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Sensitivity indices are commonly used to quantify the relative inuence of any specic group of input variables on the output of a computer code. In this paper, we focus both on computer codes for which the output is a cumulative distribution function and on stochastic computer codes. We propose a way to perform a global sensitivity analysis for these kinds of computer codes. In the rst setting, we dene two indices: the rst one is based on Wasserstein Fréchet means while the second one is based on the Hoeding decomposition of the indicators of Wasserstein balls. Further, when dealing with the stochastic computer codes, we dene an ideal version of the stochastic computer code thats ts into the frame of the rst setting. Finally, we deduce a procedure to realize a second-level global sensitivity analysis, namely when one is interested in the sensitivity related to the input distributions rather than in the sensitivity related to the inputs themselves. Several numerical studies are proposed as illustrations in the dierent settings.

Introduction

The use of complex computer models for the analysis of applications from sciences, engineering and other elds is by now routine. For instance, in the area of marine submersion, complex computer codes have been developed to simulate submersion events (see, e.g., [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal ood hazard assessment[END_REF][START_REF] Idier | Toward a User-Based, Robust and Fast Running Method for Coastal Flooding Forecast, Early Warning, and Risk Prevention[END_REF] for more details). In the context of aircraft design, sensitivity analysis and metamodelling are intensively used to optimize the design of an airplane (see, e.g., [START_REF] Peteilh | Challenging Top Level Aircraft Requirements based on operations analysis and data-driven models, application to take-o performance design requirements[END_REF]). Several other concrete examples of stochastic computer codes can be found in [START_REF] Marrel | Global sensitivity analysis of stochastic computer models with joint metamodels[END_REF].

Often, the models are expensive to run in terms of computational time. Thus it is crucial to understand the global inuence of one or several inputs on the output of the system under study with a moderate number of runs aorded [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. When these inputs are regarded as random elements, this problem is generally called (global) sensitivity analysis. We refer to [START_REF] De Rocquigny | Uncertainty in industrial practice[END_REF][START_REF] Saltelli | Sensitivity analysis. Wiley Series in Probability and Statistics[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] for an overview of the practical aspects of global sensitivity analysis.

A classical tool to perform global sensitivity analysis consists in computing the Sobol indices. These indices were rst introduced in [START_REF] Pearson | On the partial correlation ratio[END_REF] and then considered by [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. They are well tailored when the output space is R. The Sobol indices compare, using the Hoeding decomposition [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF], the conditional variance of the output knowing some of the input variables to the total variance of the output. Many dierent estimation procedures of the Sobol indices have been proposed and studied in the literature. Some are based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [START_REF] Kucherenko | Dierent numerical estimators for main eect global sensitivity indices[END_REF][START_REF] Owen | Better estimation of small Sobol' sensitivity indices[END_REF] and references therein for more details). More recently a method based on nested Monte-Carlo [START_REF] Goda | Computing the variance of a conditional expectation via non-nested monte carlo[END_REF] has been developed. In particular, an ecient estimation of the Sobol indices can be performed through the so-called Pick-Freeze method. For the description of this method and its theoretical study (consistency, central limit theorem, concentration inequalities and Berry-Esseen bounds), we refer to [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF][START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF] and references therein. Some other estimation procedures are based on dierent designs of experiments using for example polynomial chaos expansions (see [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] and the reference therein for more details).

Since Sobol indices are variance-based, they only quantify the inuence of the inputs on the mean behavior of the code. Many authors proposed other criteria to compare the conditional distribution of the output knowing some of the inputs to the distribution of the output. In [START_REF] Owen | Better estimation of small Sobol' sensitivity indices[END_REF][START_REF] Owen | Higher order Sobol' indices[END_REF][START_REF] Owen | Variance components and generalized Sobol' indices[END_REF], the authors use higher moments to dene new indices while, in [START_REF] Borgonovo | A new uncertainty importance measure[END_REF][START_REF] Borgonovo | Moment independent importance measures: New results and analytical test cases[END_REF][START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF], the use of divergences or distances between measures allows to dene new indices. In [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF], the authors use contrast functions to build indices that are goal-oriented. Although these works dene nice theoretical indices, the existence of a relevant statistical estimation procedure is still, in most cases, an open question. The case of vectorial-valued computer codes is considered in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] where a sensitivity index based on the whole distribution using the Cramérvon-Mises distance is dened. Within this framework, the authors show that the Pick-Freeze estimation procedure provides an asymptotically Gaussian estimator of the index.

Nowadays, the computer code output is often no longer a real-valued multidimensional variable but rather a function computed at various locations. In that sense, it can be considered as a functional output. Some other times, the computer code is stochastic in the sense that the same inputs can lead to dierent outputs. When the output of the computer code is a function (for instance, a cumulative distribution function) or when the computer code is stochastic, Sobol indices are no longer well tailored.

It is then crucial to dene indices adapted to the functional or random aspect of the output. When the output is vectorial or valued in an Hilbert space, some generalizations of Sobol indices are available [START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF][START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF]. Nevertheless, these indices are still based on the Hoeding decomposition of the output; so that they only quantify the relative inuence of an input through the variance. More recently, indices based on the whole distribution have been developed [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF][START_REF] Borgonovo | Moment Independent and Reliability-Based Importance Measures[END_REF][START_REF] Borgonovo | A new uncertainty importance measure[END_REF]. In particular, the method relying on Cramér-von-Mises distance [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] compares the conditionnal cumulative distribution function with the unconditional one by considering the Hoeding decomposition of half-space indicators (rather than the Hoeding decomposition of the output itself ) and by integrating them. This method was then extend to codes taking values in a Riemannian manifold [START_REF] Fraiman | Sensitivity indices for output on a Riemannian manifold[END_REF] and then in general metric spaces [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF].

In this work, we focus on two kinds of computer codes: 1) computer codes for which the output is the cumulative distribution function of a real random variable and 2) real-valued stochastic computer codes. A rst step will consist in performing global sensitivity analysis for these kinds of computer codes.

Further, we focus on second-level analysis that corresponds to the sensitivity analysis with respect to the input distribution (see Section 6 for more details on second-level analysis). Then we will deduce how to perform second-level sensitivity analysis using the tools developed in the rst step. A code with cumulative distribution function as output can be seen as a code taking values in the space of all probability measures on R. This space can be endowed with a metric (for example, the Wasserstein metric [START_REF] Villani | Topics in Optimal Transportation[END_REF]). This point of view allows to dene at least two dierent indices for this kind of codes, generalizing the framework of [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF]. The rst one is based on Wasserstein Fréchet means while the second one is based on the Hoeding decomposition of the indicators of Wasserstein balls. Further, stochastic codes (see Section 5 for a bibliographical study) can be seen as a discrete approximation of codes having cumulative distribution functions as values. Then it is possible to dene natural indices for such stochastic codes. Finally, second-level sensitivity analysis aims at considering uncertainties on the type of the input distributions and/or on the parameters of the input distributions (see Section 6 for a bibliographical study). Actually, this kind of problem can be embedded in the framework of stochastic codes.

The article is organized as follows. In Section 2, we introduce and precisely dene a general class of global sensitivity indices. We also present statistical methods to estimate these indices. In Section 3, we recall some basic facts on Wasserstein distances, Wasserstein costs and Fréchet means. In Section 4, we dene and study the statistical properties of two new global sensitivity indices for computer codes valued in general Wasserstein spaces. Further, in Section 5, we study the case of stochastic computer codes. The proof of the main result of this section has been postponed to Section A. Then, Section 6 is dedicated to the sensitivity analysis with respect to the distributions of the input variables. In Section 7, practical advices are given for the practitioners. Finally, we present conclusions, limitations and perspectives in Section 8.

2

Sensitivity indices for codes valued in general metric spaces

We consider a black-box code f dened on a product of measurable spaces E = E 1 × E 2 × . . . × E p (p ∈ N * ) taking its values in a metric space X . The output denoted by Z is then given by Z = f (X 1 , . . . , X p ).

(1)

We denote by P the distribution of the output code Z.

The aim of this work is to give answers to the following questions.

Question 1 How can we perform Global Sensitivity Analysis (GSA) when the output space is the space of probability distribution functions (p.d.f.) on R or the space of cumulative distribution functions (c.d.f.)?

Question 2 How can we perform GSA for stochastic computer codes?

Question 3 How can we perform GSA with respect to the choice of the distributions of the input variables?

The general metric spaces sensitivity index

In this section, we recall the dention and the properties of the general metric spaces sensitivity index introduced in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF]. We also discuss several ways of estimation: the Pick-Freeze estimation as introduced in [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF], the estimation procedure based on U-statistics proposed in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], and a rank-based procedure initiated in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF].

In [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], the authors performed GSA for codes f taking values in general metric spaces. To do so, they consider a family of test functions parameterized by m ∈ N * elements of X and dened by

X m × X → R (a, x) → T a (x).
Let u ⊂ {1, . . . , p} and X u = (X i , i ∈ u). Assuming that the test functions T a are L 2 -functions with respect to the product measure P ⊗m ⊗ P (where P ⊗m is the product m-times of the distribution of the output code Z) on X m × X , they allow to dene the general metric space (GMS) sensitivity index with respect to X u by

S u 2,GMS = X m E (E[T a (Z)] -E[T a (Z)|X u ]) 2 dP ⊗m (a) X m Var(T a (Z))dP ⊗m (a) = X m Var (E[T a (Z)|X u ]) dP ⊗m (a) X m Var(T a (Z))dP ⊗m (a)
.

Roughly speaking, the previous indices divided into two parts. First, for any value of a, we consider the

numerator E (E[T a (Z)] -E[T a (Z)|X u ])
2 and the denominator Var(T a (Z)) of the classical Sobol index of T a (Z). This part is called the Sobol part. Second, we integrate each part with respect to the measure P ⊗m ; it is called the integration part.

As explained in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], by construction, the indices S u 2,GMS lie in [0, 1] and share the same properties as their Sobol counterparts:

-the dierent contributions sum to 1;

-they are invariant by translation, by any isometry and by any non-degenerated scaling of Z.

(
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Estimation Three dierent estimation procedures are available in this context. The two rst methods are based on the Pick-Freeze scheme. More precisely, the Pick-Freeze scheme, considered in [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF], is a well tailored design of experiment. Namely, let X u be the random vector such that X u

i = X i if i ∈ u and X u i = X i if i /
∈ u where X i is an independent copy of X i . We then set

Z u := f (X u ). (5) 
Further, the procedure consists in rewriting the variance of the conditional expectation in terms of covariances as follows

Var(E[Z |X u ]) = Cov(Z, Z u ). (6) 
Alternatively, the third estimation procedure that can be seen as an ingenious and eective approximation of the Pick-Freeze scheme is based on rank statistics [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF]. Until now, it is unfortunately only available to estimate rst-order indices in the case of real-valued inputs.

• First method -Pick-Freeze. Introduced in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF], this procedure is based on a double Monte-Carlo scheme to estimate the Cramér-von-Mises (CVM) indices S u 2,CVM . More precisely, to estimate S u 2,GMS in our context, we consider the following design of experiment consisting in 1. a classical Pick-Freeze N -sample, that is two N -samples of Z:

(Z j , Z u j ), 1 j N ; 2. m other N -samples of Z independent of (Z j , Z u j ) 1 j N : W l,k , 1 l m, 1 k N .
The empirical estimator of the numerator of S u 2,GMS is then given by

N u 2,GMS,PF = 1 N m 1 i1,...,im N 1 N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j )T W1,i 1 ,••• ,Wm,i m (Z u j ) - 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) + T W1,i 1 ,••• ,Wm,i m (Z u j )
2 while the one of the denominator is

D u 2,GMS,PF = 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) 2 + T W1,i 1 ,••• ,Wm,i m (Z u j ) 2 - 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) + T W1,i 1 ,••• ,Wm,i m (Z u j ) 2 .
For X = R k , m = 1, and T a given by T a (x) = 1 x a , the index S u 2,GMS,PF is nothing more than the index S u 2,CVM dened in [26] based on the Cramér-von-Mises distance and on the whole distri- bution of the output. Its estimator S u 2,CVM dened as the ratio of N u 2,GMS,PF and D u 2,GMS,PF with T a (x) = 1 x a has been proved to be asymptotically Gaussian [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]Theorem 3.8]. The proof relies on Donsker's theorem and the functional delta method [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]Theorem 20.8]. Analogously, in the general case of S u 2,GMS , the central limit theorem is still valid as soon as the collection (T a ) a∈X m forms a Donsker's class of functions.

