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Variability Impact of Many Design Parameters: the
Case of a Realistic Electronic Link

Mourad Larbi, Igor S. Stievano, Senior Member, IEEE, Flavio G. Canavero, Fellow, IEEE,
and Philippe Besnier, Senior Member, IEEE

Abstract—In this paper, we adopt the so-called
sparse polynomial chaos metamodel for the uncertainty
quantification in the framework of high-dimensional
problems. This metamodel is used to model a re-
alistic electronic bus structure with a large number
of uncertain input parameters such as those related
to microstrip line geometries. It aims at estimating
quantities of interest, such as statistical moments,
probability density functions and provides sensitivity
analysis of a response. It drastically reduces the model
computational cost with regard to brute force MC
simulation. The method presents a good performance
and is validated in comparison with MC simulation.

Index Terms—Circuit design, crosstalk, discontinu-
ities, high dimensional problems, risk analysis, sparse
polynomial chaos, uncertainty quantification.

I. Introduction
Various electronic systems are encountered in everyday

life, at all size, complexity and throughput levels. They
consist of collections of electronic and electrical parts
interconnected to perform specific tasks. A good example
is the automobile electrical system, that has gradually
evolved over the years from a simple power distribution
network to currently assimilate automatic computer con-
trol of the automotive mechanics. A key characteristic
of electronic systems is, that the individual components
are interconnected with wires or printed circuit boards.
Signals flowing inside the system travel across transmission
lines sections of different types and shapes, encounter
connectors, sockets, vias, and transitions that act as dis-
continuities with complex electromagnetic behavior and
are influenced by many different parameters. Most of them
may be considered as uncertain parameters due to the
fabrication process, the materials used, the dependence on
temperature, etc. The analysis of signal links is therefore a
challenging task, and the design must be optimized toward
the reduction of the impact of the numerous geometric and
material uncertainties on the system signal integrity (SI)
and electromagnetic compatibility (EMC).

In the past decade, some research activities have been
dedicated to the estimation of statistical quantities in the
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framework of high-speed interconnects [1]–[3] or wiring
applications [4]–[6]. Among them, the so-called polynomial
chaos (PC) has been successfully introduced to substitute
a costly model by an analytic approximation called meta-
model (or surrogate model). This metamodel is built up
from a reduced number of calls to the initial model. The
advantage of using the metamodel stems from the reduced
computational effort needed for the statistical assessment
of output quantities, like the estimation of statistical
moments or probability density functions (PDF). Nonethe-
less, as the number of uncertain parameters increases, the
number of required polynomials blows up as well as the
number of calls to the numerical model. This problem,
referred to as the curse of dimensionality, requires the
adoption of an alternative technique based on a sparse
PC approximation [7], devised to select the polynomials
contributing the most to the model. We highlight that
the sparse PC approximation makes possible the analysis
of complex electric interconnections with impedance dis-
continuities introduced by vias or sockets on PCBs. The
paper is then organized as follows. Section II presents the
method, while Section III describes the case study used,
which is a realistic node-to-node bus with a high number
of uncertain parameters, and provides and discusses the
results obtained by the sparse PC metamodel.

II. Polynomial Chaos Expansion
A. Introduction

Let us consider a random vector X of M independent
random variables (X1, . . . , XM ) with a joint PDF fX(x)
characterizing the input uncertainties of the physical sys-
tem. The random response of the system, assumed to be
scalar with a finite variance, is defined by Y = M(X),
where M is a numerical model representing the observed
phenomenon.

The PC expansion of the model response is then given
by [8]:

Y =
∑
λ∈NM

aλΦλ(X), (1)

where aλ are unknown coefficients defining the coordinates
of Y in the new basis Φλ of multivariate polynomials,
which are orthonormal with respect to the joint PDF
fX(x).
In order to compute the aλ coefficients, various non-

intrusive methods such as the approaches by projection
and regression may be used [9]. Since the convergence of



2

the regression method is quicker in terms of calls to the
numerical modelM, we present it in the next section.

