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Activation of MUC1 mucin expression
by bile acids in human esophageal
adenocarcinomatous cells and tissues
is mediated by the
phosphatidylinositol 3-kinase
Christophe Mariette,a,b,* Guillaume Piessen,a,b,* Emmanuelle Leteurtre,a,c Brigitte Hémon,a

Jean-Pierre Triboulet,b and Isabelle Van Seuningen,a Lille Cedex, France

Background. In esophageal adenocarcinoma, MUC1 mucin expression increases in early stages of the
carcinogenetic sequence, during which bile reflux has been identified as a major carcinogen. However, no
link between MUC1 overexpression and the presence of bile acids in the reflux has been established so far,
and molecular mechanisms regulating MUC1 expression during esophageal carcinogenetic sequence are
unknown. Our aim was to identify (1) the bile acids able to upregulate MUC1 expression in esophageal
cancer cells and mucosal samples, (2) the regulatory regions in MUC1 promoter responsive to bile acids,
and (3) the signaling pathway(s) involved in this regulation.
Methods. MUC1 mRNA and mucin expression were studied by the means of real-time reverse
transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry, both in the human
esophageal OE33 adenocarcinoma cell line and in an ex vivo explant model. MUC1 promoter was
cloned and transcription regulation was studied by transient cell transfection to identify the bile
acid--responsive regions. Signaling pathways involved were identified using specific pharmacologic
inhibitors and siRNA approach.
Results. Taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, sodium glycocholate, and
deoxycholic bile acids upregulated MUC1 mRNA and protein expression. The highest induction was
obtained with deoxycholic and taurocholic acids in both cellular and explant models. The bile acid--
mediated upregulation of MUC1 transcription occurs at the promoter level, with responsive elements
located in the -1472/-234 region of the promoter, and involves the phosphatidylinositol 3-kinase
signaling pathway.
Conclusions. Bile acids induce MUC1 mucin overexpression in human esophageal adenocarcinoma cells
and tissues by activating its transcription through a process involving phosphatidylinositol 3-kinase.
(Surgery 2007;j:j-j.)
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ADENOCARCINOMA OF THE ESOPHAGUS, the incidence of
which has profoundly increased during the past
few decades,1,2 has one of the poorest outcomes
of all human malignancies. The major risk factors
for the development of esophageal adenocarci-
noma are gastroesophageal reflux disease and its
sequela. Barrett’s esophagus is a condition in
which metaplastic columnar epithelium replaces
the normal stratified squamous epithelium.3-5

Increased intragastric concentrations of bile acids
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have has been observed in patients with Barrett’s
esophagus, and it has been suggested that incomplete
intestinal-type metaplasia may be a response to reflux
of gastroduodenal contents and, in particular, to bile
acids.6,7 Moreover, duodenoesophageal bile reflux
has recently been identified as a predominant and
sufficient carcinogen to induce esophageal adenocar-
cinoma in Barrett’s esophagus in a rat model.8,9

Endoscopic surveillance of patients with known
Barrett’s esophagus is the current strategy to manage
the risk of cancer formation, targeted at the detec-
tion of dysplasia. Unfortunately, data suggest that
dysplasia is an imperfect predictor of cancer risk in
Barrett’s esophagus.10 Thus, an earlier indicator of
cancer risk would be detection of DNA damage itself
before the histologic manifestations of dysplasia are
even apparent. The identification of molecular
biomarkers may offer easy reproducibility, standardi-
zation, and truly early detection of neoplastic pro-
gression. Among them, mucins appear as good
candidates to evaluate, because their expression is
altered dramatically in Barrett’s esophagus.5,11,12

In normal esophagus, mucins protect the under-
lying mucosa against potential injuries such as
reflux of gastroduodenal contents including bile
acids.13 Among the members that compose the fam-
ily of mucins, membrane mucins are thought to play
important roles in tumor cell biology, cell prolifera-
tion, tumor progression, and metastasis.11 MUC1 is
the best-characterized membrane mucin.14 It is a
large O-glycoprotein with an extended, heavily gly-
cosylated extracellular domain that protrudes far
away from cellular membrane (200 to 500 nm).
This structural feature confers to MUC1 the ability
to participate in cell-cell and cell-extracellular ma-
trix recognition processes.11,15 Consequently, over-
expression of MUC1 membrane mucin at the cell
surface provides the cancer cell with new biologic
properties by altering its interacting properties
with immune, epithelial, or endothelial cells or the
extracellular matrix.14,15 Moreover, MUC1 is known
to interact with the EGF-receptor and participate in
intracellular signaling.14 These peculiar structural
features and biologic activities put forward mucins
as important molecules to study in order to better
understand their role in carcinogenesis and biology
of the cancer cell.11,16,17

In normal esophagus, MUC1 and MUC4 are the
main mucin genes expressed in the stratified
squamous epithelium.12,18 In the preneoplastic
Barrett’s esophagus, secreted mucins are expressed
mainly (MUC2, MUC5AC, MUC5B, MUC6) associ-
ated with MUC1 and MUC4.5,18-20 In high-grade
dysplasia and adenocarcinoma of Barrett’s esopha-
gus, downregulation of secreted mucins is observed,
FLA 5.0 DTD � ymsy1671 � 12 Nove
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whereas expression of MUC1 and MUC4 mucin
genes is sustained at high levels.12,13,20,21 From these
results, several groups18,19 have been considering
MUC1 as a valuable phenotypic marker to distin-
guish between Barrett’s esophagus patients with dif-
ferent origins and those at risk to develop neoplasia
in Barrett’s esophagus. Finally, bile acids can acti-
vate the expression of 2 mucins found in Barrett’s
esophagus, the secreted mucin MUC222 and the
membrane mucin MUC4,21,2 suggesting a relation
between increased mucin expression and progres-
sion of esophageal cancer associated with bile
reflux; however, at this time, no data are available
to explain the upregulation of MUC1 in Barrett’s
esophagus associated with reflux.