• Second method -U-statistics. As done in [27], this method allows the practitioner to get rid of the additional random variables (W l,k ) for l ∈ {1, . . . , m} and k ∈ {1, . . . , N }. The estimator is now based on U-statistics and deals simultaneously with the Sobol part and the integration part with respect to dP ⊗m (a). It suces to rewrite S u 2,GMS as S u 2,GMS =

I(Φ 1 ) -I(Φ 2 ) I(Φ 3 ) -I(Φ 4 ) , (7) 
where,

Φ 1 (z 1 , . . . , z m+1 ) = T z1,...,zm (z m+1 )T z1,...,zm (z u m+1 ), Φ 2 (z 1 , . . . , z m+2 ) = T z1,...,zm (z m+1 )T z1,...,zm (z u m+2 ), (8) 
Φ 3 (z 1 , . . . , z m+1 ) = T z1,...,zm (z m+1 ) 2 , Φ 4 (z 1 , . . . , z m+2 ) = T z1,...,zm (z m+1 )T z1,...,zm (z m+2 ),
denoting by z i the pair (z i , z u i ) and, for l = 1, . . . , 4,

I(Φ l ) = X m(l) Φ l (z 1 , . . . , z m(l) )dP u,⊗m(l) 2 (z 1 . . . , z m(l) ), (9) 
with m(1) = m(3) = m + 1 and m(2) = m(4) = m + 2. Finally, one considers the empirical version of (7) as estimator of S u

2,GMS S u 2,GMS,Ustat = U 1,N -U 2,N U 3,N -U 4,N , (10) 
where, for l = 1, . . . , 4,

U l,N = N m(l) -1 1 i1<•••<i m(l) N Φ s l Z i1 , . . . , Z i m(l) (11) 
and the function

Φ s l (z 1 , . . . , z m(l) ) = 1 (m(l))! τ ∈S m(l) Φ l (z τ (1) , . . . , z τ (m(l)) )
is the symmetrized version of Φ l . In [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF]Theorem 2.4], the estimator S u 2,GMS,U-stat has been proved to be consistent and asymptotically Gaussian.

• Third method -Rank-based. In [START_REF] Chatterjee | A new coecient of correlation[END_REF], Chatterjee proposes an ecient way based on ranks to estimate a new coecient of correlation. This estimation procedure can be seen as an approximation of the Pick-Freeze scheme and then has been exploited in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] to perform a more ecient estimation of S u 2,GMS . Nevertheless, this method is only well tailored for estimating rst-order indices i.e. in the case of u = {i} for some i ∈ {1, . . . , p} and when the input X i ∈ R.

More precisely, an i.i.d. sample of pairs of real-valued random variables (X i,j , Y j ) 1 j N (i ∈ {1, • • • , p}) is considered, assuming for simplicity that the laws of X i and Y are both diuse (ties are excluded). The pairs (X i, [START_REF] Alvarez | Reduction of uncertainty using sensitivity analysis methods for innite random sets of indexable type[END_REF] , Y (1) ), . . . , (X i,(N ) , Y (N ) ) are rearranged in such a way that X i,(1) < . . . < X i,(N ) and, for any j = 1, . . . , N , Y (j) is the output computed from X i,(j) . Let r j be the rank of Y (j) , that is,

r j = #{j ∈ {1, . . . , N }, Y (j ) Y (j) }.
The new correlation coecient is then given by

ξ N (X i , Y ) = 1 - 3 N -1 j=1 |r j+1 -r j | N 2 -1 . (12) 
In [START_REF] Chatterjee | A new coecient of correlation[END_REF], it is proved that ξ N (X i , Y ) converges almost surely to a deterministic limit ξ(X i , Y ) which is actually equal to S i 2,CVM when Y = Z = f (X 1 , • • • , X p ). Further, the author also proves a central limit theorem when X i and Y are independent, which is clearly not relevant in the context of sensitivity analysis (SA) (where X i and Y are dependent through the computer code).

In our context, recall that u = {i} and let Y = Z. Let also π i (j) be the rank of X i,j in the sample (X i,1 , . . . , X i,N ) of X i and dene

N i (j) = π -1 i (π i (j) + 1) if π i (j) + 1 N , π -1 i (1) if π i (j) = N . (13) 
Then the empirical estimator S i 2,GMS,Rank of S i 2,GMS only requires a N -sample (Z j ) 1 j N of Z and is given by the ratio between

N i 2,GMS,Rank = 1 N m 1 i1,...,im N 1 N N j=1 T Zi 1 ,••• ,Zi m (Z j )T Zi 1 ,••• ,Zi m (Z Ni(j) ) - 1 N m 1 i1,...,im N 1 N N j=1 T Zi 1 ,••• ,Zi m (Z j ) 2 (14) 
and D i 2,GMS,Rank

1 N m 1 i1,...,im N 1 N N j=1 T Zi 1 ,••• ,Zi m (Z j ) 2 - 1 N m 1 i1,...,im N 1 N N j=1 T Zi 1 ,••• ,Zi m (Z j ) 2 . ( 15 
)
It is worth mentioning that Z Ni(j) plays the same role as Z i j (the Pick-Freeze version of Z j with respect to X i ) in the Pick-Freeze estimation procedure.

Comparison of the estimation procedures

First, the Pick-Freeze estimation procedure allows the estimation of several sensitivity indices: the classical Sobol indices for real-valued outputs, as well as their generalization for vectorial-valued codes, but also the indices based on higher moments [START_REF] Owen | Higher order Sobol' indices[END_REF] and the Cramér-von-Mises indices which take the whole distribution into account [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF][START_REF] Fraiman | Sensitivity indices for output on a Riemannian manifold[END_REF]. Practically, this methodology is quite general and easy to implement.

Moreover, the Pick-Freeze estimators have desirable statistical properties. More precisely, this estimation scheme has been proved to be consistent and asymptotically normal (i.e. the rate of convergence is √ N ) in [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF][START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF]. The limiting variances can be computed explicitly, allowing the practitioner to build condence intervals. In addition, for a given sample size N , exponential inequalities have been established. Last but not least, the sequence of estimators is asymptotically ecient from such a design of experiment (see, [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] for the denition of the asymptotic eciency and [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF] for more details on the result).

However, the Pick-Freeze estimators have two major drawbacks. First, they rely on a particular experimental design that may be unavailable in practice. Second, it can be unfortunately very time consuming in practice: the number of model calls to estimate all rst-order Sobol indices grows linearly with the number of input parameters. For example, if we consider p = 99 input parameters and only N = 1000 calls are allowed, then only a sample of size N/(p + 1) = 10 is available to estimate each single rst-order Sobol index.

Secondly, the estimation procedure based on U-statistics has the same kind of asymptotic guarantees as the Pick-Freeze estimators (namely, consistency and asymptotic normality). Furthermore, the estimation scheme is reduced to 2N evaluations of the code. Last, using the results of Hoeding [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] on U-statistics, the asymptotic normality is proved straightforwardly.

Finally, embedding Chatterjee's method in the GSA framework (called rank-based method in this framework) thereby eliminates the two drawbacks of the classical Pick-Freeze estimation. Indeed, the strength of the rank-based estimation procedure lies in the fact that only one N -sample of Z is required while (m + 2) samples of size N are necessary in the Pick-Freeze estimation of a single index (worse, (m + 1 + p) samples of size N are required when one wants to estimate p indices). Using a single sample of size N , it is now possible to estimate at the same time all the rst-order Sobol indices, rst-order Cramér-von-Mises indices, and other useful rst-order sensitivity indices as soon as all inputs are real valued. More generally, the rank-based method allows for the estimation of a large class of GSA indices which includes the Sobol indices and the higher-order moment indices proposed by Owen [START_REF] Owen | Better estimation of small Sobol' sensitivity indices[END_REF][START_REF] Owen | Higher order Sobol' indices[END_REF][START_REF] Owen | Variance components and generalized Sobol' indices[END_REF].

In addition, the rank-based estimator has nice theoretical properties. For instance, the estimator of the Sobol index S i has been proved to be consistent and asymptotically Gaussian (see, e.g., Theorem 3.3 in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF]).

The universal sensitivity index

In this section, the aim is to generalize the already-known general metric space index S u 2,GMS presented in the previous section. Here, we then dene a new index that we call the universal sensitivity index and we denote by S u 2,Univ .

To do so, observe that Formula (2) can be generalized in the following ways.

1. The point a in the denition of the test functions can be allowed to belong to another measurable space than X m .

2. The probability measure P ⊗m in (2) can be replaced by any admissible probability measure.

Such generalizations lead to the denition of a universal sensitivity index and its procedures of estimation.

Denition 2.1. Let a belongs to some measurable space Ω endowed with some probability measure Q.

For any u ⊂ {1, • • • , p}, we dene the universal sensitivity index with respect to X u by

S u 2,Univ (T a , Q) = Ω E (E[T a (Z)] -E[T a (Z)|X u ]) 2 dQ(a) Ω Var(T a (Z))dQ(a) = Ω Var (E[T a (Z)|X u ]) dQ(a) Ω Var(T a (Z))dQ(a) . ( 16 
)
Notice that the index S u 2,Univ (T a , Q) is obtained by the integration over a with respect to Q of the Hoeding decomposition of T a (Z). Hence, by construction, this index lies in [0, 1] and shares the same properties as its Sobol counterparts, namely the two previously cited properties in ( 3) and ( 4).

The universality is twofold. First, it allows to consider more general relevant indices. Secondly, this denition encompasses, as particular cases, the classical sensitivity indices. Indeed,

• the so-called Sobol index S u with respect to X u is S u 2,Univ (Id, P), with Id the identity test function;

• the Cramér-von-Mises index S u 2,CVM with respect to X u is S u 2,Univ (1 • a , P ⊗d ) where X = R d and Ω = X ;

• the general metric space sensitivity index S u 2,GMS with respect to X u is S u 2,Univ (1 • a , P ⊗m ) where Ω = X m .

An example where Q is dierent from P will be considered in Section 4.

Estimation Here, we assume that Q is dierent from P ⊗m and we follow the same tracks as for the estimation of S u 2,GMS in Section 2.1.

• First method -Pick-Freeze. We use the same design of experiment as in the rst method of Section 2.1 but instead of considering that the m additional N -samples (W l,k ) for l ∈ {1, . . . , m} and k ∈ {1, . . . , N } are drawn with respect to the distribution P of the output, they are now drawn with respect to Q. More precisely, we consider the following design of experiment consisting in

1. a classical Pick-Freeze sample, that is two N -samples of Z: (Z j , Z u j ), 1 j N ; 2. m Q-distributed N -samples W l,k , l ∈ {1, . . . , m} and k ∈ {1, . . . , N } that are independent of (Z j , Z u j ) for 1 j N .
The empirical estimator of the numerator of S u 2,Univ is then given by

N u 2,Univ,PF = 1 N m 1 i1,...,im N 1 N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j )T W1,i 1 ,••• ,Wm,i m (Z u j ) - 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) + T W1,i 1 ,••• ,Wm,i m (Z u j ) 2 while the one of the denominator is D u 2,Univ,PF = 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) 2 + T W1,i 1 ,••• ,Wm,i m (Z u j ) 2 - 1 N m 1 i1,...,im N 1 2N N j=1 T W1,i 1 ,••• ,Wm,i m (Z j ) + T W1,i 1 ,••• ,Wm,i m (Z u j ) 2 .
As previously, it is straightforward (as soon as the collection (T a ) a∈X m forms a Donsker's class of functions) to adapt the proof of Theorem [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]Theorem 3.8] to prove the asymptotic normality of the estimator.

