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Abstract

In this paper we present a novel algorithm for simulating geometrical flows, and in particular the Willmore
flow, with conservation of volume and area. The idea is to adapt the class of diffusion-redistanciation
algorithms to the Willmore flow in both two and three dimensions. These algorithms rely on alternating
diffusions of the signed distance function to the interface and a redistanciation step, and with careful choice of
the applied diffusions, end up moving the zero level-set of the distance function by some geometrical quantity
without resorting to any explicit transport equation. The constraints are enforced between the diffusion and
redistanciation steps via a simple rescaling method. The energy globally decreases at the end of each global
step. The algorithms feature the computational efficiency of thresholding methods without requiring any
adaptive remeshing thanks to the use of a signed distance function to describe the interface. This opens
their application to dynamic fluid-structure simulations for large and realistic cases. The methodology is
validated by computing the equilibrium shapes of two- and three-dimensional vesicles, as well as the Clifford
torus.

Keywords: Diffusion generated motion, High-order geometrical flow, Willmore flow, Volume and area
preserving, Level set

1. Introduction

Many different modelling situations can be cast as mathematical problems where an interface motion is
driven by the minimisation of a geometric energy under geometric constraints. This is the case of multiphase
flows, image segmentation, or elastic interface modeling, to cite a few. The geometric quantities involved
in energy and constraints are for instance mean or Gaussian curvature of interface, surface area or enclosed
volume. The algorithms and methods developed in this article give an efficient framework to address such
situations.

Our work was motivated by one of the modeling situations that we now describe. Vesicles are systems
of two fluids separated by a bi-layer membrane of phospholipid molecules. These objects can be considered
as a simple model for Red Blood Cells (RBC). Since the number of such molecules is constant, this kind of
interface has constant area. Therefore, its shape is determined by high order energy, i.e. the mean curvature
is minimised. Moreover, there is no exchange across this interface, so that the enclosed volume is constant.
Mathematically, the problem of finding a surface minimising its mean curvature is the well known problem
of Willmore [54]. In this work however, we are interested in this minimisation under the conservation of
area and enclosed volume.

The numerical simulation of vesicles involve the resolution of two-fluid flows (for the inner and outer
fluids) and fluid-structure interactions (for the membrane-fluids interaction), which is quite challenging:
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as a sharp object, a singularity occurs across the membrane bringing stress jump, which should either be
dealt with explicit jump conditions, or appropriate numerical spreading. Since the membrane energy is
of high geometrical order, its gradient involves high order derivatives of the unknowns. In addition, the
inextensibility of the immersed interface is usually accounted for using elastic tension energies with high
modulus which makes the resulting numerical problem very stiff.

A lot of such numerical simulations have been carried out by different teams using many numerical
methods. To mention some representative works, we can cite the dynamic molecular method [38], the
boundary integral method [3], the phase field method (see for example [4, 59, 15, 34, 6]) or level set method
[5, 35, 37, 50, 13]. [26] also proposes a model for vesicles implemented using a Lattice Boltzmann Method.

In the context of finite-element methods coupled with level set technique we can cite [28, 13]. We can
also mention the work [24] based on a finite-element method where the membrane is modelled as a necklace
of small rigid particles.

In the work above, the nonlinear coupling between the fluid flow and the geometric description of the
interface is usually made explicit, which leads to severe restriction on the time step during simulation. Or
it could be solved implicitly by a Newton-type method, which increases dramatically the cost per iteration.
In [11], a semi-implicit scheme was proposed where an ad hoc diffusion equation was used as a predictor
step for the future position of a drop of liquid or a simple elastic interface.

Our approach in this work has as primary aim to propose a systematic way to built a predictor of the
position of an interface with constant area and enclosed volume, when it moves to minimise high geometrical
order energies, such as its mean curvature. In order to build such a predictor, we extended the diffusion-
thresholding/redistancing approach introduced in [41] and extended in [21, 18, 17, 27] to the case of area
and enclosed volume conservation.

Outline. The paper is organised as follows: in section 2 we review diffusion-thresholding and diffusion-
redistancing schemes principles, and introduce a new methodology to write higher order motion schemes,
such as the Willmore flow, that is more systematic than in [17]. Then we present a new efficient method
to take into account the area and enclosed volume constraints. In section 3 we address the problem of
volume and area conservation, introducing an explicit analytic method to project on the constraint set.
Then a section is devoted to numerical aspects of the implementation within finite-element approaches. We
investigate in detail how to choose an optimal time step and plot numerical convergence curves for a basic
scheme and an enhanced one. To evaluate the performance of the diffusion-redistanciation scheme without
rescaling, we study the convergence of a torus under unconstrained Willmore flow to the optimal Clifford
torus. To conclude, we present some numerical illustrations of the computation of 2D and 3D equilibrium
shapes for vesicles that match well with those obtained with classical numerical schemes.

2. Numerical schemes for higher geometrical motion of interfaces

The class of diffusion-generated motion was introduced by the work [41] of Merriman, Bence and Osher.
They proposed an efficient algorithm for computing the mean curvature flow of a surface (a curve in two
dimensions) without any direct computation of the mean curvature. The algorithm consists in repeating two
steps, namely a diffusion step (also named convolution step) and a thresholding step. During the diffusion
step, the characteristic function representing the surface is diffused for a certain time step, and the 1

2 iso-level
moves proportionally to the local curvature. A characteristic function is then recovered by thresholding the
resulting function at 1

2 , allowing to iterate the process.

Algorithm 1 Original Convolution-Thresholding scheme
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = 1

(n) for time δt
Construct the new characteristic function 1

(n+1) = 1{φ≥ 1
2}
.
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The main advantage of this method is its simplicity and unconditional stability: the convolution step
consists in the numerical resolution of a heat equation which can be achieved efficiently, while the stan-
dard phase field approach would involve solving a more complicated non-linear equation or computing the
curvature and solving a transport equation.

Due to its conceptual simplicity and numerical efficiency, various extensions of the method have been
proposed since its introduction. Extension to the multiphase case is trivial for symmetric junctions as one
only has to diffuse each interface and threshold to the biggest one in each region. The case of nonsymmetric
junctions and different surface tensions is treated in [47]. However the resulting algorithm relies on a spatially
dependent thresholding that require essentially to locate triple junctions. Also the case where four or more
phases meet is only treated empirically. In [16] a reformulation of the problem is done and the associated
algorithm changes the diffusion step to take into account the difference between the surface tensions. An
area preserving motion by mean curvature can be found in [49] by changing the threshold value from 1

2 to
a real number λ found using a Newton method. We refer to the next section for more details about area
conservation.

Extensions of the convolution-thresholding method to the Willmore flow and other higher order geometric
motion, such as surface diffusion, have been proposed independently in [18, 21] in both two and three
dimensions. We recall that the Willmore flow is given by the following normal velocity :

W =

∆ΓH +
H3

2
in 2D

∆ΓH + 2H
(
H2 −K

)
in 3D,

(1)

where

H =

κ1 in 2D
κ1 + κ2

2
in 3D,

and K =

{
κ1 in 2D
κ1κ2 in 3D,

are respectively the mean and Gaussian curvatures of the surface, κi denoting the usual principal curvatures.
In 2D [18] and in 3D [21], a local expansion of the convoluted characteristic function is performed and

shows that the velocity W appears at the second order of the diffused interface. More precisely, in the 2D
case, any point of the interface can be relocated at the origin in a way that the normal to the curve is aligned
with the y-axis. The behavior of the point of interest during the convolution step is then described by the
following expansion:

F (0, y, δt) =
1

2
− 1

2
√
π
yδt−

1
2 +

1

2
√
π
κδt

1
2 − 1

4
√
π
Wδt

3
2 +O

(
δt

5
2

)
(2)

where F (0, y, δt) denotes the function obtained by diffusing the characteristic function for a time δt. Thresh-
olding the result at F (0, y, δt) = 1

2 then results in a normal displacement of the point by κδt, which gives the
classical mean curvature scheme. As the velocity term of interest for the Willmore flow can be found at the
second order in expansion eq. (2), one can then compute this flow by extracting it with a linear combination
of two different solutions of the convolution step taken at different time steps

√
2∆t/θ and θ

√
2∆t for θ 6= 1

that eliminates the curvature term. Upon thresholding at an appropriate level [18] found that the curve
moved following the Willmore flow since the solution is

y = δtW +O
(
δt

3
2

)
.

At the expense of an additional diffusion at each step and an error of order δt
3
2 , we can write an algorithm

for the Willmore flow similar to the mean curvature one. A similar expansion in the 3D case can be found
in [21] and yields the same expression to compute the Willmore flow.

