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Abstract

MUC2, the major mucin in the intestine, is expressed early during development and shows an altered expression pattern in intes-
tinal bowel diseases. However, the mechanisms responsible for MUC2 expression in the intestine during these events are largely
unknown. Having found putative GATA binding sites in the murine Muc2 promoter and that GATA-4 is expressed in Muc2-ex-
pressing goblet cells of the mouse small intestine, we undertook to study its regulation by this transcription factor. A panel of dele-
tion mutants made in pGL3 vector and covering 2.2 kb of the promoter were used to transfect the murine CMT-93 colorectal cancer
cell line. The role of GATA-4 on Muc2 gene regulation was investigated by RT-PCR and co-transfections in the presence of expres-
sion vectors encoding either wild-type or mutated GATA-4 or by mutating the GATA-4 site identified within Muc2 promoter. Four
GATA-4 cis-elements were identified in the promoter by EMSA and Muc2 promoter was efficiently activated when GATA-4 was
overexpressed in the cells with a loss of transactivation when those sites were either mutated or a mutated form of GATA-4 was
used. Altogether, these results identify Muc2, a goblet cell marker, as a new target gene of GATA-4 and point out an important
role for this factor in Muc2 expression in the intestine.
� 2004 Elsevier Inc. All rights reserved.
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The mucus layer in the lumen of the gut forms a phys-
ical barrier against microorganisms and insoluble mate-
rial [1]. Goblet cells are a hallmark of the intestinal
epithelium, and are known to secrete mucins that partic-
ipate in mucus formation to protect the underlying
mucosa. The secretory mucin Muc2, a very large O-gly-
coprotein, is particularly relevant for the study of goblet
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cell biology as it is exclusively and abundantly expressed
by intestinal goblet cells [2,3]. It is produced throughout
the gastro-intestinal tract increasing from small intestine
to colon.

Muc2 is expressed early during embryonic develop-
ment of the intestine [4], which suggests that Muc2 tran-
scription is under the influence of transcription factors
responsible for intestinal development and cell differen-
tiation. The early expression of mucin before mucus cell
differentiation or during the process of differentiation
indicates that they may be the targets of transcription
factors responsible for those programs [5]. This hypoth-
esis has been recently confirmed in a previous study
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where we showed that the human MUC2 mucin gene is
regulated by homeobox Cdx1 and Cdx2 transcription
factors [6], which are both involved in intestinal cell dif-
ferentiation [7].

GATA transcription factors belong to another fam-
ily of transcription factors involved in development
and cell differentiation. GATA factors are zinc fingers
and are classified into two subfamilies based on struc-
tural features and expression patterns. GATA-1,
GATA-2, and GATA-3 are involved in hematopoiesis
and neurogenesis whereas GATA-4, GATA-5, and
GATA-6 possess overlapping patterns in the develop-
ing cardiovascular system and in endoderm-derived
tissues including the liver, lungs, pancreas, stomach,
and intestine [8].

During embryonic development GATA-4 mRNA is
expressed in the primitive intestine [9,10] in which
Muc2 is also found [4]. Its expression in the intestine is
sustained during adulthood with a distinct expression
pattern along the crypt-villus axis, which strongly corre-
lates with the status of differentiation of the cells. It is
highly expressed on the tips of the villi and its expression
decreases as we go downward towards the crypt [11].
Moreover, GATA factors are known to regulate intes-
tine-specific genes, which are considered as markers of
enterocytes, such as fatty acid binding protein [11],
intestinal lactase-phlorizin hydrolase (LPH) [11–13],
and sucrase isomaltase (SI) [14]. However, no GATA-
4 target gene, representative of goblet cells, which are
responsible for mucus production/secretion and mainte-
nance of a defense line and protective barrier in intesti-
nal pathophysiology [1], has been identified so far.