• Second method -U-statistics. This method is not relevant in this case since Q = P ⊗d .

• Third method -Rank-based. Here, the design of experiment reduces to

1. a N -sample of Z: Z j , 1 j N ; 2. a N -sample of W that is Q-distributed: W k , 1 k N , independent of Z j , 1 j N .
Assume as previously u = {i} and N i (•) be dened in [START_REF] Chabridon | Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[END_REF]. The empirical estimator S i 2,Univ,Rank of S i 2,Univ is then given by the ratio between

N i 2,Univ,Rank = 1 N m 1 i1,...,im N 1 N N j=1 T Wi 1 ,••• ,Wi m (Z j )T Wi 1 ,••• ,Wi m (Z Ni(j) ) - 1 N m 1 i1,...,im N 1 N N j=1 T Wi 1 ,••• ,Wi m (Z j ) 2 (17) 
and

D i 2,Univ,Rank 1 N m 1 i1,...,im N 1 N N j=1 T Wi 1 ,••• ,Wi m (Z j ) 2 - 1 N m 1 i1,...,im N 1 N N j=1 T Wi 1 ,••• ,Wi m (Z j ) 2 . (18) 
We recall that this last method only applies for rst-order sensitivity indices and real-valued input variables.

2.3

A sketch of answer to Questions 1 to 3

In the sequel, we discuss how pertinent choices of the metric, of the class of test functions T a and of the probability measure Q can provide answers to Questions 1 to 3 raised at the beginning of Section 2. For instance, in order to answer to Question 1, we can consider that X = M q (R) is the space of probability measures µ on R having nite q-moments that we endow with the Wasserstein metric W q (see Section 3.1 for some recalls on Wasserstein metrics). We propose two possible approaches to dene interesting sensitivity indices in this framework.

• In Section 4.1, we use (2

) with m = 2, a = (µ 1 , µ 2 ) and T a (Z) = 1 Z∈B(µ1,µ2) where B(µ 1 , µ 2 ) is the open ball dened by {µ ∈ M q (R), W q (µ, µ 1 ) < W q (µ 1 , µ 2 )}.
• In Section 4.2, we use the notion of Fréchet means on Wasserstein spaces (see Section 3.2) and the index dened in ( 16) with appropriate choices of a, T a , and Q.

The case of stochastic computer computer codes raised in Question 2 will be addressed as follows. A computer code (to be dened) valued in M q (R) will be seen as an ideal case of stochastic computer codes.

Finally, it will be possible to treat Question 3 using the framework of Question 2.

3 Wasserstein spaces and random distributions

Denition

For any q 1, we dene the q-Wasserstein distance between two probability distributions that are L q -integrable and characterized by their c.d.f.'s F and G on R p by

W q (F, G) = min X∼F,Y ∼G E[ X -Y q ] 1/q ,
where X ∼ F and Y ∼ G mean that X and Y are random variables with respective c.d.f.'s F and G. We dene the Wasserstein space W q (R p ) as the space of all measures dened on R p endowed with the q-Wasserstein distance W q with nite q-moments. In the sequel, any measure is identied to its c.d.f. or in some cases to its p.d.f. In the unidimensional case (p = 1), it is a well known fact that W q (F, G) has an explicitly expression given by

W q (F, G) = 1 0 |F -(v) -G -(v)| q dv 1/q = E[|F -(U ) -G -(U )| q ] 1/q , ( 19 
)
where F -and G -are the generalized inverses of the increasing functions F and G and U is a random [START_REF] Fontbona | Measurability of optimal transportation and strong coupling of martingale measures[END_REF] of the q-Wasserstein distance when p = 1 can be generalized to a wider class of contrast functions. For more details on Wasserstein spaces, one can refer to [START_REF] Villani | Topics in Optimal Transportation[END_REF] and [START_REF] Bobkov | One-dimensional empirical measures, order statistics, and kantorovich transport distances[END_REF] and the references therein. Denition 3.1. We call contrast function any application c from R 2 to R satisfying the "measure property" P dened by P : ∀x x and ∀y y , c(x , y ) -c(x , y) -c(x, y ) + c(x, y) 0, meaning that c denes a negative measure on R 2 .

variable uniformly distributed on [0, 1]. Of course, F -(U ) and G -(U ) have c.d.f.'s F and G. The representation
For instance, c(x, y) = -xy satises P. If c satises P, any function of the form a(x) + b(y) + c(x, y) also satises P. If C is a convex real function, c(x, y) = C(x -y) satises P. In particular, c(x, y) = (x -y) 2 = x 2 + y 2 -2xy satises P and actually so does c(x, y) = |x -y| q as soon as q 1. Denition 3.2. We dene the Skorokhod space D := D ([0, 1]) of all distribution functions as the space of all non-decreasing functions from R to [0, 1] that are right-continuous with left-hand limits with limit 0 (resp. 1) in -∞ (resp. +∞) equipped with the supremum norm. 

W c (F, G) = min X∼F,Y ∼G E [c(X, Y )] < +∞.
Obviously, W q q = W c with c(x, y) = |x-y| q . The following theorem has been established by Cambanis, Simon, and Stout in [START_REF] Cambanis | Inequalities for Ek(X, Y ) when the marginals are xed[END_REF].

Theorem 3.4. Let c be a contrast function. Then

W c (F, G) = 1 0 c(F -(v), G -(v))dv = E[c(F -(U ), G -(U ))],
where U is a random variable uniformly distributed on [0, 1].

Extension of the Fréchet mean to contrast functions

In this section, we recall the classical denition of the notion of the Fréchet mean which is a natural extension of the classical mean for general metric spaces and then we extend this denition to the notion of a Fréchet feature.

Denition 3.5. We call a loss function any positive and measurable function l. Then, we dene a Fréchet feature E l [X] of a random variable X taking values in a measurable space M (whenever it exists) as

E l [X] ∈ Argmin θ∈M E[l(X, θ)]. (20) 
When M is a metric space endowed with a distance d, the Fréchet feature with l = d 2 corresponds to the classical Fréchet mean (see [START_REF] Fréchet | Les éléments aléatoires de nature quelconque dans un espace distancié[END_REF]). In particular, 

E d 2 [X] minimizes E[d 2 (X,
E Wc [F] ∈ Argmin G∈D E [W c (F, G)] .
where F is a measurable function from a measurable space Ω to D.

In the next theorem, we propose a very general non-parametric framework for which we have existence and uniqueness of the Fréchet means.

Theorem 3.6. Let c be a positive contrast function. Assume that the application dened by

(ω, v) ∈ Ω × (0, 1) → F -(ω, v) ∈ R is measurable. In addition, assume that E c [F]
exists and is unique. Then there exists a unique Fréchet mean of

E[c(F -(v), s)] denoted by E c [F -](v)
and we have

(E c [F]) -(v) = E c [F -](v) = Argmin s∈R E[c(F -(v), s)].
Proof of Theorem 3.6. Since c satises P, we have

E[W c (F, G)] = E 1 0 c(F -(v), G -(v))dv = 1 0 E[c(F -(v), G -(v))]dv, by Fubini's theorem. Now, for all v ∈ (0, 1), the quantity E[c(F -(v), G -(v))] is minimum for G -(v) = E c [F -](v). 1 0 E[c(F -(v), E c [F -](v))]dv 1 0 E[c(F -(v), G -(v))]dv and, in particular, for G -= E c [F] -, one gets 1 0 E[c(F -(v), E c [F -](v))]dv 1 0 E[c(F -(v), E c [F] -(v))]dv.
Conversely, by the denition of E c [F] -, we have for all G,

1 0 E[c(F -(v), E c [F] -(v))]dv 1 0 E[c(F -(v), G -(v))]dv and, in particular, for G -= E c [F -], one gets 1 0 E[c(F -(v), E c [F] -(v))]dv 1 0 E[c(F -(v), E c [F -](v))]dv.
The theorem then follows by the uniqueness of the minimizer.

In the previous theorem, we propose a very general non-parametric framework for the random element F together with some assumptions on existence and uniqueness of the Fréchet feature and measurability of the map (ω, v) → F -(ω, v). Nevertheless, it is possible to construct explicit parametric models for F

for which these assumptions are satised. For instance, the authors of [START_REF] Bigot | Characterization of barycenters in the wasserstein space by averaging optimal transport maps[END_REF] ensure measurability for some parametric models on F using results of [START_REF] Fontbona | Measurability of optimal transportation and strong coupling of martingale measures[END_REF]. Notice that, in [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF], a new sensitivity index is dened for each feature associated to a contrast function. In Section 4.2, we will restrict our analysis to Fréchet means and hence to Sobol indices.

Examples

The Fréchet mean in the

W 2 (R)-space is the inverse function v → E [F -(v)]. Another example is the Fréchet median. Since the median in R is related to the L 1 -cost, the Fréchet W 1 (R)-median of a random c.d.f. is Med(F) -(v) ∈ Med(F -(v)).
More generally, we recall that, for α ∈ (0, 1), the α-quantile in R is the Fréchet feature associated to the contrast function c α (x, y) = (1 -α)(y -x)1 x-y<0 + α(x -y)1 x-y 0 , also called the pinball function.

Then we can dene an α-quantile q α (F) of a random c.d.f. as

q α (F) -(v) ∈ q α (F -(v)),
where q α (X) is the set of the α-quantiles of a random variable X taking values in R. Naturally, taking α = 1/2 leads to the median.

Let us illustrate the previous denitions on an example. Let X be a random variable with c.d.f. F 0 which is assumed to be increasing and continuous (hence F -= F -1 ). Let also m and σ be two real random variables such that σ>0. Then we consider the random c.d.f. F of σX + m

F(x) = F 0 x -m σ and F -1 (v) = σF -1 0 (v) + m. Naturally, the Fréchet mean of F is E[F](x) = F 0 ((x -E[m])/E[σ]
) and its α-quantile is given by More precisely, we consider here that our computer code is W q (R)-valued; namely, the output of an experiment is the c.d.f. or the p.d.f. of a measure µ ∈ W q (R). For instance, in [START_REF] Browne | Stochastic simulators based optimization by gaussian process metamodels -application to maintenance investments planning issues[END_REF], [START_REF] Gratiet | Asymptotic normality of a Sobol index estimator in gaussian process regression framework[END_REF] and [START_REF] Moutoussamy | CEM-RACS 2013modelling and simulation of complex systems: stochastic and deterministic approaches[END_REF], the authors deal with p.d.f.-valued computer codes (and stochastic computer codes). In other words, they dene the following application

q α (F) -1 (v) = q α (σF -1 0 (v) + m).
f : E → F (21) 
x → f x where F is the set of p.d.f.'s

F = g ∈ L 1 (R); g 0, R g(t)dt = 1 .
Here, we choose to identify any element of W q (R) with its c.d.f. In this framework, the output of the computer code is then a c.d.f. denoted by

F = f (X 1 , . . . , X p ). (22) 
Moreover, P denotes the law of the c.d.f. F and we set q = 2. The case of a general value of q can be handled analogously.

