0470, 1.0030, and 1.0000 with 1σ error bars at 0.0069,
0.0080, and 0.0500, respectively (Bertincourt et al. 2016). In
Table C.1 we show our best-fit values when we fit our model
to the Planck data alone and allowed the individual calibration
parameters for all the Planck channels to vary with a 5% prior
on them. The posterior values show that the error bars on the
calibration parameters for Planck (which are very close to 1) are
indeed very small. For our purposes here, the assumption of tak-
ing a perfect calibration for Planck therefore does not strongly
affect the results.

When only Planck/HFI data are used, it is hard to differenti-
ate between the one-halo and the shot-noise term, and therefore,
Planck Collaboration XXX (2014) placed strong flat priors on
the shot noise at all the frequencies. They took values of the
shot noise based on the model of Béthermin et al. (2012), and
was the width of the prior given by their 1σ error bars. How-
ever, using Herschel/SPIRE data, the CIB power spectra were
measured to very small scales (`max ∼ 30 360). At these highest
multipoles, the power spectra are dominated by the shot noise,
and it is therefore better possible to constrain the shot noise
together with the one-halo term with these data than using the
Planck/HFI data alone. Because Herschel/SPIRE data can dis-
tinguish between the one-halo and the shot-noise term, this paves
the way to include shot noise as a parameter for every pair of the
power spectra with broad priors, that is, 10 shot-noise parame-
ters for HFI, as done by Planck Collaboration XXX (2014), and
6 for SPIRE data. This would be 16 additional parameters. In
order to circumvent this problem, we calculated the correlation
of the 10 shot-noise parameters for HFI and 6 for SPIRE using
the values predicted by the model of Béthermin et al. (2012). We
then fit for the shot-noise parameters for only the auto-power
spectra and used the correlation matrix to obtain the shot-noise
level for every frequency pair. Thus, in the end we have only
1 shot noise parameter per frequency, that is, 4 for HFI and 3
for SPIRE. We placed broad flat priors on them with sufficient
width ([0.1−2] times the value estimated by the Béthermin et al.
2012 model on either side) to avoid biasing the parameter esti-
mation. We also tested the model by placing the shot noise at all
the SPIRE auto- and cross-power spectra as parameters instead
of only taking the auto-power as the parameters because SPIRE
might be able to differentiate between the clustering and the shot
noise because its angular resolution is very high. We find similar
values for the shot noise in both cases and therefore selected the
case with fewer parameters.

3.2. External observational constraints

In addition to the CIB auto- and cross-power spectra, we used
external constraints from the mean CIB intensity values at

different frequencies, and the SFRD measurements at different
redshifts:
1. As mentioned before, the previously used halo models over-

predicted the SFRD of the Universe compared to the SFRD
measured by external groups using the infrared luminosity
functions. We would like the halo model to be able to fit
the CIB power spectra and also produce the correct SFRD
history. Thus, we used the ρSFR measurements at different
redshifts that were obtained by measuring the infrared lumi-
nosity functions from Gruppioni et al. (2013), Magnelli et al.
(2013), Marchetti et al. (2016) as priors while performing the
fit. In order to account for the different sets of cosmological
parameters used by them, we converted the SFRD values into
the observed flux between 8 and 1000 µm per redshift bin per
solid angle, as done in Maniyar et al. (2018).
In Appendix A we show the SFRD history produced by our
halo model when this external prior is not considered in the
fit. There is indeed a significant change in the SFRD history
predicted by the model when we do not include any priors at
all. This means that including this prior is quite important to
obtain physical results from our model.

2. The mean level of the CIB was deduced at different frequen-
cies using the galaxy number counts. We used these mea-
surements as constraints on our model. Similar to the case
of the power spectra, the mean level of the CIB computed
by the model needs to be colour-corrected. The values of
the mean level with their corresponding frequencies and the
colour corrections we used are given in Table 2 of Maniyar
et al. (2018).

3.3. Fitting the data

We performed a Markov chain Monte Carlo (MCMC) analysis
in the global CIB parameter space using the Python package
“emcee” (Foreman-Mackey et al. 2013). We have a 14-dimen-
sional parameter space:

– physical model parameters
{
ηmax,Mmax, σMh0 , τ

}
,

– calibration factors
{
f cal
600, f cal

857, f cal
1200

}
,

– shot noises
{
SNpl

217,SNpl
353,SNpl

545,SNpl
857,SNsp

600,SNsp
857,SNsp

1200

}
.

The global χ2 has a contribution from the CIBxCIB, priors on
calibration factors, and priors imposed by the external obser-
vational constraints mentioned above. We assumed Gaussian
uncorrelated error bars for measurement uncertainties, which
simplifies the covariance matrix that ultimately contains only
diagonal terms.

3.4. Results

Figures 2 and 3 show the best fit for the halo model to the obser-
vational data points for all CIBxCIB auto- and cross-power spec-
tra from Planck/HFI and Herschel/SPIRE, respectively. For most
of the cases, the one-halo term is smaller than the shot noise and
can potentially be ignored on smaller scales. Based on the best-
fit parameters and Eq. (24), we calculated the CIBxCMB lensing
power spectra. Figure 4 shows these CIBxCMB lensing power
spectra. The cross-correlation values and error bars are avail-
able for the six Planck HFI channels (100, 143, 217, 353, 545,
and 857 GHz) and are provided in Planck Collaboration XVIII
(2014). These values range from ` = 163 to ` = 1937, and as
discussed in Planck Collaboration XVIII (2014), the non-linear
term can be neglected in this range of multipoles. As was done
for the CIB, these power spectra were corrected for absolute
calibration difference between the PR1 and PR2 data release
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Fig. 2. Measurements of the CIB auto- and cross-power spectra obtained by Planck/HFI (Planck Collaboration XXX 2014) and the best-fit CIB
halo model with its different components.

Fig. 3. Measurements of the CIB auto- and cross-power spectra obtained by Herschel/SPIRE (Viero et al. 2013) and the best-fit CIB halo model
with its different components.
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of Planck. The best-fit model agrees very well with the data
points.

We present the results from our fit for our model parame-
ters in Table 1. The shot-noise values provided here have to be
multiplied with the corresponding colour corrections at each fre-
quency to obtain them in the νIν = constant convention. The
posterior of all the parameters with a Gaussian prior (calibration
factors) are within a 1σ range of the prior values. We derive a χ2

of 113 for 80 data points for Planck power spectra. Similarly, we
derive a χ2 of 247 for Herschel power spectra for 102 data points.
When we only fit for the Planck data without the Herschel power
spectrum data but with the external priors, we derive a χ2 of
85 for Planck for 80 data points. Similarly, fitting only for the
Herschel power spectra with the external priors results in the χ2

of 221 for 102 data points. This shows that when we individually
fit for either the Planck or Herschel data, we derive a better χ2

value than when we fit for both of them together.
We also performed this analysis with the updated values

of the mean level of the CIB at 350, 350, and 500 µm Her-
schel/SPIRE bands used as priors in our work (Duivenvoorden
et al. 2020). With the updated priors, the χ2 for Herschel is
reduced to 222, but the χ2 for Planck data remains the same.

