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ABSTRACT An electromagnetic compatibility failure is a consequence of an applied interference level
being in excess of the susceptibility level of the electronic equipment under investigation. Both interference
and susceptibility levels depend on various configurations of coupling paths described by sets of unknown
or uncertain parameters. It is therefore convenient to describe the applied interference and the susceptibility
levels as random variables. As extreme values may have a strong impact on the risk of failure, we focus in this
article on the estimation of extreme values of interference level (relevant applied fields, currents or voltages)
by means of a restricted set of numerical simulations. The controlled stratification method aims at reducing
the variance of estimation of extreme quantile, based on a correlated simple model. We recently highlighted
that a kriging surrogate model was a good candidate to provide this simple model. Combined with controlled
stratification, we obtained better estimation performances than using a standalone kriging model with the
same output sample size. In practice, this sample size is limited due to the excessive simulation time of
electromagnetic solvers. In this paper, we propose an original algorithm, which aims at checking whether
the sample size is adequate to perform an acceptable estimation or not. We first validate the algorithm using
analytical models. Finally, we apply this method to estimate the 99% quantile of the total radiated power
of a source located inside an open cavity with 16 uncertain inputs. In that case, the algorithm reduces the
number of calls to the initial model to approximately 40% of the budget that is required using a standard
Monte Carlo approach. Moreover, it provides almost 4 times more extreme outputs. More remarkably, our
proposed algorithm provides guidance for assessing the performance of quantile estimation according to the
initially sample size of the design of experiment.

INDEX TERMS Controlled stratification, extreme quantiles, Monte Carlo, surrogate models, kriging,
uncertainty propagation, EMC, risk analysis.

I. INTRODUCTION
Electromagnetic Compatibility (EMC) risk analysis, in the
context of intentional electromagnetic interference (IEMI),
often requires solving Maxwell equations with 3D numerical
solvers based for instance on themethod ofmoment, the finite
difference time domain, or the finite element method. Such
models are deterministic and are supposed to provide ‘‘exact’’
solutions, their errors being neglected. Such models are
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denoted as true models in the rest of this paper. Unfortunately,
a true model is very time consuming. In a realistic EMC
test case, many input data are not well known due to epis-
temic uncertainties. These uncertainties propagate through
the model. As a result, the calculated output exhibits non-
tractable fluctuations and may be described as a random
variable. A proper IEMI risk assessment requires estimation
of some extreme quantiles of the output for some input
distributions.

A α-quantile is the output variable value for which its
cumulated distribution function (cdf) reaches the probability
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level α. Any quantile estimation resorts to the construction
of an adequate design of experiment (DOE) [1]. The DOE
includes on the one hand some random realizations of the
inputs and on the other hand, the corresponding outputs com-
puted with the model. There are various strategies to build an
adequate DOE in order to speed-up the convergence of the
searched quantile estimation.

The standard Monte Carlo approach consists in building
an empirical cdf from a DOE based on a sampling of input
variables according to Latin hypercube sampling (LHS). Any
statistic, such as the α-quantile is then directly estimated
from the empirical cdf of the output sample. Re-sampling
techniques [2] may also refine this estimation. However,
it requires a large sample size of the DOE to compute extreme
quantiles.

In recent years, some authors took advantage of advanced
statistic concepts to solve EMC risk analysis problems. Most
of these techniques are based on an adequate definition of the
DOE to build a Surrogate Model (SM) [3] that can predict
many outputs at low computation cost, and ultimately any
statistic of interest. Different stochastic techniques have been
successfully applied in order to provide a more realistic view
of EM simulations including uncertainties. Among them,
the unscented transform [4] or the ‘‘Lagrange’’ stochastic
collocation [5], [6] methods, the kriging technique [7]–[11],
the polynomial chaos expansion [12]–[16] were proposed.
The previous quoted techniques were mainly applied to
numerical simulations including various applications: shield-
ing effectiveness [17], scattering and propagation [18] and/or
EMC/EMI problems. Other important aspects of statistical
developments (especially considering the EMC framework)
deal with extreme quantile estimation based on reliability
techniques [19]–[22] as well as on the so-called controlled
stratification (CS) method [23], [24]. This last technique
in particular reduces the variance of estimation of extreme
quantiles, which is the purpose of our study.