This method seems highly valuable because it allows to compute a fourth-order flow without any differ-
entiation, especially in the context of finite-element methods with low-order polynomial discretisations of
the phase-field function φ.
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Algorithm 2 Convolution-Thresholding scheme for Willmore flow
while t < tf do
Perform one step of ∂tψ − ∆ψ = 0 with initial condition ψ0 = 1

(n) for time steps δt1 =
√

2δt/θ and
δt2 = θ

√
2δt

Compute D = (2δt)
1
4 [
√
θψ (δt1)− 1√

θ
ψ (δt2)]

Construct the new characteristic function 1
(n+1) = 1

{D≥ 1
2 (2δt)

1
4

(√
θ− 1√

θ

)
}

t← t+ δt

However the convolution-thresholding method has some identified drawbacks. Its major issue is its
inaccuracy and its propensity to get “stuck” when the mesh is not refined enough at the interface. More
precisely, as pointed out in [40], given a fixed uniform grid, if the motion during an iteration is smaller
than the grid resolution, the thresholding step can reset the interface to its initial configuration and loop
indefinitely. A solution to this problem can be found in [48], where the authors use adaptive grids to refine
the mesh near the interface where the resolution is more important. Such adaptive strategy is also essential
for accuracy considerations, especially in the case of higher order flows, but can become algorithmically
complicated due to its use of unequally spaced FFTs in the dynamic case or in dimension 3.

An alternative approach to the problem is to allow the function to contain subgrid informations. In [17],
the authors replace to that end the characteristic function by a signed distance function and explore the
motions that can be obtained through the diffusion and the redistanciation of a signed distance function.
A similar expansion as eq. (2) of the solution of the heat equation starting from a distance function shows
that the first order term is still a mean curvature term. At the expense of a redistanciation step, though
more costly than the thresholding step, one can obtain significantly more accurate computations than the
classical convolution thresholding algorithm. However, second order term in this case is not the desired
Willmore term any more and an additional correction is therefore necessary to compute the Willmore flow.

From a theoretical point of view, convergence of the classical algorithm of motion by mean curvature is
well understood and various proofs of the consistency of the scheme exist. Some are based on a comparison
principle [19, 2, 8], other are based on a gradient flow interpretation [1, 36]. Introduced in the two papers
[16, 30], a new interpretation of the convolution-thresholding algorithm as a gradient minimising flow has
initiated more recent works on the subject [31, 32], while [58] relies on a formal matched asymptotic method.
The extension to the multiphase flow can be found in [30] and the case of volume-preserving motion is studied
in [33, 43]. The recent results on the gradient flow approach are reviewed in [29]. However, the convergence
of higher order motions, especially the Willmore flow, remains an open question.

In this section, we propose a new local expansion of the signed distance function near the interface.
It yields similar results to the one in [17] for the 2D case but our approach seems more intrinsic and its
generalisation to higher dimensions and orders is straightforward. We propose diffusion-redistanciation
algorithms to compute the Willmore flow in 2D and 3D. As the term in the second order of the expansion
is not quite the Willmore term, one has to add a correction term. The 3D version in particular shows a
completely new approach and features a correction term using a diffusion of d2.

2.1. Expansion of a distance function convoluted by the heat kernel
As suggested by the previous work of Esedoglu, Ruuth and Tsai [17], the high-order geometrical motions

of a surface can be computed using the convolution of a distance function to this interface by the heat
equation kernel. In this section, we thus derive an expansion of the solution of the heat equation with a
distance function as its initial condition. In contrast with [17], we compute this expansion for both the two-
and three-dimensional cases using a fully implicit approach.

We consider d a signed distance function to some interface Γ, and introduce the heat equation:

∂tφ−∆φ = 0. (3)

supplemented with the initial condition:
φ(t = 0) = d. (4)
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The Taylor expansion of the heat equation solution with respect to time then reads:

φ(δt) = φ(0) + ∂tφ(0) δt+ ∂ttφ(0)
δt2

2
+O

(
δt3
)

(5)

Recalling eq. (3) and the initial condition eq. (4), we then have ∂tφ(0) = ∆d and ∂ttφ(0) = ∆2d. We
denote w = ∆2d

2 and can then rewrite eq. (5) as:

Gδt ≡ φ(δt) = d+ ∆d δt+
∆2d

2
δt2 +O

(
δt3
)

= d+ ∆d δt+ w δt2 +O
(
δt3
)
.

(6)

Remark 1. When time discretisation of (3) will come into play, we will have to consider a second order
scheme to get the right expansion. Using a first order Euler scheme, which could be desirable for its stability
properties, leads to double the second order term magnitude. We refer to section 4.2 for more details.

By definition, ∆d is the total curvature of the local d iso-surface:

∆d = κ = (n− 1)H

with n the space dimension and H the mean curvature. We can also express ∆2d close to the interface
Γ as a function of the interface geometrical quantities, and in particular the Laplace-Beltrami operator
of the curvature ∆Γκ = (n − 1)∆ΓH. More specifically, if p denotes the projection of x on Γ, we have
∆Γf = ∆ (f(x− d∇d)) |Γ ≡ ∆ (f ◦ p) |Γ for any f ∈ C2(Γ) [12], so that:

∆Γ(∆d) = ∆(∆d ◦ p)|Γ
= ∇i (∇jpi∇j∆d) |Γ
= ∇i ((δij −∇id∇jd− d∇i∇jd)∇j∆d) |Γ
=
[
−∆d∇N∆d−∇2

N∆d+ ∆2d− d∇i (∇i∇jd∇j∆d)
]
|Γ

where N ≡ ∇d is the interface normal and we have introduced the normal gradient ∇N ≡ N · ∇. Applying
the restriction to Γ ≡ {d = 0}, we finally obtain:

∆2d = ∆Γκ+∇2
Nκ+ κ∇Nκ (7)

We can also compute:
∇Nκ = ∇id∇i∇k∇kd

= ∇id∇k∇k∇id
= ∇k (((((((∇id∇k∇id)−∇k∇id∇i∇kd
= −Tr

[
(∇2d)2

]
since the distance property |∇d| = 1 gives ∇id ∇k∇id = ∇k|∇d|2/2 = 0. Recalling that ∇2d is the
Weingarten map of Γ, we can then write:

∇Nκ = −
∑
i

κ2
i =

{
− κ2

2K − κ2
=

{
−H2 in 2D

− 2
(
2H2 −K

)
in 3D

(8)

where we have introduced the principal curvatures κi, i = 1, . . . , n− 1, and the Gauss curvature K =
∏
i κi.

The second normal derivative can then be written as:

∇2
Nκ = ∇id∇i∇Nκ

= −2∇id∇i∇j∇kd∇k∇jd
= −2 [∇j (((((((∇id∇k∇id∇j∇kd)−∇j∇id∇k∇id∇j∇kd−((((((∇id∇k∇id∇j∇j∇kd]

= 2 Tr
[
(∇2d)3

]
5



that is:

∇2
Nκ = 2

∑
i

κ3
i =

{
2κ3

2κ
(
κ2 − 3K

) =

{
2H3 in 2D

4H
(
4H2 − 3K

)
in 3D.

(9)

Inserting eq. (8) and eq. (9) into eq. (7), we finally obtain:

∆2d ≡ 2w =

{
∆Γκ+ κ3

∆Γκ+ κ(κ2 − 4K)
=

{
∆ΓH +H3 in 2D

2
(
∆ΓH + 4H(H2 −K)

)
in 3D.

(10)

As expected, we observe that the second-order term in the expansion of the heat equation solution (6)
features the required high-order geometrical quantities for the geometrical flows we are interested in. In
the following, we shall in particular devise specific algorithms for the simulation of Willmore flows, but the
method presented here is generic, and can be carried on at higher orders similarly.

2.2. Convolution of a generic function of the distance
For practical reasons that will prove useful thereafter, we consider in this section the expansion of the

heat equation solution eq. (3), but with the initial condition:

φ(t = 0) = f(d)

where f is some generic C∞ (R) function. Similarly to eq. (6), we denote Gδt the corresponding solution,
and write as before:

G(f)
δt = f(d) + ∆f(d) δt+ ∆2f(d)

δt2

2
+O

(
δt3
)
. (11)

Recalling that |∇d| = 1, and using the usual derivation rules, we can then compute:

∆f(d) = ∇ · (f (1)∇d) = f (2) + f (1)∆d

and:
∆2f(d) = f (4)(d) + 2f (3)(d)∆d+ f (2)(d)

[
(∆d)2 + 2∇N∆d

]
+ f (1)(d)∆2d

= f (4)(d) + 2f (3)(d)κ+ f (2)(d)
[
κ2 + 2∇Nκ

]
+ 2f (1)(d)w

≡ f (4)(d) + 2f (3)(d)κ+ 2f (2)(d)c+ 2f (1)(d)w

where we have introduced:

c ≡ κ2

2
+∇Nκ =


− κ2

2

2K − κ2

2

=

−
H2

2
in 2D

− 2(H2 −K) in 3D.
(12)

We eventually get:

G(f)
δt = f(d) + δt

(
f (2)(d) + f (1)(d)κ

)
+ δt2

(
f (4)(d)

