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Abstract: In this paper we present a novel algorithm for simulating the Willmore flow with conservation
of volume and area. The idea is to adapt the class of algorithms introduced in [17] to the Willmore
flow and extend it in dimension three. These algorithms rely on alternating a diffusion of the signed
distance function to the interface and a redistanciation step, following Merriman, Bence, and Osher’s
principle [41]. The constraints are enforced between the diffusion and redistanciation steps via a simple
rescaling method. The energy globally decreases at the end of each global step. The algorithm features
the computational efficiency of thresholding methods without requiring adaptive remeshing thanks to
the use of a signed distance function to describe the interface. This opens its application to dynamic
fluid-structure simulations. The methodology is validated by computing the equilibrium shapes of two
and three-dimensional vesicles, as well as the Clifford torus.

1. Introduction

Numerous modelling situations can be cast as mathematical problems where an interface motion is driven
by the minimisation of a geometric energy under geometric constraints. This is the case of multiphase flows,
image segmentation, or elastic interface modeling, to cite a few. The geometric quantities involved in energy
and constraints are for instance mean or gaussian curvature of interface, surface area or enclosed volume. The
algorithms and methods developed in this article give an efficient framework to address such situations.

Our work was motivated by one of this modeling situations that we now describe. Vesicles are systems of two
fluids separated by a bi-layer membrane of phospholipid molecules. These objects can be considered as a simple
model for Red Blood Cells (RBC). Since the number of such molecules is constant, this kind of interface has
constant area. Therefore, its shape is determined by high order energy, i.e. the mean curvature is minimised.
Moreover, there is no exchange across this interface, so that the enclosed volume is constant. Mathematically,
the problem of finding a surface minimising its mean curvature is the well known problem of Willmore [54]. In
this work however, we are interested in this minimisation under the conservation of area and enclosed volume.

The numerical simulation of vesicles involve the resolution of two-fluid flows (for the inner and outer fluids)
and fluid-structure interactions (for the membrane-fluids interaction), which is quite challenging: as a sharp
object, a singularity occurs across the membrane bringing stress jump, which should either be dealt with explicit
jump conditions, or appropriate numerical spreading. Since the membrane energy is of high gemoetrical order,
its gradient involves high order derivatives of the unknowns. In addition, the inextensibility of the immersed
interface usually accounted for using elastic tension energies with high modulus makes the resulting numerical
problem very stiff.

A lot of such numerical simulations have been carried out by different teams using many numerical methods.
To mention some representative works, we can cite the dynamic molecular method [38], the boundary integral
method [3], the phase field method (see for example [4, 59, 15, 34, 6]) or level set method [5, 35, 37, 50, 13]. [26]
also proposes a model for vesicles implemented using a Lattice Boltzmann Method.

In the context of finite-element methods coupled with level set technique we can cite [28, 13]. We can also
mention the work [24] based on a finite-element method where the membrane is modelled as a necklace of small
rigid particles.

In the work above, the nonlinear coupling between the fluid flow and the geometric description of interface is
usually made explicit, which leads to severe restriction on the time step during simulation. Or it could be solved
implicitly by a Newton-type method, which increases dramatically the cost per iteration. In [11], a semi-implicit
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scheme was proposed where an ad-hoc diffusion equation was used as a predictor step for the future position of
a drop or a simple elastic interface.

Our approach in this work had as primary aim to propose a systematic way to built a predictor of the
position of an interface with constant area and enclosed volume, when it moves to minimise high geomet-
rical order energies, such as its mean curvature. In order to build such a predictor, we extended diffusion-
thresholding/redistancing initiated in [41] and extended in [21, 18, 17, 27] to the case of area and enclosed
volume conservation.

Outline. The paper is organised as follows: in section 2 we remind diffusion-thresholding and diffusion-
redistancing schemes principles, and introduce a new methodology to write higher order motion schemes, such
as the Willmore flow, that we found more systematic than in [17]. Then we present a new efficient method to
take into account the area and enclosed volume constraints. In section 3 we address the problem of volume and
area conservation, introducing an explicit analytic method to project on the constraint set. Then a section is
devoted to numerical aspects of the implementation within finite-element approaches. We investigate in detail
how to choose an optimal time step and plot numerical convergence curves for a basic scheme and an enhanced
one. To evaluate the performance of the diffusion-redistanciation scheme without rescaling, we study the con-
vergence of a torus under unconstrained Willmore flow to the optimal Clifford torus. At last, we present some
numerical illustrations of the computation of 2D and 3D equilibrium shapes for vesicles that match well with
those obtained with classical numerical schemes.

2. Numerical schemes for higher geometrical motion of interfaces

The class of diffusion-generated motion was introduced by the work [41] of Merriman, Bence and Osher. They
proposed an efficient algorithm for computing the mean curvature flow of a surface (a curve in two dimensions)
without any direct computation of the mean curvature. The algorithm consists in repeating two steps, namely a
diffusion step (also named convolution step) and a thresholding step. During the diffusion step, the characteristic
function representing the surface is diffused for a certain time step, and the 1

2 iso-level moves depending on the
local curvature. A characteristic function is then recovered by thresholding the resulting function at 1

2 , allowing
to iterate the process.

Algorithm 1 Original Convolution-Thresholding scheme
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = 1
(n) for time δt

Construct the new characteristic function 1
(n+1) = 1{φ≥ 1

2
}.

The main advantage of this method is its simplicity and unconditional stability: the convolution step consists
in the resolution of a heat equation which can be achieved efficiently, while the standard phase field approach
would involve solving a more complicated non-linear equation or computing the curvature and solving a transport
equation.

Due to its conceptual simplicity and numerical efficiency, various extensions of the method have been proposed
since its introduction. The multiphase case is treated in [47] for junction with equal surface tensions and [16]
for arbitrary surface tensions. The idea for the former algorithm is essentially to diffuse each phase separately
and assign each point to the phase of maximal value. The later requires to modify the diffusion step to take
into account the different surface tensions. An area preserving motion by mean curvature can be found in [49]
by changing the threshold value from 1

2 to a real number λ found using a Newton method. We refer to the next
section for more details about area conservation.

Extensions of the convolution-thresholding method to the Willmore flow and other higher order geometric
motion, such as surface diffusion, have been proposed independently in [18, 21] in both two and three dimensions.
We recall that the Willmore flow is given by the following normal velocity :

W =

∆ΓH +
H3

2
in 2D

∆ΓH + 2H
(
H2 −K

)
in 3D.

(1)
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In [18] and [21], a local expansion of the convoluted characteristic function is performed and shows that the
velocity W appears at the second order of the diffused interface. More precisely, any point of the interface can
be relocated at the origin in a way that the normal to the curve is aligned with the y-axis. The behavior of the
point of interest during the convolution step is then described by the following expansion:

φ(δt) =
1

2
− 1

2
√
π
yδt−

1
2 +

1

2
√
π
κδ

1
2 − 1

4
√
π
Wδt

3
2 +O

(
δt

5
2

)
(2)

where φ(δt) denotes the function obtained by diffusing the characteristic function for a time δt. Thresholding
the result at φ(δt) = 1

2 then results in a normal displacement of the point by κδt, which gives the classical
mean curvature scheme. As the velocity term of interest for the Willmore flow can be found at the second order
in expansion eq. (2), one can then compute Willmore flow by extracting it with a linear combination of two
different solutions of the convolution step taken at different time steps that eliminates the curvature term. If
we note φ(δt) the function obtained by diffusing the characteristic function for a time δt, a correct combination
to achieve this is:

2φ
(√

δt
)
− φ

(
2
√
δt
)

= −y +Wδt+O
(
δt

3
2

)
At the expense of an additional diffusion at each step and an error of order δt

3
2 , we can write an algorithm

for the Willmore flow similar to the mean curvature one.

Algorithm 2 Convolution-Thresholding scheme for Willmore flow
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = 1
(n) for times t = 2

√
δt and t =

√
δt → φ

(
2
√
δt
)
, φ
(√

δt
)
.

Compute D = 2φ
(√

δt
)
− φ

(
2
√
δt
)
.

Construct the new characteristic function 1
(n+1) = 1{D≥ 1

2
}.

This method is highly valuable because it allows to compute a fourth-order flow without any derivation,
especially when using low order polynomial approximations. Moreover, the use of regularised interfaces in
phase-field methods makes the computation of the Laplace-Beltrami operator particularly difficult.