Characterization of the 5 0-regulatory regions of
numerous genes has demonstrated that GATA factors
interact with a DNA sequence element containing the
core GATA motif (A/T)GATA(A/G) [8]. Computer
analysis of the murine Muc2 promoter sequence [15] re-
vealed the presence of several putative GATA binding
sites throughout the promoter region.

Altogether, these data are in favor of a role for
GATA-4 in regulating Muc2 gene expression. Having
found binding sites for that factor in the promoter of
Muc2, and because of the spatio-temporal restricted pat-
tern of expression of MUC2 and GATA-4 along the
crypt-villus axis in the intestine, we undertook to study
the regulation of the promoter of mouse Muc2 by
GATA-4 in a murine colorectal cancer cell line. Implica-
tions for MUC2 expression during intestine develop-
ment and cell differentiation are discussed.
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UNMaterials and methods

Animals. Adult specified pathogen-free Balb/c mice, obtained from
Harlan (Zoetermeer, The Netherlands), were killed by cervical dislo-
cation. The intestine was removed, fixed in 4% paraformaldehyde in
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PBS, and subsequently processed for light microscopy as described
previously [16]. The animal experiments were performed with the ap-
proval of the Animal Studies Ethics Committee of the Erasmus MC
(Rotterdam, The Netherlands).

Immunohistochemistry. Five micrometers of thick paraffin sections
were cut and deparaffinized through a graded series of xylol–ethanol.
Endogenous peroxidase activity was inactivated by 1.5% (v/v) hydro-
gen peroxide in PBS for 30 min, followed by antigen retrieval in 0.01 M
citrate buffer for 10 min at 100 �C. Thereafter, sections were incubated
with TENG-T (10 mM Tris–HCl, 5 mM EDTA, 150 mM NaCl, 0.25%
(w/v) gelatin, and 0.05% (w/v) Tween 20) for 30 min to reduce non-
specific binding. This was followed by overnight incubation with a
1:2500 dilution of goat anti-GATA-4 antibody (sc-1237X, Santa Cruz
Biotechnology, USA) in PBS containing 1% (w/v) bovine serum
albumin and 0.1% (v/v) Triton X-100. Then, the sections were incu-
bated for 1 h with biotinylated horse anti-goat IgG (diluted 1:2000,
Vector Laboratories, England) followed by a 1 h incubation with
ABC/PO complex (Vectastain Elite Kit, Vector Laboratories) diluted
1:400. Binding was visualized after incubation in 0.5 mg/ml of 3,3 0-
diaminobenzidine (DAB), 0.02% (v/v) H2O2 in 30 mM imidazole, and
1 mM EDTA (pH 7.0). To visualize goblet cells, sections were stained
with Alcian Blue 8GX (BDH, Brunschwig Chemie, Amsterdam, The
Netherlands). Finally, sections were dehydrated and mounted.

Muc2-pGL3 deletion mutant constructs. The Muc2-pGL3 deletion
mutants that cover 2.2 kb of the promoter (GenBank Accession No.
AF221746) were constructed into promoterless pGL3 Basic vector
(Promega) using a PCR-based method as described previously [17,18].
PCRs were carried out on mouse genomic DNA using the primers
depicted in Table 1. PCR products were then subcloned into pCR2.1
vector (Invitrogen) before subcloning into BglII–MluI sites of the
pGL3 Basic vector previously linearized with the same restriction en-
zymes. All clones were sequenced on both strands on an automatic
LICOR sequencer using infrared-labeled RV3 and GL2 primers
(Promega). Plasmids used for transfection studies were prepared using
the Endofree plasmid Mega kit (Qiagen).

Cell culture. Murine rectal cancer cell line CMT-93 was cultured as
described in [19]. IEC-6 cells were purchased from the European
Collection of Animal Cell Cultures (ECACC). This cell line was
established from rat small intestine crypt cells and was cultured in
Dulbecco�s modified essential medium containing 5% fetal bovine
serum, 2 mM LL-glutamine, 10 lg/ml insulin, 50 U/ml penicillin, and
50 lg/ml streptomycin. All cells were cultured at 37 �C in a humidified
5% CO2 water-jacketed incubator. All reagents were from Invitrogen
(Gibco) unless otherwise indicated.