In none of the approaches does the χ2 value for the
Herschel power spectra appear to fare as well as the Planck
value. Similarly, using a different halo model with a larger num-
ber of parameters, Viero et al. (2013) did not obtain a good χ2

value (χ2
reduced ∼ 1.6). We investigated this problem by testing

the compatibility of the Planck and Herschel measurements. The
details of the tests we performed are given in Appendix C.

In Fig. C.1 we show the measurements of the CIB power
spectra from Planck/HFI (Planck Collaboration XXX 2014),
Herschel/SPIRE (Viero et al. 2013), and Lenz et al. (2019) at
857 GHz. We also show the best-fit values of the one-halo, shot
noise, and the total power spectrum when the model was fit to the
Planck or Herschel data alone. The Herschel/SPIRE data points
and the best-fit curves were scaled to obtain them as they would
be measured using the Planck filters at 857 GHz. The procedure
for this is provided in Appendix A.1 of Lagache et al. (2020).
A similar trend is observed for the power spectra at 545 GHz.
The Herschel and Planck CIB measurements agree very well at
large scales and up to `= 2000. The extrapolation of the Planck
best fit at higher ` largely overestimates the Herschel data points,
however. This mostly comes from the shot noise, which is not
compatible for Planck and Herschel. While the difference of flux
cuts (710 mJy for Planck and 300 mJy for Herschel) would give a
variation of at most 12% of the shot-noise level3, a factor of ∼1.9
is measured between the two. This discrepancy cannot be rec-
onciled considering the difference in amplitude of the one-halo
term. This discrepancy of the Herschel and Planck shot-noise
measurements, and with the shot-noise values derived from mod-
els of galaxy number counts, has previously been pointed out by
Lagache et al. (2020). Inconsistencies also exist inside a single
experiment. For example, we show in Fig. C.2 the comparison
of the CIB power spectra measured by Thacker et al. (2013) and
Viero et al. (2013) for the same flux cut of 50 mJy at 857 GHz.
The two measurements are clearly different at very high multi-
poles.

We explored two ways of reconciling the Planck and Her-
schel measurements using our halo model. In the first approach,
we broadened the error bars on the calibration factors for the

3 The difference in shot noise according to these two flux cuts was
computed using 13 different models we had in hand.

Fig. 4. CIB×CMB lensing cross-power spectra measured by Planck
Collaboration XVIII (2014) in orange and our best-fit model in blue
curves.

600, 857, and 1200 GHz Herschel channels to 0.05 each with
their central values at 1.00 instead of using the values obtained
for the relative calibration between Planck and Herschel by
Bertincourt et al. (2016), as done in our original approach. In
this setting, we indeed find a very good fit to the Herschel
power spectra, with a χ2 of 127 when fit together with Planck
data (Table C.3), and 137 when the Herschel data are fit alone
(Table C.2) compared to the χ2 of 221 in Table C.4 for 102 data
points. However, the best-fit value for the calibration factors f νcal
as shown in Tables C.3 and C.4 is too high. As mentioned before,
the cross-calibration between Herschel/SPIRE and Planck/HFI
has been measured very precisely at 545 and 857 GHz by Bert-
incourt et al. (2016) (the 545 GHz Planck channel has been cali-
brated to better than 1.5%, see Sect. 3.1). Thus the best-fit values
obtained for the f νcal parameters are unrealistically high and can-
not be accepted. In the second approach, we keep the original
priors for the Herschel f νcal parameters from Bertincourt et al.
(2016) and fit the data for low multipoles only, that is, ` < 3000.
Results are provided in Table C.5 and Fig. C.3, which show that
we obtain a good χ2 (36 for 42 data points), and the shot-noise
levels for Planck and Herschel are quite similar (see Tables C.1
and C.5), which is what we expect. This shows that the Herschel
data at ` > 3000 are not compatible with the values expected
from the ` < 3000 Planck and Herschel data.

The mass of the dark matter haloes for converting
the accreted baryons into stars most efficiently is log10 Mmax
= 12.94+0.02

−0.02 M�. The highest efficiency mass found here
is slightly on the high side of the range log10 M =
12.1+0.50

−0.50 M� to 12.6+0.10
−0.10 M� found by Viero et al. (2013) and

Planck Collaboration XXX (2014), but it agrees well with
Chen et al. (2016) for faint SMGs of log10 M = 12.7+0.1

−0.2 and
log10 M = 12.77+0.128

−0.125 using the linear clustering model for the
CIB anisotropies (Maniyar et al. 2018). The error bars on the
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Table 1. Marginalised values of all the model parameters given at a 68% confidence level.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.42+0.03
−0.02 12.94+0.02

−0.02 M� 1.75+0.12
−0.13 1.17+0.09

−0.09

HFI shot noise SNpl
217 SNpl

353 SNpl
545 SNpl

857

13.88+0.71
−0.71 353.21+9.91

−8.66 2003.95+37.11
−34.16 7036.95+190.48

−179.71

SPIRE shot noise SNsp
600 SNsp

857 SNsp
1200

1917.56+62.56
−54.50 4273.21+164.88

−148.09 4293.92+399.66
329.33

HFI/SPIRE cross-calibration f cal
600 f cal

857 f cal
1200

1.06+0.01
−0.01 1.02+0.01

−0.01 1.04+0.03
−0.03

Notes. The upper row shows the name of the parameter and the row below shows its value. We derive a χ2 value of 113 for 80 data points for
Planck, and 247 for 102 data points for Herschel.

Mmax are quite tight. Based on our best fit, we find that remain-
ing three physical parameters of the model (ηmax, σMh0 , and τ)
are quite correlated amongst themselves (∼90%), while Mmax
is much less correlated with these parameters (∼10%). Further-
more, we did not vary Mmax with redshift. This, combined with
the fact that we have just four parameters in the model, appears
to be the reason that the constraints on Mmax are much tighter
than those derived from other studies.

With this simple model, ηmax, that is, the highest efficiency
with which the accreted baryonic gas forms into stars, is ∼40%.
We recall that we did not account for the effects such as quench-
ing, AGN and supernovae feedback, and their evolution with
redshift through explicit parameters. This efficiency parame-
ter ηmax can therefore be considered as the efficiency of con-
verting the accreted baryons into stars after marginalising over
these effects. Behroozi et al. (2013) reported that the baryonic
accretion efficiency as defined by us, that is, SFR/BAR, varied
between 20 and 40% across all redshifts, which is consistent
with our result. Moreover, Moster et al. (2018) calculated the
star formation efficiency as M∗(z)/Mb(z) = M∗(z)/(Mh(z)× fb) =
M∗(z)/Mh(z)×Ωm/Ωb, where M∗(z) is the stellar mass in a given
halo at a given redshift. They reported that this value is 0.17 at
redshift z = 0.1 and 0.2 at z = 2.0.

We derived a similar quantity from our model by integrat-
ing the mean SFR and BAR over cosmic times for various halo
mass seeds at z = 10. We find a maximum efficiency of 0.34
at z = 0.1 and 0.37 at z = 2.0, which is higher than the values
reported by Moster et al. (2018). However, in this approach, we
did not take the mass loss from stellar evolution into account.
Similar to Zahid et al. (2014), and assuming 45% mass loss, cor-
responding to what was found by Leitner & Kravtsov (2011) for
an intermediate-age galaxy, we find M∗(z)/Mb(z) = 0.19 at red-
shift z = 0.1 and 0.21 at z = 2. These values agree very well with
the previous values of Moster et al. (2018).