However the convolution-thresholding method has some indentified drawbacks. Its major issue is its inac-
curacy and its ability to get “stuck” when the mesh is not refined enough at the interface. More precisely, as
pointed out in [40], given a fixed uniform grid, if the motion during an iteration is smaller than the grid resolu-
tion, the thresholding step can reset the interface to its initial configuration and loop indefinitely. A solution to
this problem can be found in [48], where the authors use adaptative grids to refine the mesh near the interface
where the resolution is more important. Such adaptative strategy is also essential for accuracy considerations,
especially in the case of higher order flows, but can become very expensive in the dynamic case or in dimension
3.

An alternative approach to the problem is to allow the function to contain subgrid informations. In [17], the
authors replace to that end the characteristic function by a signed distance function and explore the motions
that can be obtained through the diffusion and the redistanciation of a signed distance function. A similar
expansion as eq. (2) of the solution of the heat equation starting from a distance function shows that the first
order term is still a mean curvature term. At the expense of a redistanciation step, though more costly than
the thresholding step, one can obtain significantly more accurate computations than the classical convolution
thresholding algorithm. However, second order term in this case is not the desired Willmore term anymore and
an additional correction is therefore necessary to compute the Willmore flow.

From a theoretical point of view, convergence of the classical algorithm of motion by mean curvature is well
understood and various proofs of the consistency of the scheme exist. Some are based on a comparison principle
[19, 2, 8], other are based on a gradient flow interpretation [1, 36]. Introduced in the two papers [16, 30], a new
interpration of the convolution-thresolding algorithm as a gradient minimising flow has initiated more recent
works on the subject [31, 32], while [58] relies on a formal matched asymptotic method. The extension to the
multiphase flow can be found in [30] and the case of volume-preserving motion is studied in [33, 43]. The recent
results on the gradient flow approach are reviewed in [29]. However, the convergence of higher order motions,
especially the Willmore flow, remains an open question.

In this section, we propose a new local expansion of the signed distance function near the interface. It yields
similar results to the one in [17] for the 2D case but our approach seems more intrinsic and its generalisation
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to higher dimensions and orders is straightforward. We propose diffusion-redistanciation algorithms to compute
the Willmore flow in 2D and 3D. As the term in the second order of the expansion is not quite the Willmore
term, one has to add a correction term. The 3D version in particular shows a completely new approach and
features a correction term using a diffusion of d2.

2.1. Expansion of a distance function convoluted by the heat kernel

As suggested by the previous work of Esedoglu, Ruuth and Tsai [17], the high-order geometrical motions of a
surface can be computed using the convolution of a distance function to this interface by the heat equation
kernel. In this section, we thus derive an expansion of the solution of the heat equation with a distance function
as its initial condition. In contrast with [17], we compute this expansion for both the two- and three-dimensional
cases using a fully implicit approach.

We consider d a signed distance function to some interface Γ, and introduce the heat equation:

∂tφ−∆φ = 0. (3)

supplemented with the initial condition:
φ(t = 0) = d. (4)

The Taylor expansion of the heat equation solution with respect to time then reads:

φ(δt) = φ(0) + ∂tφ(0) δt+ ∂ttφ(0)
δt2

2
+O

(
δt3
)

(5)

Recalling eq. (3) and the initial condition eq. (4), we then have ∂tφ(0) = ∆d and ∂ttφ(0) = ∆2d. We denote
w = ∆2d

2 and can then rewrite eq. (5) as:

Gδt ≡ φ(δt) = d+ ∆d δt+
∆2d

2
δt2 +O

(
δt3
)

= d+ ∆d δt+ w δt2 +O
(
δt3
)
.

(6)

Remark 1. When time discretisation of (3) will come into play, we will have to consider a second order scheme
to get the right expansion. Using a first order Euler scheme, which could be desirable for is stability properties,
leads to double the second order term magnitude. We refer to section 4.2 for more details.

By definition, ∆d is the total curvature of the local d iso-surface:

∆d = κ = (n− 1)H

with n the space dimension and H the mean curvature. We can also express ∆2d close to the interface Γ as
a function of the interface geometrical quantities, and in particular the Laplace-Beltrami divergence of the
curvature ∆Γκ = (n − 1)∆ΓH. More specifically, we have ∆Γf = ∆ (f(x− d∇d)) |Γ ≡ ∆ (f ◦ p) |Γ for any
f ∈ C2(Γ) [12], so that:

∆Γ(∆d) = ∆(∆d ◦ p)|Γ
= ∇i (∇jpi∇j∆d) |Γ
= ∇i ((δij −∇id∇jd− d∇i∇jd)∇j∆d) |Γ
=
[
−∆d∇N∆d−∇2

N∆d+ ∆2d− d∇i (∇i∇jd∇j∆d)
]
|Γ

where N ≡ ∇d is the interface normal and we have introduced the normal gradient ∇N ≡ N · ∇. Applying the
restriction to Γ ≡ {d = 0}, we finally obtain:

∆2d = ∆Γκ+∇2
Nκ+ κ∇Nκ (7)

We can also compute:
∇Nκ = ∇id∇i∇k∇kd

= ∇id∇k∇k∇id
= ∇k (((((((∇id∇k∇id)−∇k∇id∇i∇kd
= −Tr

[
(∇2d)2

]
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since the distance property |∇d| = 1 gives ∇id∇k∇id = ∇k|∇d|2/2 = 0. Recalling that ∇2d is the Weingarten
map of Γ, we can then write:

∇Nκ = −
∑
i

κ2
i =

{
− κ2

2K − κ2
=

{
−H2 in 2D

− 2
(
2H2 −K

)
in 3D

(8)

where we have introduced the principal curvatures κi, i = 1, . . . , n − 1, and the Gauss curvature K =
∏
i κi.

The second normal derivative can then be written as:

∇2
Nκ = ∇id∇i∇Nκ

= −2∇id∇i∇j∇kd∇k∇jd
= −2 [∇j (((((((∇id∇k∇id∇j∇kd)−∇j∇id∇k∇id∇j∇kd−((((((∇id∇k∇id∇j∇j∇kd]

= 2 Tr
[
(∇2d)3

]
that is:

∇2
Nκ = 2

∑
i

κ3
i =

{
2κ3

2κ
(
κ2 − 3K

) =

{
2H3 in 2D

4H
(
4H2 − 3K

)
in 3D.

(9)

Inserting eq. (8) and eq. (9) into eq. (7), we finally obtain:

∆2d ≡ 2w =

{
∆Γκ+ κ3

∆Γκ+ κ(κ2 − 4K)
=

{
∆ΓH +H3 in 2D

2
(
∆ΓH + 4H(H2 −K)

)
in 3D.

(10)

As expected, we observe that the second-order term in the expansion of the heat equation solution (6) feature
the required high-order geometrical quantities for the geometrical flows we are interested in. In the following,
we shall in particular devise specific algorithms for the simulation of Willmore flows, but the method presented
here is generic, and can be carried on at higher orders similarly.

2.2. Convolution of a generic function of the distance

For practical reasons that will prove useful thereafter, we consider in this section the expansion of the heat
equation solution eq. (3), but with the initial condition:

φ(t = 0) = f(d)

where f is some generic C∞ (R) function. Similarly to eq. (6), we denote Gδt the corresponding solution, and
write as before:

G(f)
δt = f(d) + ∆f(d) δt+ ∆2f(d)

δt2

2
+O

(
δt3
)
. (11)

Recalling that |∇d| = 1, and using the usual derivation rules, we can then compute:

∆f(d) = ∇ · (f (1)∇d) = f (2) + f (1)∆d

and:
∆2f(d) = f (4)(d) + 2f (3)(d)∆d+ f (2)(d)

[
(∆d)2 + 2∇N∆d

]
+ f (1)(d)∆2d

= f (4)(d) + 2f (3)(d)κ+ f (2)(d)
[
κ2 + 2∇Nκ

]
+ 2f (1)(d)w

≡ f (4)(d) + 2f (3)(d)κ+ 2f (2)(d)c+ 2f (1)(d)w

where we have introduced:

c ≡ κ2

2
+∇Nκ =


− κ2

2

2K − κ2

2

=

−
H2

2
in 2D

− 2(H2 −K) in 3D.
(12)

We eventually get:

G(f)
δt = f(d) + δt

(
f (2)(d) + f (1)(d)κ

)
+ δt2

(
f (4)(d)

2
+ f (3)(d)κ+ f (2)(d)c+ f (1)(d)w

)
+O

(
δt3
)
. (13)
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2.3. Expansion order selection

We now turn to the use of combinations of G for different time-steps in order to select the appropriate order
in the expansion eq. (6). To minimise assembly and preconditioner computation costs, we restrict our analysis
to the case of two different time-steps denoted αδt and βδt respectively. To simplify the notations, we denote
in the following Gα ≡ Gαδt and Gβ ≡ Gβδt. We then consider the general linear combination aGα + bGβ which
expansion writes:

aGα + bGβ = (a+ b) d+ (aα+ bβ) κδt+ (aα2 + bβ2) wδt2

To obtain the first- or second-order terms of eq. (6) independently, we need to choose a1, b1, a2, b2, α, and
β such that:

Order 1 : a1α+ b1β = 1, a1α
2 + b1β

2 = 0 (14)

Order 2 : a2α+ b2β = 0, a2α
2 + b2β

2 = −1 (15)

With the additional constraint that α > 0, β > 0, the general solution is:

β = α

√
−a1√
b1

, b2 = a2

√
b1√
−a1

.