Transfections. Transfection and co-transfection experiments were
performed using Effectene reagent (Qiagen) as described previously
[18] using 1 lg Muc2-pGL3 deletion mutants. Total cell extracts were
prepared after a 48 h incubation at 37 �C using 1·Reagent Lysis Buffer
(Promega) as described in the manufacturer�s instruction manual.
Luciferase activity (20 ll) was measured on a TD 20/20 luminometer
(Turner Design). Total protein content in the extract (4 ll) was mea-
sured using the bicinchoninic acid method in 96-well plates as de-
scribed in manufacturer�s instruction manual (Pierce, Bezons, France).
In co-transfection experiments, 1 lg of the deletion mutant of interest
was transfected with 0.25 lg of the expression plasmid encoding the
transcription factor of interest (wild-type pcDNA-(WT) GATA-4 and
mutated forms pcDNA-(�Act) GATA-4 and pcDNA-(C290S)
GATA-4) [13]. Results were expressed as fold activation of luciferase
activity in samples co-transfected with the transcription factor of
interest compared with the control co-transfected with the corre-
sponding empty vector. To study the effect on endogenous Muc2

expression, cells (0.5 · 106) were transfected with 4 lg of the expression
vector of interest, and cultured for 48 h before being lysed and pro-
cessed for total RNA preparation.

RT-PCR. Total RNA from CMT-93 cells was prepared using the
RNeasy mini-kit from Qiagen. 1.5 lg of total RNA was used to
prepare cDNA (Advantage RT-for-PCR kit, Clontech). PCR was
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Table 1
Sequences of the pairs of primers used in PCR to produce deletion mutants covering the Muc2 promoter

Position in the promoter Oligonucleotide sequence (5 0 fi 30) Orientation

�221/+29 CGCACGCGTTTGGGGCTATGACATCCTGA Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

�563/+29 CGCACGCGTATGGGGTCAGACACCCGT Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

�729/+29 CGCACGCGTGAGGGCTGCCCAAGTTTTAA Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

�1001/+29 CGCACGCGTGGCAAGCCCAGGGACTGAAG Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

�1568/+29 CGCACGCGTGAGGTGGGAGGACTGGCTTC Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

�2213/+29 CGCACGCGTTCTTGGTCCTCAACCAAAGTT Sense
CGCAGATCTGGTGGCTCACGAGGGTGGCAC Antisense

BglII (AGATCT) and MluI (ACGCGT) sites (bold) were added at the end of the primers to direct subcloning into the pGL3 Basic vector.
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performed on 5 ll cDNA using a specific pair of primers (MWG-
Biotech, Germany) for mouse Muc2 mucin gene (forward primer: 5 0-
TGTGGCCTGTGTGGGAACTTT-30; reverse primer: 5 0-CATA
GAGGGCCTGTCCTCAGG-3 0). Mouse b-actin (forward primer: 5 0-
TCACGCCATCCTGCGTCTGGACT-3 0; reverse primer: 5 0-CCG
GACTCATCGTACTCCT-3 0) was used as the internal control. PCRs
were carried out in 50 ll final solutions as previously described [6].
Annealing temperature was 62 and 59 �C, respectively. PCR products
were analyzed on a 1.5% agarose gel run in 1· Tris–borate–EDTA
buffer. One hundred base pair DNA ladder was purchased from
Amersham Biosciences. Expected sizes for Muc2 and b-actin PCR
products are 558 and 582 bp, respectively. RT-PCRs were carried out
on cDNAs from three different sets of experiments.

Nuclear extract preparation. Nuclear extracts from CMT-93 cells
were prepared as described by Van Seuningen et al. [20] and kept at
�80 �C until use. Protein content (2 ll of cell extracts) was measured
using the bicinchoninic acid method as described above.