In relation with MUC1 overexpression during
the development of esophageal adenocarcinoma
in Barrett’s esophagus and the role of bile acids in
Barrett’s metaplasia and its consequent degenera-
tion into esophageal adenocarcinoma, we under-
took in this work to identify (1) the bile acids
responsible for the upregulation of MUC1 mucin
in esophageal cancer cells and explants, (2) the
regulatory regions responsive to bile acids in
MUC1 promoter, and (3) the signaling pathway(s)
involved in this regulation.

MATERIAL AND METHODS

Cell culture. The esophageal cancer cell line
OE33 was purchased from the European Collec-
tion of Cell Cultures (ECACC) and cultured as
described previously.21 Cells were treated with bile
acids and their conjugates for 24 hours with the
following concentrations as previously described21:
taurocholic acid (TC), 0.5 mM; taurodeoxycholic
acid (TDC), 1 mM; taurochenodeoxycholic acid
(TCDC), 0.5 mM; glycocholic acid (GC), 0.5 mM;
sodium glycocholate (GNa), 0.5 mM; and deoxy-
cholic acid (DC), 0.05 mM. In inhibition studies,
pharmacologic inhibitors were incubated with the
cells for 30 minutes prior to the addition of bile
acids at the following final concentrations: wort-
mannin (2.5 nM, inhibitor of PI3K), PD98059
(30 mM, inhibitor of MAPK; Calbiochem, VWR
International S.A.S., France), U0126 (10 mM, in-
hibitor of MEK; Promega, Charbonnières, France),
GF109203X (10 mM, inhibitor of PKC; Calbio-
chem), and KT5720 (1 ng/ml, inhibitor of PKA;
Calbiochem). All reagents were from Sigma (St
Louis, Mo, USA) unless otherwise indicated.

Toxicity of each bile acid was evaluated under
the same experimental conditions by trypan blue
exclusion measurement on a hemocytometer.
Effects of bile acids on cell proliferation and
apoptosis were studied by immunochemistry, using
mber 2007 � 10:56 pm � ce 34
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monoclonal anti-Ki67 (dilution of 1:50; Dako/
Dakocytomaton, Trappes, France) and polyclonal
anticleaved caspase-3 (dilution of 1:150; Cell Sig-
naling, Ozyme, France) antibodies, respectively.
Level of caspase-3 mRNA was also evaluated by
reverse transcriptase-polymerase chain reaction
(RT-PCR) using a specific pair of primers (MWG-
Biotech, Germany) for caspase-3 gene: forward
primer: 5’-TATGGTTTTGTGATGTTTGTCC-3’, re-
verse primer: 5’-TAGATCCAGGGGCATTGTAG-3’
(GenBank accession no. G10724). Annealing tem-
perature was 55�C. Expected size for caspase-3 PCR
product is 195 basepairs (bp).

RT-PCR. Total RNA from OE33 cells or esoph-
ageal tissues were prepared using the RNeasy mini-
kit or midi-kit (Qiagen, Courtaboeuf, France),
respectively. To prepare cDNA ((Advantage RT-
for-PCR kit; Clontech, Saint-Germain-en-Laye,
France), 1.5 mg (0.4 mg for tissues) of total RNA
was used, as described previously.24 PCR was per-
formed on 2 ml (5 ml for tissues) of cDNA using a
specific pair of primers (MWG-Biotech, Germany)
for MUC1 mucin gene (GenBank accession
no. J05582): forward primer : 5’-GAACTACGGG
CAGCTGGACATC-3’ (nucleotides 3639-3661), re-
verse primer : 5’-GCTCTCTGCGCCAGTCCTCC
TG-3’ (nucleotides 4065-4086).25 PCR reactions
were carried out in 50 ml final solutions as de-
scribed previously.26 Annealing temperature was
60�C. PCR products were analyzed on 1.5% aga-
rose gels containing ethidium bromide run in
13 Tris-borate-ethylenediamine tetraacetic acid
(EDTA) buffer. A 100 bp DNA ladder was pur-
chased from Amersham Biosciences. Ribosomal
18S subunit (forward primer: 5’-GGACCAGAGGC
AAAGCATTTGCC-3’; reverse primer: 5’-TCAATCT
CGGCTGGCTGAACGC-3’) was used as the inter-
nal control. In siRNA experiments, GAPDH (for-
ward primer: 5’- TGAAGGTCGGAGTCAACGGAT
TTGGT-3’; reverse primer: 5’- CATGTGGGCCATG
AGGTCCACCAC-3’) was used as the internal con-
trol. A specific pair of primers for PI3K p110 subu-
nit (forward primer: 5’–ACAATGCCTCCAAGACC
ATCATC-3’; reverse primer: 5’–CATACATTGCTC
TACTATGAGGTG-3’) was used to evaluate effec-
tiveness of PI3K knockdown.27 Expected sizes for
MUC1, 18S, GAPDH, and PI3K p110 PCR products
are 447, 496, 980, and 499 bp, respectively. RT-PCR
was carried out on cDNAs from 3 different sets of
experiments.