We thus choose the following parameters:

α =
√

2, β =

√
2

2

a1 = −
√

2

2
, b1 = 2

√
2

a2 = −1, b2 = 2

so that:

a1 Gα + b1 Gβ =
3
√

2

2
d+ κδt+O

(
δt3
)

(16)

and:
a2 Gα + b2 Gβ = d− wδt2 +O

(
δt3
)

(17)

2.4. Willmore flow

In this section, we derive an algorithm which relies on solving heat equation problems starting from a distance
function to compute high-order motions of an interface in a two- or three-dimensional domain. We focus our
analysis more specifically to the Willmore flow, but the approach can be straightforwardly extended to a large
class of surface diffusion motions.

We consider the Willmore energy functional [61]:

EW (Γ) ≡
∫

Γ

H2. (18)

The surfaces which minimise eq. (18) over the set of one- or two-dimensional surfaces can be obtained from
the Willmore flow gradient descent, which moves iteratively some initial surface with the normal velocity WN
where (c.f. [61]):

W =

∆ΓH +
H3

2
in 2D

∆ΓH + 2H(H2 −K) in 3D.

For a surface Γ implicitely defined by the signed distance function as Γ =
{
~x ∈ R3, d(~x) = 0

}
, the Willmore

flow corresponds to a usual transport equation:

∂td+WN · ∇d = 0. (19)
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Recalling that ∇d = N , this amounts to solving ∂td+W = 0, or if we consider a first-order time-discretisation
with time-step δt,

d(p+1) = d(p) −Wδt. (20)

We can then observe that the right-hand side of eq. (20) can be obtained from the expansions of solutions to
the heat equation derived above. More precisely, the second order term wδt2 (eq. (10)) provides the required high-
order surface term ∆ΓH. This is reminiscent of the approach of [18, 21], where convolutions of the characteristic
function defining the interface are combined to evolve the interface according to the Willmore flow. However,
while the second-order terms appearing in the expansion of the convolution of the characteristic function by the
heat kernel provide the exact Willmore velocity, this is no more the case for the distance function, and we need
to add some correction terms in order to retrieve the correct Willmore flow.

We also stress that d(n)−Wδt is not in general a distance function, so that we need to add a redistantiation step
to iterate the process. This redistantiation is the counterpart to the thresholding step in the usual convolution-
thresholding algorithms for mean curvature [41] or higher-order [18, 21] motions using a characteristic function.
In the following, we denote Redist this redistantiation step, and will use a fast-marching algorithm to actually
compute it. We provide more details about our implementation in section 4.

2D case In 2D, the correction is rather simple, and only involves the curvature H3, namely:

W2D = 2w − H3

2
=

2

δt2
(d− a2 Gα − b2 Gβ)− H3

2
. (21)

The curvature H can be computed with different methods, including using the order-1 selection eq. (16),
the c correction term introduced above in eq. (12) or direct methods using ∆d. In our computations we will
use either the order-1 diffusion combination method or the c correction term computed with diffusions of d2

(c.f. eq. (23)) as for the three-dimensional case. We refer to section 4.3 for a discussion on the efficiency of each
method.

As pointed out in remark 1 and discussed in more details in section 4.2, the choice of the numerical scheme
used to solve the heat equation has an impact on the developement eq. (5). We present here algorithms using
either an implicit Euler or a Crank-Nicolson scheme and choose our combination accordingly.

Our diffusion-redistantiation algorithm for the Willmore flow of a curve in two dimensions finally writes:

Algorithm 3 2D Willmore flow
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =
√

2δt and t = δt/
√

2 → G√2δt, Gδt/√2.
Compute the curvature H.

Compute D =


DE = −1

2
G√2δt + Gδt/√2 +

H3

2
δt2

DCN = −G√2δt + 2Gδt/√2 +
H3

2
δt2

.

Compute the new signed distance function d(n+1) = Redist(D).

During our simulations, we however preferred to use an algorithm that computes the correction the same as
in the 3D case method using the convolution of d2, presented in the next paragraph, as it proved more robust in
some cases. The algorithm reads: Despite two additional convolutions, this algorithm seems to produce better

Algorithm 4 2D Willmore flow with alternative correction
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =
√

2δt and t = δt/
√

2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2 → Gd2√
2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd2√

2δt
+ Gd2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd2√

2δt
+ 2Gd2

δt/
√

2

)
· H

2
Compute the new signed distance function d(n+1) = Redist(D).
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results for our numerical experiments. It has the advantage of using a correction term which is already of order
two. We suspect that multiplying the correction by δt2 in the first version can have some detrimental numerical
effects due to the space discretisation errors.

3D case In 3D, the correction term is more complicated, as it involves both the mean and the gaussian
curvatures. More precisely, we have:

W3D = w − 2H(H2 −K) = w +Hc

where c is the term introduced in eq. (12). To compute this correction term c, we note from eq. (13) that we
need to choose f such that its second derivative does not vanish. To this end, we choose arbitrarily f(d) = d2

and introduce
Gd

2

α = d2 + 2αδt (1 + dκ) + 2(αδt)2 (c+ dw) +O
(
δt3
)
. (22)

so that we can extract the correction term from HGd2α .
However, using only Gd2α to compute c requires to compensate the zero- and first-order terms in eq. (22), which

can lead to large errors in particular regarding the 2δt d κ term. Note that while this latter term disappears as
h → 0 on the interface (as d|Γ = 0 by definition), the discrete term brings up O (h) errors which can be large
when in the δt order term. To prevent this, we choose to also select directly the second-order term in eq. (22)
using a linear combination as introduced in eq. (17). We thus use:

a2 Gd
2

α + b2 Gd
2

β = d2 − 2δt2 (c+ dw) +O
(
δt3
)
. (23)

Recalling W3D = w +Hc, and combining eq. (17) and eq. (23), we finally obtain:

W3D =
1

δt2

[
d− Hd2

2
− (a2 Gα + b2 Gβ) (1−H d)− H

2

(
a2 Gd

2

α + b2 Gd
2

β

)]
(24)

and our algorithm for the three-dimensional Willmore flow writes:

Algorithm 5 3D Willmore flow
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =
√

2δt and t = δt/
√

2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2 → Gd2√
2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd2√

2δt
+ Gd2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd2√

2δt
+ 2Gd2

δt/
√

2

)
· H

2
Compute the new signed distance function d(n+1) = Redist(D).

Remark 2. Note that the flow algorithms actually compute a gradient descent with step δt2. However, the
evolution and diffusion time-steps can easily be decoupled involving the ratio δtflow

δt2diff
, but our numerical tests

suggest that keeping this ratio close to 1 leads to the more stable simulations. This decoupling can nevertheless
prove useful to implement efficient backtracking methods for the choice of the flow time-step while avoiding
unnecessary resolutions of the diffusion equation.

3. Diffusion-redistancing schemes with volume and area conservation

Since we are interested in computing shapes in Rn, n = 2 or n = 3, we will in this chapter call volume the
measure with respect to the Lebesgue mesure of Rn and area the surface measure of hypersurfaces of Rn.
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3.1. Review of existing methods

Problems involving area or volume conservation were addressed in the framework of diffusion-redistanciation
schemes by [27], and their convergence properties in [33]. In [27], a new algorithm for area preserving flows in
two dimensions is introduced by considering normal velocities

vN = κ− κ̄+ S

where κ is the curvature, κ̄ its average on the interface, and S is an additional term which depends on the
application. The algorithm relies in 2D on a property linking the mean curvature with the surface area and the
genus number, which in case of a connected hypersurface S of genus 0 enclosing an open bounded set Ω, boils
down to

κ̄ =
2π

|S|
. Using the divergence theorem, one can then compute |S| with a volume integral as

|S| =
∫

Ω

∆d dx.