2
+ f (3)(d)κ+ f (2)(d)c+ f (1)(d)w

)
+O

(
δt3
)
. (13)

2.3. Expansion order selection
We now turn to the use of combinations of G for different time-steps in order to select the appropriate

order in the expansion eq. (6). To minimise assembly and preconditioner computation costs, we restrict our
analysis to the case of two different time-steps denoted αδt and βδt respectively. To simplify the notations,
we denote in the following Gα ≡ Gαδt and Gβ ≡ Gβδt. We then consider the general linear combination
aGα + bGβ which upon expansion reads:

aGα + bGβ = (a+ b) d+ (aα+ bβ) κδt+ (aα2 + bβ2) wδt2

6



The coefficients can then be adjusted to cancel the term of order δt2 (the “Order 1” combination) or
the term of order δt (the “Order 2” combination). As mentioned above, we want to use only α and β for
both combinations; but the multiplicative coefficients a and b can be chosen arbitrarily. We thus introduce
the “Order 1” (resp. “Order 2”) coefficients a1 and b1 (resp. a2 and b2) and write the corresponding order
selections as:

Order 1 : a1α+ b1β = 1, a1α
2 + b1β

2 = 0 (14)

Order 2 : a2α+ b2β = 0, a2α
2 + b2β

2 = −1 (15)

Note that we have arbitrarily imposed a1α+ b1β = 1 and a2α
2 + b2β

2 = −1 (these quantities actually only
need to be non-zero) to directly recover the combinations used for our Willmore flow algorithms below.

With the additional constraint that α > 0, β > 0, the general solution is:

β = α

√
−a1√
b1

, b2 = a2

√
b1√
−a1

.

We thus choose the following parameters:

α =
√

2, β =

√
2

2

a1 = −
√

2

2
, b1 = 2

√
2

a2 = −1, b2 = 2

so that:

a1 Gα + b1 Gβ =
3
√

2

2
d+ κδt+O

(
δt3
)

(16)

and:
a2 Gα + b2 Gβ = d− wδt2 +O

(
δt3
)

(17)

2.4. Willmore flow
In this section, we derive an algorithm which relies on solving heat equation problems starting from

a distance function to compute high-order motions of an interface in a two- or three-dimensional domain.
We focus our analysis more specifically to the Willmore flow, but the approach can be straightforwardly
extended to a large class of surface diffusion motions.

We consider the Willmore energy functional [61]:

EW (Γ) ≡
∫

Γ

H2. (18)

The surfaces which minimise eq. (18) over the set of one- or two-dimensional surfaces can be obtained from
the Willmore flow gradient descent, which moves iteratively some initial surface with the normal velocity
WN where (c.f. [61]):

W =

∆ΓH +
H3

2
in 2D

∆ΓH + 2H(H2 −K) in 3D.

For a surface Γ implicitly defined by the signed distance function as Γ =
{
~x ∈ R3, d(~x) = 0

}
, the Willmore

flow corresponds to a usual transport equation:

∂td+WN · ∇d = 0. (19)

Recalling that∇d = N , this amounts to solving ∂td+W = 0, or if we consider a first-order time-discretisation
with time-step δt,

d(p+1) = d(p) −Wδt. (20)

7



We can then observe that the right-hand side of eq. (20) can be obtained from the expansions of solutions
to the heat equation derived above. More precisely, the second order term wδt2 (eq. (10)) provides the
required high-order surface term ∆ΓH. This is reminiscent of the approach of [18, 21], where convolutions
of the characteristic function defining the interface are combined to evolve the interface according to the
Willmore flow. However, while the second-order terms appearing in the expansion of the convolution of the
characteristic function by the heat kernel provide the exact Willmore velocity, this is no more the case for
the distance function, and we need to add some correction terms in order to retrieve the correct Willmore
flow.

We also stress that d(n)−Wδt is not in general a distance function, so that we need to add a redistancia-
tion step to iterate the process. This redistanciation is the counterpart to the thresholding step in the usual
convolution-thresholding algorithms for mean curvature [41] or higher-order [18, 21] motions using a charac-
teristic function. In the following, we denote Redist this redistanciation step, and will use a fast-marching
algorithm to actually compute it. We provide more details about our implementation in section 4.

2D case. In 2D, the correction is rather simple, and only involves the curvature H3, namely:

W2D = 2w − H3

2
=

2

δt2
(d− a2 Gα − b2 Gβ)− H3

2
. (21)

The curvature H can be computed with different methods, including using the order-1 selection eq. (16),
the c correction term introduced above in eq. (12) or direct methods using ∆d. In our computations we will
use either the order-1 diffusion combination method or the c correction term computed with diffusions of d2

(c.f. eq. (23)) as for the three-dimensional case. We refer to section 4.3 for a discussion on the efficiency of
each method.

As pointed out in remark 1 and discussed in more detail in section 4.2, the choice of the numerical scheme
used to solve the heat equation has an impact on the development eq. (5). We present here algorithms using
either an implicit Euler or a Crank-Nicolson scheme and choose our combination accordingly.

Our diffusion-redistanciation algorithm for the Willmore flow of a curve in two dimensions is finally given
in alg. 3.

Algorithm 3 2D Willmore flow
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =

√
2δt and t = δt/

√
2 → G√2δt, Gδt/√2.

Compute the curvature H.

Compute D =


DE = −1

2
G√2δt + Gδt/√2 +

H3

2
δt2

DCN = −G√2δt + 2Gδt/√2 +
H3

2
δt2

.

Compute the new signed distance function d(n+1) = Redist(D).
t← t+ δt2

During our simulations, we however preferred to use an algorithm that computes the correction the same
as in the 3D case method using the convolution of d2, presented in the next paragraph, as it proved more
robust in some cases. The corresponding algorithm is described in alg. 4. Despite two additional convolu-
tions, this algorithm seems to produce better results for our numerical experiments. It has the advantage
of using a correction term which is already of order two. We suspect that multiplying the correction by δt2
in the first version can have some detrimental numerical effects due to the space discretisation errors.

3D case. In 3D, the correction term is more complicated, as it involves both the mean and the Gaussian
curvatures. More precisely, we have:

W3D = w − 2H(H2 −K) = w +Hc

8



Algorithm 4 2D Willmore flow with alternative correction
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =

√
2δt and t = δt/

√
2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2→ Gd2
√

2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd

2
√

2δt
+ Gd

2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd

2
√

2δt
+ 2Gd

2

δt/
√

2

)
· H

2
Compute the new signed distance function d(n+1) = Redist(D).
t← t+ δt2

where c is the term introduced in eq. (12). To compute this correction term c, we note from eq. (13) that
we need to choose f such that its second derivative does not vanish. To this end, we choose arbitrarily
f(d) = d2 and introduce

Gd
2

α = d2 + 2αδt (1 + dκ) + 2(αδt)2 (c+ dw) +O
(
δt3
)
. (22)

so that we can extract the correction term from HGd2

α .
However, using only Gd2

α to compute c requires to compensate the zero- and first-order terms in eq. (22),
which can lead to large errors in particular regarding the 2δt d κ term. Note that while this latter term
disappears as h → 0 on the interface (as d|Γ = 0 by definition), the discrete term brings up O (h) errors
which can be large when in the δt order term. To prevent this, we choose to also select directly the second-
order term in eq. (22) using a linear combination as introduced in eq. (17). We thus use:

a2 Gd
2

α + b2 Gd
2

β = d2 − 2δt2 (c+ dw) +O
(
δt3
)
. (23)

Recalling W3D = w +Hc, and combining eq. (17) and eq. (23), we finally obtain:

W3D =
1

δt2

[
d− Hd2

2
− (a2 Gα + b2 Gβ) (1−H d)− H

2

(
a2 Gd

2

α + b2 Gd
2

β

)]
(24)

and our algorithm for the three-dimensional Willmore flow is given in alg. 5.

Algorithm 5 3D Willmore flow
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =

√
2δt and t = δt/

√
2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2→ Gd2
√

2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd

2
√

2δt
+ Gd

2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd

2
√

2δt
+ 2Gd

2

δt/
√

2

)
· H

2
Compute the new signed distance function d(n+1) = Redist(D).
t← t+ δt2
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Remark 2. Note that the flow algorithms actually compute a gradient descent with step δt2. However,
the evolution and diffusion time-steps can easily be decoupled involving the ratio δtflow

δt2diff
, but our numerical

tests suggest that keeping this ratio close to 1 leads to the more stable simulations. This decoupling can
nevertheless prove useful to implement efficient backtracking methods for the choice of the flow time-step
while avoiding unnecessary resolutions of the diffusion equation.

3. Diffusion-redistancing schemes with volume and area conservation

Since we are interested in computing shapes in Rn, n = 2 or n = 3, we will in this chapter call volume
the measure with respect to the Lebesgue measure of Rn and area the surface measure of hypersurfaces of
Rn.