Our model provides a non-zero value for τ, which means that
it supports an evolution of the width of the lognormal parametri-
sation over time. This agrees with the observed suppression of
star formation in massive haloes at low redshifts.

We tried different parametrisations for η instead of the log-
normal. The details of one such parametrisation are provided in
Appendix B. Because of its simplicity and because it provides
physical results, we continue with the lognormal parametrisation.

Finally, as pointed out in the introduction, one of the short-
comings of the halo model used by Planck Collaboration XXX

(2014) is that it is does not match the infrared SFRD derived
from galaxies. A primary reason for this is that they did not
include the independent measurements of the SFRD from galaxy
surveys as priors in their likelihood analysis. Consequently, the
result from their linear clustering model is not consistent with
the halo model either. It is therefore a good consistency check of
the model to verify whether the prediction from the linear model
and the infrared SFRD measurements from galaxies (which are
added as priors in our likelihood) match the SFRD derived from
the best fit of the model. Figure 5 shows the SFRD constrained
by our CIB halo model along with the SFRD constrained by the
linear model presented in Maniyar et al. (2018). Although at low
redshifts the SFRD constrained by the halo model is slightly
higher than the measurements from galaxies or the constraints
from the linear model, it is overall consistent with the latter two.
Thus the SFRD obtained from the halo model is able to pass
through the SFRD priors derived from galaxy surveys. This is
again impressive, considering the fact that we modelled the CIB
using only four parameters.

4. tSZ halo model

While at lower multipoles (` < 1000) the tSZ angular power
spectrum is sensitive to the amplitude of the matter fluctua-
tions, at higher multipoles (` > 1000) the power spectrum also
depends on the details of the pressure profile of the intra-cluster
gas within the haloes. This means that along with the halo mass
function, the model also has to account for the pressure profile
of the gas.

The power spectrum of the tSZ is calculated as (e.g. Bolliet
et al. 2018)

C1h
`,ν,ν′ = f (ν) f (ν′)

∫
dV
dz

dz

×

∫ mmax

mmin

d log Mh
d2N

d log Mhd log V
|y`(Mh, z)|2, (27)

where f (ν) gives the frequency dependence of the tSZ. It is given
by

f (x) = x
ex + 1
ex − 1

− 4 where x =
hpνobs

kBTCMB
, (28)

where hp is the Planck constant, and kB is the Boltzmann
constant. y`(Mh, z) represents the two-dimensional Fourier
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Fig. 5. Measurements of the infrared SFRD using galaxies (Madau &
Dickinson 2014). The solid black (blue) line shows the SFRD as con-
strained by the linear (halo) model with the dotted black (dotted blue)
lines showing the 1σ regions around it. We also show the SFRD value
determined by Khusanova et al. completely independently using the
data from the ALMA ALPINE large program (priv. comm.).

transform of the electron pressure profile Pe for a halo of mass
Mh. It is given as (e.g. Komatsu & Seljak 2001)

y`(Mh, z) =
σT

mec2

4πr500

`2
500

∫ xmax

xmin

dxx2 sin(`x/`500)
`x/`500

Pe(x). (29)

In this equation, c is the speed of the light, σT is the Thomson
cross-section, me is the electron mass, x ≡ r/r500, with r being
the radial distance from the centre of the halo, r500 is the radius
of the sphere that contains the over-density mass M500c of 500
times the critical density of the universe, and `500 ≡ dA/r500,
with dA being the angular diameter distance.

As was done for the CIB modelling, we used the NFW profile
to represent the density distribution inside the dark matter halo.
Using this distribution, we have

Pe(x) = C × P0(c500x)−γ[1 + (c500x)α](γ−β)/α, (30)

where parameters (P0, c500, γ, α, β) were set to their best-fitting
values obtained by Planck Collaboration Int. V (2013). They are
equal to 6.41, 1.81, 0.31, 1.33, and 4.13, respectively. The coef-
ficient C goes with the mass as

C = 1.65
(

h
0.7

)2( H
H0

) 8
3
[
(h/0.7)M̃500c

3 × 1014 M�

] 2
3 +0.12

eV cm−3, (31)

where H is the Hubble constant at redshift z, with H0 being its
local value and h the reduced Hubble constant (h = H0/100).
The mass used here M̃500c is not necessarily the true mass, but
can contain a bias due to observational effects and non-thermal
pressure, that is, there can be a difference between the true mass
of the cluster and that obtained assuming hydrostatic equilib-
rium. In order to account for this possible bias, a variable B
is often used, which relates the true mass M500c to M̃500c as
M̃500c = M500c/B. In our analysis, we took the mass and red-
shift range to be the same as was used for the CIB model with
xmin = 10−6 and xmax = 10 in Eq. (29).

Because massive clusters are rare, the contribution of the
two-halo term to the total tSZ angular power spectrum is far
lower than that of the one-halo term and can therefore be
neglected (Komatsu & Kitayama 1999) for ` ≥ 300. It is
important only for ` ≤ 300, but on these scales, the primary
CMB anisotropies are clearly dominant. However, as we show
in Sect. 5.3, the two-halo term plays a significant role in the two-
halo term of the CIB× tSZ cross-power spectra and cannot be
ignored. In our analysis, we therefore do not neglect this compo-
nent.

It is straightforward to calculate the two-halo component of
the power spectrum as (e.g. Salvati et al. 2018)

C2h
`,ν,ν′ = f (ν) f (ν′)

∫ zmax

zmin

dV
dz

dzPlin(k = `/χ, z)

×

{∫ mmax

mmin

d log Mh
d2N

d log Mhd log V
b(Mh, z)y`(Mh, z)

}2

.

(32)

The total tSZ power spectrum is the sum of the one-halo and
two-halo components:

CtSZ−tot
`,ν,ν′ = C1h

`,ν,ν′ + C2h
`,ν,ν′ . (33)

f (ν) is negative for ν ≤ 217 GHz. This means that the tSZ
power spectrum for certain choices of frequency combinations
will be negative. The case for the CIB−tSZ correlation described
in Sect. 5 is similar. To calculate the f (ν) parameter correctly for
a broadband filter, we have to convolve the tSZ frequency depen-
dence with the bandpass filter at that particular frequency. The
f (ν) parameter is used to convert the dimensionless y parameter
into CMB temperature units. Although the plots presented here
for the tSZ power spectra are made independent of frequency
(dimensionless) by dividing out the factors of f (ν), plots for the
CIB−tSZ correlation are calculated at the value of the f (ν) at that
particular frequency channel and are convolved with the filters.
For 100, 143, 217, 343, 545, and 857 GHz corresponding to the
Planck/HFI frequencies, f (ν) is −1.51, −1.04, −0.01, 2.24, 5.60,
and 11.09, respectively, when it is not convolved with the respec-
tive bandpass filters. The effective values become −4.03, −2.79,
0.19, 6.21, 14.46, and 26.34, respectively, after convolving with
the Planck/HFI bandpass filters at these respective frequencies,
as given in Table 1 of Planck Collaboration XXII (2016).