In the case where S = 0, to ensure an accurate volume conservation, a Newton method is applied to find a
real number λ∗ close to κ̄ computed above (which is used as initialisation) to correct the diffusion generated
motion by raising or lowering the convolution of the signed distance function (as was introduced the framework
of convolution-theresholding schemes by [49]). In the case n = 3, while the trick to compute efficiently the mean
curvature is not anymore valid, we could still apply the method by computing numerically the mean of the
mean curvature.

The level-set community has also developed several techniques to address volume conservation [57, 56, 46] in
the modelling of multiphase flows. This corresponds to correct the Hamilton-Jacobi equation of the redistanci-
ation step by a term which ensures that conservation. Namely, the following equation:

∂τφ = sgn(φ0)(1− ‖∇φ‖) + λf(φ)

is solved with λ computed so that
∫

Ωij
H(φ)dx is conserved on each cell Ωij of the grid, and f chosen to localise

around the interface.
An even more straightforward approach is a post- or preprocessing trick due to Smolianski [55] in the level-

set framework, where a raising parameter for the level-set function is explicitly computed to restore the target
volume. The trick relies on an expansion of the volume enclosed by a level-set in terms of the height of this
level-set:

|{φ− δc < 0}| :=
∫
{φ<δc}

1dx = |{φ < 0}|+ δc

∫
{φ=0}

1dσ + o(δc)

Therefore starting from a reference volume V0, one can define δc so that |{φ− δc < 0}| = V0 + o(δc) by setting:

δc =
V0 − |{φ < 0}|
|{φ = 0}|

.

Regarding the conservation of the surface area, one approach, proposed in the context of vesicle or red blood
cell simulations is to relax this conservation by introducing an area change energy with a high stiffness. In [9, 10]
the authors showed that such an energy could be expressed thanks to ‖∇φ‖ which records the area change of
level-sets of φ when φ is advected by a divergence free vector field. By taking a high areal tension stiffness,
‖∇φ‖ is kept close to 1 in a neighbourhood of the interface. In practice, this however induces a high stiffness of
the numerical method, which leads to severe time step constraints. Another approach is to enforce exact zero
surface divergence of the velocity field which advects the level-set function. This can be done using Lagrange
multipliers [13, 28], leading to good area conservation, but at the expense of a bad conditioning of the underlying
linear systems to be solve at each iterations, which increases the computational cost.

In this work, we introduce a correction in the spirit of Smolianki’s trick to conserve both the volume and the
area. From an optimisation point of view, our method can be regarded as a projection method, and the whole
contrained Willmore flow as some kind of projected gradient method.
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3.2. Raising a level-set function to achieve some given area and enclosed volume

Obviously, we cannot in general fullfil both the area and volume constraints by adding a constant to a level-set
function. So let us look at the case where we would add a non-constant function δc : Ω → R to an arbitrary
level-set function φ. Let H denote a one dimensional smoothed Heaviside function and ζ its derivative. A typical
choice is:

H(r) =


1
2

(
r + 1 + 1

π sin(πr)
)
|r| < 1

0 r ≤ −1

1 r ≥ 1

and ζ(r) =

{
1
2 (1 + cos(πr)) |r| < 1

0 |r| ≥ 1
(25)

We can then compute the enclosed volume of the raised level-set:

|{φ− δc < 0}| = lim
ε→0

∫
Ω

H
(
−φ− δc

ε

)
dx

= lim
ε→0

∫
Ω

H
(
−φ
ε

)
dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
δc dx+O

(
δc2
) (26)

Note that if one adds to a level-set function a δc which averages to zero on {φ = 0}, the enclosed volume
does not change.

Let us have know a look at the area, where we have to take care that φ − δc is not in general a distance
function:

|{φ− δc = 0}| = lim
ε→0

∫
Ω

1

ε
ζ

(
φ− δc
ε

)
|∇(φ− δc)|dx+O

(
δc2
)

= lim
ε→0

∫
Ω

1

ε
ζ

(
φ

ε

)
|∇φ|dx−

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
|∇φ|δc dx−

∫
Ω

1

ε
ζ

(
φ

ε

)
∇φ · ∇δc
|∇φ|

dx+O
(
δc2
)

Integrating by parts in the last term:

−
∫

Ω

1

ε
ζ

(
φ

ε

)
∇φ · ∇δc
|∇φ|

dx =

∫
Ω

div

(
1

ε
ζ

(
φ

ε

)
∇φ
|∇φ|

)
δc dx

=

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
∇φ · ∇φ
|∇φ|

δc dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
div

(
∇φ
|∇φ|

)
δc dx

=

∫
Ω

1

ε2
ζ ′
(
φ

ε

)
|∇φ|δc dx+

∫
Ω

1

ε
ζ

(
φ

ε

)
κδc dx

where κ is the total curvature as introduced above. We finally get:

|{φ− δc = 0}| = |{φ = 0}|+ lim
ε→0

∫
Ω

1

ε
ζ

(
φ

ε

)
κδc dx+O

(
δc2
)

(27)

Note that when φ is a distance function φ = d, the volume and area of the perturbed level-set d− δc simplify
to formulae involving only “surface” integrals :

|{d− δc < 0}| = |{d < 0}|+
∫
{d=0}

δc dσ +O
(
δc2
)

which boils down to the Smolianski formula when δc is constant, and

|{d− δc = 0}| = |{d = 0}|+
∫
{d=0}

κδc dσ +O
(
δc2
)
.

Given a target volume V0 and area A0, we propose the following fast method to correct a level-set function
so that its zero level-set achieves those targets.
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1. Raise φ by a constant λ to achieve the right enclosed volume:

λ =
V0 − |{φ < 0}|∫

Ω
1
εζ
(
φ
ε

)
dx

(28)

2. Raise φ̃ = φ+λ by µ(κ− κ), which does not change the enclosed volume, where the constant µ and κ are
given by:

µ =
A0 − |{φ̃ = 0}|∫

Ω
1
εζ
(
φ̃
ε

)
κ(κ− κ) dx

=
A0 − |{φ̃ = 0}|

(κ2 − κ2)
∫

Ω
1
εζ
(
φ̃
ε

)
dx

κ =

∫
Ω

1
εζ
(
φ̃
ε

)
κ∫

Ω
1
εζ
(
φ̃
ε

) (29)

Remark 3. In the practical numerical computations, the “thickness” ε of the interface is kept finite and pro-
portional and close to the mesh size h: ε ∈ [h; 3h], following the usual level-set approach.

Clearly, the method fails if κ2 = κ2, which is the case for a circle (resp. sphere). But in that case the perimeter
(resp. area) and enclosed area (resp. volume) are linked and one cannot set one independently of the other.

Let us investigate how the former restoring of volume and area change the energy we are minimising. Assuming
an energy of the form:

E [φ] =

∫
Ω

Edνε

where dνε = 1
εζ(φε )dx and, with a gradient which can be written as

dE [φ](ψ) =

∫
Ω

Fψdνε.

Proposition 1. Let us consider a gradient-corrected method to minimise E iteratively by alternating steepest
descent with corrections stages 1 and 2 described above. Then, at first order in the descent parameter, the energy
does not increase during this iteration.

Proof. A steepest descent method to minimise this energy amounts to change φ to φ+ψ with ψ = −ρF , which
decreases the energy, at first order, by ρ

∫
Ω
F 2dνε.

But this motion changed the enclosed volume and the area of interface. The volume is now |{φ+ ψ < 0}|
which correspond at first order to a change of ρ

∫
Ω
Fdνε. Therefore the λ parameter computed above is equal

to:

λ = ρ

∫
Ω
Fdνε∫

Ω
dνε

=: ρ−
∫

Ω

Fdνε

where from now on, we will denote with a dashed integral sign the mean value, i.e. the integral divided by the
measure of the set (with respect to νε) onto which the integral is taken:

−
∫

Ω

Fdνε =
1

νε(Ω)

∫
Ω

Fdνε

The descent motion and this volume correction change the area by:

ρ

∫
Ω

Fκdνε − λ
∫

Ω

κdνε = ρ

∫
Ω

F (κ− κ)dνε.