The CS technique uses a specific SM to design an adequate
DOE of the true model. It may be seen as a pre-sampling
technique dedicated to the estimation of an extreme quantile
without resorting to the entire output distribution. A SM
for CS needs to be specifically correlated to the true model
in terms of probability of reaching extreme values for both
SM and the true model, with the same input realizations.
In [24], the SM was a physical approximation of the true
model. Finding a systematic approach to build an appropriate
SM for the CS is an open question in literature. In [25],
we rather investigated generic SMs as candidates for CS.
The kriging interpolation was selected as a suitable candi-
date for the CS, with regard to the above-mentioned specific
correlation. Recently, we applied the CS method based on a
kriging SM [26]. This method, called KCS was compared
to direct quantile estimations with the standalone kriging
model. For a fair comparison, the sample size of the DOE
(i.e. the number of calls to the true model) was identical for
the extreme quantile estimation through KCS and kriging.
As regard KCS, we allocated half of the sample size of the

DOE to build the kriging SM, and the other half to the CS
method. We then demonstrated that KCS may significantly
outperform the standalone kriging SM for estimating extreme
quantiles.

This paper deals with solving the question of quality or
convergence of extreme quantiles estimation from a practical
point of view and introduces a systematical approach to solve
this problem. Obviously, the performance of KCS (or of any
statistical estimation) improves as the sample size of the DOE
increases, but for most EMC simulations models, only a very
limited simulation budget is available due to limited time and
cost resources. A single computation may last a few minutes
for very simple geometries up to several hours or even days
for entire systems (e.g. a vehicle).

For a given sample size of the DOE, one can hardly predict
the variance of a α-quantile estimation with the KCSmethod.
In addition, the variance of an α-quantile estimation varies
rapidly with the sample size if it is too limited. This paper
introduces an original algorithm to check the consistency
of the sample size of the DOE according to the searched
α-quantile.

The proposed algorithm starts with one DOE of a carefully
chosen maximum sample size. From this DOE, a SM is built
(in this paper a kriging). This SM is then used to predict
the output of new and independent inputs thus forming new
DOEs of smaller sizes. At each smaller DOE, a new SM is
built and used to estimate the targeted quantile. While the
true model is called only to create the first DOE of maxi-
mum sample size, several quantile estimations are therefore
available at smaller sample sizes with no extra cost. Con-
sequently, the fluctuations of the α-quantile estimation with
regard to the sample size can be checked at a much-reduced
cost. This information is useful to indicate if the simulation
budget is large enough. Once the quantile estimation of SM is
considered stable enough, the CS with the most accurate SM
(i.e. built at the maximal Sample size of the DOE) is used
to provide the final quantile estimation. To our knowledge,
the KCS was presented for the first time in [26] and this
implementation of the KCS has not been introduced so far
in the literature.

This paper is organized as follows. The KCS method is
first introduced in section II. It is followed by a complete
description of the proposed algorithm in section III. Then,
we provide a validation of the critical part of the algorithm
based on toy examples in section IV. The last section deals
with the practical implementation of themethod on a classical
EMC case study. Finally, a conclusion and perspectives are
given. Table 1 provides the nomenclature of the numerous
variables used throughout the paper.

II. THE KCS METHOD
A. THE KRIGING
The goal of a SM like kriging is to approximate the true
model. Once the SM is built up from the DOE of size n,
it can predict an unlimited number of output realizations at
negligible cost.
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TABLE 1. Nomenclature.

Universal kriging assumes the output is a Gaussian process
realization described as the sum of a trend term and a random
term:

Ŷ (x) = βT f (x)+ σ 2Z (x) . (1)

The term βT f (x) represents the process mean, composed
of P basis functions f, and P regression coefficients β.

The term σ 2Z (x) represents random noise, composed of a
centered and reduced Gaussian random variable Z (x) multi-
plied by the process variance σ 2.
If the process is stationary (i.e. constant yet unknown

mean), a constant trend is sufficient (P = 1). In that case,
kriging is called ordinary and the trend is written as:

βT f (x) = β1f1 (x) = β1. (2)

The core assumption of kriging is that outputs correspond-
ing to neighboring inputs are more correlated than outputs
from more distant inputs. Correlation functions, like the
Matérn-5/2, are used to model the relationship between the
correlation (R) and the Euclidean distance (h). Such functions
are parametrized by a vector θ (with as many components as
input variables):