3.1. Review of existing methods
Problems involving area or volume conservation were addressed in the framework of diffusion-redistanciation

schemes by [27], and their convergence properties in [33]. In [27], a new algorithm for area preserving flows
in two dimensions is introduced by considering normal velocities

vN = κ− κ̄+ S

where κ is the curvature, κ̄ its average on the interface, and S is an additional term which depends on the
application. The algorithm relies in 2D on a property linking the mean curvature with the surface area and
the genus number, which in case of a connected hypersurface S of genus 0 enclosing an open bounded set
Ω, boils down to

κ̄ =
2π

|S|
.

Using the divergence theorem, one can then compute |S| with a volume integral as

|S| =
∫

Ω

∆d dx.

In the case where S = 0, to ensure an accurate volume conservation, a Newton method is applied to
find a real number λ∗ close to κ̄ computed above (which is used as initialisation) to correct the diffusion
generated motion by raising or lowering the convolution of the signed distance function (as was introduced
the framework of convolution-thresholding schemes by [49]). In the case n = 3, while the trick to compute
efficiently the mean curvature is not anymore valid, we could still apply the method by computing numerically
the mean of the mean curvature.

The level-set community has also developed several techniques to address volume conservation [57, 56, 46]
in the modelling of multiphase flows. This corresponds to correct the Hamilton-Jacobi equation of the
redistanciation step by a term which ensures that conservation. Namely, the following equation:

∂τφ = sgn(φ0)(1− ‖∇φ‖) + λf(φ)

is solved with λ computed so that
∫

Ωij
H(φ)dx is conserved on each cell Ωij of the grid, and f chosen to

localise around the interface.
An even more straightforward approach is a post- or preprocessing trick due to Smolianski [55] in the

level-set framework, where a raising parameter for the level-set function is explicitly computed to restore
the target volume. The trick relies on an expansion of the volume enclosed by a level-set in terms of the
height of this level-set:

|{φ− δc < 0}| :=
∫
{φ<δc}

1dx = |{φ < 0}|+ δc

∫
{φ=0}

1dσ + o(δc)

10



Therefore starting from a reference volume V0, one can define δc so that |{φ − δc < 0}| = V0 + o(δc) by
setting:

δc =
V0 − |{φ < 0}|
|{φ = 0}|

.

Regarding the conservation of the surface area, one approach, proposed in the context of vesicle or red
blood cell simulations is to relax this conservation by introducing an area change energy with a high stiffness.
In [9, 10] the authors showed that such an energy could be expressed thanks to ‖∇φ‖ which records the
area change of level-sets of φ when φ is advected by a divergence free vector field. By taking a high areal
tension stiffness, ‖∇φ‖ is kept close to 1 in a neighbourhood of the interface. In practice, this however
induces a high stiffness of the numerical method, which leads to severe time step constraints. Another
approach is to enforce exact zero surface divergence of the velocity field which advects the level-set function.
This can be done using Lagrange multipliers [13, 28], leading to good area conservation, but at the expense
of a bad conditioning of the underlying linear systems to be solve at each iterations, which increases the
computational cost.

In this work, we introduce a correction in the spirit of Smolianski’s trick to conserve both the volume
and the area. From an optimisation point of view, our method can be regarded as a projection method, and
the whole constrained Willmore flow as some kind of projected gradient method.

3.2. Raising a level-set function to achieve some given area and enclosed volume
Obviously, we cannot in general fulfill both the area and volume constraints by adding a constant to a

level-set function. So let us look at the case where we would add a non-constant function δc : Ω → R to
an arbitrary level-set function φ. Let H denote a one dimensional smoothed Heaviside function and ζ its
derivative. A typical choice is:

H(r) =


1
2

(
r + 1 + 1

π sin(πr)
)
|r| < 1

0 r ≤ −1

1 r ≥ 1

and ζ(r) =

{
1
2 (1 + cos(πr)) |r| < 1

0 |r| ≥ 1
(25)

We can then compute the enclosed volume of the raised level-set:

|{φ− δc < 0}| = lim
ε→0

∫
Ω

H
(
−φ− δc

ε

)
dx

= lim
ε→0

∫
Ω

H
(
−φ
ε

)
dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
δc dx+O

(
δc2
) (26)

Note that if one adds to a level-set function a δc which averages to zero on {φ = 0}, the enclosed volume
does not change.

Considering now the area, we have to take care that φ− δc is not in general a distance function:

|{φ− δc = 0}| = lim
ε→0

∫
Ω

1

ε
ζ

(
φ− δc
ε

)
|∇(φ− δc)|dx+O

(
δc2
)

= lim
ε→0

∫
Ω

1

ε
ζ

(
φ

ε

)
|∇φ|dx−

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
|∇φ|δc dx−

∫
Ω

1

ε
ζ

(
φ

ε

)
∇φ · ∇δc
|∇φ|

dx+O
(
δc2
)

Integrating by parts in the last term:

−
∫

Ω

1

ε
ζ

(
φ

ε

)
∇φ · ∇δc
|∇φ|

dx =

∫
Ω

div

(
1

ε
ζ

(
φ

ε

)
∇φ
|∇φ|

)
δc dx

=

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
∇φ · ∇φ
|∇φ|

δc dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
div

(
∇φ
|∇φ|

)
δc dx

=

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
|∇φ|δc dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
κδc dx

11



where κ is the total curvature as introduced above. We finally get:

|{φ− δc = 0}| = |{φ = 0}|+ lim
ε→0

∫
Ω

1

ε
ζ

(
φ

ε

)
κδc dx+O

(
δc2
)

(27)

Note that when φ is a distance function φ = d, the volume and area of the perturbed level-set d − δc
simplify to formulae involving only “surface” integrals :

|{d− δc < 0}| = |{d < 0}|+
∫
{d=0}

δc dσ +O
(
δc2
)

which boils down to the Smolianski formula when δc is constant, and

|{d− δc = 0}| = |{d = 0}|+
∫
{d=0}

κδc dσ +O
(
δc2
)
.

Given a target volume V0 and area A0, we propose the following fast method to correct a level-set function
so that its zero level-set achieves those targets.

1. Raise φ by a constant λ to achieve the right enclosed volume:

λ =
V0 − |{φ < 0}|∫

Ω
1
εζ
(
φ
ε

)
dx

(28)

2. Raise φ̃ = φ + λ by µ(κ − κ), which does not change the enclosed volume, where the constant µ and
κ are given by:

µ =
A0 − |{φ̃ = 0}|∫

Ω
1
εζ
(
φ̃
ε

)
κ(κ− κ) dx

=
A0 − |{φ̃ = 0}|

(κ2 − κ2)
∫

Ω
1
εζ
(
φ̃
ε

)
dx

κ =

∫
Ω

1
εζ
(
φ̃
ε

)
κ∫

Ω
1
εζ
(
φ̃
ε

) (29)

Remark 3. In the practical numerical computations, the “thickness” ε of the interface is kept finite and
proportional and close to the mesh size h: ε ∈ [h; 3h], following the usual level-set approach.

Clearly, the method fails if κ2 = κ2, which is the case for a circle (resp. sphere). But in that case the
perimeter (resp. area) and enclosed area (resp. volume) are linked and one cannot set one independently of
the other.

Let us investigate how the former restoring of volume and area change the energy we are minimising.
Assuming an energy of the form:

E [φ] =

∫
Ω

Edνε

where dνε = 1
εζ(φε )dx and, with a gradient which can be written as

dE [φ](ψ) =

∫
Ω

Fψdνε.

Proposition 1. Let us consider a gradient-corrected method to minimise E iteratively by alternating steepest
descent with corrections stages 1 and 2 described above. Then, at first order in the descent parameter, the
energy does not increase during this iteration.

12



Proof. A steepest descent method to minimise this energy amounts to change φ to φ + ψ with ψ = −ρF ,
which decreases the energy, at first order, by ρ

∫
Ω
F 2dνε.

But this motion changed the enclosed volume and the area of interface. The volume is now |{φ+ ψ < 0}|
which correspond at first order to a change of ρ

∫
Ω
Fdνε. Therefore the λ parameter computed above is

equal to:

λ = ρ

∫
Ω
Fdνε∫

Ω
dνε

=: ρ−
∫

Ω

Fdνε

where from now on, we will denote with a dashed integral sign the mean value, i.e. the integral divided by
the measure of the set (with respect to νε) onto which the integral is taken:

−
∫

Ω

Fdνε =
1

νε(Ω)

∫
Ω

Fdνε

The descent motion and this volume correction change the area by:

ρ

∫
Ω

Fκdνε − λ
∫

Ω

κdνε = ρ

∫
Ω

F (κ− κ)dνε.

Thus the second step, area correction, computes a correction ν(κ− κ) with:

µ = ρ
−
∫

Ω
F (κ− κ)dνε

κ2 − κ2
.