B. Non-intrusive Estimation of the Coefficients by Regres-
sion

Let X = {x(1), . . . ,x(n)} and Y =
{M(x(1)), . . . ,M(x(n))} be an experimental design (ED)
of X and the associated model responses, respectively.
From the set of model evaluations Y, the PC coefficients
can be estimated by the ordinary least square regression
[10]. For this, the infinite series in (1) has to be truncated.
Choosing a maximum polynomial degree l, the usual
truncation scheme preserves all polynomials associated
to the set AM,l = {λ ∈ NM : ‖λ‖1 =

∑M
i=1 λi ≤ l}.

Thus, the cardinal of the set AM,l denoted L = (M + l)!
M !l!increases quickly with the number of input random

variables M and the degree l of the polynomials.

C. Sparse Polynomial Chaos Expansion
1) Hyperbolic Truncation Strategy: As mentioned

above, the standard truncation scheme of the PC ex-
pansion preserves L elements included in the set AM,l.
Another technique called as the hyperbolic truncation
scheme has been introduced in [7] to significantly reduce
the number of unknown terms when the dimensionality
of the input space M is large. Let us introduce for any
multi-index λ, the k-norm (0 < k ≤ 1) defined as ‖λ‖k =(∑M

i=1 λ
k
i

)1/k

.
The hyperbolic truncation strategy consists in retaining

all multi-indices of k-norm less than or equal to the degree
l as:

AM,l,k = {λ ∈ NM : ‖λ‖k ≤ l}. (2)

This hyperbolic truncation scheme favors the main ef-
fects and low-interactions polynomials, known to be the
most influential on the variability of the model response
due to the sparsity-of-effect principle [11]. An illustration
of this hyperbolic truncation scheme for two input random
variables (M = 2) is given in Fig. 1. The blue and pink
points represent all terms of the polynomial basis of degree
less than or equal to l, contained in the set (2). When
k = 1, this corresponds to the standard truncation set
AM,l, i.e. the blue points. When k < 1, the number of
retained polynomials, i.e. the pink points, is smaller than
in the standard truncation set AM,l. Indeed, the benefit
is more and more significant in terms of reduction of the
basis size when k decreases and M increases, as shown
e.g. with k = 0.5 in Fig. 1. With this strategy, the size of
the polynomial basis may be smaller by several orders of
magnitude than that of the standard truncation scheme
[7].
2) Adaptive Least Angle Regression Algorithm: The hy-

perbolic truncation strategy AM,l,k enables to decrease
the number of coefficients to be estimated in the PC
expansion. However, this is still too expensive in terms
of model evaluations when dealing with high dimensional

0
0 6

6

||x||1 ≤ 3

0
0 6

6

0
0 6

6

0
0 6

6

0
0 6

6

0
0 6

6

||x||1 ≤ 4 ||x||1 ≤ 5

||x||0.5 ≤ 3 ||x||0.5 ≤ 4 ||x||0.5 ≤ 5

Increasing 
the degree l

x1

x2

||x||1

Increasing 
the degree l

x1

x2

||x||0.5

Fig. 1. Illustration of the hyperbolic truncation strategy for k = 1
and k = 0.5 in blue and pink points, respectively [7].

problems. Thereby, a further reduction of the basis size
can be carried out by using an adaptive technique such as
the so-called Least Angle Regression (LARS) algorithm.
LARS is only briefly described in the following paragraph.
For more details readers may refer to [7], [12]. This method
allows to select in the truncation set AM,l,k, say of cardinal
K, the polynomial bases having the most effect on the
response.

Among the K polynomial bases (associated to a given
degree l), LARS builds up in an iterative manner a sparse
representation containing from 1 to K polynomial bases
according to their decreasing impact. The algorithm be-
gins by researching the most correlated basis Φλ1 with the
response Y . In practice, the correlation is computed from
a set of realizations of the bases Φλ’s and of the response
Y. Once the first polynomial basis Φλ1 is obtained, the
corresponding coefficient is estimated so way that the
residual Y − a

λ
(1)
1

Φλ1(X) becomes equi-correlated with
the polynomial basis (Φλ1 ,Φλ2). This first step will select
the best first element of the basis. Then the improving
of the basis is carried out by moving along the direction
(Φλ1 + Φλ2) until the current residual becomes equi-
correlated with a third polynomial basis Φλ3 , and so on.