R (h, θ) =

(
1+

√
5 |h|
θ
+

5h2

3θ2

)
e−
√
5|h|
θ , (3)

with D the number of input variables, the distance between
two input points x and x′ is:

h =

√√√√ D∑
i=1

(
xi − x ′i
θi

)2

. (4)

The main task when building a kriging is to choose the best
θ according to the DOE. Thanks to an optimization algorithm,
like the Hybrid Genetic Algorithm and Gradient, the best
θ may be found by minimizing the negative log-likelihood
function:

θ = argmin
Dθ

(
1
2
log (det (R))+

SSM
2
log

(
2πσ 2

)
+
SSM
2

),

(5)

with SSM , the size of the DOE. The other unknowns (β and
σ 2) are deduced from θ such as:

β(θ ) =
(
FTR−1F

)−1
FTR−1y, (6)

σ 2 (θ) =
1
SSM

(y− Fβ)T R−1 (y− Fβ) , (7)

where the matrix F is:

Fi,j = fj (xi) ; i = 1, . . . , SSM ; j = 1, . . . ,P. (8)

Once the kriging is built, it can be used as a predictor at
any new input xi in the design space. The corresponding new
output follows a Gaussian distribution with mean:

µŶ (xi)
= f (x)T β C r (x)T R−1(y-Fβ) (9)

and variance:

σ 2
Ŷ (xi)
=

(
1− rT (x)R−1 (x)

+uT (x)
(
FTR−1F

)−1
u (x)

)
σ 2, (10)

where:

u (x) = FTR−1r (x)− f (x) , (11)
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with r the vector of cross-correlations between a prediction
point and every output point of the DOE:

r (x) = R (x,xi; θ) , i = 1, . . . , SSM . (12)

In this paper, we used the ‘‘UQLab’’ framework imple-
mentation of ordinary kriging. Additional theoretical details
and practical implementation advices can be found in the
‘‘UQLab’’ user manual [27].

B. THE CONTROLLED STRATIFICATION
CS is a technique dedicated to find extreme quantiles.
CS samples the input space in order to generate more extreme
output events in much less trials than direct sampling.

CS requires beforehand a correlated simple model. In our
case, this simple model is a kriging SM. From the total
simulation budget of N , SSM realizations are reserved for
building the SM and the remaining SCS realizations are used
for the CS. We chose arbitrarily:

SSM =
⌊
N
2

⌋
. (13)

The SM, once built, is used to predict a large number of
output realizations. The predicted output sample is stratified,
or sliced, hence the name ‘‘stratification’’. The strata limits
are SM quantiles estimation, thus the adjective ‘‘controlled’’.
The number of strata (ns) is arbitrary as well as the strata’s
limits, except for the extreme stratum which has to be the tar-
geted α-quantile. We used four strata. The limits are quantiles
whose probabilities are grouped in a vector A:{

A = [0, α, 2α, 0.5, 1] , if α < 0.25
A = [0, 0.5, 1− 2(1− α), α, 1] , if α > 0.75

(14)

A budget of SCS simulations of the true model is allocated
to the CS. Each stratum has a dedicated number of simula-
tions Nj, j = 1 . . . ns. We chose a uniform allocation strategy:

Nj =
⌊
SCS
ns

⌋
+mod (SCS , ns) I{j=1∧α<0.25}∨{j=ns∧α>0.75} (15)

A more advanced allocation strategy based on an adaptive
allocation of realizations in each stratum is also available.
However, adaptive allocation relies on the estimation of
the optimal allocation, which does not always warrant
performance improvement, in contrast with the uniform
strategy [28].

The SM identifies Nj output realizations, Y (j) belonging to
the jth stratum. The model is called for each identified input
in order to compute the true output Y (j). If the correlation
(as defined in [23]) is high enough, most of the Y (j) outputs
remain in the jth stratum of the true model. In fact, CS per-
formance relies rather on the high correlation associated to
input sensitivity between the SM and the model than on
the accuracy of SM prediction. In such conditions, an input
producing an extreme event with the SM is likely to produce

an extreme event of the true model. From the sample of
outputs generated by CS, the output cdfFY (y) is computed:

FY (y) =
ns∑
j=1

(Aj+1 − Aj) 1
Nj

Nj∑
i=1

1
Y (j)
i ≤y

. (16)

Finally, the estimation of the targeted α-quantile is:

inf {y,FY (y) > α} . (17)

III. PROPOSED ALGORITHM
The goal of the algorithm is to estimate the SM performance
improvement rate according to the sample size of the DOE.
It aims at examining the relative change of statistical fluctua-
tions (mean and standard deviation) of the quantile estimator.
For example, if it is insignificant for smaller sample sizes
of the DOEs, increasing the simulation budget is irrelevant.
On the contrary, if this relative change is important, accord-
ing to the user perspective, increasing the simulation budget
might be useful.