Because the values of the parameters (P0, c500, γ, α, β) are
not varied, this allows us to tabulate y`, which speeds up the
process considerably. Figure 6 shows the prediction for the tSZ
auto-power spectrum with this model and with the given values
of the parameters along with B = 1.41 as obtained by Bolliet
et al. (2018) after fitting their model to the data from Planck
Collaboration XXII (2016). The only frequency dependence of
the tSZ power spectra comes from the f (ν) factors, and this has
been divided out in the plot. Aat about ` ∼ 1000, the two-halo
term contributes about 2% to the total power spectrum and the
one-halo term dominates. In their Figs. 1 and 2, Bolliet et al.
(2018) showed that the tSZ power spectra are very sensitive
to the choice of the halo mass function, to the c−Mh relation
(where c is the halo concentration parameter), and to cosmolog-
ical parameters. This means taht several sources of uncertainties
arise when the tSZ power spectra are calculated. In Fig. 6 we
show the marginalised y power spectrum after subtraction of the
foreground residuals as measured by Planck Collaboration XXII
(2016). Bolliet et al. (2018) improved upon the Planck analy-
sis by accounting for the trispectrum in the covariance matrix,
and they provided new values for the y power spectrum after
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Fig. 6. Predictions for the tSZ power spectrum based on our model for
the given parameter values. The frequency dependence of the power
spectrum through f (ν) has been divided out and the power spectrum is
dimensionless.

marginalising over the foreground residuals, which are shown
in the figure as well. The best-fit model is consistent with these
measurements. At ` = 257.5, using the best-fit parameters men-
tioned before, we obtain `(` + 1) CtSZ

`
/2π = 0.178. For this

`, Planck Collaboration XXII (2016) provided the measured y
power spectrum (1012y2) value as 0.217 ± 0.049, which is con-
sistent with our predictions (the best-fit value from their model
is 0.203). We placed the error bars on the Planck values as the
quadrature sum of the statistical and the foreground errors pro-
vided by them. At the same time, Bolliet et al. (2018) provided a
value of 0.179 ± 0.034, with a best-fit value of 0.131. This illus-
trates the range of values that the tSZ power spectra can have
based on the different assumptions in the modelling.

5. CIB−tSZ cross-correlation

As pointed out in the introduction, CIB and tSZ are expected
to be correlated to a certain degree. Thus in order to interpret
this correlation, we need a cross-correlation model that predicts
this signal. In the sections before, we presented the halo models
for calculating the CIB and tSZ power spectra, and we use them
below to calculate the CIB−tSZ correlation in a consistent halo
model formalism.

5.1. Halo model formalism

The one-halo term provides the correlation between the CIB
sources and the tSZ within the same halo. On the other hand,
the two-halo term arises from the correlation between the CIB
sources in one halo with the tSZ in other halo. This formulation
has a very interesting consequence. In an extreme scenario where
a very massive halo contributes significantly to the tSZ without
star formation, it hence has no CIB sources. In this case, the
one-halo term would be zero, but the two-halo term would still
contribute provided that there is some overlap in the redshift dis-
tribution of the CIB sources and the tSZ haloes. This means that
the two-halo term, which dominates on large angular scales, does
not depend significantly on the astrophysical processes govern-
ing the star formation in massive haloes contributing to the tSZ.

The corresponding one- and two-halo terms are given as (for
k = `/χ)

C1h
`,ν,ν′ =

∫
dz

dV
dz

∫
d log Mh

d2N
d log Mhd log V

y`

×

[{
d j′ν1,c

d log Mh
+

d j′ν1,sub

d log Mh
u(k,Mh, z)

}
f (ν2)

+

{
d j′ν2,c

d log Mh
+

d j′ν2,sub

d log Mh
u(k,Mh, z)

}
f (ν1)

]
, (34)

and

C2h
`,ν,ν′ =

∫
dz

dV
dz

Plin(k, z)

×

∫
d log Mh

d2N
d log Mhd log V

y` b(Mh, z)

×

∫
d log M′h

d2N
d log M′hd log V

b(M′h, z)

×

[{
d j′ν1,c

d log M′h
+

d j′ν1,sub

d log M′h
u(k,M′h, z)

}
f (ν2)

+

{
d j′ν2,c

d log M′h
+

d j′ν2,sub

d log M′h
u(k,M′h, z)

}
f (ν1)

]
, (35)

where

d j′ν,c(sub)

d log Mh
(Mh, z) =

d jν,c(sub)

d log Mh
(Mh, z)

a
χ2

(
d2N

d log MhdV

)−1

. (36)

Mh and M′h represent the mass of the two different haloes
between which the correlation is computed when the two-halo
term is computed. The tSZ spectral variation does not dependent
on the redshift or halo mass in the non-relativistic limit, therefore
the cross spectra are simpler than they would be otherwise.

The total CIB× tSZ power is then

CCIB×tSZ−tot
`,ν,ν′ = C1h

`,ν,ν′ + C2h
`,ν,ν′ . (37)

When the CIB and tSZ model parameters are known, it is
straightforward to calculate the CIB−tSZ power spectra and
there is no need of additional parameters. This is one of the
advantages of the halo model approach over previous studies
(e.g. Dunkley et al. 2013; George et al. 2015; Reichardt et al.
2020; Choi et al. 2020), where a template-based approach for the
CIB−tSZ correlation was used by introducing a parameter ξ to
act as a correlation coefficient. This template-based approach is
also limited by the fact that ξ might be angular and scale depen-
dent, and fitting for a single parameter ξ might therefore not pro-
duce a true picture of the CIB−tSZ correlation. This has indeed
been shown to be the case by Addison et al. (2012), who found
non-negligible variation in ξ with the angular scales and the con-
sidered frequencies.

5.2. Halo mass definition

Our models for CIB and tSZ (and thus CIB× tSZ) rely on the
halo mass Mh. For the tSZ effect, the pressure profile from
Eq. (30) is in general given in terms of M500, which is defined as
the mass contained within a radius in which the mean overden-
sity is 500 times the background critical density. In contrast, the
CIB studies are generally carried out with M200 as the definition
of the halo mass. We have to be consistent with the definition
of the halo mass while considering the CIB and tSZ together.
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One way of doing this is calculating the CIB terms with M200,
then converting the M200 into corresponding M500 for the given
redshift range and cosmology using the procedure given in
Komatsu & Seljak (2001), and then using this M500 to calcu-
late the corresponding tSZ terms. We presented the CIB× tSZ
results here, we worked with a single definition of M500 for the
halo masses for the CIB and tSZ terms. We verified the effect of
using M500 instead of M200 on the CIB model parameters, and
we found that the values of the CIB parameters slightly change.
The most notable change was observed in the value of ηmax,
which was found to be higher when we used M500 instead of
M200: because with this definition of the mass, the CIB contri-
bution is calculated very close to the centre of the cluster and
does not include the star formation that occurs far away. The
model accordingly tries to increase the conversion efficiency of
the accreted baryons into stars to produce the same level of CIB
as observed. The CIB model parameters given in Table 1 were
calculated using the commonly used M200 definition for the halo
masses.