Finally, the LARS algorithm provides a set of sparse
approximations containing more and more polynomial
terms. The leave-one-out cross validation error εLOO of
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each approximation is computed by:

εLOO =
∑N

i=1
(
M(x(i))−MP C

−i (x(i))
)2

∑N
i=1

(
M(x(i))− 1

N

∑N
i=1M(x(i))

)2 (3)

with MP C
−i (x(i)) representing N sparse approximations

built up on the ED X \x(i) = {x(j), j = 1, . . . , N, j 6= i }.
The sparse representation that provides the smallest error
is selected. This procedure is repeated for each degree
l = 1, . . . , lmax, and the optimal sparse PC metamodel
is retained from a leave-one-out cross validation error [7].
The main advantage of LARS is, that it enables to deal
with problems whose number of candidate polynomial
terms is larger than the size of the ED X . In general,
the number of polynomial terms identified is less than the
size of the ED X , which allows to estimate the coefficients
of the sparse approximation by least-square minimization
for improving the accuracy. In the rest of this article, the
quality of the sparse PC approximation will be evaluated
by means of the Q2 coefficient defined by Q2 = 1− εLOO,
with 0 ≤ Q2 ≤ 1. Thus, the closer is Q2 to 1, the higher
is the quality of the sparse PC approximation.

D. Post-processing
One of the main advantages of the (sparse) PC repre-

sentation is that it allows, after the computation of the
PC coefficients, to derive a post-processing of the model
response at a negligible computational cost. In particular,
the orthonormal property of the polynomial basis enables
to obtain the first two statistical moments of the output
Y as:

E [Y ] = a0 (4)

V [Y ] =
∑

λ∈A\{0}

a2
λ (5)

Further, [13] showed that the first order PC-based Sobol
indices Si of the model response Y with respect to the
input random variable Xi can be estimated as:

Si =
∑
λ∈Ai

a2
λ

V [Y ] (6)

with Ai = {λ ∈ A : λi > 0, λj = 0 ∀j 6= i}. The total
PC-based Sobol indices ST,i can be also formulated as:

ST,i =
∑
λ∈AT,i

a2
λ

V [Y ] (7)

where AT,i = {λ ∈ A : λi 6= 0}.

III. Impact of Uncertainties in a Transmission
Line Network

A. Description of the Bus Structure and the Circuit
In order to evaluate the impact of input uncertainties on

signal propagation, in this section we consider the realistic
bus structure described in Fig. 2. It involves the point-
to-point communication between a driver and a receiver
represented by the gray boxes in the bottom part of the
schematic through a number of discontinuities.

The details of the equivalent electrical network, includ-
ing various types of lines, vias, sockets and a strait, are
illustrated in Fig. 3. The above example is inspired by
the validation test case of [14], where the single PCB
traces are replaced by the coupling blocks PCB1 and
PCB2 in Fig. 3. These blocks consist of the combination of
single (Si) and coupled microstrip (Cj) transmission lines,
the latter ones accounting for the interaction with other
traces located on the PCB. The aim of this modification is
twofold: on the one hand, the structure of Fig. 2 provides
a more complex test case with an increased size and a
larger number of uncertain parameters; on the other hand,
it represents a possible realistic situation in which the main
communication bus is close to neighboring lines, leading to
mutual interference.

The MCM-C (multi-chip module with ceramic sub-
strate) single lines of the network, denoted by M1 and M2
in the scheme, are modeled as identical 4 cm single mi-
crostrip lines, the socket is modeled by lumped elements,
and the strait is modeled by a 8 cm single microstrip
line (denoted as S5) with two capacitors (C4 and C10)
representing the end discontinuities. Besides, the receiver
side of the main bus involves the same transitions already
observed in the left-hand (i.e. driver) side, defined by
the cascade connection of the top via TV2, of the MCM-
C single line M2 and of the block labeled as BLL31 in
the scheme. Moreover, the structure used for BLL31 is
also used for the other terminations of the PCB coupled
lines. This assumption of symmetry is done for the sake
of simplicity in order to define a single modular receiving
block in our simulating test bench (see BLLpq in Fig. 3).
The driver is modeled by means of a simplified Thevenin
equivalent defined by the connection of the ideal voltage
source V1 and its series impedance (i.e., the resistor R1 =
30 Ω). A frequency-domain analysis is carried out over the
band [1 MHz - 1 GHz].