Note that this algorithm is mainly based on the observa-
tion of kriging performance. The KCS approach estimates a
quantile thanks to the kriging prediction capability. There-
fore, the quantile estimation performed with the CS improves
accordingly.

The algorithm is described in Fig. 1. As indicated by the
color code, it is composed of three main parts:

FIGURE 1. Flowchart of the KCS practical implementation.
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1. Maximal size DOE (red)
2. Monte Carlo Simulation of Surrogate Model (blue)
3. Controlled Stratification (violet).

Note that the true model is called in part 1 and 3 only.
Therefore, the overall number of times (N ) the true model
is called is Smax + SSM ,add in part 1 and +Scs + Scs,add in
part 3.

A. MAXIMAL SIZE DOE
A DOE of maximum allowed sample size, Smax,is set up:
the input sample Xmax is created from a LHS sampler [29].
Then, Smax calls of the initial model are performed in order
to compute the corresponding Ymax output sample.
The controlled stratification performance depends on the

extreme realizations prediction capability of the SM. Indeed,
the SM is responsible for identifying good candidates of the
input space that should be in the targeted stratum. However,
such a SMmust be learned with a sample that contains at least
one extreme realization to be reliable in the tail of the output
distribution. In order to satisfy this criterion, we provide a
simple approach based on the negative distribution [30].

The problem of counting output realizations above
(or below if α < 0.5) the targeted α-quantile in a DOE of size
N constitutes aN trials Bernoulli experiment where each out-
put realization has a success probability p = min(α, 1−α) to
be higher (or below if α < 0.5) than the targeted α-quantile.
Let K be a random variable that counts the number of fail-
ure k , i.e. realizations below (or higher if α < 0.5) the
α-quantile, before observing n success trials. In that
case, K follows a negative binomial distribution and its
cdf is:

FK (k) = 1− pk+1
N−1∑
i=0

(
k + i
i

)
(1− p)i. (18)

The inverse cdf (also known as quantile function) of such
distribution is used to compute the minimum sample size of
the DOE, Nmin (at 95% confidence interval), to observe at
least n extreme values:

Nmin(n, p) = F−1K (0.95|n, p)+ n. (19)

We used the Matlab function icdf in order to compute
the inverse cdf. Some numerical values of Nmin are given
in Table 2 as a function of the probability of the targeted
α-quantiles and of the number of extreme values n. For
instance, with 299 random realizations, the probability of
getting at least one output below the 1% quantile is 95%.

An enrichment strategy allows adding more realizations to
the DOEwithout breaking the LHS properties of the enriched
DOE and, above all, without wasting previously computed
samples [31]. This enrichment may be needed according to
the Monte Carlo simulation of the SM as described in the
following section. Moreover, the simulation budget may be
increased for other reasons.

B. MONTE CARLO OF SURROGATE MODEL
From the maximum sample size of input and output real-
izations, a SM is built. Two indices are also initialized
(ind and mc) as shown in Fig. 1. The index ind identifies the
size of the DOE currently tested. Every tested size (always
smaller or equal to the maximum size) is grouped in a vector
of sizes S = [S1, . . . , Sind , . . . , Smax]. The choice of the
sizes to be tested is not critical; the simplest strategy con-
sists of equipartitioning within the range of possible sizes,
according to Table 2, up to the maximal affordable size. The
mc index serves as a counter in the Monte Carlo simulation
loop.

TABLE 2. Numerical application of (19).

The selected SM is a kriging implemented in the UQLab
framework as described in section II.1.

A new sample of X of size Sind is provided from the same
underlying distribution associated with each input variable,
using the same LHS sampler. The SM (and not the initial
model) is called (at low computation cost) to predict the
corresponding Y outputs. As a result, a new DOE execution
is created without further runs of the initial model. From this
new DOE execution, another SM is set up, which is used to
estimate the targeted α-quantile.