4.1 Sensitivity anlaysis using Equation [START_REF] Ankenman | Stochastic kriging for simulation metamodeling[END_REF] and Wasserstein balls Consider F , F 1 , and F 2 three elements of W 2 (R) and, for a = (F 1 , F 2 ), the family of test functions

T a (F ) = T (F1,F2) (F ) = 1 W2(F1,F ) W2(F1,F2) . (23) 
Then, for all u ⊂ {1, • • • , p}, the already known index S u

2,GMS of (2) becomes S u 2,W2 = S u 2,Univ ((F 1 , F 2 , F ) → T F1,F2 (F ), P ⊗2 ) = W2(R)×W2(R) E E[1 W2(F1,F) W2(F1,F2) ] -E[1 W2(F1,F) W2(F1,F2) |X u ] 2 dP ⊗2 (F 1 , F 2 ) W2(R)×W2(R) Var(1 W2(F1,F) W2(F1,F2) )dP ⊗2 (F 1 , F 2 ) = W2(R)×W2(R) Var E[1 W2(F1,F) W2(F1,F2) |X u ] dP ⊗2 (F 1 , F 2 ) W2(R)×W2(R) Var(1 W2(F1,F) W2(F1,F2) )dP ⊗2 (F 1 , F 2 ) . (24) 
As explained in Section 2.1, S u 2,W2 is obtained by integration over a with respect to P of the Hoeding decomposition of T a (F). Hence, by construction, this index lies in [0, 1] and shares the two properties previously cited in (3) and (4).

4.2 Sensitivity analysis using Equation [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF] and Fréchet means

In the classical framework where the output Z is real, we recall that the Sobol index with respect to X u is dened by

S u = Var(E[Z |X u ]) Var(Z ) = Var(Z ) -E[Var(Z|X u )] Var(Z ) , (25) 
by the property of the conditional expectation. On the one hand, we extend this formula to the framework of this section where the output of interest is the c.d.f. F and we dene a new index S u (F) given by

S u (F) = Var(F) -E[Var(F|X u ))] Var(F)
,

where

Var(F) = E[W 2 2 (F, E W2 (F))
] with E W2 (F) the Fréchet mean of F. From Theorem 3.6, we get

Var(F) = E 1 0 |F -(v) -E(F) -(v)| 2 dv = E 1 0 |F -(v) -E[F -(v)]| 2 dv = 1 0 Var(F -(v))dv leading to S u (F) = 1 0 Var(F -(v))dv - 1 0 E[Var(F -(v)|X u )]dv 1 0 Var(F -(v))dv = 1 0 Var(E[F -(v)|X u ])dv 1 0 Var(F -(v))dv . ( 26 
)
Another point of view is to consider [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF], with m = 1,

T v (F) = F -(v), (27) 
and with Q the uniform probability measure on [0, 1]. In that case,

Var(F) = E 1 0 |F -(v) -E W2 (F) -(v)| 2 dv = 1 0 Var(F -(v))dv = E[W 2 2 (F, E W2 (F))]. Then S u 2,Univ (T v , U([0, 1])) = 1 0 E (E W2 (F) -(v) -E W2 (F|X u ) -(v)) 2 dv 1 0 Var(F -(v))dv = E W 2 2 (E W2 (F|X u ), E W2 (F)) E [W 2 2 (F, E W2 (F))]
.

is exactly the same as S u (F) in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]. Thus, as explained in Section 2.2, S u (F) lies in [0, 1] and has the two properties previously cited in ( 3) and ( 4).

Notice that the index dened by ( 26) is a non-trivial example of the Universal sensitivity index dened in [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF].

Estimation procedure

As noticed in the previous section, both S u 2,W2 = S u 2,Univ (T a , P ⊗2 )

with T a dened in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] and [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], are particular cases of indices of the form [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF].

S u (F) = S u 2,Univ (T v , U([0, 1])) with T v dened in
When a belongs to the same space as the output and when Q is equal to P ⊗m , we rst use the Pick-Freeze estimations of the indices given in [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF] and [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]. To do so, it is convenient once again to use [START_REF] Bobkov | One-dimensional empirical measures, order statistics, and kantorovich transport distances[END_REF] leading to

S u 2,W2 = W2(R)×W2(R) Cov 1 W2(F1,F) W2(F1,F2) , 1 W2(F1,F u ) W2(F1,F2) dP ⊗2 (F 1 , F 2 ) W2(R)×W2(R) Var(1 W2(F1,F) W2(F1,F2) )dP ⊗2 (F 1 , F 2 ) (28) 
and

S u (F) = 1 0 Cov (F -(v), F -,u (v)) dv 1 0 Var(F -(v))dv (29) 
where F u and F -,u are respectively the Pick-Freeze versions of F and F -. Secondly, one may resort to the estimations based on U-statistics together on the Pick-Freeze design of experiment. Thirdly, it is also possible and easy to obtain rank-based estimations in the vein of (12).

Numerical comparison of both indices

Example 4.1 (Toy model). Let X 1 , X 2 , X 3 be three independent and positive random variables. We consider the c.d.f.-valued code f for which the output is given by

F(t) = t 1 + X 1 + X 2 + X 1 X 3 1 0 t 1+X1+X2+X1X3 + 1 1+X1+X2+X1X3<t , (30) 
so that

F -1 (v) = v 1 + X 1 + X 2 + X 1 X 3 . (31) 
In addition, one gets

Var F -1 (v) = v 2 (Var(X 1 (1 + X 3 )) + Var(X 2 )) = v 2 Var(X 1 )Var(X 3 ) + Var(X 1 )(1 + E[X 3 ]) 2 + Var(X 3 )E[X 1 ] 2 + Var(X 2 ) and E F -1 (v)|X 1 = v 1 + X 1 (1 + E[X 3 ]) + E[X 2 ] , E F -1 (v)|X 2 = v 1 + E[X 1 ](1 + E[X 3 ]) + X 2 , E F -1 (v)|X 3 = v 1 + E[X 1 ](1 + X 3 ) + E[X 2 ] , E F -1 (v)|X 1 , X 3 = v 1 + X 1 (1 + X 3 ) + E[X 2 ] ,
and nally

Var E F -1 (v)|X 1 = v 2 (1 + E[X 3 ]) 2 Var(X 1 )
,

Var E F -1 (v)|X 2 = v 2 Var(X 2 )
,

Var E F -1 (v)|X 3 = v 2 E[X 1 ] 2 Var(X 3 )
,

Var E F -1 (v)|X 1 , X 3 = v 2 Var(X 1 )Var(X 3 ) + Var(X 1 )(1 + E[X 3 ]) 2 + Var(X 3 )E[X 1 ] 2 .
For u = {i} ∈ {1, 2, 3} or u = {1, 3}, it remains to plug the previous formulas in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] to get the explicit expressions of the indices S u (F).

Now, in order to get a closed formula for the indices dened in (24), we assume X i is Bernoulli distributed with parameter 0 < p i < 1 for i = 1, 2, and 3. In [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF], the distributions F 1 and

F 2 can be either U([0, 1]), U([0, 2]), U([0, 3]), or U([0, 4]) with respective probabilities q 1 = (1 -p 1 )(1 -p 2 ), q 2 = (1 -p 1 )p 2 + p 1 (1 -p 2 )(1 -p 3 ), q 3 = p 1 ((1 -p 2 )p 3 + p 2 (1 -p 3 )
), and q 4 = p 1 p 2 p 3 . In the sequel, we

give, for all sixteen possibilities for the distribution of (F 1 , F 2 ), the corresponding contributions for the numerator and for the denominator of [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF].

With probability p 1,1 = (1 -p 1 ) 2 (1 -p 2 ) 2 , F 1 and F 2 ∼ U([0, 1]). Then W 2 2 (F 1 , F 2 ) = 0, W 2 2 (F 1 , F) = 1 3 (X 1 + X 2 + X 1 X 3 ) 2 , and W 2 2 (F 1 , F) W 2 2 (F 1 , F 2 ) if and only if X 1 + X 2 + X 1 X 3 = 0. Since P (X 1 + X 2 + X 1 X 3 = 0) = (1 -p 1 )(1 -p 2 ), the contribution d 1,1 to the denominator is thus d 1,1 = q 1,1 (1 -q 1,1 ) with q 1,1 = (1 -p 1 )(1 -p 2 ). Moreover, E[1 X1+X2+X1X3=0 |X 1 ] = P X 1 + X 2 + X 1 X 3 = 0|X 1 = 1 X1=0 P(X 2 = 0) = (1 -p 2 )1 X1=0 .
so that, the contribution to the numerator is given by

n 1 1,1 = Var(E[1 X1+X2+X1X3=0 |X 1 ]) = p 1 (1 -p 1 )(1 -p 2 ) 2 .
Similarly, one gets

n 2 1,1 = Var(E[1 X1+X2+X1X3=0 |X 2 ]) = p 2 (1 -p 2 )(1 -p 1 ) 2 and n 3 1,1 = 0.
Moreover, regarding the indices with respect to X 1 and X 3 ,

E[1 X1+X2+X1X3=0 |X 1 , X 3 ] = P X 1 + X 2 + X 1 X 3 = 0|X 1 , X 3 = 1 X1=0 P(X 2 = 0) = (1 -p 2 )1 X1=0
and the contribution to the numerator is given by

n 1,3 1,1 = Var(E[1 X1+X2+X1X3=0 |X 1 , X 3 ]) = p 1 (1 -p 1 )(1 -p 2 ) 2 .
The remaining fteen cases can be treated similarly and are gathered (with the rst case developed above) in the following table. Finally, one may compute the explicit expression of S u

2,W2 S u 2,W2 = W2(R)×W2(R) Cov 1 W2(F1,F) W2(F1,F2) , 1 W2(F1,F u ) W2(F1,F2) dP ⊗2 (F 1 , F 2 ) W2(R)×W2(R) Var(1 W2(F1,F) W2(F1,F2) )dP ⊗2 (F 1 , F 2 ) = k,l p k,l n u k,l k,l p k,l d k,l
. Some numerical values have not been explicited in the table but given below Case 2

Var(1X 1 =1(1 -(1 -p2)1X 3 =0)) = p1(1 -p1)(1 -(1 -p2)(1 -p3)) 2 + p1(1 -p2) 2 p3(1 -p3), Case 6 Var(1X 1 =1(p2 -(1 -p2)1X 3 =0)) = p1(1 -p1)(p2 -(1 -p2)(1 -p3)) 2 + p1(1 -p2) 2 p3(1 -p3), Case 11 
Var(1X 1 =1(p2 + (1 -2p2)1X 3 =1)) = p1(1 -p1)(p2 + (1 -2p2)p3) 2 + p1(1 -2p2) 2 p3(1 -p3), Case 15 
Var(1X 1 =1(p2 + (1 -p2)1X 3 =1)) = p1(1 -p1)(p2 + (1 -p2)p3) 2 + p1(1 -p2) 2 p3(1 -p3).
Direct representations of the indices S u (F) and S u

2,W2

In Figure 1, we have represented the indices S 1 (F), S 2 (F), S 3 (F), and S 1,3 (F) given by ( 26) with respect to the values of p 1 and p 2 varying from 0 to 1 for a xed value of p 3 . We have considered three dierent values of p 3 : p 3 = 0.01 (rst row), 0.5, (second row) and 0.99 (third row). Analogously, the same kind of illustration for the indices S 1 2,W2 , S 2 2,W2 , S 3 2,W2 , and S 1,3 2,W2 given by ( 24) is provided in Figure 2. The analysis of Figures 1 and2 shows that, although the Fréchet indices S u (F) dier from the Wasserstein indices S u 2,W2 as expected, they behave reassuringly similarly.

Regions of predominance of the indices S u (F) and S u

2,W2

In addition, the regions of predominance of each index S u (F) are plotted in Figure 3. The values of p 1 and p 2 still vary from 0 to 1 and the xed values of p 3 considered are: p 3 = 0.01 (rst row), 0.5, (second row) and 0.99 (third row). Finally, the same kind of illustration for the indices S u 2,W2 is given in 2,W2 ), the rank-based estimation procedure performs much better than the Pick-Freeze method with signicantly lower mean errors.

Sensitivity analysis for stochastic computer codes

This section deals with stochastic computer codes in the sense that two evaluations of the code for the same input lead to dierent outputs. Before performing a SA in this context, let us briey describe the state of the art in this setting.