Thus the second step, area correction, computes a correction ν(κ− κ) with:

µ = ρ
−
∫

Ω
F (κ− κ)dνε

κ2 − κ2
.

Those two corrections raise the energy by:

λ

∫
Ω

Fdνε + µ

∫
Ω

F (H −H)dνε = ρνε(Ω)

[(
−
∫

Ω

Fdνε

)2

+

(
−
∫

Ω
F (H −H)dνε

)2
H2 −H2

]
.
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Finally, the two successive corrections would not raise the energy more than it has been decreased by the descent
method provided that the following inequality holds:(

−
∫

Ω

Fdνε

)2

+

(
−
∫

Ω
F (H −H)dνε

)2
H2 −H2 ≤ −

∫
Ω

F 2dνε.

This is the object of the following lemma. We therefore justified that our descent-correction method does not
increase energy, at least in this first order analysis.

Lemma 1. Let (X,Σ, µ) be a measure space, and A a measurable subset of X with µ(A) < +∞. Let f, g ∈ L2(A)
with −

∫
A
gdµ = 0. Then: (

−
∫
A

fdµ

)2

−
∫
A

g2dµ+

(
−
∫
A

fgdµ

)2

≤ −
∫
A

f2dµ−
∫
A

g2dµ (30)

Proof. This is an easy extension of the Cauchy-Schwarz inequality. Indeed applying the latter for f − −
∫
A
fdµ

and g we have: (
−
∫
A

(
f −−

∫
A

fdx

)
gdµ

)2

≤ −
∫
A

(
f −−

∫
A

fdµ

)2

dµ−
∫
A

g2dµ

Since g is of zero mean on A, we have for the left hand side of the former inequality,

−
∫
A

(
f −−

∫
A

fdµ

)
gdµ = −

∫
A

fgdµ

while concerning the right hand side we observe that:

−
∫
A

(
f −−

∫
A

fdµ

)2

dµ+

(
−
∫
A

fdµ

)2

= −
∫
A

f2dµ

which leads to eq. (30).

Remark 4. In order to prevent undesired effects from outside of the neighbourhood of the interfacen we can
slightly alter the method during the step recovering the area. We rescale with the function µ(κ− κ̄) 1

εζ
(
φ
ε

)
rather

than µ(κ− κ̄). This amounts to choose δc = (κ− κ̄) 1
εζ
(
φ
ε

)
in eq. (27) and to redefine κ̄ (resp. H̄ as:

κ̄ =

∫
Ω

1
ε2 ζ

2
(
φ
ε

)
κ∫

Ω
1
ε2 ζ

2
(
φ
ε

)
In our simulations, we fix the value of the rescaling term µ(H− H̄) outside of the neighbourhood of the interface
in order to have a neutral effect.

Remark 5. An alternative option is to rescale the volume and the area during the same step by solving the
following system:  ∫

Ω
1
εζ
(
φ
ε

) ∫
Ω

1
εζ
(
φ
ε

)
H∫

Ω
1
εζ
(
φ
ε

)
H

∫
Ω

1
εζ
(
φ
ε

)
H2

 · (λ
µ

)
=

(
V0 − |{φ < 0}|
A0 − |{φ = 0}|

)
The first equation (resp. the second) corresponds to the volume expansion eq. (26) (the area expansion eq. (27))
with δc = λ+µH. It is important to note that the constant part µH̄ of the area term is absorbed inside λ. Both
versions are equivalent in theory and yield similar numerical results.

3.3. Willmore flow with volume and area conservation constraints

Combining the algorithms algorithms 3 and 5 for the Willmore flow derived in the previous section and the
above method to recover volume and area, we can obtain an algorithm to compute the Willmore flow in both
dimension 2 and 3 with conservation of volume and area.

The principle is to alternate one diffusion step moving according the Willmore flow and recovering the volume
and area constraints before the redistanciation. Using proposition 1 we can ensure that the energy has globally
decreased at the end of one whole step of the method.

The algorithms in 2D and 3D write:
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Algorithm 6 2D Willmore flow with constant volume and area
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =
√

2δt and t = δt/
√

2 → G√2δt, Gδt/√2.
Compute the curvature H.

Compute D =


DE = −1

2
G√2δt + Gδt/√2 +

H3

2
δt2

DCN = −G√2δt + 2Gδt/√2 +
H3

2
δt2

Compute H(D) and its mean H(D).
Compute λ:

λ =
V0 − |{D < 0}|
|{D = 0}| .

Compute µ:

µ =
A0 − |{D = 0}|∫

ΩH(H −H) 1
ε
ζ
(
D
ε

)
dσ
.

Construct the new signed distance function d(n+1) = Redist
(
D + λ+ µ(H−H)

)
.

Algorithm 7 3D Willmore flow with volume and area constraints
while t < tf do

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n) for times t =
√

2δt and t = δt/
√

2 → G√2δt, Gδt/√2.

Solve ∂tφ−∆φ = 0 with initial condition φi = d(n)2 for times t =
√

2δt and t = δt/
√

2 → Gd2√
2δt
, Gd2

δt/
√

2
.

Compute the curvature H.

Compute D =


DE =

Hd(n)2

2
+

(
−1

2
G√2δt + Gδt/√2

)
·
(

1−Hd(n)
)

+

(
−1

2
Gd2√

2δt
+ Gd2

δt/
√

2

)
· H

2

DCN =
Hd(n)2

2
+
(
−G√2δt + 2Gδt/√2

)
·
(

1−Hd(n)
)

+
(
−Gd2√

2δt
+ 2Gd2

δt/
√

2

)
· H

2
Compute H(D) and its mean H(D).
Compute λ:

λ =
V0 − |{D < 0}|
|{D = 0}| .

Compute µ:

µ =
A0 − |{D = 0}|∫

ΩH(H −H) 1
ε
ζ
(
D
ε

)
dσ
.

Construct the new signed distance function d(n+1) = Redist
(
D + λ+ µ(H −H)

)
.
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4. Numerical method and practical implementation

4.1. Finite Element library

The equations and integrals introduced above are solved or evaluated within a finite-element framework, using
the Feel++–finite-element C++ library [45, 44], and in particular the LevelSet framework from the Feel++
toolboxes [42], which features a comprehensive and seamless parallel set of tools for this kind of surface tracking
methods.

More precisely, we use a continuous Galerkin variationnal approach, and discretise the resulting equations
in space with Lagrange polynomials. Introducing Th ≡ {Ke, 1 ≤ e ≤ Nelt} a compatible tessellation of the
computational domain Ω, and the corresponding discrete – unstructured – mesh Ωh =

⋃Nelt

e=1 Ke, we define
Pkh ≡ Pkh (Ωh) as the finite-element space on Ωh spanned by Lagrange polynomials of order k.

4.2. Solving the diffusion equation

From a numerical perspective, our Willmore flow algorithms 3 and 5 mainly involve solving the diffusion equation
∂tφ−∆φ = 0 with appropriate initial and boundary conditions. To this end, we use the Pkh finite-element space
discretisation introduced above, and a – second order inconditionnally stable – Crank-Nicolson scheme for the
time discretisation. The corresponding discrete variational problem then writes:

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh ,∫
Ωh

(
φ(n+1)

δt
ψ +

1

2
∇φ(n+1) · ∇ψ

)
=

∫
Ωh

(
φ(n)

δt
ψ − 1

2
∇φ(n) · ∇ψ

)
+

∫
∂Ωh

(
N · ∇φ(n)

)
ψ

(31)

where the superscript indices denote the time iterations. Note that the last term in eq. (31) comes from the
integration by parts of the diffusive terms, and is somehow similar to an explicit discrete Neumann boundary
condition preserving the normal gradient of φ, namely N · ∇φ(n+1) = N · ∇φ(n) with N the exterior normal at
the boundary of Ωh. In practice, the best choice of boundary conditions for our distance diffusion problem is
an open question, since no natural condition emerges from our analysis, which focuses on the neighborhood of
the interface Γ, far from the domain boundary.

