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ABSTRACT. A transitive Lie algebra g of rational vector fields on a projective manifold
which do not preserve any foliation determines a rational map to an algebraic homogenous
space G/H which maps g to lie(G).

1. INTRODUCTION

1.1. Algebraic normalization. Let X be a projective manifold and let g be a finite di-
mensional Lie subalgebra of the Lie algebra of rational vector fields on X . If x ∈ X is any
sufficiently general point then we define the isotropy subalgebra of g at x, denoted by hx,
as the subalgebra of g consisting of vector fields vanishing at x. We assume x sufficiently
general in order to avoid the polar locus of vector fields in g.

A Lie algebra g as above is called transitive if it contains a basis of the C(X)-vector
space of rational vector fields on X . When g is transitive, two sufficiently general points
x, x′ ∈ g give rise to isomorphic (through an isomorphism of g) isotropy subalgebras
hx and hx′ . Thus when g is transitive we can safely refer to the isotropy subalgebra h,
meaning the isotropy subalgebra for a sufficiently general point x ∈ X . We will denote
the normalizer of h in g by Ng(h), i.e.

Ng(h) = {v ∈ g
∣∣ ad(v)(h) ⊂ h} ,

where ad(v)(·) = [v, ·] stands for the adjoint action.
We will say that Lie algebra is complete, following [4, Chapter I, Section 3], if all its

derivations are inner derivations and if it has trivial center.
The result below is an alternative version of [1, Theorem 4.3], which although less

general, is formulated in terms of intrinsic properties of the Lie algebra g and of its isotropy
subalgebra h.

Theorem 1.1. Let g be a finite dimensional Lie algebra of rational vector fields on a
projective manifold X with isotropy algebra equal to h. If g is transitive, complete and
Ng(h) = h then there exists a rational map ϕ : X 99K G/H to an algebraic homogeneous
space such that g coincides with the pull-back under ϕ of the Lie algebra of left invariant
vector fields on G/H .

The result above is not optimal. As shown by Proposition 3.3, there exists non-complete
transitive Lie algebras of rational vector fields (e.g. the Lie algebra of the group of affine
transformations of Cn for n ≥ 2) for which the conclusion of Theorem 1.1 still holds
true. Nevertheless, we point out that the assumption Ng(h) = h cannot be completely
disregarded. Indeed there are transitive actions of the complete Lie algebra sl(2,C) on
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C3 which are transitive but not algebraically conjugated to the Lie algebra of left invariant
vector fields on SL(2,C), see [1, Section 2.5] for examples. Another explicit examples
of Lie algebras of polynomial vector fields on C3 isomorphic to sl(2,C) are thoroughly
studied in [3].

1.2. Primitive Lie algebras. A transitive Lie algebra of rational vector fields g is called
primitive if its isotropy subalgebra h is maximal among all Lie subalgebras of g.

Theorem A. Let g be a finite dimensional Lie algebra of rational vector fields on a pro-
jective manifold X . If g is transitive and primitive then then there exists a rational map
ϕ : X 99K G/H to an algebraic homogeneous space such that g coincides with the pull-
back under ϕ of the Lie algebra of left invariant vector fields on G/H .

2. TRANSITIVE AND COMPLETE LIE ALGEBRAS

2.1. Transitive Lie subalgebras of X(Cn, 0). Throughout the text X(Cn, 0) will stand
for the Lie algebra of formal vector fields at the formal completion of the n-dimensional
affine space at a point. We have deliberately omitted the usual hat (̂ ) from the notation to
avoid overburdening it.

Fix n ≥ 1. In this paragraph we present some simple facts about transitive Lie subalge-
bras of X = X(Cn, 0). More specifically, we want to provide sufficient conditions in order
to guarantee that a given Lie subalgebra g ⊂ X has normalizer

NX(g) = {x ∈ X | [x, g] ⊂ g}

in X equal to itself.

Lemma 2.1. Let g ⊂ X be a Lie algebra of formal vector fields. The normalizer NX(g)
fits into the exact sequence

0→ CX(g) −→ NX(g) −→ Der(g)

where CX(g) = {x ∈ X | [x, g] = 0} is the centralizer of g in X, and Der(g) is the algebra
of derivations of g.

Proof. One has just to observe that for any element x ∈ NX(g) the restriction of adx(·) =
[x, ·] to g is a derivation of g since [x, g] = adx(g) ⊂ g. The kernel of the morphism
x 7→ (adx)|g is, by definition, CX(g). �

Lemma 2.2. Let g ⊂ X(Cn, 0) be a finite dimensional transitive subalgebra. The central-
izer of g in X = X(Cn, 0) is isomorphic to the normalizer of the isotropy subalgebra h in
g, i.e.

CX(g) ' Ng(h)

h
.