Oligonucleotides and DNA probes. Oligonucleotides used as probes
and competitors in EMSAs are shown in Table 2. They were synthe-
sized by MWG-Biotech (Ebersberg, Germany). Equimolar amounts of
single-stranded oligonucleotides were annealed and radiolabeled using
T4 polynucleotide kinase (Promega) and [c-32P]dATP. Radiolabeled
probes were purified by chromatography on a Bio-Gel P-6 column
(Bio-Rad).

Electrophoretic mobility shift assay. The sequence of Muc2 pro-
moter was analyzed with MatInspector V2.2 and Alibaba2 software
based on the genomatix and gene-regulation databases, respectively, to
determine the location of putative transcription factor binding sites
UN
CO

RRTable 2
Sequences of the sense oligonucleotides used for EMSAs and for site-directe

Oligonucleotides used for EMSA

Wild-type T216 (�99/�96)
Mutated T216
Wild-type T168 (�168/�165, �158/�155)
Mutated T168
Wild-type T225 (�401/�398)
Wild-type T169 (�1521/�1518)
Mutated T169

Oligonucleotide used for site-directed mutagenesis

Double mutant (�168/�165; �158/�155)

Positions of the GATA binding sites, within the probe, relative to the Muc

binding sites in the sequence are bold and in italics. Putative HNF binding si
underlined. Antisense oligonucleotides were also synthesized and annealed t
PR
O[21]. Electrophoretic mobility shift assay (EMSA) were performed as

described previously by Mesquita et al. [6]. Supershift analyses were
carried out using 1 ll of the anti-GATA-4 antibody (Santa Cruz, sc-
1237X). Reactions were stopped by adding 2 ll loading buffer. Samples
were loaded onto a 4% non-denaturing polyacrylamide gel and elec-
trophoresis conditions were as described in [18]. Gels were vacuum-
dried and autoradiographed overnight at �80 �C.

Site-directed mutagenesis. QuickChange site-directed mutagenesis
kit (Stratagene) was used to generate site-specific mutations in the two
proximal GATA sites found in the Muc2 promoter at �168/�165 and
�158/�155, respectively. The oligonucleotide containing the double
mutation was designed according to manufacturer�s instructions and
its sequence is depicted in Table 2.
CT
EResults and discussion

The GATA-4 transcriptions factor is expressed in
mouse embryonic intestinal tissue as early as ED 9.5
[8]. Its importance in regulating several promoters of
enterocyte-specific genes has been previously described
[11–13]. The MUC2 mucin is a marker of another intes-
tinal cell type, the goblet cell, and possesses a spatio-
temporal pattern of expression in embryonic, fetal,
and adult intestine [4,22]. However, regulation of
MUC2 mucin expression during development is largely
d mutagenesis

Sequence (50 fi 30)

CACAGCTGTTTTCCTGATAACTTGGCA
CACAGCTGTTTTCCTCTTAACTTGGCA
TCATATAAAGATAAACTCAGATAACCTG
TCATATAAACTTAAACTCACTTAACCTG
TCCTTATTCTATCTAGGCTGGGCT
TTGATCATTTTTATCTCTGATGTCTTT
TTGATCATTTTTAAGTCTGATGTCTTT

CCAGGGAGTCATATAAACTTAAACTCACTTAACCTGAATCA

2 transcription start site are indicated in parentheses. Putative GATA
te in T216 at �108/�104 is in italics. Mutated nucleotides are bold and
o the sense oligonucleotides to produce double-stranded DNA.
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unknown and is mandatory to better understand intes-
tine differentiation and cell lineage establishment [23].
In this work we studied the transcriptional regulation
of murine Muc2 by GATA-4 and mapped the cognate
cis-elements within the promoter. We focused on the
role of GATA-4 factor since it is known to play an
important role in directing cell lineage-specific gene
expression during development of the vertebrate gut.