This process is repeated MC times in order to perform a
statistical analysis from MC α-quantiles associated with the
sample size Sind . From this sample of quantiles, we com-
pute its mean µqind and standard deviation σqind . Because
we needed only a rough estimate of the first two moments,
we chose MC = 20.
Eventually, we obtain a multivariate sample of estimated

quantiles (one sample of quantiles for each tested sample
size).

Two information can be inferred from the multivariate
sample:

1. Detect if the chosen maximum sample size actually
results in falling in the too small size region where
performances are catastrophic.

2. Evaluate the rate of improvement of the SM observing
the relative change of the statistics.

In the first situation, the affordable size is clearly not large
enough. This is not likely to happen if the DOE max size has
been chosen wisely as discussed previously.
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The second situation falls into two categories. If the rate
of change tends to be insignificant, the available maximum
sample size of the DOE is suited for this quantile estima-
tion. On the contrary, if it is significant, this is a strong
indication that enriching the DOE (through LHS enrichment)
would be profitable, using additional calls to the true model,
if affordable.

C. CONTROLLED STRATIFICATION
A new DOE is created for applying the CS using the realiza-
tions of the kriging SM (called SMmax) built at the maximal
size, Smax. The stratification of the output space with ade-
quate quantiles is achieved with the SM, and the correspond-
ing inputs realizations are identified. We chose four strata
defined by (14) and a uniform allocation strategy as defined
by (15).

The initial model is then called with the identified
input realizations to compute the corresponding outputs.
Finally, the empirical weighted output distribution is deduced
with (16) and a quantile is computed according to (17).

In order to improve the precision of the CS quantile without
computing an entire new stratified DOE, a simple enrichment
strategy is used. Namely, from the same SMmax , we add a
few more predicted extreme realizations (allocated to the two
last strata). The empirical weighted distribution is updated
to compute another quantile. This process is repeated a few
times.

IV. ALGORITHM VALIDATION
A. VALIDATION METHODOLOGY
The algorithm described in Fig. 1 is partly based on a Monte
Carlo simulation of the statistics of the α-quantile estimation
performed with the SM as a function of the sample size of
the DOE. This corresponds to the blue-colored part of the
flowchart in Fig. 1. Note that a common and single DOE
execution of maximum sample size is used. In this section,
we validate our methodology by checking its sensitivity to
the initial DOE of maximum sample size.

To that end, the algorithm depicted in Fig. 1 is run
10 times (from BEGIN to END), except the DOE enrich-
ment and CS processes which are useless for this specific
validation analysis. Moreover, we provide a pseudo-reference
through a Monte Carlo simulation as described in Fig. 2
(with MC = 100). For each sample size of the vector S,
the execution of Fig.2 provides a new DOE execution per
Monte Carlo trial. Therefore, we obtain a pseudo-reference
for quantile estimation for each component of S.
The maximum sample size is Smax = 770 for both algo-

rithms, which are also run with the same vector S.
In order to carry out this validation step, we use two

analytical models as toy examples. The first model deals with
the calculation of the reflection coefficient (in linear) of a
series R, L, C circuit with 4 random inputs. It exhibits a
non-linear behavior due to its resonating nature. The second

FIGURE 2. Flowchart to validate the surrogate model section of the
proposed KCS algorithm as of Fig. 1.

model evaluates the radiated electric field strength emitted by
a PCB trace with 11 random inputs.

B. VALIDATION RESULTS
1) S11 MODEL
The 4 random inputs of the series RLC circuit are: the
frequency, the resistance (R), the capacitor (C) and the induc-
tance (L). The frequency is uniformly distributed from 100 to
900 MHz. The resistance, capacitor and inductance are uni-
formly distributed between 90% and 110% of their nominal
values. The nominal values (R = 50 �, C = 1.5 pF and
L = 67.5 nH ) are chosen to reach a perfect match
at 500 MHz.

For this specific problem, we aim at identifying the 1%
quantile that corresponds to very low magnitudes of the
reflection coefficient S11 at circuit’s resonance.

Figures 3 and 4 show the computed mean µqind and
standard deviation σqind of the 1% quantile for each of the
10 executions of the flowchart in Fig. 2 as a function of the
sample size of the DOE, respectively. The pseudo-reference
obtained from the algorithm in Fig. 2 appears as a black curve.
Colored dots enable the distinction between the 10 different
executions of the flowchart of Fig. 1.