Immunohistochemistry. After treatment with
bile acids, confluent OE33 cells were trypsinized,
centrifuged, washed once with 1x phosphate-buff-
ered saline (PBS). The final pellet was fixed in 4%
(w/v) paraformaldehyde and embedded in
FLA 5.0 DTD � ymsy1671 � 12 Nove
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paraffin; 3-mm sections were prepared and pro-
cessed for immunostaining, as described before.21

Positive controls for MUC1 were run on normal
alveolar pulmonary epithelium. Negative control
was run by omission of the primary antibody. Cell
counting for MUC1, caspase-3, and Ki67 positivity
was performed by 2 independent pathologists.
The monoclonal anti-MUC1 antibody (LICR-
LON-M8, 1:50 dilution) recognizes the DTR epi-
tope within the tandem repeat region of MUC1
and was a kind gift from Dr D. Swallow (MRC, Lon-
don, England).28

Tissue sample collection and explant studies.
Surgical biopsy specimens were collected from
patients who underwent curative esophagectomy
by 1 surgeon (C.M.) for Barrett’s adenocarcinoma
without neoadjuvant treatment. Macroscopic ade-
nocarcinoma mucosal samples of 1-mm thickness
and weighing more than 20 mg were removed
from the surgical specimen under sterile condi-
tions using a frozen scalpel immediately after the
vascular section. Consent was obtained from each
patient included in this experimental study.

For the explant studies, tissues were placed
immediately in supplemental medium and cul-
tured under the same conditions used for the
cell culture experiments. Tissues were exposed to
each bile acid for 30 minutes at the concentrations
used in cell culture studies. In all experiments, a
control sample was included by treating the ex-
plant with an identical volume of sterile water.
Samples were then divided into 2 parts using asep-
tic technique. One part was immersed in 5 ml of a
4% neutral formaldehyde solution (v/v, pH 7.4) in
phosphate buffer and processed for paraffin
embedding. The diagnosis of adenocarcinoma mu-
cosa was confirmed by 2 pathologists after staining
the section (4 mm) with hematoxylin-eosin-saffron.
The second part was immersed overnight in 5 ml
of RNA later solution (Qiagen) and processed for
RNA extraction as described above.

Western blotting. OE33 total cellular extract
preparation, protein electrophoresis, and Western
blotting were carried out as described previously.23

Standard immunodetection procedure was then
performed using the following specific antibodies:
anti-p38 MAPK (1:1000 dilution), anti–stress-acti-
vated protein kinase/Jun-terminal kinase (SAPK/
JNK, 1:1000 dilution) rabbit polyclonal antibodies
(Cell Signaling), anti-active p38 (1:2000 dilution),
and anti-active JNK (1:5000 dilution) rabbit poly-
clonal antibodies (Promega). Secondary antibody
consisted of antirabbit IgG alkaline phosphatase-
conjugate (Promega). Blots were then incubated
with Nitro Blue Tetrazolium Chloride and
mber 2007 � 10:56 pm � ce 34
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Table I. Sequences of the pairs of primers used in PCR to produce deletion mutants of MUC1 promoter in
pGL3 basic vector

Position on the promoter Primer sequence (59/39) Orientation

-233/+33 CGC GGT ACC CAG GGA GTG GTT GGT GA Sense
CGC GGT ACC GAT TCA GGC AGG CGC TGG Antisense

-616/+33 CGC GGT ACC CAA GGA GGG AAC CCA GGC Sense
CGC GGT ACC GAT TCA GGC AGG CGC TGG Antisense

-1472/+33 CGC GGT ACC CTG CTC CCC AAA GGA TAG Sense
CGC GGT ACC GAT TCA GGC AGG CGC TGG Antisense

KpnI cloning site is italicized and underlined.
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5-bromo-4-chloro-3-indolyl phosphate substrate
(Life Technologies), and the reaction was stopped
in water.

Cloning of the MUC1 promoter. The pMAH-
MUC1 vector, which contains 2.8 kb of MUC1
promoter in pT7-Luc vector, was a kind gift from
Dr M. A. Hollingsworth (UNMC, Omaha, Neb,
USA). Internal deletion mutants were generated
by PCR using pairs of primers bearing KpnI restric-
tion site at their 5’end (Table I). PCR reaction was
performed as described previously on 0.46 mg of
plasmidic DNA with a specific annealing tempera-
ture of 70�C. PCR products were digested with
KpnI restriction enzyme (Roche Biochemicals,
Meylan, France), gel-purified (QIAquick gel ex-
traction kit, Qiagen) and ligated into the promo-
terless pGL3 Basic vector (Promega), which had
been linearized previously with KpnI using a
DNA rapid ligation kit (Roche Biochemicals). Pos-
itive clones containing the insert were sequenced
on both strands on an automatic LI-COR se-
quencer (ScienceTec, Les Ulis, France) using infra-
red-labeled RV3 and GL2 primers (Promega).
Plasmids used for transfection studies were pre-
pared using the Endofree plasmid Mega kit
(Qiagen).