As pointed out in remark 1, we would also like to use in some situations an Euler scheme, which is low order
and diffusive, which may be more adapted in this context than a dispersive scheme. In that case one should
directly use the discrete expansion, which differs at order two (since the scheme is order one):

φn+1 − δt∆φn+1 = φn

indeed gives
φn+1 = (id−δt∆)−1(φn) = φn + δt∆φn + δt2∆2φn + o(δt2) (32)

which differs from of (5) by a factor 2 in the second order term. The corresponding discrete variational problem
then simplifies to:

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh ,∫
Ωh

(
φ(n+1)

δt
ψ + ∇φ(n+1) · ∇ψ

)
=

∫
Ωh

φ(n)

δt
ψ +

∫
∂Ωh

(
N · ∇φ(n)

)
ψ

(33)

In our numerical results, both schemes give qualitatively the same equilibrium shapes. However the Crank-
Nicolson scheme seems more accurate, while the Euler scheme was preferred in dimension 3 where its diffusive
behavior brings more stability and smoothness of the interface.

4.3. Computation of the curvature

Our algorithms for the Willmore flow in both 2D algorithm 3 and 3D algorithm 5 require the computation of
the curvature of the surface Γ in the correction term. We first present the direct methods currently used in
Feel++. We then introduce our diffusion methods to compute the curvature, which are essentially the classical
convolution/thresholding algorithms of order 1 and 2. Using the direct methods as references, we discuss the
efficiency of our method and focus on the choice of the time step selection for the diffusion steps.
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4.3.1. Direct methods

From a usual level-set perspective, the curvature of Γ can be computed directly using the divergence of the level-
set function ∆d. For low-order discretisations however, this requires the use of specific strategies, as standard
finite-element derivation decreases the discretisation polynomial order by 1, which forbids derivations of degrees
higher than the polynomial order. To circumvent this issue, we use a classical Galerkin projection in L2(Ωh) to
maintain the element in P1

h. Namely the computation of the gradient ∇d is as following:

Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v

We can then obtain the curvature with two successive derivation/projection steps by computing the divergence
of the gradient of the distance function:

(1) : Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v

(2) : Find H ∈ P1
h s.t. ∀w ∈ P1

h,∫
Ωh

Hw =

∫
Ωh

div g w

(34)

However the L2 projection fills the missing information of the lower order elements with noisy values, so that
one usually resort to a smoothed L2 projection method, where a small diffusion term −η∆H is added:

(1) : Find g ∈ P1
h s.t. ∀v ∈ P1

h,∫
Ωh

g · v =

∫
Ωh

∇d · v

(2) : Find H ∈ P1
h s.t. ∀w ∈ P1

h,∫
Ωh

Hw + η

∫
Ωh

∇H · ∇w − η
∫
∂Ωh

∇H ·Nw =

∫
Ωh

div g w.

(35)

where the smoothing coefficient η must be adjusted depending on the situation. We will refer to eq. (34) as the
L2 projection and to eq. (35) as the Smoothed projection method.

4.3.2. Using the diffusion of the signed distance function

As mentioned above, we can also retrieve the curvature of the surface represented with the level-set using the
diffusion of the signed distance function. Recalling the analytical expansion of the diffusion solution eq. (6), we
observe that the curvature of the surface shows up in the first order term in δt, and can thus be retrieved as:

H =
Gδt − d

(n− 1)δt
+O(δt). (36)

As explained in section 2.3, at the expense of an additional resolution of the diffusion equation, we can
improve the order of accuracy and compute the combination eq. (16) which eliminates the second order term.
We can then compute H at order δt2 as:

H =
a1Gα + b1Gβ − 3

√
2

2 d

(n− 1)δt
+O(δt2) (37)

In the following we shall refer to the O(δt) method eq. (36) as the Order 1 diffusion and the O(δt2) method
eq. (37) as the Order 2 diffusion. Keep however in mind that these approximation orders refer to the auxiliary
diffusion time-step and not to the usual space discretisation order.
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Before comparing these diffusion methods to the direct ones mentioned above 4.3.1, we shall first study in
more details the role of the diffusion time-step. Figure 1 shows the evolution of the L2 error of the curvature
computed with both diffusion methods as a function of the diffusion time-step. The numerical test was performed
on a two-dimensional circular surface of curvature 1 with a mesh size h ≈ 0.02, and the error was computed as

err(H; Γ) =

∫
Ω

(H −Hth)
2 1
εζ
(
φ
ε

)
∫

Ω
1
εζ
(
φ
ε

) . (38)
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Fig 1: L2 error on curvature estimates using the Order 1 eq. (36) and Order 2 eq. (37) diffusion methods as a
function of the diffusion time-step δt. We observe the expected convergence orders as the time-step decreases,
and a saturation of the error for low time-steps which is related to space discretisation error terms.

As expected, we observe convergence of both methods at order O(δt) and O(δt2) respectively, as well as a
saturation of the error for small time-steps, which is due to the spatial discretisation errors. We also note that
the Order 2 diffusion method features an optimal error for larger time-steps, which can prove useful when using
the same time-step for the flow and the diffusions (c.f. remark 2).

These numerical observations, as well as the analytic expansion of Gδt also suggest to choose the time-step
following the heuristic strategy:

H̃δt ≈ h (39)

with H̃ an a priori estimate of the typical curvature of the surface. From a numerical point of view, this
corresponds to having the diffusion move the d = 0 level-set a few mesh elements. This heuristic can also be
adapted to the case of geometrical flow simulations, and naturally formulates an adaptive time-stepping method,
as presented in section 4.5.

4.3.3. Comparaison of the different methods

We now turn to the comparison of the “direct” and “diffusion” curvature methods presented above. We again use
a fixed two-dimensional circular interface of radius 1, and vary the characteristic mesh size h used to compute
the L2 error on the curvature estimate along the surface as a function of h for the four methods. We set the
smoothing parameters η = 0.03h and the diffusion time-steps as δt = 0.7h. The resulting errors are plotted in
log-log scale in fig. 2.

We find that the Order 1 and Order 2 diffusion methods behave similarly, and compare accurately with
the Smoothed projection method. These three methods give O(h) convergence, which is satisfactory for our
low-order discretisation. As anticipated, the L2 projection method does not seem to converge.
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In our simulations, we shall therefore use the Order 2 diffusion method, as the two diffusion equation reso-
lutions for Gα and Gβ are needed anyway for the computation of the Willmore flow, and this method provides
the best curvature estimate at no additional cost.

10−2 10−1

10−2

10−1

1

h

err (H; Γ)

Order 1 diffusion
Order 2 diffusion
L2 projection
Smoothed projection

Fig 2: Evolution of the L2 error as a function of the mesh size for the different methods. The L2 projection
shows no evident convergence while the Order 1 diffusion, the Order 2 diffusion and the Smoothed projection
methods yield linear convergence.

4.4. Level-set redistanciation

The redistanciation step is a crucial aspect of our algorithm, as it allows the iteration to proceed while preserving
the correct expansions of the diffusion solutions close to the interface. This step can moreover become the main
bottleneck of the whole algorithm in terms of both efficiency and stability if not processed carefully. From a
general point of view, performing the Redist step in algorithms 3 and 5 amounts to computing the distance to
an interface Γ located by the 0-level of some function. Stated differently, we need to solve the eikonal equation:

|∇φ| = 1, φ(Γ) = 0 (40)

which is a challenging boundary-value non-linear equation which has received much attention since the work of
Sethian [53] who proposed an iterative upwind fast-marching algorithm to solve the eikonal equation starting
from the interface and propagating the information outward.

In our finite-element framework, we use a parallel fast-marching algorithm inspired from [62] but adapted to
arbitrary – possibly unstructured – meshes. The local – element-wise – eikonal equations are solved with a QR
decomposition, and the fast-marching alternates between local-domain solves and ghost inter-domain updates
until global convergence is obtained.

In order to ensure good stability properties of our method, and in particular to prevent the fast-marching
method from introducing spurious motion of the interface, the initialisation of the algorithm near the implicitly
defined interface is crucial. To this end, we rescale the level-set function φ by 1

|∇φ| on the elements which
intersect the interface, which exactly solves the local eikonal equation in the linear – P1

h – case, before applying
the fast-marching algorithm both inward (φ < 0) and outward (φ > 0) starting from the values encompassing
the interface.
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4.5. Adaptive time-stepping

As can be seen from eq. (17), given some δt in the resolution of the heat equations, our diffusion-redistanciation
schemes actually solves the corresponding Willmore flow with time-step δt2, namely

d(n+1) = d(n) −Wδt2.