Both Fig. 3 and Fig. 4 exhibit two distinct regions. First,
we identify a small sample size region, below 300, where
the 1% quantile is overestimated with a large and unstable
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FIGURE 3. S11 case study: Evolution of the mean of the 1% quantile
estimator as a function of the sample size of the DOE for a set
of 10 different runs of our algorithm (colored dots) and comparison with
a pseudo-reference (black line).

FIGURE 4. S11 case study: Evolution of the standard deviation of the 1%
quantile estimator as a function of the sample size of the DOE for a set
of 10 different runs of our algorithm (colored dots) and comparison with
a pseudo-reference (black line).

standard deviation from one run to another. This is in line with
expectations from Table 2. The second region corresponds
to a rather monotonic convergence of the 1% quantile esti-
mation. The mean and variance estimators remain slightly
biased, but the rate of improvement is well estimated and
in agreement with the pseudo-reference result. The proposed
algorithm very clearly manages to distinguish the small size
region. Beyond that region, the improvement rate is well
estimated despite a slight bias.

2) PCB MODEL
The 11 random variable inputs are: the frequency (fr), geo-
metrical characteristics (the substrate thickness (h), the trace
width (W ) and length (l)), electrical characteristics (substrate
permittivity (εr ), voltage source (Vs), impedance source (Zs),
impedance load (Zl)), and the position where the electric field
strengh is measured (spherical coordinates r,θ, and ϕ). Each
input follows a Gaussian distribution centered at its nominal
value with a relative standard deviation of 10%. The nominal
values are chosen so that the trace appears as a quarter wave-
length transmission line: fr = 404 MHz, h = 0.775 mm,
W = 0.51 cm, l = 10.16 cm, εr = 4.6, Vs = 1 V ,

Zs = 50 �, Zl = 1 �, r = 3 m, ϕ = θ = 2π . A 3D view
of the geometry with the inputs set to their nominal value is
represented in Fig. 5.

FIGURE 5. Geometry of the PCB trace, loaded at each end. The output is
the radiated field strength at some point (represented here as a small
black circle).

The model output is the radiated electric field strength
magnitude computed from [[32], eq. (23)].

For this specific problem, we aim at identifying the 99%
quantile that corresponds to extreme values of radiated field,
i.e. at risk from an EMC point of view.

The results for this case study are plotted in Fig. 6 for
the computed mean and in Fig. 7 for the standard deviation.
Since we target a quantile in the upper tail, the mean is
underestimated in opposition to the S11 model case study. The
standard deviation remains large for small size samples, but
looks stable. The monotonic convergence of the 99% quantile
estimator appears for rather small sizes but the rate of change
is weak beyond a limit size of approximately 200. Clearly,
the proposed algorithm (Fig. 1) is successful, at a limited cost
(a single DOE at maximum available size), to identify the
trend of the estimation quality. This provides a very useful
guidance for the user.

FIGURE 6. PCB case study: Evolution of the mean of the 99% quantile
estimator as a function of the sample size of the DOE for a set
of 10 different runs of our algorithm (colored dots) and comparison with
a pseudo-reference (black line).

V. APPLICATION CASE
In this section, the full algorithm (including CS and
LHS enrichments) is implemented in a radiation emissivity
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FIGURE 7. PCB case study: Evolution of the standard deviation of the
99% quantile estimator as a function of the sample size of the DOE for a
set of 10 different runs of our algorithm (colored dots) and comparison
with a pseudo-reference (black line).

test scenario with epistemic uncertainties about the model
parameters.

A. MODEL PRESENTATION
The model is a cavity with 2 rectangular holes made on the
top face. A current flows on the external surface of a filled
cylinder inside the cavity. Walls of the cavity as well as the
cylinder are made of perfect electrical conductors.

The model is described by input parameters considered
to be known with a constant value and 16 uncertain input
variables. All input parameters and random variables are
listed in Table 3. Each random variable follows a uniform
distribution centered to their nominal value with a tolerance,
arbitrarily set to +/ − 10% around the latter. Furthermore,
there is no correlation between them. A 3D view of the geom-
etry with the inputs set to their nominal value is represented
in Fig. 8.

FIGURE 8. Geometry of the cavity with two apertures on its top face.
A current source, i , is located at the surface of a cylinder inside the cavity.
The output is the maximum electric field strength radiated at distance d .