5.3. Predictions for the CIB× tSZ power spectra

Figure 7 shows the predictions for the CIB, tSZ, and CIB× tSZ
power spectra correlating the Planck 143 GHz frequency with
other frequencies based on the models of the CIB, tSZ, and
CIB× tSZ given above. We note again that our results were
derived using the M500 definition for the halo masses, and for the
tSZ, the f (ν) factor was convolved with the Planck/HFI frequen-
cies. This provided values of −4.03, −2.79, 0.19, 6.21, 14.46,
and 26.34 for 100, 143, 217, 343, 545, and 857 GHz, respec-
tively, as mentioned in Sect. 4. This means that f (ν) is nega-
tive for ν < 217 GHz and the tSZ power spectra are negative
for certain choices of the frequency pairs. In the figure, the tSZ
power spectra are negative for a combination of 143 GHz with
all the frequencies above 143 GHz, that is, 217, 353, 545, and
857 GHz (we show their absolute values). Similarly, CIB× tSZ
power spectra shown here are negative in all the cases from 100
to 857 GHz.

A special case to consider when Eqs. (34) and (35) are used
is that of the two widely separated frequency channels. Figure 7
shows that the relative power of the CIB−tSZ to CIB increases
with the frequency separation for frequencies ν ≥ 217 GHz. In
this case, one of the terms in the square parentheses is generally
far smaller than the other and can be neglected because the CIB
and tSZ depend differently on frequency. The cross-correlation
is then driven by the dominating term. The CIB at higher fre-
quencies traces the haloes at lower redshifts, and this increases
the overlap with the tSZ clusters. This results in the increase
in the CIB−tSZ power compared to the CIB power spectra as
the frequency separation increases. This scenario can provide a
good opportunity to constrain the CIB−tSZ cross-power spectra.
The tSZ term dominates at lower frequency channels and drives
the cross-correlation. The tSZ has a null point at ν ≈ 217 GHz.
The figure shows this, and the location in which the tSZ power
spectra in 143× 217 GHz are far smaller than for 143× 143 and
143× 353 GHz.

The observational constraints for the tSZ and especially the
CIB have improved dramatically since results from Addison
et al. (2012). This has resulted in an improved understanding and
modelling of both the tSZ and the CIB, which we take advantage
of. Our predictions for the CIB× tSZ correlation for a given fre-
quency channel pair are therefore not exactly the same as those
obtained by Addison et al. (2012) in terms of their amplitude
and/or shape.

5.4. Redshift contributions to the power spectra

Figure 8 shows the contributions to the CIB−tSZ power spectra
from different redshift bins. The power spectra are shown for
100−100 GHz and 100−857 GHz channel pairs.

The clusters hosting hot gas with energetic electrons that
cause the tSZ effect reside at relatively low redshifts (∼z < 1).
We therefore expect the contribution of the one-halo term of
the power spectrum to the total power spectrum to relatively
decrease compared to the two-halo term at higher redshifts.
This is indeed what we observe in Fig. 8, where the multi-
pole where the one-halo and two-halo term contribute equally
moves slightly to higher values in higher redshift bins, that is, the
range in which the two-halo term dominates the one-halo term
increases with redshift. This of course depends upon the width
of the redshift bins considered and on the pair of frequency chan-
nels considered, but the overall trend is the same.

Figure 8 shows that although majority of the tSZ clusters
are expected to reside at lower redshifts, the CIB−tSZ contri-
bution coming from the lowest redshift bin (0 < z < 0.5) is
smaller than or equal to that from other redshift bins. For the
100−100 GHz channel pair, our model predicts that the CIB−tSZ
contribution coming from 0 < z < 0.5 is of the same order as the
z > 3 bin where we do not expect to find many tSZ clusters,
while for the 100−857 GHz channel pair, the contribution from
the 0 < z < 0.5 redshift bin is higher than the z > 3 bin. The
CIB at lower frequencies traces the galaxies at higher redshift
to a certain extent, and vice versa. In the 100−100 GHz case,
the CIB contribution mainly comes from galaxies at relatively
higher redshift (e.g. see Fig. 4 of Maniyar et al. 2018), and thus
the two-halo term caused by the overlap in the redshift distri-
bution of the CIB sources and the tSZ haloes gives a slightly
higher power in the z > 3 redshift bin than the 0 < z < 0.5 bin
in the 100−100 GHz case. The case for the 100−857 GHz pair is
exactly the reverse: the CIB is mainly fed by galaxies at lower
redshifts, thereby increasing the power in the lowest redshift bin.

Most of the contribution to the CIB−tSZ power spectra
appears to stem from the intermediate redshift bins, that is,
0.5 < z < 1.5 and 1.5 < z < 3.0. Going back to Fig. 4 of
Maniyar et al. (2018) again, this is expected because most of
the CIB power is coming from the dusty star forming galaxies
between 0.5 < z < 4. Thus the CIB part driving the CIB−tSZ
correlation has most of its contribution coming from these red-
shifts. Again, we can see that going from 100−100 GHz pair
to 100−857 GHz pair, the contribution of the 0.5 < z < 1.5
slightly increases in comparison to 1.5 < z < 3 bin as even
lower redshifts are probed by the CIB at 857 GHz than at
100 GHz.

5.5. Angular scale dependence of the CIB× tSZ power
spectra

Measuring the kSZ power spectrum from the CMB power spec-
trum is one of the challenging goals of current CMB cosmol-
ogy data analysis. It is important to measure the kSZ power
spectrum because it can help us to understand the reionisation
history of the Universe better. On very small angular scales
(` > 2000) in the CMB power spectrum, the kSZ power spec-
trum starts to show a similar amplitude as other components
such as the CIB, tSZ, and their cross-correlation, which act as
foregrounds to correctly measure the kSZ. Figures 5 and 6 from
George et al. (2015) show that the kSZ is degenerate with the
tSZ and CIB× tSZ correlation. A consistent modelling of these
foregrounds is highly desirable.
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Fig. 7. Predictions for the different components of the CIB, tSZ, and CIB× tSZ power spectra correlating the Planck 143 GHz frequency with
other frequencies based on the models given above.

The kSZ has been constrained by Dunkley et al. (2013),
George et al. (2015), Reichardt et al. (2020), and Choi et al.
(2020) using the CMB power-spectrum measurements from the
Atacama Cosmology Telescope (ACT) or the South Pole Tele-
scope (SPT), while Planck Collaboration XXIII (2016) reported
a measurement of the CIB× tSZ correlation using Planck data.
George et al. (2015) and Reichardt et al. (2020) calculated the
CIB× tSZ power spectra at every step of their analysis using the
CIB and tSZ power spectra obtained with templates at this step,
whereas Dunkley et al. (2013) and Planck Collaboration XXIII
(2016) used the CIB× tSZ template provided by Addison et al.
(2012). All of them fit for a single scale-independent amplitude
parameter for the CIB× tSZ correlation across all the frequency
channels. Addison et al. (2012) used the CIB model from Xia
et al. (2012) to calculate the CIB× tSZ cross-correlation. One
of the shortcomings of this model is that it assumes the spectral
properties of the CIB, that is, SEDs, luminosity to be indepen-
dent of the host halo mass. Our understanding of the CIB and its
properties has improved significantly in the last few years, and
we know that the spectral properties of the CIB are highly depen-

dent on the host halo mass. We therefore compare the CIB× tSZ
correlation calculated with our newly developed CIB halo model
with that developed by Addison et al. (2012) using the CIB
model from Xia et al. (2012).