GATA-4 is expressed in goblet cells of the mouse small

intestine

Muc2 is the main mucin expressed by intestinal gob-
let cells [2]. Alcian blue staining of the mouse small
intestine indicates the presence and location of these
goblet cells (Fig. 1). Alcian blue-positive goblet cells
are present both along the villi and in the crypts. Immu-
nohistochemical staining of the same section with a
GATA-4-specific antibody showed staining of nuclei of
all the cells along the crypt-villus axis, including goblet
cells (Fig. 1). We can thus conclude that GATA-4 tran-
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Fig. 1. Expression of GATA-4 transcription factor in mouse small
intestine by immunohistochemistry. Alcian blue staining was per-
formed as described in Material and methods. GATA-4 immunostain-
ing was carried out on the same section of mid jejunum of an adult
mice using a specific antibody for GATA-4. Sections were counter-
stained with hematoxylin. Inset: close-up of one GATA-4 expressing
goblet cell.
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scription factor is expressed in Muc2-expressing goblet
cells in the small intestine. The fact that GATA-4 has
been shown to play an important role in the regulation
of genes expressed in the intestine [11–13] and its co-lo-
calization with Muc2 in the goblet cells suggests an
important role for GATA-4 in the regulation of Muc2
gene. In order to confirm this hypothesis we first identi-
fied GATA-4 responsive regions within Muc2 promoter
by co-transfection experiments in the presence of wild-
type or mutated forms of either Muc2 promoter or
GATA-4 factor and then identified GATA-4 cis-ele-
ments by gel-shift assays.

Muc2 promoter activity in murine and rat intestinal cells

To define essential regions that drive Muc2 transcrip-
tion, six deletion mutants covering 2.2 kb of the pro-
moter were constructed in the promoterless pGL3
Basic vector (Fig. 2A). Numbering refers to the tran-
scription start site designated as +1 that was previously
described [24]. These constructs were then transfected
into two different cell lines, a goblet-like cell line
CMT-93 [25] and a crypt-like cell line IEC-6 [26], that
both express Muc2 mRNA. The luciferase diagram
shown in Fig. 2B, indicates that Muc2 promoter activity
is the strongest in the CMT-93 cell line (black bars). In
both cell lines, the highest luciferase activity was ob-
tained with fragment �729/+29. Since the activity in-
creased from the fragment �563/+29 to �729/+29, it
indicates that the �729/�564 region possesses essential
positive regulatory elements that confer maximal activ-
ity to the promoter. In both cell lines, a decreased activ-
ity was seen with fragment �1568/+29 when compared
with fragments �1001/+29 and �2213/+29. This indi-
cates that there are inhibitory elements present within
the �1568/�1002 region of the promoter. In conclusion,
despite being active in both cell lines, Muc2 promoter
appears more active in goblet-like CMT-93 cells than
in crypt-like IEC-6 cells.