The output of interest is the maximal radiated electric field
strength (E) on a sphere at a distance d (with reference to�c
in Fig. 8) of the cavity position. The nominal output (i.e. from
inputs set to their nominal value) is equal to 0.01 V/m. The
targeted quantile of E is the 99% quantile.

TABLE 3. Model inputs.

B. REFERENCE SAMPLE
In order to have a reference sample of the output, the HFSS
software is used to generate inputs sample and compute
the corresponding output. The simulation was stopped after
72 hours providing a DOE of size 3225. As there are a finite
number of outputs, the 99% quantile computed from the
reference sample is still an estimation. In order to assess the
estimation uncertainty of this reference of the 99% quantile,
we have used bootstrapping [2] which allows computing
likelihood bounds of the reference quantile. Figure 9 shows
a histogram of the reference sample output distribution. The
mean of the bootstrapped sample of 99% quantiles is plotted
in Fig. 10 with its bootstrap confidence bounds (2.5% and
97.5% quantiles of the bootstrapped sample of quantiles).
This reference mean and bounds appear as three horizontal
lines in Fig. 10.

C. RESULTS
1) INITIAL DOE
The simulation of one realization (inputs set to their nomi-
nal value) takes 30 seconds. As far as the 99% quantile is
concerned, Table 2 requests a sample size of 299 (n = 1)
which would result, under the linear hypothesis, in a 2.5 hours
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FIGURE 9. Histogram of the reference sample model output (maximum
radiated electric field, E , on a sphere at 3 m distance of the cavity).

FIGURE 10. Estimation of the 1% quantile of E from the reference sample
and Surrogate Model (SM) as a function of the number of times the HFSS
model is called (i.e. the simulation budget).

simulation. For this specific example, we assume that such a
budget of simulation is obviously affordable.

2) SM MONTE CARLO SIMULATIONS AND DOE
ENRICHMENTS
After the computation of the DOE (Smax = 299) and of
the output of the initial HFSS model (red colored section of
Fig. 1), we run the SM MC simulation section of our algo-
rithm (blue colored section of Fig. 1) for 10 sizes between 10
and 299. Themean of the quantile is plotted in Fig. 10 (in blue
color for sample sizes between 10 and 299) with error bars
(a bar width is equal to 3.92 times the empirical standard
deviation).

Considering this initial sample size of 299, the blue portion
of the curve in Fig. 10 shows that the rate of change of
the estimation tends to be limited above 150 realizations.
Wemay therefore conclude that 299 realizations are adequate
to yield a reasonable approximation before applying the CS
approach. We may however expect some improvement for
higher sample sizes.

3) ENRICHING THE DOE
Since the HFSS model runs fast enough, we assume we can
afford the enrichment of the initial DOE before applying the

CS. Back to table 2, we have chosen to increase the sample
size of the DOE so that we probably find at least 2 extreme
output values, which yield to a new total sample size of 473
(n = 2). Thus, we add 174 more realizations to the previous
DOE which lead to a new DOE of 473 realizations.

Therefore, the SM MC simulation is carried out with dif-
ferent sizes ranging between 299 and the new maximum
size of 473. The blue part of the curve of Fig. 10 is now
prolonged with a new portion in magenta color with its cor-
responding errors bars. The improvement rate is clearly slow.
However, there is a discontinuity observed at a sample size
of 299 between the blue and magenta curve. Indeed, results
shown in blue all originated from a SM built with a sample
size of the DOE of 299 whereas the results shown in magenta
color are predicted from a SM built at a sample size of the
DOE of 473. Therefore, a perfect continuity would have been
in fact surprising.

For sake of confirmation of the slow improvement rate,
we have carried out a second and final enrichment. Therefore,
we have added another set of 155 realizations, raising the
total simulation budget to 628 (n = 3). The same type of SM
MC simulation is performed with sizes ranging from 473 to
628 and the result appears in the green portion of the curve
in Fig. 10. There is also a discontinuity at 628 for the same
reason mentioned above.

4) FINAL QUANTILE ESTIMATION WITH CS
CS is performed in association with the SM built from
628 realizations. The CS enables to record 628 new real-
izations to accelerate the quantile estimation convergence.
Therefore, the quantile estimated with CS is carried out from
a total budget of 1256 realizations and is plotted in a red
unfilled circle in Fig. 11.