Figure 9 shows the ratio of the CIB× tSZ template from
Addison et al. (2012) used in the Planck Collaboration V (2020)
likelihood analysis and the corresponding power spectra calcu-
lated within our halo model framework at 217× 217 GHz in red.
The two power spectra were normalised such that they have
equal value at ` = 3000. The ratio of the CIB× tSZ template used
in the Planck Collaboration V (2020) with our model is different
at all scales (e.g. 1.1 at ` ∼ 2000 and 0.9 at ` ∼ 3700). The results
for the kSZ power spectra derived using these templates might
therefore be different than if the halo model developed in this
paper were used. In Fig. 9 we also plot the ratio of the CIB× tSZ
power spectra for different pairs of Planck frequency channels
with that at 217× 217 GHz calculated using our halo model,
again normalised such that they have the same value at ` =
3000. Although at very high multipoles the ratio does not vary
strongly because the CIB at these nearby frequency channels
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Fig. 8. Redshift contribution to the power spectra of the CIB−tSZ correlation at for 100−100 GHz channel pair (left panel) and 100−857 GHz
channel pair (right panel). All the values shown here are absolute values.

is highly correlated, it does vary by up to 10% for ` < 2000.
Addison et al. (2012) also showed that for widely separated
frequency channels, the CIB× tSZ correlation is different at
different multipoles. Fitting for a single amplitude parameter
independent of the multipoles for the CIB× tSZ power spectra
across all frequency channels is therefore a crude approxima-
tion. The best-fit templates used in the previous analysis should
be replaced by such physically motivated halo models. This will
matter even more for future CMB data that will have a very high
signal-to-noise ratio on the small angular scales of interest for
the kSZ power spectrum.

5.6. Correlation coefficient for CIB× tSZ

We define the correlation coefficient for the CIB and tSZ corre-
lation as

ξ`(ν) =
CCIB×tSZ
`,ν√

CCIB
`,ν
×CtSZ

`,ν

, (38)

where the correlation coefficient ξ`(ν) depends on frequency and
angular scale. The CIB power spectra CCIB

`,ν
also include the

contribution from the shot noise at that particular frequency.
In Fig. 10 we show ξ`(ν) for 143 GHz Planck frequency chan-
nel based on the CIB, tSZ, and the CIB× tSZ best-fit models
in this paper. We did not fit for the shot noise of the CIB at
143 GHz. We took this value as calculated by the model from
Béthermin et al. (2012), which is 0.87 Jy2 sr−1. This was added
to the one- and two-halo terms at 143 GHz. The CIB× tSZ corre-
lation at 143 GHz is negative, so that we took its absolute value.
Based on the halo model formalism in Addison et al. (2012),
they provide the value of ξ` for cross-correlation of 150 GHz
SPT frequency channel with other frequencies. They also pro-
vide the factors to convert these values into those that would
be obtained for the corresponding Planck 143 GHz channel that
we used here. George et al. (2015) and Reichardt et al. (2020)
measured the value for ξ` at ` = 3000 using the 95, 150,
and 220 GHz SPT frequency channels. We show these points in
Fig. 10.
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Fig. 9. Ratio of the CIB× tSZ power spectra at different frequencies
and at 217× 217 GHz. The red curve shows the ratio with the CIB× tSZ
template from Addison et al. (2012) used in the Planck Collaboration V
(2020) likelihood analysis. All the power spectra are normalised such
that they have the same value at ` = 3000.

Fig. 10. Correlation coefficient for the CIB× tSZ cross-correlation cal-
culated with the halo model for the 143 GHz Planck channel. We also
show the corresponding measurements for the correlation coefficient
from Addison et al. (2012), George et al. (2015), and Reichardt et al.
(2020) for SPT frequency channels at ` = 3000. They are slightly offset
on the x-axis for clarity.

The correlation coefficient ξ` is defined by Addison et al.
(2012), George et al. (2015), and Reichardt et al. (2020) in a
slightly different manner. The values shown in the plot here
are twice as high as the values provided by them because of
this change in definition. Moreover, as mentioned in Sect. 5.1,
George et al. (2015) and Reichardt et al. (2020) used a template-
based approach to calculate the CIB and the tSZ power spectra.
They then used these values to calculate the CIB× tSZ correla-
tion by fitting for the cross-correlation coefficient ξ. They there-
fore obtained a single value of ξ` for the power spectra across
all the frequencies, that is, 95, 150, and 220 GHz across all mul-
tipoles. These values were additionally calculated using a dif-
ferent telescope (SPT), which corresponds to a different flux cut
(∼6.4 mJy compared to 710 mJy for Planck). Although we can
compare the ξ` provided by Addison et al. (2012) with our pre-
dictions, it is therefore not a direct comparison with the values
from George et al. (2015) and Reichardt et al. (2020). We show
these points just to give an idea of the value they derived for ξ`.

George et al. (2015) and Reichardt et al. (2020) reported a
value of 0.20+0.14

−0.11 and 0.16+0.10
−0.10, respectively, at ` = 3000. Our

best-fit model gives a value of ξ` of 0.45, which is higher than
the value at ` = 3000 reported by Addison et al. (2012), which is
0.39. There should be an error bar on ξ` calculated here and by
Addison et al. (2012) because of the uncertainties corresponding
to the CIB and the tSZ halo models used. The calculation of these
uncertainties is left for future work.

6. Conclusions

One of the main motivations of this work was designing a con-
sistent framework for calculating the CIB, tSZ, and CIB× tSZ
power spectra in a halo model setting. For this purpose, we
developed a simple and physically motivated halo model of
the CIB with only four parameters describing the relationship
between the mass of the dark matter haloes and their efficiency
to convert the accreted baryons into stars using a lognormal
parametrisation. Because previous evidence showed that mas-
sive haloes do not contribute significantly at lower redshift to
the total star formation budget but are efficient at high redshift,
we allowed the width of the lognormal to evolve with redshift.
We find that the mass of the dark-matter haloes for the highest
efficiency is log10 Mmax = 12.94+0.02

−0.02 M�, while the maximum
efficiency at this mass is η = 0.42+0.03

−0.02. The mass of the high-
est efficiency found here is slightly on the high side of the range
log10 M = 12.1+0.50

−0.50 M� to 12.6+0.10
−0.10 M� found by Viero et al.

(2013) and Planck Collaboration XXX (2014), but it agrees well
with Chen et al. (2016) for faint SMGs of log10 M = 12.7+0.1

−0.2
and log10 M = 12.77+0.128

−0.125 using the linear clustering model for
the CIB anisotropies (Maniyar et al. 2018). This agreement is
quite motivating considering the simple nature of our model. The
model is also able to fit the SFRD measured using the galaxies
and is consistent with the SFRD history obtained using the linear
clustering model from Maniyar et al. (2018). The SFRD con-
straints derived from the galaxy surveys are added for the first
time as priors in the likelihood for the halo model. This helps us
achieve the significant result of reproducing the CIB power spec-
tra and the SFRD history at the same time with this model. We
also calculated the CIB−CMB lensing cross-correlation using
the best-fit value of the CIB parameters and find that it agrees
well with the measurements (Fig. 4). While we obtain a decent
χ2 of 113 for 80 Planck data points, the χ2 for Herschel power
spectra comes is 247 for 102 data points, which is not good. We
investigated this discrepancy using different methods and found
that the CIB power spectrum measurements are not fully com-
patible with each other for ` > 3000.