Transfections. Transfections were performed
using Effectene reagent (Qiagen), as described
previously.29 Cells were passed at 0.5 3 106 cells/
well the day before the transfection. Luciferase
activity was corrected for transfection efficiency
by cotransfecting cells with pRL-TK vector (Prom-
ega). Total cell extracts were prepared after a
48-hour incubation time at 37�C using 13 Passive
Lysis Buffer (Promega), per manufacturer’s in-
structions. Luciferase activities were measured on
a TD 20/20 luminometer (Turner Design). The
relative luciferase activity was expressed as fold in-
duction of the test plasmid activity compared with
that of the corresponding empty vector. In bile
acids experiments, relative luciferase activity was
expressed as fold activation of luciferase activity
in bile acid-treated cells compared with untreated
FLA 5.0 DTD � ymsy1671 � 12 Nove
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and repeated 3 times.
Small interfering RNA (siRNA) assays. OE33

cell seeding (15 3 103 cells/well) and transfections
were performed as described previously23 with 100
nM of PI3K SMARTpool siRNA, using 1 ml of
DharmaFECT1 transfection reagent (Dharmacon,
Brebières, France). Controls included mock trans-
fected cells, cells transfected with siCONTROL
non-targeting siRNA, or siCONTROL GAPD
siRNA. Bile acid treatment was performed 24
hours after transfection and lasted 24 hours, as
described above. Total RNA was isolated 48 hours
after transfection, as described above. Each siRNA
was assayed in triplicate in at least 3 separate exper-
iments. PCR was performed on 5 ml of cDNA, as
described previously. Densitometric analysis of
DNA bands was carried out using the GelAnalyst-
GelSmart software (Clara Vision). Results were
expressed as MUC1/GAPDH and PI3K p110/
GAPDH ratio.

Statistics. When indicated, data were analyzed
by the Mann-Whitney U test with differences of
P < .05 considered significant.

RESULTS

Regulation of MUC1 mRNA expression by bile
acids in OE33 cancer cells. The level of MUC1
mRNA expression in OE33 cancer cells treated
with different bile acids was assessed by RT-PCR
(Fig 1, A). The level of MUC1 mRNA in untreated
cells (lane 1) was increased substantially after cell
treatment with taurocholic acid (TC, lane 2), taur-
odeoxycholic acid (TDC, lane 3), taurochenodeox-
ycholic acid (TCDC, lane 4), glycocholic acid (GC,
lane 5), sodium glycocholate (GNa, lane 6), and
deoxycholic acid (DC, lane 7). The highest induc-
tion (4.5-fold) was obtained with DC. Other bile
acids (cholic acid, chenodeoxycholic acid, dehy-
drocholic acid, and cholic methylester) previously
shown to activate MUC4 mucin expression21 were
studied but had no effect on MUC1 (data not
shown).
mber 2007 � 10:56 pm � ce 34
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Fig 1. Effect of bile acids and their conjugates on expression of MUC1 mRNA and of MUC1 apomucin in OE33 cancer
cells. A, Cells were treated with indicated bile acids for 24 hours, as described in Material and Methods. MUC1 and 18S
PCR products (7.5 ml and 4 ml, respectively) were separated on a 1.5% agarose gel containing ethidium bromide after
electrophoresis in 1X Tris-borate-EDTA buffer. Immunohistochemistry was performed as described in Material and
Methods. B-C, Untreated cells. B, Alcian blue staining; C, MUC1 immunostaining; D-I, MUC1 immunostaining after
treatment with TC (D), TDC (E), TCDC (F), GC (G), GNa (H) and DC (I). Original magnification 3200.
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sion in OE33 cancer cells. Having shown that
MUC1 mRNA expression was upregulated by bile
acids, we examined whether that regulation had
an impact on the expression of MUC1 apomucin
(Figs 1, B-I, and Table II). Untreated OE33 cells
showed a relatively low degree of differentiation,
because no vacuoles and a few grains of secretions
were detected (Fig 1, B). When immunostained
with anti-MUC1 antibody, 1% to 5% of the cells
were labeled positively (Fig 1, C). The staining
was seen in the membrane and cytoplasm (Fig 1,
C, arrow). The labeling became very intense and
up to 90% of the cells were stained positively for
MUC1 when they were treated with TC (Fig 1,
D), TDC (Fig 1, E), TCDC (Fig 1, F), GC (Fig 1,
G), GNa (Fig 1, H), and DC (Fig 1, I).

Bile acid treatment under the same conditions
did not induce any change in the morphology of
FLA 5.0 DTD � ymsy1671 � 12 Nove
the cells (compare Figs 1, B and C [untreated cells]
with Fig 1, D-I [bile acid–treated cells]) nor did it
induce cell death, because trypan blue exclusion
measurements were similar in untreated and bile
acid–treated cells (0% to 1% dead cells). Absence
of effect on apoptosis was also observed by study-
ing caspase-3 expression at the mRNA and protein
levels. No induction of caspase-3 mRNA (Fig 2, A)
or cleaved caspase-3 protein level (Figs 2, B-D and
Table II) was observed after bile acid treatment. Fi-
nally, under our experimental conditions, bile
acids did not alter cell proliferation because the
number of cells immunostained for the prolifera-
tion marker Ki67 was similar in untreated cells
(Fig 2, E) and bile acid–treated cells (Fig 2, F
and Table II).