Those two corrections raise the energy by:

λ

∫
Ω

Fdνε + µ

∫
Ω

F (H −H)dνε = ρνε(Ω)

[(
−
∫

Ω

Fdνε

)2

+

(
−
∫

Ω
F (H −H)dνε

)2
H2 −H2

]
.

Finally, the two successive corrections would not raise the energy more than it has been decreased by the
descent method provided that the following inequality holds:(

−
∫

Ω

Fdνε

)2

+

(
−
∫

Ω
F (H −H)dνε

)2
H2 −H2 ≤ −

∫
Ω

F 2dνε.

This is the object of the following lemma. We therefore justified that our descent-correction method does
not increase energy.

Lemma 1. Let (X,Σ, µ) be a measure space, and A a measurable subset of X with µ(A) < +∞. Let
f, g ∈ L2(A) with −

∫
A
gdµ = 0. Then:(

−
∫
A

fdµ

)2

−
∫
A

g2dµ+

(
−
∫
A

fgdµ

)2

≤ −
∫
A

f2dµ−
∫
A

g2dµ (30)

Proof. This is an easy extension of the Cauchy-Schwarz inequality. Indeed applying the latter for f−−
∫
A
fdµ

and g we have: (
−
∫
A

(
f −−

∫
A

fdx

)
gdµ

)2

≤ −
∫
A

(
f −−

∫
A

fdµ

)2

dµ−
∫
A

g2dµ

Since g is of zero mean on A, we have for the left hand side of the former inequality,

−
∫
A

(
f −−

∫
A

fdµ

)
gdµ = −

∫
A

fgdµ

13



while concerning the right hand side we observe that:

−
∫
A

(
f −−

∫
A

fdµ

)2

dµ+

(
−
∫
A

fdµ

)2

= −
∫
A

f2dµ

which leads to eq. (30).

Remark 4. In order to prevent undesired effects from outside of the neighbourhood of the interface we can
slightly alter the method during the step recovering the area. We rescale with the function µ(κ − κ̄) 1

εζ
(
φ
ε

)
rather than µ(κ− κ̄). This amounts to choose δc = (κ− κ̄) 1

εζ
(
φ
ε

)
in eq. (27) and to redefine κ̄ (resp. H̄ as:

κ̄ =

∫
Ω

1
ε2 ζ

2
(
φ
ε

)
κ∫

Ω
1
ε2 ζ

2
(
φ
ε

)
In our simulations, we fix the value of the rescaling term µ(H − H̄) outside of the neighbourhood of the
interface in order to have a neutral effect.

Remark 5. An alternative option is to rescale the volume and the area during the same step by solving the
following system:  ∫

Ω
1
εζ
(
φ
ε

) ∫
Ω

1
εζ
(
φ
ε

)
H∫

Ω
1
εζ
(
φ
ε

)
H

∫
Ω

1
εζ
(
φ
ε

)
H2

 · (λ
µ

)
=

(
V0 − |{φ < 0}|
A0 − |{φ = 0}|

)
The first equation (resp. the second) corresponds to the volume expansion eq. (26) (the area expansion
eq. (27)) with δc = λ+ µH. It is important to note that the constant part µH̄ of the area term is absorbed
inside λ. Both versions are equivalent in theory and yield similar numerical results.

3.3. Willmore flow with volume and area conservation constraints
Combining the algorithms alg. 3 and 5 for the Willmore flow derived in the previous section and the

above method to recover volume and area, we can obtain an algorithm to compute the Willmore flow in
both dimension 2 and 3 with conservation of volume and area.

The principle is to alternate one diffusion step moving according the Willmore flow and recovering the
volume and area constraints before the redistanciation. Using proposition 1 we can ensure that the energy
has globally decreased at the end of one whole step of the method.

The corresponding algorithms in 2D and 3D are described in alg. 6 and 7.

4. Numerical method and practical implementation

4.1. Finite Element library
The equations and integrals introduced above are solved or evaluated within a finite-element framework,

using the Feel++–finite-element C++ library [45, 44], and in particular the LevelSet framework from the
Feel++ toolboxes [42], which features a comprehensive and seamless parallel set of tools for this kind of
surface capturing methods. This framework was preferred to a more classical finite difference approach for
the simplicity of coding with high level templates that mimic the variational form of PDE. Moreover, our
final goal is to solve fluid-structure interaction problems where vesicles are evolving inside a fluid which flows
in a complex geometry like blood vessels.

More precisely, we use a continuous Galerkin variational approach, and discretise the resulting equations
in space with Lagrange polynomials. Introducing Th ≡ {Ke, 1 ≤ e ≤ Nelt} a compatible tessellation of the
computational domain Ω, and the corresponding discrete – unstructured – mesh Ωh =

⋃Nelt
e=1 Ke, we define

Pkh ≡ Pkh (Ωh) as the finite-element space on Ωh spanned by Lagrange polynomials of order k.

14



Algorithm 6 2D Willmore flow with constant volume and area
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =

√
2δt and t = δt/

√
2 → G√2δt, Gδt/√2.

Compute the curvature H.

Compute D =


DE = −1

2
G√2δt + Gδt/√2 +

H3

2
δt2

DCN = −G√2δt + 2Gδt/√2 +
H3

2
δt2

Compute H(D) and its mean H(D).
Compute λ:

λ =
V0 − |{D < 0}|
|{D = 0}|

.

Compute µ:

µ =
A0 − |{D = 0}|∫

Ω
H(H −H) 1

εζ
(D
ε

)
dσ
.

Construct the new signed distance function d(n+1) = Redist
(
D + λ+ µ(H −H)

)
.

t← t+ δt2

Algorithm 7 3D Willmore flow with volume and area constraints
while t < tf do
Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =

√
2δt and t = δt/

√
2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2→ Gd2
√

2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd

2
√

2δt
+ Gd

2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd

2
√

2δt
+ 2Gd

2

δt/
√

2

)
· H

2
Compute H(D) and its mean H(D).
Compute λ:

λ =
V0 − |{D < 0}|
|{D = 0}|

.

Compute µ:

µ =
A0 − |{D = 0}|∫

Ω
H(H −H) 1

εζ
(D
ε

)
dσ
.

Construct the new signed distance function d(n+1) = Redist
(
D + λ+ µ(H −H)

)
.

t← t+ δt2
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4.2. Solving the diffusion equation
From a numerical perspective, our Willmore flow alg. 3 and 5 mainly involve solving the diffusion equation

∂tφ−∆φ = 0 with appropriate initial and boundary conditions. To this end, we use the Pkh finite-element
space discretisation introduced above, and a second order unconditionally stable Crank-Nicolson scheme for
the time discretisation. The corresponding discrete variational problem then reads:

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh ,∫
Ωh

(
φ(n+1)

δt
ψ +

1

2
∇φ(n+1) · ∇ψ

)
=

∫
Ωh

(
φ(n)

δt
ψ − 1

2
∇φ(n) · ∇ψ

)
+

∫
∂Ωh

(
N · ∇φ(n)

)
ψ

(31)

where the superscript indices denote the time iterations. Note that the last term in eq. (31) comes from the
integration by parts of the diffusive terms, and is somehow similar to an explicit discrete Neumann boundary
condition preserving the normal gradient of φ, namely N ·∇φ(n+1) = N ·∇φ(n) with N the exterior normal at
the boundary of Ωh. In practice, the best choice of boundary conditions for our distance diffusion problem is
an open question, since no natural condition emerges from our analysis, which focuses on the neighborhood
of the interface Γ, far from the domain boundary.

As pointed out in remark 1, we would also like to use in some situations an Euler scheme, which is low
order and diffusive, which may be more adapted in this context than a dispersive scheme. In that case one
should directly use the discrete expansion, which differs at order two (since the scheme is order one):

φn+1 − δt∆φn+1 = φn

indeed gives
φn+1 = (id−δt∆)−1(φn) = φn + δt∆φn + δt2∆2φn + o(δt2) (32)

which differs from of (5) by a factor 2 in the second order term. The corresponding discrete variational
problem then simplifies to:

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh ,∫
Ωh

(
φ(n+1)

δt
ψ + ∇φ(n+1) · ∇ψ

)
=

∫
Ωh

φ(n)

δt
ψ +

∫
∂Ωh

(
N · ∇φ(n)

)
ψ

(33)

In our numerical results, both schemes give qualitatively the same equilibrium shapes. However the Crank-
Nicolson scheme seems more accurate, while the Euler scheme was preferred in dimension 3 where its diffusive
behavior brings more stability and smoothness of the interface.

4.3. Computation of the curvature
Our algorithms for the Willmore flow in both 2D alg. 3 and 3D alg. 5 require the computation of the

curvature of the surface Γ in the correction term. We first present the direct methods currently used in
Feel++. We then introduce our diffusion methods to compute the curvature, which are essentially the
classical convolution/thresholding algorithms of order 1 and 2. Using the direct methods as references, we
discuss the efficiency of our method and focus on the choice of the time step selection for the diffusion steps.