For the tSZ, we followed the approach of Bolliet et al. (2018)
and developed a halo model to calculate the one- and two-halo
power spectra. Because we kept the parameters for the pressure
profile of the gas constant, the power spectra calculations were
sped up by tabulating the values of y`. The only parameter for the
tSZ power spectra is the mass bias B, which takes the difference
between the true halo mass and the mass derived assuming the
hydrostatic equilibrium, for example, into account. Although we
find that the contribution of the two-halo term is not significant
∼2% at ` ∼ 1000 to the total power spectra, we still considered it
in our calculations for a complete analysis and because the two-
halo term has a significant contribution to the two-halo term of
the CIB× tSZ, which is significant and cannot be ignored.

Following our two halo models for the CIB and tSZ, we com-
puted the cross-correlation between the CIB and tSZ within a
halo model framework. In addition to being consistent with the
CIB and the tSZ halo models, another advantage of this approach
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is that we do not require an additional parameter to calculate
the correlation. When the CIB and tSZ model parameters are
known, it is straightforward to calculate the CIB−tSZ correla-
tion. This is quite advantageous compared with other studies that
used the template approach for the power spectra and a fit for
the global amplitude. Based on our model and the best fit of the
CIB and tSZ parameters, we find that the relative power of the
CIB−tSZ correlation with respect to the CIB and tSZ increases
with frequency separation of the maps. The two-halo term for
the CIB−tSZ correlation is also not negligible with respect to
the one-halo term and should be considered in the total power
spectrum calculation. This two-halo term arises from the corre-
lation between the tSZ, which is fed from one halo, and the CIB
galaxies, which are located in the other halo. Moreover, most
of the contribution to the CIB−tSZ power spectra comes from
0.5 < z < 4 because most of the power of the CIB part that
contributes to the CIB−tSZ comes from these redshifts.

CIB and tSZ act as foregrounds in CMB anisotropy measure-
ments. Especially on small scales, the CIB, tSZ, and CIB× tSZ
correlation acts as a hindrance for measuring the kinematic SZ
(kSZ) signal, which is the SZ effect caused by the peculiar veloc-
ities of the galaxy clusters after reionisation and by the ionised
bubbles during the reionisation. In order to measure the kSZ
from the CMB power spectrum, it is therefore important to cor-
rectly model and remove these foregrounds. Previous analyses
that measured the kSZ power spectra have used a template-based
approach to model the foregrounds and fit for a single ampli-
tude parameter across all the frequency channels independent of
the multipole range considered. We showed that this approach is
not sufficient to capture the scale dependence of the CIB× tSZ
power spectra, which is moreover model dependent. A similar
argument is also applicable to modelling the other foregrounds,
that is, the CIB and tSZ as well. The kSZ constraints obtained
using the template approach have thus to be revised, replac-
ing the templates by power spectra computed by the physically
developed halo models. Because our halo model is effective, it
might be used for this purpose.
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Appendix A: The SFRD prior importance

Fig. A.1. Measurements of the SFRD using galaxy surveys (Madau &
Dickinson 2014). The solid black line shows the SFRD as measured by
the CIB linear model of Maniyar et al. (2018). The solid blue line shows
the corresponding constraints when the SFRD values from the galaxies
are not considered as priors while performing the fit of the CIB halo
model. The dotted black and red lines show the 1σ regions.

Along with providing a good fit to the CIB power spectra,
the halo model should be able to reproduce the SFRD history
measured by extrapolating the galaxy luminosity functions. For
this reason, we used the SFRD measurements from galaxies
at different redshifts as priors while fitting for the halo model
parameters. The best-fit parameters then result in the SFRD his-
tory, as shown in Fig. 5, which is consistent with the external
measurements.

Figure A.1 shows the results when these external measure-
ments are not considered as priors when the best-fit parameters
of the CIB model are defined. In this case, the χ2 value obtained
is 90 for 80 Planck data points and 156 for 102 Herschel data
points. However, the best-fit value for the calibration factor for
1200 GHz f cal

1200, which is negatively correlated with the shot-
noise at 1200 GHz, is 0.74 against the Gaussian prior set upon
it centred at 1.00 with 1 σ error bar of 0.05. This χ2 is much
better especially for Herschel data than the case when we con-
sidered the external SFRD measurements as priors in our likeli-
hood. Although we are able to fit the CIB power spectra much
better with these parameters, it is therefore evident that they pre-
dict an excessive SFRD, at least at low redshifts. It is therefore
quite important to include these measurements as priors in our
model, which comes at the expense of a poor χ2 value.

Appendix B: Alternate parametrisations

In addition to the lognormal parametrisation considered for η, we
studied several different parametrisations. One was inspired by
the approach taken by Moster et al. (2013), who connected the
galaxy mass with the corresponding host halo mass through a
double power-law parametrisation. For our case, we used a dou-
ble power law to describe the relation between η and Mh, which

reads

SFR
BAR

= η = ηmax

( Mh

Mmax

)−β
+

(
Mh

Mmax

)γ−1

, (B.1)

where β, and γ describe the η at the low- and high-mass end,
respectively. These two parameters allow us to have asymmetri-
cal distribution around the mass of maximum efficiency. We fit
this parametrisation with all the data sets and external constraints
as mentioned in Sect. 3. The data used are not sensitive and thus
cannot constrain the low-mass end slope β. Therefore we fixed
the value of β and let γ evolve with redshift (for z ≤ 1.5) to
avoid significant contribution by very massive haloes to the SFR
at low redshift, in line with the reasoning presented in Sect. 2.1.
Although this parametrisation gave a good fit to the data (even
better than the fiducial model using lognormal) and was able to
produce a decent SFRD history, the contribution from the haloes
above the mass of maximum efficiency at high redshift was unre-
alistically low. Even though this parametrisation provided a bet-
ter fit to the data than the fiducial model, we therefore continued
with the lognormal because the results were more physical.

Appendix C: Comparison of the Planck
and Herschel CIB power spectra

Fig. C.1. Measurements of the CIB power spectra from Planck
Collaboration XXX (2014), Viero et al. (2013), and Lenz et al.
(2019). The best-fit models shown in this figure are obtained when
Planck and Herschel data are fit separately. The SPIRE data have been
rescaled to Planck data using the cross-calibration factor derived in
Bertincourt et al. (2016) and the factor that allows converting the mea-
surement through the SPIRE bandpass into a measurement as it would
be obtained through the Planck bandpass from Lagache et al. (2020).
Overall, CPlanck,857 GHz

` = 1.008 ×CSPIRE,857 GHz
` .

Here we show some figures and plots that compare the measure-
ments of the CIB power spectra from Planck and Herschel as
well as the best-fit values for the halo model obtained under dif-
ferent conditions. The shot-noise values provided here have to
be multiplied with the corresponding colour corrections at each
frequency to obtain them in the νIν = constant convention.