GATA-4 regulates Muc2 expression at the transcriptional

level

Effect of GATA-4 overexpression on Muc2 endoge-
nous expression in CMT-93 cells was studied by RT-
PCR (Fig. 3A). The result indicates that Muc2 mRNA
level is substantially increased when GATA-4 is overex-
pressed in the cells (lane 2) when compared with cells
transfected with the empty vector (lane 1). In order to
identify GATA-4 responsive regions within Muc2 pro-
moter, co-transfection experiments were then carried
out in the presence of pGL3-Muc2 deletion mutant
�221/+29 and GATA-4 expression vector (Fig. 3B,
black bars). The luciferase diagram indicates that over-
expression of GATA-4 resulted in a 10-fold increase of
luciferase activity of the �221/+29 construct. When a
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Fig. 2. Muc2 promoter constructs and promoter activity in CMT-93 and IEC-6 intestinal cells. (A) Schematic representation of the different deletion
mutants used to study Muc2 promoter activity. Numbering refers to transcription initiation site designated +1. (B) Luciferase activity diagrams
showingMuc2 promoter activity in murine rectal CMT-93 (black bars) and rat colon IEC-6 cells (white bars). Results are expressed as fold activity of
the deletion mutant of interest compared with the activity of empty pGL3 Basic vector. Results represent means ± SD obtained in triplicate in three
separate experiments.
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which the GATA sites at �168/�165 and �158/�155
were mutated (GATA to CTTA, see Table 2), 30% of
the transactivating activity was lost (white bars). The
fact that the luciferase activity did not return to basal
levels suggests that either other GATA sites are present
with the �221/+29 region and contribute to the GATA-
4-mediated transactivating activity or that GATA-4 acts
indirectly on the promoter via interactions with co-fac-
tors. In order to investigate the latter hypothesis, we
co-transfected cells in the presence of the �221/+29
deletion construct with either wild-type GATA-4 vector
or mutated forms (�Act and C290S) (Fig. 3C). The
�Act GATA-4 vector encodes a mutated form of
GATA-4 in which the activation domains were deleted
whereas C290S mutant encodes a GATA-4 form bearing
a point mutation at amino acid position 290 (cysteine to
serine) in the COOH-terminal zinc finger [13]. Both
forms are not able to bind DNA cognate element. Co-
transfections with the wild-type vector (WT GATA-4)
led to a twofold activation of both fragments tested
(�221/+29 and �563/+29). When the same experiment
was performed with the mutated GATA-4 vectors
(�Act and C290S), the luciferase activity decreased
and returned to basal levels. This implicates that the
transcription activation of the Muc2 promoter by
GATA-4 is mediated by a direct interaction of GATA-
4 with the DNA sequence. In conclusion, these experi-
ments demonstrate that (i) GATA-4 induces Muc2 tran-
scription, (ii) responsive elements are present within the
�221/+29 region of the promoter, and (iii) GATA-4
binds directly to the promoter to transactivate Muc2

promoter.

Identification of GATA-4 cis-elements within Muc2

promoter

Analysis of the proximal part of Muc2 promoter se-
quence with MatInspector V2.2 and Alibaba2 software
indicated the presence of four several putative GATA
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Fig. 3. Activation of Muc2 mRNA level and promoter activity by
GATA-4 in CMT-93 cells by RT-PCR and transfection assays,
respectively. (A) Endogenous expression of Muc2 mRNA after co-
transfection with GATA-4 expression vector (lane 2) or corresponding
empty vector (lane 1). 10 ll (Muc2) and 2 ll (b-actin) of the PCR
products were loaded on a 1.5% agarose gel and electrophoresed in a
1· Tris–borate buffer in the presence of ethidium bromide. (B)
Luciferase diagram showing the effects of overexpression of GATA-4
on wild-type deletion construct �221/+29 (black bars) or deletion
construct �221/+29 with two mutated GATA-4 sites at �168/�165;
�158/�155 (white bars). (C) Luciferase diagram showing the effects of
co-transfection of wild-type �221/+29 or �563/+29 pGL3-Muc2

deletion mutants with wild-type GATA-4 (wt GATA-4) or mutated
GATA-4 expression vectors (�Act GATA-4 and C290S GATA-4).
Results are expressed as fold activation of luciferase activity in samples
co-transfected with the transcription factor of interest compared with
the control co-transfected with the corresponding empty vector (REF).
Results represent means ± SD obtained in triplicate in three separate
experiments.
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UNbinding sites at �99/�96, �168/�165, �158/�155, and
�401/�398, respectively (Fig. 4A). They all contain the
conserved consensus sequence required for GATA bind-
ing. To confirm the binding of GATA-4 to these sites,
EMSAs were carried out in the presence of nuclear
CT
ED