FIGURE 11. Estimation of the 1% quantile of E from the reference (Ref)
sample, the Controlled Stratification (CS) and the CS enrichment as a
function of the number of times the HFSS model is called (i.e. the
simulation budget).

Finally, in order to check the stability of the quantile esti-
mation by the CS, a few more realizations are allocated in the

VOLUME 8, 2020 3845



T. Houret et al.: CS Based on Kriging SM: Algorithm for Determining Extreme Quantiles in EMC Risk Analysis

last stratum. The quantiles estimated by this CS enrichment
strategy are plotted also in red but filled circles.

The CS estimated quantiles in Fig. 11 oscillate around
the reference confidence upper bound also plotted in Fig.11.
The variation is negligible compared to the width of the
reference confidence bound, which confirms the relevance of
our algorithm.

The entire number of calls to the true model is 1296,
which represents 40% of the reference sample size (3225).
It could have been further reduced avoiding the unnecessary
final enrichment of the supporting surrogate model. More-
over, the number of realizations above the estimated quantile
was 32 with the reference sample and 125 with the KCS
method (number of realizations above 0.01931071, i.e. the
final estimated quantile). More generally, the CS enables to
reduce the estimation bias of the standalone SM model.

D. SENSITIVITY ANALYSIS OF EXTREME VALUES
Thanks to the SM built at 628 and the application of the KCS
method, we are able to identify a large sample of extreme
events. We use this information to analyze the range of inputs
that are likely to produce them. This information provides a
useful physical insight to improve the design.

In Fig. 12, we provide a selection of histograms attached to
4 particular inputs. These histograms are normalized for visu-
alization purposes such that the sum of the bar areas is equal
to 1 (i.e. pdf normalization). The blue colored histograms
represent the inputs causing the reference output sample
in Fig. 9. Each variable follows a uniform distribution with
10% variation off their nominal as intended (see Table 3). The
orange colored histograms represent the distribution of inputs
that generated extreme values (i.e. values above the quantile
estimated by the CS).

FIGURE 12. Selection of distributions of inputs causing the outputs of
reference sample (Blue), and those causing extreme values (Orange).

A uniform distribution is not informative. This is the case
with the a1 and b1 variables (length and width of the first
hole). An impact may exist in conjunction with other vari-
ables but cannot be seen through these histograms. A global

sensitivity analysis with Sobol indices [33] would be needed.
However, we may conclude that this aperture does not deter-
mine itself the probability of obtaining extreme values of
radiated emissions.

On the other end, if the distribution is clearly not uni-
form, that definitely proves a strong impact. This is the case
for b2 and yt1 (second hole length and first hole position).
For example, an extreme output will not be observed if
yt1 > 48mm, no matter the other inputs values. The height of
the cavity (i.e. the distance from the current source) and the
length of the aperture in front of the source play a key role
with regard to strong radiated emissions.

Consequently, the decrease of b2 and increase of yt1 are the
preferred options to reduce radiation outside the cavity rather
than modifying a1 and b1.

VI. CONCLUSION
Extreme quantiles provide useful information for EMC risk
analysis. In this paper, we estimated extreme quantiles of
the output distribution when the electromagnetic model is
costly to simulate. We introduced a practical implementation
of a new approach called KCS, which associates kriging
to controlled stratification. The proposed algorithm answers
the practical question about the simulation budget needed
to reach a sufficient quality for extreme quantile estimation.
In addition, this algorithm provides useful insight about the
improvement rate based on quantile estimation with smaller
simulation budget. The critical part of the algorithm has
been validated on analytical models. Then, we have applied
the complete calculation procedure to an EMC case study.
In that case, we showed that it clearly outperformed the
classical Monte Carlo approach. In particular, KCS provides
a significant number of extreme outputs for either sensitivity
analysis or extreme value distribution analysis. In addition
of its interesting performances, the proposed algorithm can
be very easily implemented. Kriging is already implemented
in most popular programing languages (i.e. Matlab, Python
and R). Although the Controlled Stratification is not, it can
be easily done.

However, for models in very high dimensions (couple of
dozens), building a kriging surrogate model may be not con-
sidered computationally negligible so the proposed algorithm
may not efficient. An interesting perspective would be to
adapt the kriging through partial least squares approach as
in [34] for very high dimensions.
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