Figure C.1 shows the measured Planck 545 GHz and SPIRE
600 GHz auto-power spectra in the same plot. On large angular
scales, both data sets appear to agree well. However, on small
scales, the two data sets differ, which appears to be mostly a
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Table C.1. Marginalised values of all the model parameters given at a 68% confidence level when we fit only for the Planck data considering the
f cal
ν parameters at all Planck frequency channels centred at one with error bars of 0.05.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.52+0.03
−0.02 12.73+0.02

−0.02 M� 1.24+0.12
−0.13 0.82+0.09

−0.09

HFI shot noise SNpl
217 SNpl

353 SNpl
545 SNpl

857

14+0.71
−0.71 357+9.91

−8.66 2349+37.11
−34.16 7407+190.48

−179.71

HFI calibration f cal
217 f cal

353 f cal
545 f cal

857

1.00+0.01
−0.01 1.00+0.01

−0.01 0.99+0.03
−0.03 1.05+0.03

−0.03

Notes. We obtain a χ2 value of 85 for 80 data points.

Fig. C.2. Measurements of the CIB power spectra from Thacker et al.
(2013) and Viero et al. (2013) for a flux cut of 50 mJy.

result of the inconsistent shot-noise values of Planck and Her-
schel. A similar trend appears for the measurements from Lenz
et al. (2019). A more detailed discussion of this can be found in
Lagache et al. (2020) and is also presented in Sect. 3.4.

In Fig. C.2 we show the comparison of the measured CIB
auto-power spectra at 857 GHz for SPIRE by Thacker et al.
(2013) and Viero et al. (2013) for the same flux cut. Similar to
the comparison with Planck, the two measurements agree well
on the large angular scales. However, they are clearly different
on small angular scales, but we expect them to be the same. This
shows that there are inconsistencies within the analysis of a sin-
gle experiment.

In order to determine whether the Planck and Herschel data
can be reconciled within our model, we performed some tests,
the results of which are provided in the following tables. Instead
of fitting the Planck and Herschel data together with our model,
we only fit for the Planck data and present the best-fit values in

Table C.1. In this case, instead of assuming a fixed perfect cali-
bration for the Planck experiment, we let the calibration factors
at all the frequencies vary with a Gaussian prior centred at 1.00
with 1σ error of 0.05. The Planck χ2 value improves compared
to when we fit for both the Planck and Herschel data together.
The posterior values of calibration parameters are very close to
one, and it is therefore a justified assumption to keep the Planck
calibration fixed while fitting for both the data together.

Similar to the previous test, we then fit our model to Her-
schel data alone. The results are shown in Table C.2. Unlike the
Planck data, we obtain a poor χ2 value in this case. The best-fit
values for the shot noise as well as the calibration parameters are
consistent with the case when we fit for both the Planck and Her-
schel data together. There is some shift in the physical parame-
ters of the halo model, but there is no particular trend as these
parameters are correlated with each other.

In order to verify the effect of the cross-calibration between
Planck and Herschel, we performed several tests and show the
results in Tables C.3 and C.4. In this case, instead of setting tight
cross-calibration priors on the Herschel calibration parameters,
we allowed them to vary with larger Gaussian priors with 1σ
error bars of 0.05 centred at 1.00. In the first test, we fit for both
the Planck and Herschel data, and in the second case, we fit only
for the Herschel data. This test indeed provided very good χ2

values for both Planck and Herschel. However, it comes at the
cost of unrealistically high values of the calibration parameters
at 545 and 857 GHz that are completely inconsistent with the
very precise cross-calibration measurement between Planck and
Herschel (Bertincourt et al. 2016). This test therefore does not
solve the compatibility problem of the two data sets.

We determined the consistency of the Planck and Herschel
data on the large angular scales by fitting for the Herschel data
at ` < 3000. The results are shown in Table C.5 and Fig. C.3. In
this case, we obtain a decent χ2 value, and the shot-noise values
are similar to the levels obtained for Planck; this was expected.
This tests shows that the Herschel and Planck data appear to
be compatible with each other on large angular scales, but they
differ on small scales.
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Table C.2. Marginalised values of all the model parameters given at a 68% confidence level when we fit only for the Herschel data considering
the f cal

ν parameters at all Herschel frequency channels, as done in our original analysis.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.52+0.04
−0.04 12.98+0.02

−0.02 M� 1.41+0.11
−0.10 0.94+0.07

−0.07

SPIRE shot noise SNsp
600 SNsp

857 SNsp
1200

1876+62.56
−54.50 4199+164.88

−148.09 4602+399.66
329.33

HFI/SPIRE cross-calibration f cal
600 f cal

857 f cal
1200

1.06+0.01
−0.01 1.02+0.01

−0.01 1.00+0.03
−0.03

Notes. We obtain a χ2 value of 221 for 102 data points.

Table C.3. Marginalised values of all the model parameters given at a 68% confidence level when we fit for both the Planck and Herschel data
considering the f cal

ν parameters at all Herschel frequency channels centred at one with error bars of 0.05.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.40+0.03
−0.02 12.95+0.02

−0.02 M� 1.87+0.12
−0.13 1.42+0.10

−0.10

HFI shot noise SNpl
217 SNpl

353 SNpl
545 SNpl

857

13+0.71
−0.71 352+9.91

−8.66 2021+37.11
−34.16 7279+190.48

−179.71

SPIRE shot noise SNsp
600 SNsp

857 SNsp
1200

1150+62.56
−54.50 2528+164.88

−148.09 4393+399.66
329.33

HFI/SPIRE cross-calibration f cal
600 f cal

857 f cal
1200

1.24+0.01
−0.01 1.19+0.01

−0.01 1.04+0.03
−0.03

Notes. We obtain a χ2 value of 105 for 80 Planck data points and 127 for 102 Herschel data points with unrealistically high f cal
ν values.

Table C.4. Marginalised values of all the model parameters given at a 68% confidence level when we fit only for the Herschel data considering
the f cal

ν parameters at all Herschel frequency channels centred at one with error bars of 0.05.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.43+0.04
−0.04 12.95+0.02

−0.02 M� 1.60+0.11
−0.10 1.06+0.07

−0.07

SPIRE shot noise SNsp
600 SNsp

857 SNsp
1200

1137+62.56
−54.50 2502+164.88

−148.09 4389+399.66
329.33

SPIRE calibration f cal
600 f cal

857 f cal
1200

1.27+0.01
−0.01 1.21+0.01

−0.01 1.05+0.03
−0.03

Notes. We obtain a χ2 value of 138 for 102 Herschel data points with unrealistically high f cal
ν values.
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Table C.5. Marginalised values of all the model parameters given at a 68% confidence level when we fit only for the Herschel data upto ` < 3000
considering the f cal

ν parameters at all Herschel frequency channels as done in our original approach.

Halo model parameters ηmax log10 Mmax σMh0 τ

zc = 1.5 (fixed) 0.52+0.09
−0.09 12.86+0.02

−0.02 M� 1.22+0.19
−0.16 0.81+0.13

−0.11

SPIRE shot noise SNsp
600 SNsp

857 SNsp
1200

3441+62.56
−54.50 7204+164.88

−148.09 8326+399.66
329.33

SPIRE calibration f cal
600 f cal

857 f cal
1200

1.05+0.01
−0.01 1.01+0.01

−0.01 1.03+0.03
−0.03

Notes. We obtain a χ2 value of 36 for 42 Herschel data points.

Fig. C.3. Measurements of the CIB auto- and cross-power spectra obtained by Herschel/SPIRE (Viero et al. 2013) and the best-fit CIB halo model
with its different components when Herschel/SPIRE data alone were fit for ` < 3000.
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