PR
OO

F

extracts prepared from CMT-93 cells. As shown in Figs.
4B and C three GATA-4 binding sites were identified in
the T216 (one GATA site at �99/�96) and T168 (two
GATA sites at �168/�165 and �158/�155) probes,
respectively. When radiolabeled probes were incubated
with nuclear extracts, two specific shifted bands were
visualized with T216 probe (Fig. 4B, lane 2) whereas
only one was seen with T168 probe (Fig. 4C, lane 2).
Specificity of the protein–DNA complexes was con-
firmed by the loss of the bands when cold competitions
were performed with a 50· excess of the cold probes
(Figs. 4B and C, lanes 3). As expected, cold competition
with a 50· excess of a cold T168 mutated probe (Fig.
4C, lane 4) did not modify the pattern of the shift.
Moreover, when the mutated T168 probe was radiola-
beled and incubated with nuclear extracts, no shift cor-
responding to the GATA binding was visualized (Fig.
4C, lane 7). The same result was obtained with radiola-
beled mutated T216 (not shown). Finally, implication of
GATA-4 in the binding to the T216 and T168 probes
was proven by the supershifts (ssGATA-4) obtained
when nuclear extracts and radiolabeled probes were
incubated with an anti-GATA-4 antibody (Figs. 4B,
lane 4 and 4C, lane 5, respectively). The identification
of another GATA-4 cis-element at �99/�96 may thus
explain the result shown in Fig. 3B in which GATA-4
transactivation was not completely lost when GATA
sites at �168/�165 and �158/�155 were mutated. That
third proximal GATA-4 cis-element is therefore most
likely involved in the regulation of proximal Muc2 pro-
moter by GATA-4. Of interest, this element (�99/�96)
is conserved in the promoter of human MUC2 [24,27],
which makes it central in the regulation of MUC2 by
GATA-4 between species. When EMSA was performed
with radiolabeled probe T225 containing the fourth
putative GATA binding site at �401/�398, no binding
was observed, indicating that no GATA factor is bind-
ing to that site (not shown).

Having found that GATA-4 transactivates the 2.2 kb
fragment of Muc2 promoter (not shown) and that a
putative GATA binding site was present at �1521/
�1518, we undertook to study whether GATA-4 was
binding to that site. The result is shown in Fig. 4D. As
for T168, when radiolabeled T169 was incubated with
CMT-93 nuclear extracts one specific retarded band
was visualized (GATA, lane 10). The binding was lost
when cold competition was carried out in the presence
of a 50· excess of the cold T169 probe (lane 11) whereas
nothing happened when cold mutated probe was used in
the competition (lane 12). Involvement of the GATA
consensus sequence in the binding was confirmed by ab-
sence of complex formation when the mutated probe
was radiolabeled and incubated with nuclear extracts
(lane 15). Finally, binding of GATA-4 on that element
was confirmed when supershift analysis was performed
in the presence of an anti-GATA-4 antibody in the reac-
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Fig. 4. Sequence of the proximal part of Muc2 promoter and identification of GATA-4 cis-elements by EMSA. (A) The transcription site +1 (bold
and underlined) is located 29 nucleotides downstream of the TATA box. Gray boxes indicate putative binding sites for transcription factors and
boxed sequences indicate the sequences of oligonucleotides used in gel-shift assays. Arrows delineate the sequence of the deletion mutants used in this
study. (B) Nuclear extracts were incubated with radiolabeled probe T216 (lanes 1–7). Probe alone (lane 1), radiolabeled T216 with nuclear extract
(lane 2), and cold competition with 50· excess of wt T216 probe (lane 3). Supershift analysis was performed by preincubating the nuclear extract with
1 ll of anti-GATA-4 (lane 4), anti-HNF-3a (lane 5), anti-HNF-3b (lane 6), or anti-HNF-4c (lane 7) antibodies, respectively. (C) Nuclear extracts
were incubated with wild-type (lanes 1–5) and mutated (lanes 6–8) radiolabeled T168 probe, respectively. Probe alone (lanes 1 and 6), radiolabeled
probes with nuclear extract (lanes 2 and 7), cold competition with 50· excess of wt T168 probe (lane 3), and cold competition with 50· excess of
mutated T168 probe (lanes 4 and 8). Supershift analysis with 1 ll anti-GATA-4 antibody (lane 5). (D) Nuclear extracts were incubated with wild-type
(lanes 9–13) and mutated (lanes 14 and15) radiolabeled T169 probe, respectively. Probe alone (lanes 9 and 14), radiolabeled probes with nuclear
extract (lanes 10 and 15), cold competition with 50· excess of wt T169 probe (lane 11), and cold competition with 50· excess of mutated T169 probe
(lane 12). Supershift analysis with 1 ll anti-GATA-4 antibody (lane 13).
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COtion mixture and resulted in a complete supershifting of