Effect of bile acids on the expression of MUC1
mRNA in adenocarcinomatous esophageal mu-
cosa. MUC1 regulation by bile acids was also
mber 2007 � 10:56 pm � ce 34
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Table II. Effect of bile acids and their conjugates on MUC1 apomucin expression, cell death (trypan blue),
apoptosis (caspase-3), and proliferation (Ki67) in OE33 cancer cells

Control TC TDC TCDC GC GNa DC

MUC1 1-5 89 85 91 90 82 92
Trypan blue 0-1 0-1 0-1 0-1 0-1 0-1 0-1
Caspase-3 <1 <1 <1 <1 <1 <1 <1
Ki67 90 85 93 94 86 85 85

Cells were treated with the indicated bile acids for 24 hours and processed for immunostaining with anti-MUC1, anticleaved caspase-3, and anti-Ki67
antibodies (Material and Methods). Percentage of positive cells was calculated by 2 independent pathologists.
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studied in an ex vivo organ culture model. To this
aim, surgical specimens of adenocarcinomatous
esophageal mucosa from 9 patients were cultured
and exposed to bile acids. Expression of MUC1 was
assessed by RT-PCR and immunochemistry. The
means ratio of MUC1 mRNA expression over 18S
from the 9 samples is shown in Fig 3, A. A 2-fold
induction of MUC1 mRNA level was observed in
explants treated with TDC (Fig 4, B, lane 3),
TCDC (lane 4), GC (lane 5), and GNa (lane 6).
When treated with TC (lane 2) and DC (lane 7) a
4- to 4.5-fold induction was obtained. The increase
of MUC1 mRNA could not be correlated to an in-
crease of MUC1 apomucin expression by immuno-
chemistry because of an already high level of
MUC1 expression in the control samples (90% to
100% of cells were MUC1-positive [data not
shown]). These results, however, indicate that
bile acids are able to activate MUC1 expression at
the mRNA level in explants and that TC and DC
are the most potent activators in OE33–cultured
cancer cells and in mucosal explants.

Identification of bile acid--responsive regions in
the MUC1 promoter. To identify bile acid--responsive
regions responsible for MUC1 transcriptional upregu-
lation, 1.47 kb of the MUC1 promoter was cloned into
promoterless pGL3 basic vector (Fig 4, A). The 3 con-
structs used in this study were active in OE33 cells (Fig
4. B). The fragment that covers the first 233 nucleo-
tides of the promoter was already very active (15-fold
activation). The activity increased to 40-fold activation
when the intermediate -616/+33 deletion mutant was
transfected. With the longest fragment (-1472/+33),
the activity went up to 50-fold, indicating that all the
elements necessary for maximal activity of MUC1
promoter were present in the 1.47 kb region.

To identify bile acid--responsive regions within
the MUC1 promoter, transfected cells were treated
with bile acids for 24 hours (Fig 1) before measure-
ment of luciferase activity. Promoter activity was
then compared between bile acid–treated cells
and untreated cells. As shown in Fig 4, C, a 2- to
2.5-fold activation of the -616/-234 promoter re-
gion (gray bars) indicated that TC- and GC-
FLA 5.0 DTD � ymsy1671 � 12 Nove
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of the promoter. For TDC and DC, similar activa-
tions (2-fold) of -1472/+33 and -616/+33 regions
were observed, indicating that responsive elements
for these 2 bile acids are present in the -1472/-234
region of the promoter. In contrast, responsive el-
ements for TCDC and GNa were present within the
more distal region -1472/-762 (2.5- and 2.2-fold
activation [black bars]).

PI3K signaling pathway mediates upregulation
of MUC1 by bile acids in OE33 cells. Having
shown that bile acids regulate MUC1 expression
at the transcriptional level in OE33 cells, we
worked to identify the signaling pathway(s) re-
sponsible for that regulation. To this aim, OE33
cells were pretreated for 30 minutes with specific
pharmacologic inhibitors of PI3K, MAPK, PKC,
and PKA, which are known to be activated by bile
acids,21,30-33 before adding bile acids to the cells
for another 24 hours. Inhibition of MAPK
(PD98059, U0126), PKC (GF109203X), or PKA
(KT5720) did not alter the level of MUC1 mRNA
in the cells, indicating that these pathways were
not involved (data not shown). We also used West-
ern blotting analysis to determine whether the
other 2 MAPK pathways (p38 MAPK and SAPK/
JNK) were activated by bile acids. No variation in
the level of phosphorylation of these 2 kinases,
however, was visualized, indicating that these path-
ways are not triggered by bile acids under these
conditions (data not shown). In contrast, inhibi-
tion of PI3K pathway with wortmannin (w) before
cell treatment with TC, TDC, TCDC, and DC in-
duced a substantial decrease of MUC1 mRNA level,
which then returned to the basal level (Fig 5, A,
lanes 3, 5, 7, and 13 vs lanes 2, 4, 6, and 12). Inhibi-
tion of PI3K signaling pathway before cell treat-
ment with GC and GNa had no effect on MUC1
mRNA level (compare lanes 9 and 11 to lanes 8
and 10).