4.3.1. Direct methods
From a usual level-set perspective, the curvature of Γ can be computed directly using the divergence of

the level-set function ∆d. For low-order discretisations however, this requires the use of specific strategies, as
standard finite-element derivation decreases the discretisation polynomial order by 1, which forbids deriva-
tions of degrees higher than the polynomial order. To circumvent this issue, we use a classical Galerkin
projection in L2(Ωh) to maintain the element in P1

h. Namely the computation of the gradient ∇d is as
following:

Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v
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We can then obtain the curvature with two successive derivation/projection steps by computing the diver-
gence of the gradient of the distance function:

(1) : Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v

(2) : Find H ∈ P1
h s.t. ∀w ∈ P1

h,∫
Ωh

Hw =

∫
Ωh

div g w

(34)

However the L2 projection fills the missing information of the lower order elements with noisy values, so
that one usually resort to a smoothed L2 projection method, where a small diffusion term −η∆H is added:

(1) : Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v

(2) : Find H ∈ P1
h s.t. ∀w ∈ P1

h,∫
Ωh

Hw + η

∫
Ωh

∇H · ∇w − η
∫
∂Ωh

∇H ·Nw =

∫
Ωh

div g w.

(35)

where the smoothing coefficient η is typically taken equals to 0.03h. We will refer to eq. (34) as the L2

projection and to eq. (35) as the Smoothed projection method.

4.3.2. Using the diffusion of the signed distance function
As mentioned above, we can also retrieve the curvature of the surface represented with the level-set using

the diffusion of the signed distance function. Recalling the analytical expansion of the diffusion solution
eq. (6), we observe that the curvature of the surface shows up in the first order term in δt, and can thus be
retrieved as:

H =
Gδt − d

(n− 1)δt
+O(δt). (36)

As explained in section 2.3, at the expense of an additional resolution of the diffusion equation, we can
improve the order of accuracy and compute the combination eq. (16) which eliminates the second order
term. We can then compute H at order δt2 as:

H =
a1Gα + b1Gβ − 3

√
2

2 d

(n− 1)δt
+O(δt2) (37)

In the following we shall refer to the O(δt) method eq. (36) as the Order 1 diffusion and the O(δt2)
method eq. (37) as the Order 2 diffusion. Keep in mind however that these approximation orders refer to
the auxiliary diffusion time-step and not to the usual space discretisation order.

Before comparing these diffusion methods to the direct ones mentioned in section 4.3.1, we shall first
study in more detail the role of the diffusion time-step. Figure 1 shows the evolution of the L2 error of the
curvature computed with both diffusion methods as a function of the diffusion time-step. The numerical
test was performed on a two-dimensional circular surface of curvature 1 with a mesh size h ≈ 0.02, and the
error was computed as

err(H; Γ) =

∫
Ω

(H −Hth)
2 1
εζ
(
φ
ε

)
∫

Ω
1
εζ
(
φ
ε

) , (38)

where Hth stands for the theoretical value of H. In the case of a circle, it amounts to the inverse of the
radius. The spreading parameter ε was chosen for all the simulations so that the interface span about 2
mesh cells, i.e. ε ≈ h.
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Figure 1: L2 error on curvature estimates using the Order 1 eq. (36) and Order 2 eq. (37) diffusion methods as a function of
the diffusion time-step δt. We observe the expected convergence orders as the time-step decreases, and a saturation of the error
for low time-steps which is related to space discretisation error terms.

As expected, we observe convergence of both methods at order O(δt) and O(δt2) respectively, as well as
a saturation of the error for small time-steps, which is due to the spatial discretisation errors. We also note
that the Order 2 diffusion method features an optimal error for larger time-steps, which can prove useful
when using the same time-step for the flow and the diffusions (c.f. remark 2).

These numerical observations, as well as the analytic expansion of Gδt also suggest to choose the time-step
following the heuristic strategy:

H̃δt ≈ h (39)

with H̃ an a priori estimate of the typical curvature of the surface. From a numerical point of view, this
corresponds to having the diffusion move the d = 0 level-set a few mesh elements. This heuristic can also
be adapted to the case of geometrical flow simulations, and naturally formulates an adaptive time-stepping
method, as presented in section 4.5.

4.3.3. Comparison of the different methods
We now turn to the comparison of the “direct” and “diffusion” curvature methods presented above. We

again use a fixed two-dimensional circular interface of radius 1, and vary the characteristic mesh size h used
to compute the L2 error on the curvature estimate along the surface as a function of h for the four methods.
We set the smoothing parameters η = 0.03h and the diffusion time-steps as δt = 0.7h. The resulting errors
are plotted in log-log scale in fig. 2.

We find that the Order 1 and Order 2 diffusion methods behave similarly, and compare accurately with
the Smoothed projection method. These three methods give O(h) convergence, which is satisfactory for our
low-order discretisation. As anticipated, the L2 projection method does not seem to converge.

In our simulations, we shall therefore use the Order 2 diffusion method, as the two diffusion equation
resolutions for Gα and Gβ are needed anyway for the computation of the Willmore flow, and this method
provides the best curvature estimate at no additional cost.

4.4. Level-set redistanciation
The redistanciation step is a crucial aspect of our algorithm, as it allows the iteration to proceed while

preserving the correct expansions of the diffusion solutions close to the interface. This step can moreover
become the main bottleneck of the whole algorithm in terms of both efficiency and stability if not processed
carefully. From a general point of view, performing the Redist step in alg. 3 and 5 amounts to computing
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Figure 2: Evolution of the L2 error as a function of the mesh size for the different methods. The L2 projection shows no evident
convergence while the Order 1 diffusion, the Order 2 diffusion and the Smoothed projection methods yield linear convergence.

the distance to an interface Γ located by the 0-level of some function. Stated differently, we need to solve
the eikonal equation:

|∇φ| = 1, φ(Γ) = 0 (40)

which is a challenging boundary-value non-linear equation which has received much attention since the work
of Sethian [53] who proposed an iterative upwind fast-marching algorithm to solve the eikonal equation
starting from the interface and propagating the information outward.

In our finite-element framework, we use a parallel fast-marching algorithm inspired from [62] but adapted
to arbitrary – possibly unstructured – meshes. The local – element-wise – eikonal equations are solved with
a QR decomposition, and the fast-marching alternates between local-domain solves and ghost inter-domain
updates until global convergence is obtained.

In order to ensure good stability properties of our method, and in particular to prevent the fast-marching
method from introducing spurious motion of the interface, the initialisation of the algorithm near the im-
plicitly defined interface is crucial. To this end, we rescale the level-set function φ by 1

|∇φ| on the elements
which intersect the interface, which exactly solves the local eikonal equation when φ is a piecewise linear
polynomial (φ ∈ P1

h), before applying the fast-marching algorithm both inward (φ < 0) and outward (φ > 0)
starting from the values encompassing the interface.

4.5. Adaptive time-stepping
As can be seen from eq. (17), given some δt in the resolution of the heat equations, our diffusion-

redistanciation schemes actually solves the corresponding Willmore flow with time-step δt2, namely

d(n+1) = d(n) −Wδt2.

The flow time-step is therefore not constrained by any stability issue, but controls the accuracy of the
solution, since the expansions performed in section 2.1 are valid up to terms of order O(δt3).

The O(h) errors pertaining to the computation of φ(n+1) in eq. (31) using P1
h Lagrange elements and

the expansion (6) however suggest to use a time-step like

δt ∼ h

κ
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in the heat equation. This obviously requires the a priori computation of the interface curvature, which
is not desirable in our framework. Instead, we therefore use an explicit adaptive time-stepping strategy by
setting

δt(n+1) = min
Γ

(
h

κ(n)

)
(41)

where κ(n) is the curvature at the previous iteration and h is a measure of the mesh size, here considered
for elements crossed by the interface – e.g.the minimal diameter of the elements crossed by the {φ(n) = 0}
level-set.

5. Numerical illustrations

In this section, we illustrate the efficiency our methods by applying them to two classical applications.
First, we apply our 3D algorithm for the Willmore flow alg. 5 to the Willmore problem. Then we apply our
algorithm for Willmore flow with area and volume conservation alg. 7 to the computation of an equilibrium
shape of a red blood cell.

5.1. Willmore problem
The Willmore problem refers to the study of the minimisers of the Willmore energy function EW . The

case of compact surfaces of genus 0 is trivial as the minimisers are the spheres – recall that the Willmore
energy being scale invariant, all the spheres have the same energy.

In the case of compact surfaces of genus 1, the Clifford torus, the torus with a ratio
√

2 between its
radii, minimises the Willmore energy. The proof of this conjecture made by Willmore [60] in 1965 has been
established recently in [39]. The conjectures for higher genus order [23] are still to be proven.