State of the art

A rst natural way to handle stochastic computer codes is denitely to consider the expectation of the output code. Indeed, as mentioned in [START_REF] Browne | Stochastic simulators based optimization by gaussian process metamodels -application to maintenance investments planning issues[END_REF], previous works dealing with stochastic simulators together with robust design or optimization and SA consist mainly in approximating the mean and the variance Case 1

F 1 ∼ U ([0, 1]), F 2 ∼ U ([0, 1]) Case 2 F 1 ∼ U ([0, 1]), F ∼ U ([0, 2]) Prob. q 2 1 Prob. q 1 q 2 Num. 1 p 1 (1 -p 1 )(1 -p 2 ) 2 Num. 1 p 1 (1 -p 1 )(p 2 + p -p 2 p 3 ) 2 Num. 2 (1 -p 1 ) 2 p 2 (1 -p 2 ) Num. 2 p 2 1 p 2 (1 -p 2 )(1 -p 3 ) 2 Num. 3 0 Num. 3 p 2 1 (1 -p 2 ) 2 p 3 (1 -p 3 ) Num. 1,3 p 1 (1 -p 1 )(1 -p 2 ) 2
Num. 1,3

Var(1

X 1 =1 (1 -(1 -p 2 )1 X 3 =0 ) q Den. (1 -p 1 )(1 -p 2 ) q Den. (1 -p 1 ) + p 1 (1 -p 2 )(1 -p 3 ) Case 3 F 1 ∼ U ([0, 1]), F 2 ∼ U ([0, 3]) Case 4 F 1 ∼ U ([0, 1]), F ∼ U ([0, 4]) Prob.
q 1 q 3

Prob.

q 1 q 4

Num. 1

p 1 (1 -p 1 )p 2 2 p 2 3 Num. 1 0 Num. 2 p 2 1 p 2 (1 -p 2 )p 2 3 Num. 2 0 Num. 3 p 2 1 p 2 2 p 3 (1 -p 3 ) Num. 3 0 Num. 1,3 p 1 p 2 2 p 3 (1 -p 1 p 3 ) Num. 1,3 0 q Den.
1 -p 1 p 2 p 3 q Den. 0

Case 5

F 1 ∼ U ([0, 2]), F 2 ∼ U ([0, 1]) Case 6 F 1 ∼ U ([0, 2]), F ∼ U ([0, 2]) Prob. q 1 q 2 Prob. q 2 2 Num. 1 p 1 (1 -p 1 )p 2 2 p 2 3 Num. 1 p 1 (1 -p 1 )(p 2 -(1 -p 2 )(1 -p 3 )) 2
Num. 2

p 2 1 p 2 (1 -p 2 )p 2 3 Num. 2 p 2 (1 -p 2 )(p 1 (1 -p 3 ) -(1 -p 1 )) 2 Num. 3 p 2 1 p 2 2 p 3 (1 -p 3 ) Num. 3 p 2 1 (1 -p 2 ) 2 p 3 (1 -p 3 ) Num. 1,3 p 1 p 2 2 p 3 (1 -p 1 p 3 ) Num. 1,3 Var(1 X 1 =1 (p 2 -(1 -p 2 )1 X 3 =0 )) q Den. 1 -p 1 p 2 p 3 q Den. (1 -p 1 )p 2 + p 1 (1 -p 2 )(1 -p 3 ) Case 7 F 1 ∼ U ([0, 2]), F 2 ∼ U ([0, 3]) Case 8 F 1 ∼ U ([0, 2]), F ∼ U ([0, 4]) Prob.
q 2 q 3 Prob.

q 2 q 4

Num. 1

p 1 (1 -p 1 )p 2 2 p 2 3 Num. 1 0 Num. 2 p 2 1 p 2 (1 -p 2 )p 2 3 Num. 2 0 Num. 3 p 2 1 p 2 2 p 3 (1 -p 3 ) Num. 3 0 Num. 1,3 p 1 p 2 2 p 3 (1 -p 1 p 3 ) Num. 1,3 0 q Den. 1 -p 1 p 2 p 3 q Den. 0 Case 9 F 1 ∼ U ([0, 3]), F 2 ∼ U ([0, 1]) Case 10 F 1 ∼ U ([0, 3]), F ∼ U ([0, 2])
Prob.

q 1 q 3

Prob.

q 2 q 3 Num. 1 0 Num. 1 p 1 (1 -p 1 )(1 -p ) 2
Num. 2 

F 1 ∼ U ([0, 3]), F 2 ∼ U ([0, 3]) Case 12 F 1 ∼ U ([0, 3]), F ∼ U ([0, 4]) Prob. q 2 3
Prob.

q 3 q 4 Num. 1 p 1 (1 -p 1 )(p 2 (1 -p 3 ) + (1 -p 2 )p 3 ) 2 Num. 1 p 1 (1 -p 1 )(1 -p ) 2 Num. 2 p 2 1 p 2 (1 -p 2 )(2p 3 -1) 2 Num. 2 (1 -p 1 ) 2 p 2 (1 -p ) Num. 3 p 2 1 (2p 2 -1) 2 p 3 (1 -p 3 ) Num. 3 0 Num. 1,3 Var(1 X 1 =1 (p 2 + (1 -2p 2 )1 X 3 =1 ) Num. 1,3 p 1 (1 -p 1 )(1 -p ) 2 q Den. p 1 (p 2 (1 -p 3 ) + (1 -p 2 )p 3 ) q Den. (1 -p 1 )p 2 + p 1 Case 13 F 1 ∼ U ([0, 4]), F 2 ∼ U ([0, 1]) Case 14 F 1 ∼ U ([0, 4]), F ∼ U ([0, 2]) Prob.
q 1 q 4

Prob.

q 2 q 4

Num. 1

0 Num. 1 p 1 (1 -p 1 )(1 -p ) 2 Num. 2 0 Num. 2 (1 -p 1 ) 2 p 2 (1 -p ) Num. 3 0 Num. 3 0 Num. 1,3 0 Num. 1,3 p 1 (1 -p 1 )(1 -p ) 2 q Den. 0 q Den. (1 -p 1 )p 2 + p 1 Case 15 F 1 ∼ U ([0, 4]), F 2 ∼ U ([0, 3]) Case 16 F 1 ∼ U ([0, 4]), F ∼ U ([0, 4]) Prob.
q 3 q 4

Prob. 2,W2 given by (24) (from left to right) with respect to the values of p 1 and p 2 (varying from 0 to 1). In the rst row (resp. second and third), p 3 is xed to p 3 = 0.01 (resp. 0.5 and 0.99). (white), and S 1 2,W2 = S 2 2,W2 (gray) with respect to p 1 and p 2 varying from 0 to 1 and, from left to right, p 3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with S 1 2,W2 and S 3 2,W2 (resp. S 2 2,W2 and S 3 2,W2 ) with respect to p 1 and p 3 (resp. p 2 and p 3 ) varying from 0 to 1 and, from left to right, p 2 = 0.01, 0.5, and 0.99 (resp. p 1 = 0.01, 0.5, and 0.99). of the stochastic output [START_REF] Dellino | Uncertainty management in simulation-optimization of complex systems[END_REF][START_REF] Bursztyn | Screening experiments for dispersion eects[END_REF][START_REF] Kleijnen | Design and analysis of simulation experiments[END_REF][START_REF] Ankenman | Stochastic kriging for simulation metamodeling[END_REF] and then performing a GSA on the expectation of the output code [START_REF] Marrel | Global sensitivity analysis of stochastic computer models with joint metamodels[END_REF].

q 2 4 Num. 1 p 1 (1 -p 1 )(p 2 + (1 -p 2 )p 3 ) 2 Num. 1 p 1 (1 -p 1 )p 2 2 p 2 3 Num. 2 p 2 1 p 2 (1 -p 2 )(1 -p 3 ) 2 Num. 2 p 2 1 p 2 (1 -p 2 )p 2 3 Num. 3 p 2 1 (1 -p 2 ) 2 p 3 (1 -p 3 ) Num. 3 p 2 1 p 2 2 p 3 (1 -p 3 ) Num. 1,3 Var(1 X 1 =1 (p 2 + (1 -p 2 )1 X 3 =1 ) Num. 1,3 p 1 p 2 2 p 3 (1 -p 1 p 3 ) q Den. p 1 (p 2 + (1 -p 2 )p 3 ) q Den. p 1 p 2 p 3
As pointed out by [START_REF] Iooss | Sobol' sensitivity analysis for stochastic numerical codes[END_REF], another approach amounts to consider that the stochastic code is of the form f (X, D) where the random element X contains the classical input variables and the variable D is an extra unobserved random input. Such an idea was exploited in [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF] to compare the estimation of the Sobol indices in an exact model to the estimation of the Sobol indices in an associated metamodel.

In this framework, the metamodel is considered as a random perturbation of the "exact" model and the perturbation is a function of the inputs and of an extra independent random variable. Analogously, the author of [START_REF] Mazo | An optimal tradeo between explorations and repetitions in global sensitivity analysis for stochastic computer models[END_REF] assumes the existence of an extra random variable D which is not chosen by the practitioner but rather generated at each computation of the output independently of X. In this setting, the author builds two dierent indices. The rst index is obtained by substituting f (X, D) for f (X) in the classical denition of the rst-order Sobol index S i = Var(E[f (X)|X i ])/Var(f (X)). In this case, D is considered as another input, even though it is not observable. The second index is obtained by substituting E[f (X, D)|X] for f (X) in the Sobol index. The noise is then smoothed out. Similarly, the authors of [START_REF] Hart | Ecient computation of Sobol' indices for stochastic models[END_REF] traduce the randomness of the computer code using such an extra random variable. In practice, they approximate the statistical properties of the rst-order Sobol indices by using a sample of the extra random variable and the associated sample of estimates of the Sobol indices. In [START_REF] Zhu | Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models[END_REF], the expectation of these random Sobol indices is investigated in the case of stochastic simulator and generalized lambda models. In the same vein, the authors of [START_REF] Azzi | Sensitivity analysis for stochastic simulators using dierential entropy[END_REF] propose to deal with the dierential entropy of the output of a stochastic simulator.

The space W q as an ideal version of stochastic computer codes

When dealing with stochastic computer codes, the practitioner is generally interested in the distribution µ x of the output for a given input x. As previously seen, one can translate this type of codes in terms of a deterministic code by considering an extra input which is not chosen by the practitioner himself but which is a latent variable generated randomly by the computer code and independently of the classical input. As usual in the framework of SA, one considers the input as a random variable. All the random

• First method -Pick-Freeze. It suces to plug the empirical version µ n of each measure µ under concern in [START_REF] Goda | Computing the variance of a conditional expectation via non-nested monte carlo[END_REF] to get S u 2,Wq,PF,n .

• Second method -U-statistics. For l = 1, . . . , 4, let

U l,N,n = N m(l) -1 1 i1<•••<i m(l) N Φ s l µ i1,n , . . . , µ i m(l) ,n (35) 
where as previously seen Φ s • is the symmetrized version of Φ • dened in ( 8) and µ = (µ, µ u ). Then,

we estimate S u 2,Wq by S u 2,Wq,Ustat,n = U 1,N,n -U 2,N,n U 3,N,n -U 4,N,n . (36) 
• Third method -Rank-based. The rank-based estimation procedure may also easily be extended to this context by using the empirical version µ n of each measure µ under concern instead of the true one µ, as explained into more details in the numerical study developed in Section 5.5. This procedure leads to S u 2,Wq,Rank,n .

Actually, these estimators are easy to compute since, for two discrete measures supported on a same number of points and given by

ν 1 = 1 n n k=1 δ x k , ν 2 = 1 n n k=1 δ y k ,
the Wasserstein distance between ν 1 and ν 2 simply writes

W q q (ν 1 , ν 2 ) = 1 n n k=1 (x (k) -y (k) ) q , ( 37 
)
where z (k) is the k-th order statistics of z.

Central limit theorem for the estimator based on U-statistics

In this section, we focus on the computationnally less expensive estimator: the one based on U-statistics.

For statistical purposes, we establish a central limit theorem for S u 2,Wq,Ustat,n inspired from [27]. In addition, we consider several examples and study when the conditions of Proposition 5.1 hold.