It is important to remark that the above described test
structure involves vias of short length, thus justifying their
modeling as lumped elements. Specifically, this holds for
both the top and the bottom vias which are described
as lumped LC elements, with L = 4.457 nH/cm, C =
1.273 pF/cm, and L = 5.51 nH/cm, C = 1.03 pF/cm,
respectively. The values of the cross section parameters of
the PCB and MCM-C traces, which are modeled as ideal
lossless transmission lines, are shown in Fig. 4 instead.

The variability of the structure is introduced through
all cross section parameters of the different lines (MCM-
C, single and coupled microstrip lines) and all lumped
elements of the network, which are considered as uniform
random variables with uncertainty of 20% around their
nominal values given in Fig. 4 and Fig. 3, respectively.
The total number of uncertain parameters turns out to be
119. The impact of these uncertain input parameters will
be evaluated on the frequency-domain crosstalk transfer
function magnitude H11 = 20 × log

∣∣∣∣V11

V1

∣∣∣∣ dB, defined as
the ratio between the far-end voltage of the block BLL11
and the voltage excitation. The crosstalk transfer function
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Fig. 4. Cross section of the (a) ceramic multi-chip module (MCM-
C); (b) single and (c) coupled microstrip lines.

H11 is numerically computed for the circuit model of Fig. 3
which we denote byM in the following. For convenience,
MATLAB is used for the frequency evaluation ofM, but
a SPICE solution of the circuit could have been used,
instead, with equivalent results.
The purpose of the study is to build up a sparse PC

metamodel of the crosstalk transfer function H11 in order
to reduce the computational cost of the numerical model.
Furthermore, we are particularly interested in assessing
the rank of the uncertain parameters according to their
influence on the variability of the crosstalk transfer func-
tion.

B. Numerical Analysis and Discussion
The results given in this section were obtained by

means of the UQLAB toolbox (Uncertainty Quantification
toolbox in MATLAB) [15].
1) Sparse Polynomial Chaos Representation of the

Model Response: This section examines the effect of in-
put uncertainties on the crosstalk transfer function H11
over the frequency band [1 MHz - 1 GHz]. Thereby, we
approximate the model response by building up a sparse
PC expansion with 200 realizations from Latin Hypercube
Sampling (LHS) [16] and an adaptive degree l varying
from 1 to 10. The degree span selected is quite large
since the crosstalk transfer function H11 can be very
irregular in the frequency domain where the resonance
effects occur. Given the high number of input random
variables, the k parameter defined in (2) is set to 0.4 in
order to considerably reduce the size of the polynomial
basis.
In order to observe the quality of the sparse PC meta-

model built up, we represent in Fig. 5 the Q2 coefficient
over the frequency band [1 MHz - 1 GHz]. A sparse PC
metamodel is determined for 301 logarithmically spaced
frequencies. We see that the sparse PC metamodel has a
high quality in the frequency band [1 MHz - 400 MHz],
and then it fluctuates in the frequency band [400 MHz
- 1 GHz], from 0.3 (low quality) to around 0.95 (good
quality). This latter behavior of the Q2 coefficient is
likely due to important variations of the crosstalk transfer
function H11 in the resonance regime. To confirm this,

we represent in Fig. 6, three MC realizations of the
crosstalk transfer function H11 computed by the sparse
PC metamodelMP C(x(i)) (circles) and by the numerical
model M(x(i)) (solid line). We observe that the two
models are in agreement in the low frequency domain
[1 MHz - 400 MHz]; some discrepancies appear between
400 MHz and 1 GHz, in the region where the resonances
influence the response H11. This is related to the smooth
evolution as well as the strong variations of the crosstalk
transfer function H11 in low and high frequency domain,
respectively.

We are now interested in evaluating the accuracy of this
sparse PC metamodel in low and in high frequency, e.g. at
the frequencies of 10 MHz and 912 MHz, where Q2

10 MHz =
99.80% and Q2

912 MHz = 89.42%. To do so, we represent,
from 10000 MC realizations, the PDF of the crosstalk
transfer function H11 given by sparse PC metamodel (red
dashed-line) and by MC simulation (blue solid line) at
the frequencies of 10 MHz and of 912 MHz in Fig. 7(a)
and in Fig. 7(b), respectively. In Fig. 7(a), we observe a
quasi-perfect agreement of the two curves, highlighting a
very good accuracy of the sparse PC metamodel at 10
MHz. Concerning the mean and the standard deviation of
H11, they are quite close since the sparse PC and the MC
simulation provide µP C = −52.43 dB, σP C = 1.86 dB
and µMC = −52.46 dB, σMC = 1.90 dB, respectively.
The sparse PC approximation needs a best degree of
order 6, with only 44 polynomial elements among the
7736 elements of the full polynomial basis, leading to the
sparsity index SI = 44