the protein–DNA complex (ssGATA-4, lane 13).
Of interest, we noticed that when the radioactive

probe T216 was incubated with nuclear extracts (Fig.
4B, lane 2) two specific shifted bands were visualized.
As described above, the low mobility complex corre-
sponds to a GATA-4 cis-element. Analysis of the se-
quence showed that the T216 probe also contained a
putative HNF-3 binding site (see Fig. 4A), that may
be responsible for the second shifted band. To confirm
implication of HNF-3 factors in the binding, we per-
formed supershift analysis with specific anti-HNF-3a
and anti-HNF-3b antibodies, and one irrelevant anti-
HNF-4c antibody, respectively. As can be seen in Fig.
4B, incubation with anti-HNF-3a (lane 5) and anti-
HNF-3b (lane 6) resulted in the disappearance of the
high mobility complex (HNF), indicated by an asterisk,
whereas nothing happened with anti-HNF-4c (lane 7)
antibody. This result indicates that HNF-3a and
HNF-3b factors bind to their cognate element at
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�108/�104, located next to the GATA-4 cis-element at
�99/�96 within Muc2 proximal promoter. Previous
studies have shown that transcription factors from
HNF and GATA families are able to act synergistically
to transactivate target genes [28–30]. These mechanisms
imply either direct binding to DNA or physical interac-
tions between HNF and GATA factors. It is of impor-
tance as HNF3 factors are also involved in the
formation of mammalian gut endoderm, early lineage
specification, and intestinal cell differentiation [28,29].
Preliminary results indicate that HNF-3b is also ex-
pressed in Muc2-expressing goblet cells in the murine
small intestine (I. Renes, unpublished data), which
makes it an important factor to consider in Muc2 regu-
lation as well. Cooperation between factors of the HNF
and GATA families has already been described such as
the interaction between GATA-5 and HNF-1a to upre-
gulate LPH [14,31]. Our result suggests that such a
cooperation may exist between GATA-4 and HNF-3a
or HNF-3b to regulateMuc2. In conclusion, the binding
studies allowed us to identify three GATA-4 cis-ele-
ments within the proximal part of Muc2 promoter at
�99/�96, �168/�165, and �158/�155, respectively,
and one in its distal part at �1521/�1518. Moreover,
a HNF-3a/3b cis-element was identified at �108/�104.

In conclusion, we have shown that GATA-4, which
co-localizes with Muc2 in intestinal goblet cells, is a
strong transactivator of Muc2 gene expression.
GATA-4 induces Muc2 transcription by directly binding
to its cognate cis-elements within the promoter. We also
showed that HNF-3a and HNF-3b bind to a cis-element
within the proximal promoter. All these data are in fa-
vor of an important role for GATA-4 factor in Muc2

spatio-temporal expression pattern observed in embry-
onic, fetal, and adult small intestine, and identifies for
the first time Muc2, a gene that is a marker of goblet
cells, as a direct target of transcription factors involved
in intestinal development and cell differentiation. The
identification of GATA-4 as a main regulator of Muc2

is not only important for intestine differentiation but
also in other tissues where both GATA-4 and MUC2
are co-expressed. The gastric epithelium in which
GATA-4 is also expressed [32] is a good example, espe-
cially in gastric cancers associated with development of
intestinal metaplasia which are characterized by the ec-
topic expression of Muc2 [33]. Thus, GATA-4 appears
as an important general regulator of Muc2 expression
and identifies Muc2 as a target gene of GATA-4 in dif-
ferentiated intestinal mucosa and metaplastic stomach.
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