Proposition 5.1. Consider three i.i.d. copies X 1 , X 2 and X 3 of a random variable X. Let δ(N ) be a sequence tending to 0 as N goes to innity and such that

P (|W q (µ X1 , µ X3 ) -W q (µ X1 , µ X2 )| δ(N )) = o 1 √ N .
Let n be such that

E[W q (µ X , µ X,n )] = o(δ(N )/ √ N ).
Under the assumptions of Theorem 2.4 in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], we get, for any u ⊂ {1, • • • , p},

√ N S u 2,Wq,Ustat,n -S u 2,Wq L -----→ n→+∞ N (0, σ 2 ) ( 38 
)
where the asymptotic variance σ 2 is given by ( 13) in the proof of Theorem 2.4 in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF].

In some particular frameworks, one may derive easily a suitable value of δ(N ). Two examples are given in the following.

Example 5.2. If the inverse of the random variable W = |W q (µ X1 , µ X3 ) -W q (µ X1 , µ X2 )| has a nite expectation, then, by Markov inequality,

P (W δ(N )) = P W -1 δ(N ) -1 1 δ(N ) E 1 W
and it suces to choose δ(N ) so that δ(N ) -1 = o N -1/2 as N goes to innity.

Example 5.3 (Uniform example). Assume that X is uniformly distributed on [0, 1] and that µ X is a

Gaussian distribution centered at X with unit variance. Then the Wasserstein distance W 2 (µ X1 , µ X2 )

rewrites as (X 1 -X 2 ) 2 so that the random variable W = |W 2 (µ X1 , µ X3 ) -W 2 (µ X1 , µ X2 )| is given by (X 1 -X 3 ) 2 -(X 1 -X 2 ) 2 = |(X 3 -X 2 )(X 2 + X 3 -2X 1 )| .
Consequently,

P(W δ(N )) P(|X 3 -X 2 | δ(N )) + P(|X 2 + X 3 -2X 1 | δ(N )).
Notice that |X 3 -X 2 | is triangularly distributed with parameter a = 0, b = 1, and c = 0 leading to

P(|X 3 -X 2 | α) = α(2 -α), for all α ∈ [0, 1].
In addition,

P(|X 2 + X 3 -2X 1 | δ(N )) P(||X 2 -X 1 | -|X 3 -X 1 || δ(N )) = 1 0 P(||X 2 -u| -|X 3 -u|| δ(N ))du.
Now, X 2 -u and X 3 -u are two independent random variables uniformly distributed on [-u, -u]. Then (see Figure 6), one has

P(||X 2 -u| -|X 3 -u|| α) 4α, whence P(|X 2 + X 3 -2X 1 | δ(N )) 4 δ(N ).
Thus it turns out that P(W

δ(N )) = O( δ(N )). Consequently, a suitable choice for δ(N ) is δ(N ) = o(1/N ). u u u -1 u -1 α α -α -α 0 • • • • Figure 6: Domain Γ u,α = {(x 1 , x 2 ) ∈ [0, 1]; ||x 1 -u| -|x 2 -u|| α} (in grey).
Analogously, one may derive suitable choices for n in some particular cases. For instance, we refer the reader to [START_REF] Bobkov | One-dimensional empirical measures, order statistics, and kantorovich transport distances[END_REF] to get upper bounds on E[W q (µ X , µ X,n )] for several values of q 1 and several assumptions on the distribution on µ X : general, uniform, Gaussian, beta, log concave, etc. Here are some results.

• In the general framework, the upper bound for q 1 relies on the functional

J q (µ X ) = R (F µ X (x)(1 -F µ X (x))) q/2 f µ X (x) q-1) dx
where F µ X is the c.d.f. associated to µ X and f µ X its p.d.f. See Cf. [6, Theorems 3.2, 5.1 and 5.3].

• Assume that µ X is uniformly distributed on [0, 1]. Then by [6, Theorems 4.7, 4.8 and 4.9], for any n 1,

E[W 2 (µ X , µ X,n ) 2 ] 1 6n ,
for any q 1 and for any n 1,

E[W q (µ X , µ X,n ) q ] 1/q (Const) q n .
and for any n 1,

E[W ∞ (µ X , µ X,n )] (Const) n . E.g. (Const) = π/2.
• Assume that µ X is a log-concave distribution with standard deviation σ. Then by [6, Corollaries 6.10 and 6.12], for any 1 q < 2 and for any n 1,

E[W q (µ X , µ X,n ) q ] (Const) 2 -q σ √ n q , for any n 1, E[W 2 (µ X , µ X,n ) 2 ] (Const)σ 2 log n n ,
and for any q > 2 and for any n 1,

E[W q (µ X , µ X,n ) q ] C q σ q n ,
where C q depends on q, only. Furthermore, if µ X supported on [a, b], then for any n 1,

E[W 2 (µ X , µ X,n ) 2 ] (Const)(b -a) 2 n + 1 . E.g. (Const) = 4/ ln 2. Cf. [6, Corollary 6.11].
Example 5.3 -continued. We consider that X is uniformly distributed on [0, 1] and µ X is a Gaussian distribution centered at X with unit variance. Then, by [6, Corollary 6.14], we have, for any n 3,

E[W 2 (µ X , µ X,n ) 2 ] (Const) log log n n ,
and for any q > 2 and for any n 3,

E[W q (µ X , µ X,n ) q ] C q n(log n) q/2 ,
where C q depends only on q. Since we have already chosen δ(N ) = o(N -1 ), it remains to take n so that

log log n/n = o(N -2 ) to fulll the condition E[W 2 (µ X , µ X,n )] = o(δ(N )/ √ N ).

Numerical study

Example 4.1 -continued. Here, we consider again the code given by ( 30) and we set -→ X = (X 1 , X 2 , X 3 )

and p = 3. Having in mind the notation of Section 5.2, we consider the ideal code

f : E → W q (E) (X 1 , X 2 , X 3 ) → µ (X1,X2,X3)
where µ (X1,X2,X3) is the uniform distribution on [0, 1 + X 1 + X 2 + X 1 X 3 ] for which the c.d.f. is F given by ( 30) and its stochastic counterpart

f s : E × D → R (39) (X 1 , X 2 , X 3 , D) → f s (X 1 , X 2 , X 3 , D) where f s (X 1 , X 2 , X 3 , D) is a realization of µ (X1,X2,X3) .
Hence, we no longer assume that one may observe N realizations of F associated to the N initial realizations of (X 1 , X 2 , X 3 ). Instead, for any of the N initial realizations of (X 1 , X 2 , X 3 ), we assess n realizations of a uniform random variable on [0, 1 +

X 1 + X 2 + X 1 X 3 ].
In order to compare the estimation accuracy of the Pick-Freeze method and the rank-based method at a xed size, we assume once again that only 450 calls of the computer code f are allowed to estimate the 2,W2 ), the rank-based estimation procedure performs much better than the Pick-Freeze method with signicantly lower mean errors.

Another numerical study, in the particular setting of stochastic computer codes and inspired by [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF],

is considered in Section 6.3.
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Sensitivity analysis with respect to the law of the inputs This section deals with what is called second-level analysis and that corresponds to the SA with respect to the input distributions (rather than the inputs themselves). Before explaining our contributions in this framework, let us briey describe its state of the art.

State of the art

The paper [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF] is devoted to second-level uncertainty which corresponds to the uncertainty on the input distributions and/or on the parameters of the input distributions. As mentioned by the authors, such uncertainties can be handled in two dierent manners: (1) aggregating them with no distinction [START_REF] Chabridon | Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[END_REF][START_REF] Chabridon | Global reliabilityoriented sensitivity analysis under distribution parameter uncertainty[END_REF] or (2) separating them [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF]. In [START_REF] Chabridon | Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[END_REF], the uncertainty concerns the parameters of the input distributions.

The authors study the expectation with respect to the distribution of the parameters of the conditional output. In [START_REF] Chabridon | Global reliabilityoriented sensitivity analysis under distribution parameter uncertainty[END_REF], the second-level uncertainties are transformed into rst-level uncertainties considering the aggregated vector containing the input random variables vector together with the vector of uncertain parameters. Alternatively, in [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF], the uncertainty brought by the lack of knowledge of the input distributions and the uncertainty of the random inputs are treated separately. A double Monte-Carlo algorithm is rst considered. In the outer loop, a Monte-Carlo sample of input distribution is generated, while the inner loop proceeds to a GSA associated to each distribution. A more ecient algorithm is also proposed with a unique Monte-Carlo loop. The SA is then performed using the so-called Hilbert-Schmidt dependence measures (HSIC indices) on the input distributions rather than the input random variables themselves. See, e.g., [START_REF] Gretton | Measuring statistical dependence with Hilbert-Schmidt norms[END_REF] for the denition of the HSIC indices and more details on the algorithms. In [START_REF] Morio | Inuence of input pdf parameters of a model on a failure probability estimation[END_REF], a dierent approach is adopted. A failure probability is studied while the uncertainty concerns the parameters of the input distributions. An algorithm with low computational cost is proposed to handle such uncertainty together with the rare event setting. A single initial sample allows to compute the failure probabilities associated to dierent parameters of the input distributions. A similar idea is exploited in [START_REF] Lemaître | Density modicationbased reliability sensitivity analysis[END_REF] in which the authors consider input perturbations and Perturbed-Law based Indices that are used to quantify the impact of a perturbation of an input p.d.f. on a failure probability. Analogously, the authors of [START_REF] Hart | Robustness of the Sobol' indices to distributional uncertainty[END_REF][START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF] are interested in (marginal) p.d.f. perturbations and the aim is to study the robustness of the Sobol indices to distributional uncertainty and to marginal distribution uncertainty which correspond to second-level uncertainty. For instance, the basic idea of the approach proposed in [START_REF] Hart | Robustness of the Sobol' indices to distributional uncertainty[END_REF] is to view the total Sobol index as an operator which inputs the p.d.f. and returns the Sobol index. Then the analysis of robustness is done computing and studying the Fréchet derivative of this operator. The same principle is used in [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF] to treat the robustness with respect to the marginal distribution uncertainty. Recently, [START_REF] Stenger | Optimization of quasi-convex function over product measure sets[END_REF] proposes a very clever approach of second-level SA when some moments of the distribution of the inputs are xed. Its approach characterizes among all compactly supported input distribution with xed rst moments the range of variability of the Sobol indices.

Note that the p-box framework in the sense it is used by [START_REF] Schöbi | Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions[END_REF] presents some similarities with the example provided in Section 3.3 (in the context of random distributions and Fréchet means). It is also worth mentioning the classical approach of epistemic GSA of Dempster-Shafer theory (see, e.g., [START_REF] Smets | What is Dempster-Shafer's model[END_REF][START_REF] Alvarez | Reduction of uncertainty using sensitivity analysis methods for innite random sets of indexable type[END_REF]).

This theory describes the random variables together with an epistemic uncertainty traduced in terms of an associated epistemic variable Z on a set A, a mass function representing a probability measure on the set P(A) of all subsets A. This lack of knowledge leads to an upper bound and a lower bound of the c.d.f. and can be viewed as second-level uncertainty.

Link with stochastic computer codes

We propose a new procedure that stems from the methodology in the context of stochastic computer codes described in Section 5. We denote by η i (i = 1, . . . , p) the distribution of the input X i (i = 1, . . . , p) in the model given by [START_REF] Alvarez | Reduction of uncertainty using sensitivity analysis methods for innite random sets of indexable type[END_REF]. There are several ways to model the uncertainty with respect to the choice of each η i . Here we adopt the following framework. We assume that each η i belongs to some family P i of probability measures endowed with the probability measure P η i . In general, there might be measurability issues and the question of how to dene a σ-eld on some general spaces P i can be tricky. We will restrict our study to the simple case where the existence of the probability measure P η i on P i is given by the construction of the set P i . More precisely, we proceed as follows.