Proof. Let G be a Lie group with Lie algebra g. The isotropy subalgebra h is the Lie
algebra of a (non necessarily closed) subgroup H of G. The orbits of the left action of H
on G defines a smooth foliationH. When H is a closed subgroup of G then the leaf space
ofH is naturally identified with the space of leftH-cosetsG/H . Notice that the left action
of G on itself preserves the foliationH. In contrast, the right action of G on itself does not
preserve the foliation H in general. If an element g ∈ G maps left H-cosets to left cosets
through right multiplication then it must map the coset g−1H to H since the set g−1Hg
contains the identity. If follows that the set of elements in G preserving H through right
multiplication is formed precisely by NG(H) the normalizer of H in G.
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Restrict now to a sufficiently small neighborhood U of the identity in G. Since the
foliation H is smooth we can consider the local leaf space of H. Denote it by U/H. The
left invariant vector fields on G descend to vector fields on U/H. Let us denote its image
by gleft. The right invariant vector fields are not, in general, infinitesimal automorphisms
of H. Only those in the normalizer of h in g will be infinitesimal automorphisms and will
descend to the leaf space U/H. Of course, the vector fields in h descend to zero and the
quotient Ng(h)/h can be identified with the centralizer of gleft in the Lie algebra of formal
vector fields on the completion of U/H at the image of the identity.

If Ĝ denotes the completion of G at the identity then a subalgebra g ⊂ X(Cn, 0) deter-
mines a formal action of Ĝ on (C,0)

Ĝ× (Cn, 0)→ (Cn, 0)

which identifies (Cn, 0) with the completion of U/H at the image of the identity and
identifies the subalgebra g with gleft as defined in the previous paragraph. The result fol-
lows. �

2.2. Proof of Theorem 1.1. As already mentioned at the Introduction, Theorem 1.1 is an
easy consequence of [1, Theorem 4.3]. In accordance with the conventions of Section 2.1,
if X is a complex manifold and p ∈ X is a (closed) point we will denote the formal vector
fields at the formal completion of X at p by X(X, p).

Theorem 2.3. [1, Theorem 4.3] Let X be a smooth irreducible complex algebraic variety
and let g be a transitive, centerless, finite dimensional Lie subalgebra of rational vector
fields on X . If for a general p ∈ X the normalizer of g in X(X, p) coincides with g then
there exists a dominant rational map f : X 99K G/H such that f∗g coincides with the Lie
algebra of left invariant vector fields on G/H .

Assumptions as in Theorem 1.1. Let X = X(X, p) be the Lie algebra of formal vec-
tor fields at a sufficiently general point p of X . We may, and will, consider g as a Lie
subalgebra of X.

If every derivation of g is an inner derivation then the morphism NX(g) → Der(g)
considered in Lemma 2.1 is surjective. If furthermore g is centerless then the image of this
morphism is isomorphic to g. Hence for g ⊂ X equal to a complete a Lie algebra, we have
that NX(g) fits into the exact sequence

0→ CX(g) −→ NX(g) −→ g→ 0 .

Finally, the assumption Ng(h) = h guarantees, through Lemma 2.2, that the centralizer
CX(g) is trivial. Thus NX(g) = g and we can apply Theorem 2.3 to conclude. �

3. PRIMITIVE LIE ALGEBRAS

3.1. Structure of primitive Lie Algebras [after Morozov]. Let g be a primitive Lie al-
gebra of vector fields. It turns out that for a primitive Lie algebra g there are no g-ideals
contained in the isotropy subalgebra h. This remark lead Guillemin-Sternberg to introduce
the concept of effective primitive pair (g, h) – g and h are abstract Lie algebras with h ⊂ g
and h no non-trivial g-ideal — and to prove that effective primitive pairs can be realized as
Lie algebras of formal vector fields at Spec(C [[x1, . . . , xn]]) where n = dim g − dim h.
For more on these results see [2] and references therein. In particular, one can find there
the following result by Morozov, and its proof, which clarifies the structure of effective
primitive pairs.
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Theorem 3.1. Suppose that (g, h) is an effective primitive pair. Then either g is simple, or
else we are in one of the following two situations:

(1) g is the direct sum l⊕l of two isomorphic simple Lie algebras and h is the diagonal
subalgebra; or

(2) g is the semi-direct product h n m where h is the direct sum of a semisimple lie
algebra with a lie algebra of of dimension at most 1; and m is an irreducible and
faithful h-module equipped with trivial Lie bracket: [m,m] = 0.

Conversely, in the latter two cases (g, h) is primitive and effective.

The primitive Lie algebras fitting the description given by item (1), respectively item (2),
of Morozov’s Theorem will be called primitive Lie algebras of diagonal type, respectively
primitive Lie algebras of affine type. The primitive Lie algebras with g simple will be
called simple primitive Lie algebras.