The flow time-step is therefore not constrained by any stability issue, but controls the accuracy of the solution,
since the expansions performed in section 2.1 are valid up to terms of order O(δt3).

The O(h) errors pertaining to the computation of φ(n+1) in eq. (31) using P1
h Lagrange elements and the

expansion (6) however suggest to use a time-step like

δt ∼ h

κ

in the heat equation. This obviously requires the a priori computation of the interface curvature, which is not
desirable in our framework. Instead, we therefore use an explicit adaptive time-stepping strategy by setting

δt(n+1) = min
Γ

(
h

κ(n)

)
(41)

where κ(n) is the curvature at the previous iteration and h is a measure of the mesh size, here considered for
elements crossed by the interface – e.g.the minimal diameter of the elements crossed by the {φ(n) = 0} level-set.

5. Numerical illustrations

In this section, we illustrate the efficiency our methods by applying them to two classical applications. First,
we apply our 3D algorithm for the Willmore flow algorithm 5 to the Willmore problem. Then we apply our
algorithm for Willmore flow with area and volume conservation algorithm 7 to the computation of an equilibrium
shape of a red blood cell.

5.1. Willmore problem

The Willmore problem refers to the study of the minimisers of the Willmore energy function EW . The case of
compact surfaces of genus 0 is trivial as the minimisers are the spheres – recall that the Willmore energy being
scale invariant, all the spheres have the same energy.

In the case of compact surfaces of genus 1, the Clifford torus, the torus with a ratio
√

2 between its radii,
minimises the Willmore energy. The proof of this conjecture made by Willmore [60] in 1965 has been established
recently in [39]. The conjectures for higher genus order [23] are still to be proven.

In the following, we present 2D and 3D simulations of such simple surfaces which evolve according to the
Willmore flow using our diffusion-redistanciation algorithms. The existence of analytic minimisers will then
provide solid means to evaluate our numerical approach.

5.1.1. 2D Willmore flow of a circle

To assess the accuracy of our diffusion-redistanciation scheme, we first simulate an initial two-dimensional
circular interface evolving according to the Willmore flow, which can also be computed analytically. As it
evolves with the flow, the interface sould remains circular, and increase it radius r as

r(t) = (r0 + 2 t)
1/4 (42)

with r0 the initial radius. Note that this law, which comes from the analytic flow equation dr
dt = H3

2 = 12r3

provides a good test of our algorithm, since the right hand side is actually obtained through a delicate compen-
sation between the second-order term w (c.f. (10)) in the diffusion of d and the correction term c obtained with
the diffusion of d2 (c.f. (12)).
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Our simulation was run with r0 = 1 in a square domain of side length 6 with an unstructured mesh of typical
size h ≈ 0.02 and the adaptive time-step strategy presented in section 4.5.

Figure 3 shows some snapshots of the simulation and the evolution of the circle radius. It illustrates the
numerical accuracy of our scheme, which succeeds in preserving the symmetry of the shape as it evolves, and
compares quantitatively with the exact solution.
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(a) Snapshots of the interface at times t = 0, 1, 2 and 3.
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Fig 3: 2D Willmore flow of a circle.

5.1.2. 3D Willmore flow of a torus

The convergence of a torus toward Clifford torus, whose ratio between major and minor radii equals
√

2, is a
good test for our numerical approach, as it challenges both the accuracy of the numerical flow and the stability
of the algorithm as it approaches the minimising surface, which features a rather small hole, which can easily
be filled by an inaccurate flow to minimise the energy further, as the Willmore energy of any sphere – 4π – falls
below the minimal one for torii, which is 2π2.

Simulations have been performed using a phase-field model in [6] but the results are only qualitative. To the
extend of our knowledge, there is no other published numerical work to compare with our results.

Figures 4 and 5 show the results of our three-dimensional Willmore flow algorithm 5 starting from a torus
with major a = 2 and minor b = 0.5 radii. The simulation was run in a cuboid with lengths 6 × 4 × 6 and an
unstructured mesh of typical size h ≈ 0.02. We observe that the surface flows to the expected Clifford torus,
and that the estimated resulting energy and radii ratio are in good agreement with the expected values for such
a torus.

5.2. Vesicles equilibrium shapes

We now consider the simulation of vesicles, which provide the most popular and simple model for capsules,
closed thin shell or cells, like human red blood cells. From a physical point of view, the model consists in an
elastic thin shell of fixed area enclosing some incompressible fluid, so that the inner volume is also fixed. As
such, the vesicle only deforms through bending of the shell, and is thus controlled by a Willmore-like – or
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(a) t = 0 (b) t = 0.015 (c) t = 0.03
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κ

Fig 4: 3D Willmore flow of a torus toward the Clifford torus. The evolving surface is colored with the value of
the curvature while the Clifford torus is represented in semi-transparent white.
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Fig 5: Willmore energy and geometrical quantities of the torus. We observe that the flow decreases the energy
to about 20.8, which is within 5% from the theoretical Clifford torus energy 2π2 ≈ 19.74. We also observe that
at equilibrium, the ratio between the radii is indeed about

√
2.

Canham-Helfrich energy [22, 7] (see e.g. [51] for a presentation of the model in a biological context), which
reduces to the standard Willmore energy when the membrane has no spontaneous curvature, which we assume
in this work.

In the following, we shall use our diffusion-redistanciation algorithms with the constraints of constant volume
and area of the evolving surface to compute the 2D and 3D equilibrium shapes of vesicles with various reduced
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volumes. The resulting equilibrium shapes are compared to the ones from the literature when available, and
assessed from energetical and stability points of view to illustrate the good properties of our numerical method.

5.2.1. Computation of the equilibrium shapes of 2D vesicles

We first consider the two-dimensional case, and compute the Willmore flow under the constraint of constant
inner volume and surface area of an initial ellipse with semi-minor and -major axes adjusted according to a
chosen reduced volume

ν =
4πV

A2
=

V

π
[
A
2π

]2 (43)

The reduced volume represents the ratio between the volume of the ellipse and the volume of a circle of same
area. Note that the conservation of both the volume and area of the vesicle naturally entails that the reduced
volume is also preserved.

The simulations were run in a square domain [−4, 4]2 with a structured triangle mesh with mesh size h = 0.04
and adaptive time-step strategy. We illustrate the convergence of our method to an equilibrium shape in fig. 6
and compare our results with the ones obtained using a lattice-Boltzmann method in [26] in fig. 7. We observe
that the shapes computed with our algorithm are in excellent agreement with the ones obtained from direct
lattice-Boltzmann simulations. We also illustrate the good volume and area conservation properties of our
algorithm in fig. 8. The evolution of the Willmore energy along the flow is shown in fig. 9.

5.2.2. Computation of vesicles equilibrium shapes in 3D

The landscape of vesicle equilibrium shapes is much more rich in three dimensions, as the Gauss curvature
comes into play and allows for multiple local minima for shapes with the same topological class and invariants.
Axisymmetric equilibrium shapes have been mapped out in a phase diagram in [52], and some non-axisymmetric
shapes have been computed in [25, 14, 15, 6], but the general phase diagram for Willmore energy minimisers is
still an open question.

In our case, we consider the evolution of ellipsoids under the constant volume and area Willmore flow. As
such, we expect to recover the prolate and oblate axisymmetric shapes of zero genus and spontaneous curvature
referenced in [52] depending on the initial – conserved – reduced volume,

ν =
6
√
πV

A
3
2

=
V

4
3π
[
A
4π

] 3
2

. (44)

As shown in [52], the prolate and oblate shapes are both local minimisers for ν ≈ 0.51. While the prolate
shapes exist for all possible ν, the oblate ones selfintersect below ν ≈ 0.51, and the stomatocyte shapes become
the only non-prolate feasible minimisers. In this work, we restrict ourselves to ν ≥ 0.6, and study both the
oblate and prolate cases, as our algorithm appears able to capture the local minimising shapes in a stable way.

Fewer quantitative works are available for comparison in this three dimension case. We can mention [4, 14,
20, 15] where a mix of qualitative and quantitative results are presented. In [4, 14], a phase field method was
developed and qualitative results were given. In [15] an adaptive version of the phase field model was proposed
with some quantitative results in terms of energy, which are hard to compare with theoretical known values of
Seifert [52]. The approach of Feng and Klug [20] is based on surface finite element and is more quantitative in
its results as far as the energy is concerned.