• First, for 1 i p, let d i be an integer and let Θ i ⊂ R di . Then consider the probability space (Θ i , B(Θ i ), ν Θi ) where B(Θ i ) is the Borel σ-eld and ν Θi is a probability measure on (Θ i , B(Θ i )).

• Second, for 1 i p, we consider an identiable parametric set of probability measure P i on E i : P i := {η θ , θ ∈ Θ i }. Let us denote by π i the one-to-one mapping from Θ i to P i dened by π i (θ) := η θ ∈ P i and dene the σ-eld F i on P i by

A ∈ F i ⇐⇒ ∃B ∈ B(Θ i ), A = π i (B).
Then we endow this measurable space with the probability Π i dened, for any A ∈ F i , by

Π i (A) = ν Θi π -1 i (A) .
• Third, in order to perform a second-level SA on (1), we introduce the stochastic mapping f s from P 1 × . . . × P p to X dened by

f s (η 1 , . . . , η p ) = f (X 1 , . . . , X p ) (40) 
where (X 1 , . . . , X p ) is a random vector distributed as µ 1 ⊗. . .⊗µ p . Hence f s is a stochastic computer code from P 1 × . . . × P p to X and once the probability measures P ηi on each P i are dened, we can perform SA using the framework of Section 5.

Numerical study

As in [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF], let us consider the synthetic example dened on [0, 1] 3 by f (X 1 , X 2 , X 3 ) = 2X 2 e -2X1 + X 2 3 .

(

) 41 
We are interested in the uncertainty in the support of the random variables X 1 , X 2 , and X 3 . To do so, we follow the notation and framework of [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF]. For i = 1, 2, and 3, we assume that X i is uniformly distributed on the interval [A i , B i ], where A i and B i are themselves uniformly distributed on [0, 0.1] and [0.9, 1] respectively. As remarked in [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF], it seems natural that f will vary more in the X 2 -direction when X 1 is close to 0 and less when X 1 is close to 1.

As mentioned in Section 6.1, the authors of [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF] view the total Sobol index as an operator which inputs the p.d.f. and returns the total Sobol index. Then they study the Fréchet derivative of this operator and determine the most inuential p.d.f., which depends on a parameter denoted by δ. Finally, they make the parameter δ vary.

Here, we adopt the methodology explained in the previous section (Section 6.2). Namely, we consider the stochastic computer code given by

f s (η 1 , η 2 , η 3 ) = 2X 2 e -2X1 + X 2 3 , (42) 
where the X i 's are independently drawn according to the uniform measure η i on [A i , B i ] with A i and B i themselves uniformly distributed on [0, 0.1] and [0.9, 1] respectively. Then to estimate the indices S u 2,W2 , for u = {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}, we proceed as follows.

1. For i = 1, 2, and 3, (b) for j = 1, . . . , N , i. we generate a n-sample (X i,j,k ) k=1,...,n of X i , where X i,j,k is uniformly distributed on

[A i,j , B i,j ].
ii. we compute the n-sample (Z j,k ) k=1,...,n of the output using

Z = f (X 1 , X 2 , X 3 ) = 2X 2 e -2X1 + X 2 3 .
Thus we get a N -sample of the empirical measures of the distribution of the output Z given by µ Zj ,n := 1 n n k=1 δ Z j,k , for j = 1, . . . , N .

(c) We order the intervals ([A i,j , B i,j ]) j=1,...,N and we get the Pick-Freeze versions of Z to treat the SA regarding the input u.

2. Finally, it remains to compute the indicators of the empirical version of ( 28) using [START_REF] Kleijnen | Design and analysis of simulation experiments[END_REF] and their means to get the Pick-Freeze estimators of S u 2,W2 .

Notice that we only consider the estimators based on the Pick-Freeze method since we allow for both bounds of the interval to vary and, as explained previously, the rank-based procedure has not been developed yet, neither for higher-order indices nor in higher dimensions.

Simulations First, we compute the estimators of S u 2,W2 following the previous procedure with a sample size N = 500 and an approximation size n = 500. The results are displayed in Table 1 (rst row). We also perform another batch of simulations allowing for higher variability on the bounds: for i = 1, 2, and u Third, the aim is to highlight the fact that performing a classical GSA diers from performing a second-level SA. In that view, we perform a classical GSA on the inputs rather than on the parameters of their distributions (corresponding to a second-level analysis). Namely, we consider the index S u

{1} {2} {3} {1, 2} {1, 3} {2, 3} A i ∈ [0, 0.1] B i ∈ [0.9, 1] Ŝu 2,W2 0 

2,CVM

and proceed to its estimation with a sample size N = 10 [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]Section 3] for the denition of the index S u 2,CVM and its Pick-Freeze estimator together with their properties.

Comments When one is interested in the choice of the input distributions of X 1 , X 2 , and X 3 , the rst row in Table 1 shows that each choice is equally important. Now, if we give more freedom to the space where the distribution lives, the relative importance may change as one can see in Table 1 (second row) and in Table 2. More precisely, in Table 2, the variability of the third input distribution (namely, the variability of its upper bound) is ve times larger than the other variabilities. Not surprisingly, it results that the importance of the choice of the third input distribution is then much more important than the choices of the distributions of the two rst inputs.

As said in the previous paragraph, when one is interested in the choice of the input distributions of X 1 , X 2 , and X 3 , the rst row in Table 1 shows that each choice is equally important. Nevertheless, performing a classical GSA on the inputs using the Cramér-von-Mises index for example, we see, in Table 3, that the index related to X 3 is more than twice as important as X 1 and X 2 (when considering only rst-order eects). Hence, here, the classical GSA largely diers numerically from a second-level SA as expected.

7

Synthesis and pratical advices

In this short section, we give a road map to help the practitioners. We restrict our study to the case of order-one indices; for higher indices, the road map remains the same except that the rank statistics can not be used to estimate the several indices.

7.1 First-level sensitivity analysis for the practitioners We assume in the following that our only aim is to estimate the order-one index with respect to X 1 and we present the dierent simulation algorithms depending on the nature of the computer code.

Algorithm 1 Estimating the order-one Sobol index S 1 for a R-valued deterministic code with R-valued inputs Enter N the total number of calls to the computer code Simulate a N -sample of the inputs (X 1,j , . . . , X p,j ) for j = 1, . . . , N Compute the N corresponding outputs Z j = f (X 1,j , . . . , X p,j ) for j = 1, . . . , N Rearrange the pairs (X 1,j , Z j ) for j = 1, . . . , N by increasing order according to the rst coordinate Denote by (X 1,(j) , Z ( j)) for j = 1, . . . , N the reordered pairs return Ŝ1 Algorithm 2 Estimating the order-one Sobol index S 1 for a R-valued deterministic code with general inputs (not necessarily R-valued)

Enter N the total number of calls to the computer code Simulate a Pick-Freeze N * -sample of the inputs (X 1,j , . . . , X p,j ) for j = 1, . . . , N * with N * = N/2 Compute the N * corresponding outputs (Z j , Z Algorithm 3 Estimating the order-one universal index S 1 2,Univ for a metric space-valued deterministic code with R-valued inputs Choose a class of functions T a Choose a probability measure Q Enter N the total number of calls to the computer code Simulate a N -sample of the inputs (X 1,j , . . . , X p,j ) for j = 1, . . . , N Compute the N corresponding outputs Z j = f (X 1,j , . . . , X p,j ) for j = 1, . . . , N Rearrange the pairs (X 1,j , Z j ) for j = 1, . . . , N by increasing order according to the rst coordinate Denote by (X 1,(j) , Z (j) ) for j = 1, . . . , N the reordered pairs if Q = P then Compute N 1 2,GMS,Rank as in ( 14) and D 1 2,GMS,Rank as in (15) return S In this section, we present the algorithms to be used in second-level SA.

Algorithm 7 Estimating the order-one universal index S 1 2,Univ for a R-valued deterministic code with R-valued inputs Choose the class of functions T a as in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] Enter N the total number of simulations Enter n the approximation size Simulate a N -sample of the distribution parameters of the inputs (θ 1,j , . . . , θ p,j ) for j = 1, . . . , N for j = 1, . . . , N do Simulate a N -sample of the inputs (X 1,j , . . . , X p,j ) Simulate a n-sample of inputs distributed following (µ θ1,j , . . . , µ θ1,j ) denoted by (X 1,j,k , . . . , X p,j,k ) for k = 1, . . . , n Compute the n corresponding outputs Z j,k = f (X 1,j,k , . . . , X p,j,k ) for k = 1, . . . , n end for Proceed as in Algorithm 5 with output the empirical measure µ Zj ,n = 1 n n k=1 δ Z j,k return Ŝ1 2,W2,PF,n Algorithm 8 Estimating the order-one universal index S 1 2,Univ for a R-valued deterministic code with general inputs (not necessarily R-valued) for second-level SA Choose the class of functions T a as in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] Enter N the total number of simulations Enter n the approximation size Simulate a N -sample of the distribution parameters of the inputs (θ 1,j , . . . , θ p,j ) for j = 1, . . . , N for j = 1, . . . , N do Simulate a N -sample of the inputs (X 1,j , . . . , X p,j ) Simulate a n-sample of inputs distributed following (µ θ1,j , . . . , µ θ1,j ) denoted by (X 1,j,k , . . . , X p,j,k ) for k = 1, . . . , n Compute the n corresponding outputs Z j,k = f (X 1,j,k , . . . , X p,j,k ) for k = 1, . . . , n end for Proceed as in Algorithm 6 with output the empirical measure µ Zj ,n = 1 n n k=1 δ Z j,k return Ŝ1 2,W2,PF,n

Conclusion

In this article, we present a very general way to perform SA when the output Z of a computer code lives in a metric space. The main idea is to consider real-valued squared integrable test functions (T a (Z)) a∈Ω parameterized by a nite number of elements of a probability space. Then Hoeding decomposition of the test functions T a (Z) is computed and integrated with respect to the parameter a. This very general and exible denition allows, on the one hand, to recover a lot of classical indices (namely, the Sobol indices and the Cramér-von-Mises indices) and, on the other hand, to perform a well tailored and interpretable SA. Furthermore, a SA is also made possible for computer codes for which the output is a c.d.f. and for stochastic computer codes (that are seen as an approximation of c.d.f.-valued computer codes). Last, it enables also to perform second-level SA by embedding second-level SA as a particular case of stochastic computer codes.

As already seen, a clear limitation comes from the dimensions. On the one hand, the metric based on Wasserstein balls is well-suited in dimension one for its nice theoretical properties and its easy-toimplement estimation. In higher dimension, things become more tricky. On the other hand, the rankbased estimation has not been developed yet in dimension higher than one. A nice perspective is then to tackle the estimation beyond the dimension one. Finally, we introduce ε > 0 and we study: 

P √ N |U 1,N,n -U 1,N | ε √ N ε E [|U 1,N,n -U 1,N |] 2 √ N ε E [B n ] √ N ε 24 δ(N ) E[W q (µ X1 , µ X1,n )] + 2 √ N ε P(∆(N ) c ).

Denition 3 . 3 .

 33 For any F ∈ D, any G ∈ D, and any positive contrast function c, we dene the c-Wasserstein cost by

  θ)] which is an extension of the denition of the classical mean in R p which minimizes E[ X -θ 2 ]. Now we consider M = D and l = W c . Further, (20) becomes

4

  Sensitivity analysis in general Wasserstein spacesIn this section, we particularize the indices dened in Section 2.2 in the specic context of general Wasserstein spaces. Moreover, we exploit the framework of Section 3 to dene a new index based on Fréchet means in such general Wasserstein spaces.

Figure 4 .