7736 = 0.57%.
Regarding the frequency of 912 MHz, we observe in

Fig. 7(b) that the PDF retrieved from the sparse PC
does not fit so well with the PDF estimated from MC
simulations. In fact, the main trend of the PDF is captured
by the sparse PC metamodel, but significant disagreement
occurs at the tail of the probability distribution. For this
frequency, the estimation of the mean and of the standard
deviation given by the sparse PC and the MC simulation,
provides µP C = −28.08 dB, σP C = 4.15 dB and µMC =
−28.13 dB, σMC = 4.80 dB, respectively. The optimal
degree used by the sparse PC metamodel is 10, with a
sparsity index SI = 16

22254 = 0.07%.
The results obtained by the sparse PC metamodel at

these two frequencies provide interesting information on
the behavior of H11. Indeed, at 912 MHz, the sparse PC
approximation is less accurate, and uses a larger optimal
degree. This is related to a more important variability of
H11, as shown by the standard deviation σMC = 4.80 dB.
Nonetheless, the sparsity index is smaller, meaning that
only a few terms of the polynomial basis are needed to
approximate the variability of the model response H11.
Concerning the CPU time required for the computation of
the crosstalk transfer function H11 in the frequency band
[1 MHz - 1 GHz], the sparse PC metamodel took 3.05 s
while 10000 MC realizations needed 6 h 11 min. The speed
up gain of the metamodel is then about 7308× compared
to the MC method.



5

socket strait socket

driver

chip short line

MCM single line

200mm PCB line

receiver

chip short line

MCM single line

120mm PCB
coupled line

single line

bottom via

chip short line

load 1

single line

bottom via

chip short line

load 2

200mm PCB line

70mm PCB
coupled line

single line

bottom via

chip short line

load 3

single line

bottom via

chip short line

load 4

Fig. 2. High-level diagram of the node-to-node bus under study. The main electronic link goes from driver to receiver, while the loads 1-4
represent side circuits that may be affected by crosstalk.
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Fig. 3. Schematic of the node-to-node bus under study. Top and Bottom vias are represented as LC circuits with values specified in the
text.

2) Sensitivity Analysis from Sobol Indices: Beyond the
quantification of the variability of the crosstalk transfer
function H11, the sparse PC metamodel provides a sensi-
tivity analysis of this latter at a low computational cost. In
Fig. 8, we represent an histogram showing the maximum
values of the total Sobol indices, calculated from (7), of the
crosstalk transfer function H11 over the frequency band
[1 MHz - 1 GHz]. Observing Fig. 8, we see that among
the 119 input random variables, only 22 variables have a
significant effect on the variability of H11 with maximum

values of the total Sobol indices greater than 5% (red
dashed-line). In particular, we notice that the variables
having the greatest impact on the variations of H11 in
the overall frequency band are the relative permittivity εr
and the thickness h of the substrate, for all single and
coupled microstrip lines of the network, and the trace-
to-trace separation dC1 of the coupled line C1. Then,
we observe that different cross section parameters, such
as the trace widths wC1 and wC2, wS2, wS4 and wS7
of the coupled lines C1, C2 and single lines S2, S4, S7,
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Fig. 5. Computation of the Q2 coefficient of the sparse PC meta-
model in the frequency band [1 MHz - 1 GHz].