The direct implication of the PI3K signaling
pathway in bile acid regulation of MUC1 endoge-
nous expression was then assessed by performing
knockdown assays with specific siRNA for PI3K
mber 2007 � 10:57 pm � ce 34
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Fig 2. Effect of bile acids and their conjugates on apoptosis and proliferation in OE33 cancer cells. A, Level of caspase-3
mRNA by RT-PCR in untreated cells (lane 1) and bile acid-treated cells (lanes 2-7) as described in Material and Methods.
Caspase-3 and 18S PCR products (15 ml and 4 ml, respectively) were analyzed on a 1.5% agarose gel. Cleaved caspase-3
immunostaining in untreated cells (B) and after treatment by TC (C) and TCDC (D). Original magnification 3200.
Ki67 immunostaining in untreated cells (E) and after treatment by TDC (F). Original magnification 3200.
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(Fig 5, B). The results showed that knockdown of
PI3K significantly (P < .05) inhibited TC–, TDC–,
TCDC–, and DC–mediated increase of MUC1
mRNA level (73% ± 11%, 52% ± 19%, 44% ± 7%,
and 84% ± 2% inhibition, respectively). This indi-
cates that PI3K mediates MUC1 endogenous ex-
pression in response to these bile acids.
Treatment of cells with GC and GNa enhanced
the basal expression of MUC1 mRNA, but knock-
down of PI3K did not significantly alter MUC1
mRNA level (P > .05, data not shown).

Immunostaining of OE33 cells with a specific
anti-MUC1 antibody confirmed the involvement of
the PI3K pathway in bile acid--mediated upregula-
tion of MUC1 apomucin expression (Figs 5, C-H).
The labeling decreased from 82% in TC–treated
cells (Fig 5, C) to 43% in wortmannin–pretreated
cells (Fig 5, F) and from 62% in TDC–treated cells
(Fig 6, D) to 21% in wortmannin–retreated cells
(Fig 5, G). The same conclusion was drawn regard-
ing DC–mediated upregulation of MUC1 apomu-
cin expression because 63% of DC–treated cells
were positive for MUC1 (Fig 5, E), whereas only
29% remained labeled when cells were pretreated
with wortmannin (Fig 5, H).
FLA 5.0 DTD � ymsy1671 � 12 Nove
T

We then confirmed the involvement of the PI3K
signaling pathway in mediating bile acid upregula-
tion of MUC1 at the promoter level (Fig 6). OE33
cells were transfected with responsive constructs to
bile acids then pretreated with wortmannin for 30
minutes before adding the bile acids for another
24 hours. The results indicated that 75% to 80% of
the transactivation of the -616/+33 region of the
MUC1 promoter by TC and TDC (Fig 6, gray bars)
was lost when cells were pretreated with wortmannin.
The same decrease was observed on the -1472/+33
region of the promoter when cells were pretreated
with wortmannin before incubation with TDC,
TCDC, and DC bile acids (Fig 6, black bars).

DISCUSSION

Bile reflux has been identified as a predominant
and sufficient carcinogen to induce esophageal
adenocarcinoma on Barrett’s esophagus.7-9 The
MUC1 mucin pattern of expression is altered pro-
foundly during the esophageal carcinogenetic
\sequence, but no link between MUC1 overexpres-
sion during early stages of Barrett’s esophagus and
the presence of bile acids in the reflux has been es-
tablished to date. In the present study, we found
mber 2007 � 10:57 pm � ce 34
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Fig 3. Effect of bile acids and their conjugates on expression of MUC1 mRNA and of MUC1 apomucin in human ex-
plants of adenocarcinomatous esophageal mucosa by RT-PCR. Tissues were treated with indicated bile acids for 30 min-
utes, as described in Material and Methods. A, Diagram shows MUC1/18S ratio calculated from compilation of the
results obtained from 9 different surgical specimens. B, RT-PCR profile for 1 patient. MUC1 and 18S PCR products
(7.5 ml and 4 ml, respectively) were analyzed on a 1.5% agarose gel.
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that bile acids are strong inducers of MUC1 mucin
expression in human esophageal adenocarcinoma
cells and in human tumoral tissues. We showed
that the regulation occurs at the transcriptional
level and is mediated by phosphatidyl-inositol 3 ki-
nase. We also showed that, among the bile acids
tested, DC and TC are the strongest inducers.

Activation of PI3K by bile acids is well-docu-
mented30-33 and may be one of the mechanisms of
bile acid–induced carcinogenesis. We found that
PI3K inhibitor wortmannin and PI3K siRNA
efficiently blocked MUC1 induction by bile acids,
indicating that PI3K is involved in the bile acid–de-
pendent induction of MUC1. Pharmacologic inhi-
bition of MAPK, PKC, and PKA did not alter the
level of MUC1 mRNA in the cells, indicating that
these pathways are not involved in this upregula-
tion. Moreover, at this time, we have not been
able to identify the signaling pathway that could
mediate GC and GNa effects on the mRNA expres-
sion of MUC1, suggesting indirect regulation for
these bile acids. This result, and previous results
in which we demonstrated that PI3K also was in-
volved in the bile acid–mediated upregulation of
the membrane mucin MUC4,21 suggest strongly
that PI3K is a major and common signaling
FLA 5.0 DTD � ymsy1671 � 12 Nove
Tpathway used to mediate bile acids effects on mem-
brane–bound mucins. Bile acids could induce the
transcription of another mucin gene that encodes
the secreted mucin MUC222; in that case, however,
the mechanism implied activation of an AP-1 com-
plex. From these results and ours, we hypothesize
that during esophageal carcinogenesis associated
with reflux and the presence of bile acids in esoph-
ageal lumen, mucin expression is activated via dif-
ferent mechanisms: PI3K activation for membrane
mucins and AP-1 activation for secreted mucins.
This hypothesis suggests that the esophageal mu-
cosa is able to respond to a chronic aggression by
using specific intracellular mechanisms to drive
either the secretion of MUC2, which participates
in mucus formation and epithelium defense/in-
tegrity, or expression at the cell surface of MUC1
and/or MUC4 membrane mucins.

