J. P. Kleijnen, Design Of Experiments: Overview, Proc. Winter Simulation Conf, pp.479-488, 2008.

J. Shao and D. Tu, The Jackknife and Bootstrap, Second Corrected Printing, 1996.

B. Sudret, S. Marelli, and J. Wiart, Surrogate models for uncertainty quantification: An overview, Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), pp.793-797, 2017.

A. Ajayi, C. Christopoulos, P. Sewell, G. A. Borges, and L. R. De-menezes, Efficient computation of stochastic electromagnetic problems using unscented transforms, IET Sci. Meas. Technol, vol.2, issue.2, pp.88-95, 2008.

C. Chauvière, J. S. Hesthaven, and L. Lurati, Computational modeling of uncertainty in time-domain electromagnetics, SIAM J. Sci. Comput, vol.28, issue.2, pp.751-775, 2006.

P. Bonnet, F. Diouf, C. Chauvière, S. Lalléchère, M. Fogli et al., Numerical simulation of a reverberation chamber with a stochastic collocation method, Comp. Rendus Phys, vol.10, issue.1, pp.54-64, 2009.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, 2008.

V. Rannou, F. Brouaye, M. Hélier, and W. Tabbara, Kriging the quantile: Application to a simple transmission line model, Inverse Problems, vol.18, issue.1, pp.37-48, 2002.

F. Jouvie, D. Lecointe, P. Briend, F. Jacquin, and E. Nicolas, Computation of the field radiated by a FM transmitter by means of ordinary Kriging, Ann. Telecommun.-Ann. Télécommun, vol.66, issue.8, pp.429-443, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651966

O. Jawad, D. Lautru, A. Benlarbi-delai, J. M. Dricot, and P. De-doncker, Study of human exposure using Kriging method, Prog. Electromagn. Res. B, vol.61, issue.1, pp.241-252, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099712

T. Bdour, C. Guiffaut, and A. Reineix, Use of adaptive Kriging metamodeling in reliability analysis of radiated susceptibility in coaxial shielded cables, IEEE Trans. Electromagn. Compat, vol.58, issue.1, pp.95-102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283002

H. Bagci, A. C. Yucel, J. S. Hesthaven, and E. Michielssen, A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms, IEEE Trans. Electromagn. Compat, vol.51, issue.2, pp.301-311, 2009.

O. Aiouaz, D. Lautru, M. Wong, E. Conil, A. Gati et al., Uncertainty analysis of the specific absorption rate induced in a phantom using a stochastic spectral collocation method, Ann. Telecommun.-Ann. Télécommun, vol.66, issue.8, pp.409-418, 2011.

I. S. Stievano, P. Manfredi, and F. G. Canavero, Parameters variability effects on multiconductor interconnects via Hermite polynomial chaos, IEEE Trans. Compon., Packag., Manuf. Technol, vol.1, issue.8, pp.1234-1239, 2011.

M. Larbi, I. S. Stievano, F. G. Canavero, and P. Besnier, Variability impact of many design parameters: The case of a realistic electronic link, IEEE Trans. Electromagn. Compat, vol.60, issue.1, pp.34-41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01637412

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys, vol.230, issue.6, pp.2345-2367, 2011.

E. Garcia, Electromagnetic compatibility uncertainty, risk, and margin management, IEEE Trans. Electromagn. Compat, vol.52, issue.1, pp.3-10, 2010.

P. Kersaudy, S. Mostarshedi, B. Sudret, O. Picon, and J. Wiart, Stochastic analysis of scattered field by building facades using polynomial chaos, IEEE Trans. Antennas Propag, vol.62, issue.12, pp.6382-6393, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01432519

S. Au and J. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Eng. Mech, vol.16, issue.4, pp.263-277, 2001.

T. Konefal, A. C. Marvin, J. F. Dawson, and M. P. Robinson, A statistical model to estimate an upper bound on the probability of failure of a system installed on an irradiated vehicle, IEEE Trans. Electromagn. Compat, vol.49, issue.4, pp.840-848, 2007.

M. Larbi, P. Besnier, and B. Pecqueux, Probability of EMC failure and sensitivity analysis with regard to uncertain variables by reliability methods, IEEE Trans. Electromagn. Compat, vol.57, issue.2, pp.274-282, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116322

A. Kouassi, J. M. Bourinet, S. Lalléchère, P. Bonnet, and M. Fogli, Reliability and sensitivity analysis of transmission lines in a probabilistic EMC context, IEEE Trans. Electromagn. Compat, vol.58, issue.2, pp.561-572, 2016.

C. Cannamela, J. Garnier, and B. Iooss, Controlled stratification for quantile estimation, Ann. Appl. Statist, vol.2, issue.4, pp.1554-1580, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02514913

M. Larbi, P. Besnier, and B. Pecqueux, The adaptive controlled stratification method applied to the determination of extreme interference levels in EMC modeling with uncertain input variables, IEEE Trans. Electromagn. Compat, vol.58, issue.2, pp.543-552, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288646

T. Houret, P. Besnier, S. Vauchamp, and P. Pouliguen, Comparison of surrogate models for extreme Quantile estimation in the context of EMC risk analysis, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02314034

T. Houret, P. Besnier, S. Vauchamp, and P. Pouliguen, Combining Kriging and controlled stratification to identify extreme levels of electromagnetic interference, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02314025

C. Lataniotis, S. Marelli, and B. Sudret, UQLab user manual-Kriging (Gaussian process modelling),'' Chair Risk, Saf. Uncertainty Quantification, 2017.

M. Larbi, Méthodes statistiques pour le calcul d'interférences électromagnétiques extrêmes au sein de systèmes complexes, 2016.

A. Olsson, G. Sandberg, and O. Dahlblom, On Latin hypercube sampling for structural reliability analysis, Struct. Saf, vol.25, issue.1, pp.47-68, 2003.

J. M. Hilbe, Negative Binomial Regression, 2011.

C. Lataniotis, S. Marelli, and B. Sudret, UQLab User Manual-The INPUT Module, 2015.

M. Leone, Closed-form expressions for the electromagnetic radiation of microstrip signal traces, IEEE Trans. Electromagn. Compat, vol.49, issue.2, pp.322-328, 2007.

M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul, vol.55, issue.1-3, pp.271-280, 2001.

M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, Improving Kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction, Struct. Multidiscip. Optim, vol.53, issue.5, pp.935-952, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01232938