In the following, we present 2D and 3D simulations of such simple surfaces which evolve according to
the Willmore flow using our diffusion-redistanciation algorithms. The existence of analytic minimisers will
then provide solid means to evaluate our numerical approach.

5.1.1. 2D Willmore flow of a circle
To assess the accuracy of our diffusion-redistanciation scheme, we first simulate an initial two-dimensional

circular interface evolving according to the Willmore flow, which can also be computed analytically. As it
evolves with the flow, the interface should remains circular, and increase it radius r as

r(t) = (r0 + 2 t)
1/4 (42)

with r0 the initial radius. Note that this law, which comes from the analytic flow equation dr
dt = H3

2 = 12r3

provides a good test of our algorithm, since the right hand side is actually obtained through a delicate
compensation between the second-order term w (c.f. (10)) in the diffusion of d and the correction term c
obtained with the diffusion of d2 (c.f. (12)).

Our simulation was run with r0 = 1 in a square domain of side length 6 with an unstructured mesh of
typical size h ≈ 0.02 and the adaptive time-step strategy presented in section 4.5.

Figure 3 shows some snapshots of the simulation and the evolution of the circle radius. It illustrates the
numerical accuracy of our scheme, which succeeds in preserving the symmetry of the shape as it evolves, and
compares quantitatively with the exact solution. Figure 4 shows the error on the computed radius of the
circle as compared to the theoretical value (42) at t = 3 for different mesh sizes. The dependence of this error
on the mesh size demonstrates the convergence of our method. Note however that the fitted convergence
order – ≈ 1.72 – is not strictly equivalent to the usual finite-element convergence order, as it incorporates
effects related to the dependence of the time step on the mesh size, which is chosen following eq. (41) as
the role played by the time step in the derivation of our algorithm naturally imposes such spatio-temporal
coupling. The linear dependence of the time-step with respect to the mesh size would suggest that the actual
spatial convergence order is ∼ 0.7 − 0.8, which also seems supported by the energy convergence shown in
fig. 20.
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(a) Snapshots of the interface at times t = 0, 1, 2 and 3.
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Figure 3: 2D Willmore flow of a circle.
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Figure 4: Evolution of the error err(r(t = 3)) ≡ |rh(t = 3) − r(t = 3)| of the radius of the circle at t = 3 as a function of the
mesh size. The figure also shows the best mean-square fit of the data by a power function 14.48h1.72. Note however that the
displayed slope is not strictly equivalent to the usual convergence order, as discussed above.

5.1.2. 3D Willmore flow of a torus
The convergence of a torus towards a Clifford torus, whose ratio between major and minor radii equals√

2, is a good test for our numerical approach, as it challenges both the accuracy of the numerical flow and
the stability of the algorithm as it approaches the minimising surface, which features a rather small hole,
which can easily be filled by an inaccurate flow to minimise the energy further, as the Willmore energy of
any sphere – 4π – falls below the minimal one for tori, which is 2π2.
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Simulations have been performed using a phase-field model in [6] but the results are only qualitative. To
the extend of our knowledge, there is no other published numerical work to compare with our results.

Figures 5 and 6 show the results of our three-dimensional Willmore flow algorithm 5 starting from a torus
with major a = 2 and minor b = 0.5 radii. The simulation was run in a cuboid with lengths 6×4×6 and an
unstructured mesh of typical size h ≈ 0.02. We observe that the surface flows to the expected Clifford torus,
and that the estimated resulting energy and radii ratio are in good agreement with the expected values for
such a torus. However we were unable to stabilise the optimal shape once it reaches the Clifford torus. We
observe in Figure 5 the energy fluctuating and even increasing slowly beyond t = 3, while in Figure 6 the
ratio a/b does not seem to converge. The reason behind this behaviour is that we are computing a and b
from the surface and enclosed volume assuming that we are in the class of toroidal surfaces. However it
turns out that our algorithm, when reaching the Clifford torus, tries to minimise the energy by slipping out
of this class (we remind that we are making a full 3D computation not imposing any symmetry). There
the central and peripheral circles have no longer exactly the same center. It seems that while reaching the
Clifford torus, the energy is flattening and it is more likely that discretisation errors drive the surface out of
the tori class. Once this symmetry breaking has occurred, the hole is then quickly closed and we fall in the
0 genus surfaces class of lower energies. This raises the question on how to constraint somehow the surface
to stay in the tori class (without doing axisymmetric computations). For now we did not find any simple
algorithm to tackle that problem, which while interesting, is not directly related to our aimed application
to red blood cells.

(a) t = 0 (b) t = 0.015 (c) t = 0.03

−3 −2 −1 0 1 2 3

κ

Figure 5: 3D Willmore flow of a torus toward the Clifford torus. The evolving surface is colored with the value of the curvature
while the Clifford torus is represented in semi-transparent white.

5.2. Vesicles equilibrium shapes
We now consider the simulation of vesicles, which provide the most popular and simple model for capsules,

closed thin shell or cells, like human red blood cells. From a physical point of view, the model consists in
an elastic thin shell of fixed area enclosing some incompressible fluid, so that the inner volume is also fixed.
As such, the vesicle only deforms through bending of the shell, and is thus controlled by a Willmore-like
– or Canham-Helfrich energy [22, 7] (see e.g. [51] for a presentation of the model in a biological context),
which reduces to the standard Willmore energy when the membrane has no spontaneous curvature – the
unconstrained (open) membrane is flat, which we assume in this work.

In the following, we shall use our diffusion-redistanciation algorithms with the constraints of constant
volume and area of the evolving surface to compute the 2D and 3D equilibrium shapes of vesicles with
various reduced volumes. We show in the following the results of the “Euler” variants of alg. 6 and alg. 7.
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Figure 6: Willmore energy and geometrical quantities of the torus. We observe that the flow decreases the energy to about
20.8, which is within 5% from the theoretical Clifford torus energy 2π2 ≈ 19.74. We also observe that at equilibrium, the ratio
between the radii is indeed about

√
2. Beyond t = 3, the surface leaves the toroidal class, and the computed a and b are not

anymore relevant (see above).

We have also performed the same simulations using the “Crank-Nicolson” variants of the algorithms, which
yielded very similar shapes and results, but featured some small – stable – oscillations at the equilibrium, as
could be expected from a non-diffusive discretisation scheme. The resulting equilibrium shapes are compared
to the ones from the literature when available, and assessed from energetical and stability points of view to
illustrate the good properties of our numerical method.

5.2.1. Computation of the equilibrium shapes of 2D vesicles
We first consider the two-dimensional case, and compute the Willmore flow under the constraint of

constant inner volume and surface area of an initial ellipse with semi-minor and -major axes adjusted
according to a chosen reduced volume

ν =
4πV

A2
=

V

π
[
A
2π

]2 (43)

The reduced volume represents the ratio between the volume of the ellipse and the volume of a circle of
same area. Note that the conservation of both the volume and area of the vesicle naturally entails that the
reduced volume is also preserved.

The simulations were run in a square domain [−4, 4]2 with a structured triangle mesh with mesh size
h = 0.04 and adaptive time-step strategy. We illustrate the convergence of our method to an equilibrium
shape in fig. 7 and compare our results with the ones obtained using a lattice-Boltzmann method in [26]
in fig. 8. We observe that the shapes computed with our algorithm are in excellent agreement with the
ones obtained from direct lattice-Boltzmann simulations. We also illustrate the good volume and area
conservation properties of our algorithm in fig. 9. The evolution of the Willmore energy along the flow is
shown in fig. 10.
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Figure 7: Convergence of alg. 6 to an equilibrium shape for the ν = 0.5 case, starting from an ellipse with semi-major and
-minor axes 2.09021 and 0.478421. The curves are colored with the value of the curvature.

5.2.2. Computation of vesicles equilibrium shapes in 3D
The landscape of vesicle equilibrium shapes is much more rich in three dimensions, as the Gauss curva-

ture comes into play and allows for multiple local minima for shapes with the same topological class and
invariants. Axisymmetric equilibrium shapes have been mapped out in a phase diagram in [52], and some
non-axisymmetric shapes have been computed in [25, 14, 15, 6], but the general phase diagram for Willmore
energy minimisers is still an open question.