We showed in this work that MUC1 activation by
bile acids in esophageal cancer cells was not accom-
panied by increased cell proliferation or cell apo-
ptosis. Moreover, MUC1 is known to activate PI3K/
Akt and Bcl-xL antiapoptotic pathways,34 a pathway
(PI3K) also activated by bile acids to induce cell sur-
vival.32 Having shown that PI3K activates MUC1 ex-
pression, our work suggests that esophageal cancer
mber 2007 � 10:57 pm � ce 34
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Fig 4. Characterization of the promoter activity of MUC1 in OE33 cancer cells by transient transfection and effect of bile
acids on the transcriptional activity of MUC1 promoter. A, Schematic representation of 3 promoter constructs covering
1.47 kb of the MUC1 promoter. B, Luciferase diagram showing activity of 3 deletion mutants. Ref., Cells transfected with
the empty vector pGL3 basic. C, Diagram representing the ratio of luciferase activity in bile-acid treated cells versus un-
treated cells on 3 pGL3-MUC1 promoter constructs. Cells were treated with bile acids for 24 hours. Ref., cells transfected
without bile acid treatment (this value was arbitrarily set to 1). Mean ± SD values were calculated from the values ob-
tained in triplicate from 3 separate experiments.
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cells, when submitted to bile acid aggression, may
use an autocrine system to overexpress MUC1 mu-
cin at their surface via PI3K (a pathway implicated
in the regulation of genes contributing to tumori-
genesis35) and thereby promote cancer progression.
Our conclusions are in agreement with recent
data11,14-16 that demonstrated that overexpression
of MUC1 (a transmembrane protein with a long ex-
tracellular glycosylated domain, which plays the role
of sensor of the cellular environment) favors tumor
progression and metastasis.
FLA 5.0 DTD � ymsy1671 � 12 Nove
Transcription factors implicated in MUC1 upre-
gulation by bile acids after the activation of PI3K
are unknown. Activation of gene transcription by
PI3K may be mediated by several families of tran-
scription factors. Among those that have been
identified are the following: activating transcrip-
tion factor-1/cAMP-responsive element-binding
protein (ATF/CREB),36 nuclear factor-kB (NF-
kB),37-39 and factors of the hepatocyte nuclear fac-
tor family (HNF).40 Putative binding sites for these
factors are present in the MUC1 promoter, and
mber 2007 � 10:57 pm � ce 34
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Fig 5. Importance of PI3K signaling pathway in bile acid–mediated regulation of MUC1 expression in OE33 cancer
cells. A, Cell treatment with wortmannin (W) and the indicated bile acids (TC, TDC, TCDC, GC, GNa, DC) and RT-PCR
were performed as described in Material and Methods. MUC1 and 18S PCR products (7.5 ml and 4 ml, respectively) were
analyzed on a 1.5% agarose gel. B, siRNA experiments and bile acids treatment were carried out as described in Material
and Methods. MUC1, PI3K p110, and GAPDH mRNA levels were assessed by RT-PCR. PCR products (10 ml for MUC1 and
PI3K p110 and 5 ml for GAPDH) were analyzed on a 1.5% agarose gel. Control corresponds to the means value from
mock cells and cells transfected with non-targeting siRNA; SD represents mean value obtained in triplicate in at least
3 separate experiments. Diagram showing data are expressed as MUC1/GAPDH and PI3K p110/GAPDH ratio in arbi-
trary units. *P < .05. C-H, Immunohistochemistry with anti–MUC1 antibody on OE33 cells treated under same condi-
tions as in (A). Cells treated with TC (C), TDC (D), and DC (E). Cells pretreated with wortmannin before TC (F), TDC
(G), and DC (H) incubation. Original magnification 3200.
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Fig 6. Inhibition of PI3K signaling pathway impairs MUC1 promoter activation by bile acids in OE33 cells. pGL3-MUC1
promoter constructs (-616/+33 and -1472/+33) were transfected in OE33 cells that were then pretreated for 30 minutes
with wortmannin (W) before adding bile acid for another 24 hours. Means ± SD were calculated from the values ob-
tained in triplicate from 3 separate experiments.
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preliminary cotransfection studies indicated that
ATF/CREB and HNF-4a transcription factors
were able to transactivate the MUC1 promoter
(Piessen G and Van Seuningen I, unpublished
data). Cdx-2 transcription factor was also hypothe-
sized to be a good candidate, because it regulates
mucin expression26, was shown recently to be acti-
vated by bile acids,41 and is able to transactivate
human MUC1 promoter (Piessen G and Van Seu-
ningen I, unpublished data).