The following result was extracted from the proof of [5, Theorem 6.5].

Proposition 3.2. Let C be a projective curve and g a Lie algebra of rational vector fields
on C. If dim g ≥ 2 then there exists a morphism ϕ : C → P1 such that g coincides with a
subalgebra of the pull-back under ϕ of the Lie algebra of holomorphic vector fields on P1,
i.e. g ⊂ ϕ∗sl(2,C).

Proof. A classical result of Lie (cf. [2]) says that a finite dimensional Lie subalgebra of
C(z) ∂

∂z has dimension at most three. Moreover, if its dimension is two then it is isomorphic
to the affine Lie algebra aff(C), and if its dimension is three then, it its isomorphic to the
projective Lie algebra sl(2,C). Therefore g has dimension at most three.

In both cases there exists v1, v2 ∈ g satisfying [v1, v2] = v1. Consider the morphism
ϕ : C → P1 defined by the quotient −v2

v1
.

At an arbitrary point of C choose a local analytic coordinate w. We can write v1 =
a(w) ∂

∂w , v2 = b(w) ∂
∂w , ϕ(w) = −b(w)/a(w) locally. On the one hand, the relation

[v1, v2] = v1 implies ab′ − ba′ = a. On the other hand,

ϕ∗
∂

∂z
= − 1

(b/a)′(w)

∂

∂w
= − a2

(a′b− ab′)
∂

∂w
= a

∂

∂w
= v1 .

Similarly ϕ∗z ∂
∂z = v2. This proves the proposition when 'aff(C).

To conclude the proof when g ' sl(2,C) it suffices to verify that ṽ3 = ϕ∗z2 ∂
∂z belongs

to g. Let v3 ∈ g be such that [v1, v3] = 2v2. Clearly [v1, ṽ3] is also equal to 2v2. Thus
[v1, v3 − ṽ3] = 0 and ṽ3 must be linear combination with constant coefficients of v1 and
v3. �

3.2. Algebraic normalization of primitive Lie algebras of affine type. The algebraic
normalization of primitive Lie algebras of affine type can be carried out using a natural
generalization of the argument above.

Proposition 3.3. Let g be a primitive Lie algebra of rational vector fields on a projective
manifoldX of dimension n. If g is of affine type then there exists a rational map ϕ : X 99K
Cn which conjugates g to a Lie algebra of polynomial vector fields of degree at most one.

Proof. As case n = 1 has already been treated in Proposition 3.2, we will assume n ≥ 2.
Since g is of affine type, we can write g = hnm with [m,m] = 0.

In order to establish the proposition it suffices to produce a C-vector space V ⊂ C(X)
of dimension n+ 1, containing the constants C, and invariant by the action of g by deriva-
tions.
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To construct V let us consider Θ0 ∈ detTX ⊗ C(X) defined by the determinant of m,
i.e. if v1, . . . , vn is a basis for m then Θ0 = v1 ∧ · · · ∧ vn. Notice that for any v ∈ g,

(3.1) [v,Θ0] = −Tr(ad(v))Θ0

where ad(v) ∈ End(m) is the endomorphism ad(v)(m) = [v,m], and Tr is the trace of
an endomorphism.

Let us consider the g-module W = ∧n−1m⊗ h0 where v ∈ h0 if and only if v ∈ h and
Tr(ad(v)) = 0. Consider the map

ψ : W −→ C(X)

θ ⊗ w 7→ θ ∧ w
Θ0

and let V0 denote its image. Observe that the non-zero functions in V0 are non-constant as
they vanish at the point fixed by the isotropy subalgebra h. Equation (3.1) implies ψ is a
morphism of h0-modules and therefore V0 is invariant by the action of h0. Moreover V0 is
invariant by the action h and is mapped to C by m.

Let us prove that dimV0 = n. On the one hand, the dimension of V0 is at most n
since otherwise we would produce a non-constant function in V0 in the intersection of the
kernel of the derivations in m. This would contradict the transitity of m. On the other hand,
the dimension of V0 is at least n as otherwise the functions in V0 would define a foliation
invariant by the Lie algebra g contradicting the primitiveness of g.

It is now clear rational map ϕ : X 99K Cn with entries given by a basis of V0 sends
g = hnm to a Lie algebra of vector fields of degree at most one. �

3.3. Proof of Theorem A. If g is a primitive Lie algebra with isotropy h then Ng(h) = h
as otherwise there would exist a Lie algebra strictly containing h and strictly contained
in g. Thus if g happens to be a complete Lie algebra then it satisfies the assumptions
of Theorem 1.1 and the result follows. Theorem 3.1 tell us that g is semi-simple (and
hence complete) unless g is a primitive Lie algebra of affine type. To conclude we apply
Proposition 3.3. �
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