 4 Once again, we observe a global accordance of the predominance regions between the Fréchet indices S u (F) and the Wasserstein indices S u 2,W2 . Comparison of the estimation procedures (rank-based and Pick-Freeze) In order to compare the accuracy of the Pick-Freeze method and the accuracy of the rank-based method at a xed size, we assume that only 450 calls of the computer code are allowed to estimate the indices S u (F) and S u 2,W2 for u = {1}, {2}, and {3}. Hence, the sample size allowed in the rank-based procedure is N = 450. In the Pick-Freeze methodology, the estimation of the Fréchet indices S u (F) requires one initial output sample and three extra output samples to get the Pick-Freeze versions (one for each index) leading to an allowed sample size N = 450/4 = 112 while it is N = 450/6 = 75 for the Wasserstein indices S u 2,W2 (1 + 3 = 4 output samples + two extra samples to handle the integration). We only focus on the rst-order indices since, as explained previously, the rank-based procedure has not been developed yet for higher-order indices. We repeat the estimation procedure n r = 200 times. The boxplots of the mean square errors for the estimation of the Fréchet indices S u (F) and the Wasserstein indices S u 2,W2 have been plotted in Figure 5. We observe that, for a xed total number of calls 450 to the code f (corresponding to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 112 for the Fréchet indices S u (F) and N = 74 for the Wasserstein indices S u
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Figure 1 :

 1 Figure 1: Model[START_REF] Hart | Robustness of the Sobol' indices to distributional uncertainty[END_REF]. Values of the indices S 1 (F), S 2 (F), S 3 (F), and S 1,3 (F) given by (26) (from left to right) with respect to the values of p 1 and p 2 (varying from 0 to 1). In the rst row (resp. second and third), p 3 is xed to p 3 = 0.01 (resp. 0.5 and 0.99).

Figure 2 :

 2 Figure 2: Model (30). Values of the indices S 1 2,W2 , S 2 2,W2 , S 3 2,W2 , and S 1,3

Figure 3 :

 3 Figure 3: Model[START_REF] Hart | Robustness of the Sobol' indices to distributional uncertainty[END_REF]. In the rst row of the gure, regions where S 1 (F) S 2 (F) (black), S 1 (F) S 2 (F) (white), and S 1 (F) = S 2 (F) (gray) with respect to p 1 and p 2 varying from 0 to 1 and, from left to right, p 3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with S 1 (F) and S 3 (F) (resp. S 2 (F) and S 3 (F)) with respect to p 1 and p 3 (resp. p 2 and p 3 ) varying from 0 to 1 and, from left to right, p 2 = 0.01, 0.5, and 0.99 (resp. p 1 = 0.01, 0.5, and 0.99).

Figure 4 :

 4 Figure 4: Model (30). In the rst row of the gure, regions where S 1 2,W2 S 2 2,W2 (black), S 1 2,W2 S 2 2,W2

Figure 5 :

 5 Figure 5: Model (30) with p 1 = 1/3, p 2 = 2/3, and p 3 = 3/4. Boxplots of the mean square errors of the estimation of the Fréchet indices S u (F) (top row) and the Wasserstein indices S u 2,W2 (bottom row) with a xed sample size N and n r = 200 replications. The indices with respect to u = {1}, {2}, and {3} are displayed from left to right. The results of the Pick-Freeze estimation procedure with N = 112 for the Fréchet indices S u (F) and N = 75 for the Wasserstein indices S u 2,W2 are provided in the left side of each graphic. The results of the rank-based methodology with N = 450 are provided in the right side of each graphic.

  Fréchet indices S u (F) and the Wasserstein indices S u 2,W2 for u = {1}, {2}, and {3}. As in Example 4.1 of Section 4.4, the sample size allowed in the rank-based procedure is then N = 450 while, in the Pick-Freeze methodology, it is only N = 112 for the Fréchet indices S u (F) and N = 75 for the Wasserstein indices S u2,W2 . We only focus on the rst-order indices since, as explained previously, the rank-based procedure has not been developed yet for higher-order indices. The empirical c.d.f. based on the empirical measures µ Xj ,n for j = 1, . . . , N in (34) are constructed with n = 500 evaluations. We repeat the estimation procedure n r = 200 times. The boxplots of the mean square errors for the estimation of the Fréchet indices S u (F) and the Wasserstein indices S u 2,W2 have been plotted in Figure7. We observe that, for a xed total number of calls 450 to the code f (corresponding to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 112 for the Fréchet indices S u (F) and N = 74 for the Wasserstein indices S u

Figure 7 :

 7 Figure 7: Model (39) with p 1 = 1/3, p 2 = 2/3, and p 3 = 3/4. Boxplot of the mean square errors of the estimation of the Fréchet indices S u (F) (top row) and the Wasserstein indices S u 2,W2 (bottom row) with a xed sample size N , an approximation size n xed at n = 500, and a number n r = 200 of replications. The indices with respect to u = {1}, {2}, and {3} are displayed from left to right. The results of the Pick-Freeze estimation procedure with N = 112 for the Fréchet indices S u (F) and N = 75 for the Wasserstein indices S u 2,W2 are provided in the left side of each graphic. The results of the rank-based methodology with N = 450 are provided in the right side of each graphic.
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  a) we produce a N -sample ([A i,j , B i,j ]) j=1,...,N of intervals [A i , B i ].
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j

  ) for j = 1, . . . , N * return Ŝ1

3 r=1P

 3 Obviously, we get E B n 1 ∆(N ) c P(∆(N ) c ), where A c stands for the complementary of A in Ω. Furthermore,E B n 1 ∆(N ) E [B n |∆(N )] = P (B n = 1|∆(N )) W q (µ Xr , µ Xr,n ) q (µ X1 , µ X1,n )].

  It remains to choose rst, δ(N ) so that P(∆(N) c ) = o 1/ √ N and second, n such that E[W q (µ X1 , µ X1,n )] = o(δ(N )/ √ N ). Consequently, √ N (U 1,N,n -U 1,N ) = o P (1). Analogously, one gets √ N (U l,N,n -U l,N ) = o P(1) for l=2, 3 and 4.

3 ,

 3 A i is now uniformly distributed on [0, 0.45] while B i is now uniformly distributed on [0.55, 1]. The results are displayed in Table 1 (second row).

Table 1 :

 1 Model (41). GSA on the parameters of the input distributions. Estimations of S u

		.07022	0.08791	0.09236	0.14467	0.21839	0.19066
	A i ∈ [0, 0.45]						
	B i ∈ [0.55, 1] Ŝu 2,W2	0.11587	0.06542	0.169529	0.22647	0.40848	0.34913

2,W2 with a sample size N = 500 and an approximation size n = 500. In the rst row, for i = 1, 2, and 3, A i is uniformly distributed on [0, 0.1] while B i is uniformly distributed on [0.9, 1]. In the second row, we allow for more variability: for i = 1, 2, and 3, A i is uniformly distributed on [0, 0.45] while B i is uniformly distributed on [0.55, 1].

Second, we run another simulation allowing for more variability on the upper bound related to the third input X 3 only: B 3 is uniformly distributed on [0.5, 1] (instead of [0.9, 1]). For i = 1 and 2, A i is still uniformly distributed on [0, 0.1] while B i is still uniformly distributed on [0.9, 1]. The results are displayed in

Table 2 .

 2 We still use a sample size N = 500 and an approximation size n = 500.

	u	{1}	{2}	{3}	{1, 2}	{1, 3}	{2, 3}
	Ŝu 2,W2	0.01196	0.06069	0.56176	-0.01723	0.63830	0.59434

Table 2 :

 2 Model[START_REF] Lemaître | Density modicationbased reliability sensitivity analysis[END_REF]. GSA on the parameters of the input distributions. Estimations of S u 2,W2 with a sample size N = 500 and an approximation size n = 500 and more variability on B 3 , now uniformly distributed on [0.5, 1]. For i = 1 and 2, A i is still uniformly distributed on [0, 0.1] while B i is still uniformly distributed on [0.9, 1].

Table 3 :

 3 Model[START_REF] Lemaître | Density modicationbased reliability sensitivity analysis[END_REF]. Direct GSA on the inputs. Estimations of S u 2,CVM with a sample size N = 10 4 . The reader is referred to

	u	{1}	{2}	{3}	{1, 2}	{1, 3}	{2, 3}
	Ŝu 2,CVM	0.13717	0.15317	0.33889	0.33405	0.468163	0.53536

4 

. The reader is referred to

[START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] Section 3] 

for the denition of this index S u 2,CVM and its Pick-Freeze estimator together with their properties. The results are displayed in Table

3

.

  N -sample (W 1 , . . . , W N ) of a Q-distributed random variable Compute N 12,Univ,Rank as in (17) and D 1 2,Univ,Rank as in(18) 

	7.2 Second-level sensitivity analysis for the practitioners
	else	1 2,GMS,Rank =	N 1 2,GMS,Rank D 1 2,GMS,Rank
	Simulate a return S 1 2,Univ,Rank = end if	N 1 2,Univ,Rank D 1 2,Univ,Rank
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variables (the one chosen by the practitioner and the one generated by the computer code) are built on the same probability space, leading to the function f s

where D is the extra random variable lying in some space D. We naturally denote the output random variable f s (x, •) by f s (x).

Hence, one may dene another (deterministic) computer code associated with f s for which the output associated to x is the probability measure µ x f : E → W q (E) [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] x → µ x .

The framework of ( 33) is exactly the one of Section 4.1 and has already been handled. Obviously, in practice, one does not assess the output of the code f but one can only obtain an empirical approximation of the measure µ x given by n evaluations of f s at x, namely,

where δ • is the Dirac function. Further, [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] can be seen as an ideal version of [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF]. Concretely, for 

We emphasize on the fact that the random variables D 1 , . . . , D n are not observed.

Sensitivity analysis

Let us now present the methodology we adopt in the sequel. In order to study the sensitivity of the distribution µ x , one can use the framework introduced in Section 4.1 and the index S u 2,Wq given by (24).

In an ideal scenario which corresponds to the framework of [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF], one may assess the probability measure µ x for any x. Then following the estimation procedure of Section 4.3, one gets an estimation of the sensitivity index S u 2,Wq with good asymptotic properties [27, Theorem 2.4].

In the more realistic framework presented above in [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF], we only have access to the approximation µ x,n of µ x rendering more complex the estimation procedure and the study of the asymptotic properties.

In this case, the general design of experiments is the following

j is the associated Pick-Freeze version, and 2 × N × n is the total number of evaluations of the stochastic computer code [START_REF] Hart | Robustness of the Sobol' indices to marginal distribution uncertainty[END_REF]. Then, we construct the approximations µ-→

From there, one may use one of the three estimation procedures presented in Section 2.1.

Algorithm 4 Estimating the order-one universal index S 1 2,Univ for a metric space-valued deterministic code with general inputs (not necessarily R-valued) Notation It is convenient to have short expressions for terms that converge in probability to zero.

We follow [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. The notation o P (1) (respectively O P (1)) stands for a sequence of random variables that converges to zero in probability (resp. is bounded in probability) as n → ∞. More generally, for a sequence of random variables R n ,

For deterministic sequences X n and R n , the stochastic notation reduce to the usual o and O. Finally, c

stands for a generic constant that may dier from one line to another.

Proof of Proposition 5.1. One has 

.

Since (U l,N,n -U l,N,n ), for l = 3 and 4 and (U 3,N -U 4,N ) converges almost surely respectively to 0 and I(Φ 3 ) -I(Φ 4 ), the denominator converges almost surely. Thus it suces to prove that the numerator is o P (1/ √ N ) which reduces to prove that √ N (U l,N,n -U l,N ) = o P (1) for l = 1, . . . , 4, where U l,N,n (respectively U l,N ) has been dened in [START_REF] Iooss | Sobol' sensitivity analysis for stochastic numerical codes[END_REF] (resp. [START_REF] Bursztyn | Screening experiments for dispersion eects[END_REF]). Let l = 1 for example. The other terms can be treated analogously. Here, m(1) = 3. We write

where the random variable B n in the expectation in the right-hand side of the previous inequality is a Bernoulli random variable whose distribution does not depend on (µ X1 , µ X2 , µ X3 ). Let ∆(N ) be the following event ∆(N ) = W q (µ Xτ (1) , µ Xτ (3) ) -W q (µ Xτ (1) , µ Xτ (2) ) δ(N ) .