Bile acids, amphophilic derivatives of choles-
terol, have been shown to enhance cellular trans-
formation in vitro and are known promoters of
gastrointestinal neoplasia in vivo.42 Moreover, con-
jugated bile acids exacerbate esophageal mucosa
injury either in combination with acid or alone,
both in vitro or in animals8,43,44 and humans.45

Wide variations in biologic activity have been re-
ported for individual bile acid fractions, and minor
changes in the structure of bile acids dramatically
alter their biologic effects.32 Moreover, the concen-
trations of the individual bile acids present in bile
reflux are modified as a result of the process of
reflux itself.46 All these data make bile acids impor-
tant molecules to consider in esophageal carcino-
genesis associated with bile reflux; identifying
their target genes, therefore, will help in a better
control their biologic effects on epithelial cells.
We showed in the current study that the unconju-
gated bile acid DC and, in a lower proportion,
the taurine conjugate bile acid TC are the major
bile acids responsible for MUC1 upregulation.
Consequently, these bile acids may be considered
as the most important components of the bile in
FLA 5.0 DTD � ymsy1671 � 12 Nove
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role in tumor progression in esophageal cancer
associated with bile acid refluxate. From this
work and others, DC appears as the major bile
acid to activate mucin gene transcription, because
it is able to activate MUC1, MUC4,21 and MUC2.22

We thus hypothesize that, in esophageal carcinoma
associated with bile reflux, mucin activation is un-
der the control of DC.

Previous studies have shown the following: (1)
secondary bile acids in patients with Barrett’s
esophagus may contribute to the metaplastic
change, and (2) a significant proportion of the
bile acids in patients with extensive mucosal injury
were composed of the dehydroxylated taurodeox-
ycholic acid (TDC) and the unconjugated deoxy-
cholic acid (DC).46 DC has also been under
considerable interest because of excessive free
bile acid deconjugation in the small intestine, lead-
ing to extensive damage with loss of villi through
inhibition of the main active transport systems
for glucose, amino acids, and sodium in the jeju-
num.47 Finally, DC has been shown to do the fol-
lowing: (1) increase colon tumor incidence in
N-methyl-N-nitrosourea–treated rats,48 indicating
that DC is a tumor promoter rather than a com-
plete carcinogen,48,49 (2) cause apoptosis in meta-
plastic esophageal cells expressing wild-type p537

and in colonic cells, especially in goblet cells,50

and (3) cause extensive cell death in rat colonic
mucosa, which is followed by a period of increased
cell proliferation.51 In contrast, we showed that un-
der our experimental conditions, neither cell pro-
liferation nor apoptosis were altered by bile acid
mber 2007 � 10:57 pm � ce 34
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treatment, suggesting that the molecular mecha-
nisms induced by bile acids are tissue-specific and
different in colonic and esophageal cells.

Of the different components of the refluxate,
bile acids---either alone or in combination with
acid---are probably the most important.52 The pH
of the refluxate has been shown to modify the
effect of bile acids on epithelial cells.42 One expla-
nation is that pH variation can modify the biologic
characteristics of bile salts, thus facilitating pene-
tration of certain bile salts in epithelial cells.46

Other elements of the refluxate include gastric
pepsin, cholesterol, and pancreatic juice (trypsin,
lipase). Pancreatic juice has been suggested to be
to be most potent component of the duodenal
reflux in the promotion of esophageal carcinogen-
esis in a rat model with the use of dimethylnitroso-
morpholine as a carcinogen.53 In one study, 53

biliary reflux exerted a co-carcinogenic effect
when combined with pancreatic secretions. The
clinical relevance of these findings, however, needs
further evaluation.

In conclusion we have shown that treatment of
human esophageal adenocarcinomatous cells and
tissues with bile acids leads to MUC1 upregulation
via a PI3K--mediated molecular transcriptional
mechanism. The biologic consequences of the
induction of MUC1 expression by bile acids in
esophageal cancer cells are still unknown, but our
data favor a role in tumor progression and metas-
tasis. Further studies are needed to determine
whether the induction of MUC1 by bile acids
may increase the invasive and metastatic potential
of esophageal cancer cells. The development of a
rat model of esophageal carcinogenesis in which
esophageal mucosa is exposed to bile or acid
reflux or both will be very informative regarding
the following: (1) deciphering the precise molec-
ular mechanisms activated by bile acids to induce
MUC1 expression, (2) evaluating the conse-
quences of MUC1 overexpression during the
carcinogenetic sequence on tumor cell behavior
and biologic properties, and (3) evaluating PI3K
signaling pathway as a therapeutic target in esoph-
ageal carcinogenesis.54-56 This rat model will also
be useful in demonstrating the pivotal role of DC
as the main inducer of the expression of both
membrane and secreted mucins.

This paper is dedicated to Dr Jean-Pierre Aubert,
Director of our Laboratory, who died in September
2005. He initiated the collaboration between surgeons
and scientists of the Research Unit to stimulate transla-
tional research and promote potential clinical implica-
tions. We also are indebted to Marie-Paule Ducourouble
and Dominique Demeyer for their excellent technical
FLA 5.0 DTD � ymsy1671 � 12 Nove
help. In addition, the authors wish to thank Dr D.
Swallow (MRC, London, England) for the kind gift of
MUC1 antibody, Dr M. A. Hollingsworth (UNMC,
Omaha, Neb, USA) for the kind gift of pMAH-MUC1 vec-
tor, and Dr I. B. Renes (Erasmus MC, Rotterdam, The
Netherlands) for the kind gift of anticleaved caspase-3
antibody.
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