Oblate case The oblate case simulations were run in a cuboid with lengths 3.6 × 6.4 × 6.4 and mesh size
h ≈ 0.04. The initial level-set functions were taken as signed distance functions to oblate ellipsoids with semi-
minor axis a and semi-major axes b = c adjusted to get a volume 4π

3 for all the simulations and a corresponding
reduced volume ν = 0.6, 0.65, 0.7, 0.8 or 0.9.

Figure 10 shows the equilibrium shapes obtain with our constrained diffusion-redistanciation algorithm 7
for the different reduced volumes. We also show two-dimensional cuts of these equilibrium shapes in fig. 11 to
illustrate the good symmetry conservation properties of our algorithm. Figures 12 and 13 show the evolution of
the Willmore energy, and the area and enclosed volume of the surface as it evolves.
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Fig 6: Convergence of algorithm 6 to an equilibrium shape for the ν = 0.5 case, starting from an ellipse with
semi-major and -minor axes 2.09021 and 0.478421.

Prolate case The prolate case simulations were run in a cuboid with lengths 9×4×4 and mesh size h ≈ 0.04.
The initial level-set functions were chosen as in the oblate case, but using prolate ellipsoids.

The resulting equilibrium shapes and cuts are shown in figs. 14 and 15 respectively, while figs. 16 and 17
show the evolution of the surface energy, area and enclosed volume.

We can observe for all the – oblate and prolate – three-dimensional vesicle simulations that the computed
equilibrium shapes are axisymmetric as expected, even though our algorithm does not enforce this property.
We also note that our algorithm seems very robust in this case from the energy minimisation point of view, as
it reaches the minimum rather quickly and then preserves it for a long time without any numerical artifact.

To compare our results quantitatively, we plot in fig. 18 the equilibrium energies of our vesicles together
with the ones obtained in [52] and [20]. We also highlight the numerical convergence of our method in fig. 19
where we plot the relative error of the Willmore energy of our final equilibrium shape (for the reduced volume
ν = 0.65) as a function of the mesh size. Our results seem in good agreement with the ones obtained with direct
energy minimisation or meshed surface evolution, despite a small ∼ 10% overestimate for the oblate smallest
reduced volume cases, which seem related to typical finite-element numerical errors. As shown in fig. 19, the
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Fig 7: Comparison of the 2D equilibrium shapes obtained by algorithm 6 with the ones obtained by [26] using
a lattice-Bolzmann method for reduced volumes ν = 0.9, 0.8, 0.7 and 0.6. We also give our result for a reduced
volume ν = 0.5.

3.14

3.14

vol.

0 5 · 10−2 0.1
6.62

6.62

6.63

t

area

(a) ν = 0.9

3.14

3.14
vol.

0 5 · 10−2 0.1

7.02

7.03

t

area

(b) ν = 0.8

3.14

3.14

vol.

0 5 · 10−2 0.1

7.5

7.51

t

area

(c) ν = 0.7

3.14

3.14
vol.

0 5 · 10−2 0.1

8.1

8.11

8.12

t

area

(d) ν = 0.6

3.14

3.14
vol.

0 5 · 10−2 0.1

8.88

8.89

8.9

t

area

(e) ν = 0.5

Fig 8: Evolution of the 2D vesicle volume and “area” (perimeter in this case) with the volume- and area-preserving
algorithm 6. The algorithm displays very good conservation properties : the relative volume and area changes
are less than respectively 1 · 10−4 and 5 · 10−4 for the most difficult ν = 0.5 case, and the final equilibrium
shapes volumes and areas relative changes are . 1 · 10−5 for all the cases.

equilibrium shape energy converges to the expected value (taken from [52] for this axisymmetric case) as h0.84,
which is rather positive for low-order (P1) simulations of such high-order effects.

6. Conclusion

We propose in this article a numerical method to predict the position of an interface in 2D or 3D moving
according to the gradient of an higher order energy such as the squared mean curvature (Willmore flow) and
subject to constraint of area and enclosed volume conservation. This problem is of interest to devise semi-
implicit schemes for fluid-structure solvers where the full interaction between immersed vesicles and fluids are
involved. As a first step, the present work was restricted to the motion of vesicles membranes minimising their
mean curvature at fixed surface area and enclosed volume. The test case considered corresponds to reach an
equilibrium shape starting from an ellipsoid, depending on its closeness to a sphere or more elongated shape.



/ 24

0 5 · 10−2 0.1

8.5

8.6

8.7

8.8

t

EW

(a) ν = 0.9

0 5 · 10−2 0.1

10

10.5

11

11.5

t

EW

(b) ν = 0.8

0 5 · 10−2 0.1

12

13

14

15

t

EW

(c) ν = 0.7

0 5 · 10−2 0.1
12

14

16

18

20

t

EW

(d) ν = 0.6

0 5 · 10−2 0.1

15

20

25

t

EW

(e) ν = 0.5

Fig 9: Evolution of the Willmore energy EW =
∫

Γ
H2 (18) of the 2D vesicle with the volume- and area-preserving

algorithm 6.
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Fig 10: 3D oblate vesicles equilibrium shapes obtained with algorithm 7 for the reduced volumes ν = 0.9, 0.8,
0.7, 0.65 and 0.6.

Even in this delimited setting, the problem is tricky since the constraints are highly nonlinear and the energy
involved of higher order. Classical approaches through level-set or phase field methods lead to fourth order
PDE to solve, while purely Lagrangian methods dealing with a surface mesh are not well suited to be included
in a fluid-structure coupling procedure due to the interpolations required between Eulerian and Lagrangian
representations. In this work, we build a method where only heat equations are solved to compute the right
flow of the mean curvature energy.

Based on diffusion-redistanciation schemes introduced in [17], our first contribution was to provide a more
intrinsic formulation of these methods, which opens the way to study more easily other kind of higher order
energy. While this study focused on the mean curvature flows, one could for instance also consider problems
where the Gaussian curvature is involved. We also extended our geometrical flows algorithms to the evolution of
surfaces with conserved area and enclosed volume. The originality of our approach relies on a formula providing
explicitly the projection of the unconstrained Willmore flow on motion conserving area and enclosed volume.
This is a big advantage in comparison to other methods where the area constraint is penalised (and therefore
not exactly fulfilled or leading to stiff problems) or nonlinearly enforced (at a high computational cost).

Our first test case was devoted to the torus, where we observed convergence to the Clifford torus as expected.
Our methodology enjoys numerical convergence and compares well with existing numerical results to compute
equilibrium shapes of vesicles in dimension 2. In dimension 3, while our results are in good agreement for prolate
forms, some discrepancy occurs for oblate vesicle shapes. This is due to the low order of the finite element method
used (P1 element), in contrast with the C1 surface finite element representation of [20]. However we observe
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Fig 11: Cut slices in the x − y, x − z and y − z planes of the 3D oblate vesicles equilibrium shapes displayed
in fig. 10. These cuts highlight the good symmetry preserving property of our algorithm despite the absence of
any symmetry enforcing method.
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Fig 12: Evolution of the 3D oblate vesicle volume and area with the volume- and area-preserving algorithm 7. The
3D algorithm also displays good conservation properties: the relative volume and area changes are respectively
. 5 · 10−5 and . 2 · 10−4 for all the cases.

numerical convergence in dimension 3 as well. The use of polynomial discretisation with higher regularity (such
as Hermite elements) would likely cure that problem without any further modification of our algorithm. One
remarquable feature of our algorithm is to provide consistent results without any mesh refinement strategy. This
is of paramount importance for its possible use in a full three-dimensional fluid-structure problems, where such
remeshing could very quickly lead, for realistic situations, to untractable computational complexity.

Another big advantage of our approach is to be very easy to implement: high order geometric quantities are
computed from diffusion equation of a distance function, which is easily handled by any finite element library.

In a forthcoming work, we will use such a predictor of motion to devise a semi-implicit scheme for the full
fluid-membrane coupling problem.
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Fig 13: Evolution of the Willmore energy EW =
∫

Γ
H2 (18) of the 3D oblate vesicle with the volume- and

area-preserving algorithm 7.
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Fig 14: 3D prolate vesicles equilibrium shapes obtained with algorithm 7 for the reduced volumes ν = 0.9, 0.8,
0.7, 0.65 and 0.6.
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in fig. 10. These cuts highlight the good symmetry preserving property of our algorithm despite the absence of
any symmetry enforcing method.
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Fig 16: Evolution of the 3D prolate vesicle volume and area with the volume- and area-preserving algorithm 7.
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