In our case, we consider the evolution of ellipsoids under the constant volume and area Willmore flow.
As such, we expect to recover the prolate and oblate axisymmetric shapes of zero genus and spontaneous
curvature referenced in [52] depending on the initial – conserved – reduced volume,

ν =
6
√
πV

A
3
2

=
V

4
3π
[
A
4π

] 3
2

. (44)

As shown in [52], the prolate and oblate shapes are both local minimisers for ν ≈ 0.51. While the prolate
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Figure 8: Comparison of the 2D equilibrium shapes obtained by alg. 6 with the ones obtained by [26] using a lattice-Boltzmann
method for reduced volumes ν = 0.9, 0.8, 0.7 and 0.6. We also give our result for a reduced volume ν = 0.5.
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Figure 9: Evolution of the 2D vesicle volume and “area” (perimeter in this case) with the volume- and area-preserving alg. 6.
The algorithm displays very good conservation properties : the relative volume and area changes are less than respectively
1 · 10−4 and 5 · 10−4 for the most difficult ν = 0.5 case, and the final equilibrium shapes volumes and areas relative changes
are . 1 · 10−5 for all the cases.
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Figure 10: Evolution of the Willmore energy EW =
∫
Γ H

2 (18) of the 2D vesicle with the volume- and area-preserving alg. 6.
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shapes exist for all possible ν, the oblate ones self-intersect below ν ≈ 0.51, and the stomatocyte shapes
become the only non-prolate feasible minimisers. In this work, we restrict ourselves to ν ≥ 0.6, and study
both the oblate and prolate cases, as our algorithm appears able to capture the local minimising shapes in
a stable way.

Fewer quantitative works are available for comparison in this three dimension case. We can mention
[4, 14, 20, 15] where a mix of qualitative and quantitative results are presented. In [4, 14], a phase field
method was developed and qualitative results were given. In [15] an adaptive version of the phase field model
was proposed with some quantitative results in terms of energy, which are hard to compare with theoretical
known values of Seifert [52]. The approach of Feng and Klug [20] is based on surface finite element and is
more quantitative in its results as far as the energy is concerned.

Oblate case. The oblate case simulations were run in a cuboid with lengths 3.6 × 6.4 × 6.4 and mesh size
h ≈ 0.04. The initial level-set functions were taken as signed distance functions to oblate ellipsoids with
semi-minor axis a and semi-major axes b = c adjusted to get a volume 4π

3 for all the simulations and a
corresponding reduced volume ν = 0.6, 0.65, 0.7, 0.8 or 0.9.

Figure 11 shows the equilibrium shapes obtain with our constrained diffusion-redistanciation algorithm
7 for the different reduced volumes. We also show two-dimensional cuts of these equilibrium shapes in
fig. 12 to illustrate the good symmetry conservation properties of our algorithm. Figures 13 and 14 show
the evolution of the Willmore energy, and the area and enclosed volume of the surface as it evolves.

(a) ν = 0.9 (b) ν = 0.8 (c) ν = 0.7 (d) ν = 0.65 (e) ν = 0.6

−2 0 2 4 6

κ

Figure 11: 3D oblate vesicles equilibrium shapes obtained with alg. 7 for the reduced volumes ν = 0.9, 0.8, 0.7, 0.65 and 0.6.

Prolate case. The prolate case simulations were run in a cuboid with lengths 9×4×4 and mesh size h ≈ 0.04.
The initial level-set functions were chosen as in the oblate case, but using prolate ellipsoids.

The resulting equilibrium shapes and cuts are shown in figs. 15 and 16 respectively, while figs. 17 and 18
show the evolution of the surface energy, area and enclosed volume.

. We can observe for all the – oblate and prolate – three-dimensional vesicle simulations that the computed
equilibrium shapes are axisymmetric as expected, even though our algorithm does not enforce this property.
We also note that our algorithm seems very robust in this case from the energy minimisation point of view, as
it reaches the minimum rather quickly and then preserves it for a long time without any numerical artifact.

To compare our results quantitatively, we plot in fig. 19 the equilibrium energies of our vesicles together
with the ones obtained in [52] and [20]. We also highlight the numerical convergence of our method in fig. 20
where we plot the relative error of the Willmore energy of our final equilibrium shape (for the reduced volume
ν = 0.65) as a function of the mesh size. Our results seem in good agreement with the ones obtained with
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Figure 12: Cut slices in the x − y, x − z and y − z planes of the 3D oblate vesicles equilibrium shapes displayed in fig. 11.
These cuts highlight the good symmetry preserving property of our algorithm despite the absence of any symmetry enforcing
method.
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Figure 13: Evolution of the 3D oblate vesicle volume and area with the volume- and area-preserving alg. 7. The 3D algorithm
also displays good conservation properties: the relative volume and area changes are respectively . 5 · 10−5 and . 2 · 10−4 for
all the cases.

direct energy minimisation or meshed surface evolution, despite a small ∼ 10% overestimate for the oblate
smallest reduced volume cases, which seem related to typical finite-element numerical errors. As shown in
fig. 20, the equilibrium shape energy converges to the expected value (taken from [52] for this axisymmetric
case) as h0.84, which is rather positive for low-order (P1) simulations of such high-order effects.

6. Conclusion

We propose in this article a numerical method to predict the position of an interface in 2D or 3D moving
according to the gradient of an higher order energy such as the squared mean curvature (Willmore flow)
and subject to constraint of area and enclosed volume conservation. This problem is of interest to devise
semi-implicit schemes for fluid-structure solvers where the full interaction between immersed vesicles and
fluids are involved. As a first step, the present work was restricted to the motion of vesicles membranes
minimising their mean curvature at fixed surface area and enclosed volume. The test case considered
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Figure 14: Evolution of the Willmore energy EW =
∫
Γ H

2 (18) of the 3D oblate vesicle with the volume- and area-preserving
alg. 7.
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Figure 15: 3D prolate vesicles equilibrium shapes obtained with alg. 7 for the reduced volumes ν = 0.9, 0.8, 0.7, 0.65 and 0.6.
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Figure 16: Cut slices in the x − y, x − z and y − z planes of the 3D prolate vesicles equilibrium shapes displayed in fig. 11.
These cuts highlight the good symmetry preserving property of our algorithm despite the absence of any symmetry enforcing
method.
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Figure 17: Evolution of the 3D prolate vesicle volume and area with the volume- and area-preserving alg. 7. The 3D algorithm
also displays good conservation properties: the relative volume and area changes are respectively . 5 · 10−6 and . 3 · 10−5 for
all the cases.
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Figure 18: Evolution of the Willmore energy EW =
∫
Γ H

2 (18) of the 3D prolate vesicle with the volume- and area-preserving
alg. 7.

corresponds to reach an equilibrium shape starting from an ellipsoid, depending on its closeness to a sphere
or more elongated shape. Even in this delimited setting, the problem is tricky since the constraints are
highly nonlinear and the energy involved of higher order. Classical approaches through level-set or phase
field methods lead to fourth order PDE to solve, while purely Lagrangian methods dealing with a surface
mesh are not well suited to be included in a fluid-structure coupling procedure due to the interpolations
required between Eulerian and Lagrangian representations. In this work, we build a method where only
heat equations are solved to compute the right flow of the mean curvature energy.

Based on diffusion-redistanciation schemes introduced in [17], our first contribution was to provide a
more intrinsic formulation of these methods, which opens the way to study more easily other kind of higher
order energy. While this study focused on the mean curvature flows, one could for instance also consider
problems where the Gaussian curvature is involved. We also extended our geometrical flows algorithms to
the evolution of surfaces with conserved area and enclosed volume. The originality of our approach relies on
a formula providing explicitly the projection of the unconstrained Willmore flow on motion conserving area
and enclosed volume. This is a big advantage in comparison to other methods where the area constraint is
penalised (and therefore not exactly fulfilled or leading to stiff problems) or non-linearly enforced (at a high
computational cost).
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Figure 19: Willmore energy of the 3D vesicle equilibrium shapes as a function of the reduced volume, in the oblate and prolate
cases. We compare our results to axisymmetric energy minimisation (shooting method) from [52] and to the “subdivision thin
shell” vesicle simulations from [20].
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Figure 20: Relative error of the Willmore energy of our three-dimensional vesicle equilibrium shape for the ν = 0.65 case as a
function of the mesh size. The error is computed as

(
EW − EthW

)
/EthW with EthW taken from [52], and the mesh sizes range from

h ≈ 0.02 to h ≈ 0.06. The plot is in log-log scale.

Our first test case was devoted to the torus, where we observed convergence to the Clifford torus as
expected. Our methodology enjoys numerical convergence and compares well with existing numerical results
to compute equilibrium shapes of vesicles in dimension 2. In dimension 3, while our results are in good
agreement for prolate forms, some discrepancy occurs for oblate vesicle shapes. This is due to the low order of
the finite element method used (P1 element), in contrast with the C1 surface finite element representation of
[20]. However we observe numerical convergence in dimension 3 as well. The use of polynomial discretisation
with higher regularity (such as Hermite elements) would likely cure that problem without any further
modification of our algorithm. One remarkable feature of our algorithm is to provide consistent results
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without any mesh refinement strategy. This is of paramount importance for its possible use in a full three-
dimensional fluid-structure problems, where such remeshing could very quickly lead, for realistic situations,
to intractable computational complexity.

Another big advantage of our approach is to be very easy to implement: high order geometric quantities
are computed from diffusion equation of a distance function, which is easily handled by any finite element
library.

In a forthcoming work, we will use such a predictor of motion to devise a semi-implicit scheme for the
full fluid-membrane coupling problem.
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