Fig. 6. Representation of the crosstalk transfer function H11 in
the frequency band [1 MHz - 1 GHz] estimated by the sparse PC
metamodel MP C (circles) and the numerical model M (solid line)
from three MC realizations.

respectively, the trace thicknesses tS3, tS6, and tS9, and
the substrate thickness h2 of the MCM-C single line M2,
have less impact. Finally, we identify an effect with more
or less the same order of magnitude as for the cross
section parameters, due to several lumped elements of the
network, i.e. R1, L4, R7, C10, R10, R1522, C731, and of
top via lines, i.e. CTV 1, LTV 2, CTV 2.
In order to illustrate the effect of all input random

variables mentioned previously, we represent in Fig. 9
their total Sobol indices over the frequency band [1 MHz
- 1 GHz]. From 1 MHz to 600 MHz, we see that the
variations of the crosstalk transfer functionH11 are mainly
related to the substrate thickness h, the trace-to-trace
separation dC1 and the trace width wC1 of the coupled
line C1, the relative permittivity εr and the component
R1. Moreover, we remark the occurrence of small impact
of variables as the trace widths wC2, wS4, wS7, the
substrate thickness h2 and the component C10. Then,
from 600 MHz to 1 GHz, the relative permittivity εr
is the predominant variable influencing the variability of
H11. Other variables, as for example wC1, wC2 wS4, L4,

(a)

(b)

Fig. 7. PDF of the crosstalk transfer function H11 obtained by
sparse PC (red dashed-line) and by MC simulation (blue solid line)
at the frequencies of (a) 10 MHz and of (b) 912 MHz.

R7, C10, CTV 2 and LTV 2, have a small impact on the
variations of H11. It is also relevant to highlight the fact
that a larger number of input variables is observed in this
latter frequency band, likely because the resonance regime
is more sensitive to numerous parameters constituting the
transmission line network.

Otherwise, the sensitivity analysis shows that three
uncertain parameters, i.e. the substrate thickness h, the
trace-to-trace separation dC1 of the coupled line C1 and
the substrate dielectric relative permittivity εr, have an
important influence on the variations of the crosstalk
transfer function H11 in the overall frequency band. It
might be interesting to represent the effect of these uncer-
tain parameters on the variability of H11. Thus, by varying
only the considered parameter between the minimum,
mean and maximum value of their range, Fig. 10 illustrates
the variation of H11. In Fig. 10, we observe that the
effect of a variation of the relative permittivity εr (top)
has only an impact at high frequencies, with a variation
of the magnitude levels and occurrence of the resonance
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Fig. 8. Maximum values over the frequency band [1 MHz - 1 GHz]
of total Sobol indices of the crosstalk transfer function H11. The
red dashed-line represents the selected 5% threshold for parameters
impact.

Fig. 9. Total Sobol indices of the crosstalk transfer function H11,
in the frequency band [1 MHz - 1 GHz].

peaks in [400 MHz - 1 GHz]. Concerning the substrate
thickness h (middle) and the trace-to-trace separation
dC1 of the coupled line C1 (bottom), the effect of their
variations is much more important at low frequencies, i.e.
[1 MHz - 400 MHz]. It is worth noting that the effect of
the variations of these uncertain parameters is in total
agreement with the sensitivity analysis given in Fig. 9.

IV. Conclusion
This paper presents a sparse PC metamodel, with a very

low computational cost compared to MC simulation, for
the analysis of signal propagation on realistic electronic
buses with a large number of uncertain parameters. This
sparse PC metamodel allowed to efficiently estimate the
model output in a large part of the frequency band con-
sidered, where the response is rather smooth. When the

Fig. 10. Impact of a variation of the dielectric relative permittivity εr
(top), the substrate thickness h (middle), and the trace-to-trace
separation dC1 of the coupled line C1 (bottom) on the crosstalk
transfer function H11.

variations of the output become very important, as in the
resonance regime, the predictions of the metamodel may
be less accurate.

In addition to a good estimation of the first two sta-
tistical moments, the sparse PC metamodel provides also
a sensitivity analysis of the model response at a low
computational cost. From this sensitivity analysis, the
designer of the circuit may identify the input uncertain
variables having the largest influence on the variability
of the output. This may lead to adapt more restrictive
constraints on the predominant uncertain variables dur-
ing the design stage, in order to improve the robustness
of the design itself. Our case study with 119 uncertain
input variables illustrates that the variability of the model
response is often explained by a small group of uncertain
input variables.

As mentioned previously, the estimations of the sparse
PC metamodel may be inaccurate and sometimes insuf-
ficient at high frequencies, especially in the resonance
region. This is often due to one uncertain input variable
(such as the substrate relative permittivity) that generates
strong variations of the model output. Thus, the meta-
model user can sweep the uncertain parameter and gain a
clear insight in the device behavior and properly tune the
design to achieve higher performances.
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