N
N

N

HAL

open science

A Strategic Graph Rewriting Model of Rational
Negligence in Financial Markets

Nneka Ene, Maribel Fernandez, Bruno Pinaud

» To cite this version:

Nneka Ene, Maribel Ferndandez, Bruno Pinaud. A Strategic Graph Rewriting Model of Rational Neg-
ligence in Financial Markets. 4th International Conference on Applications of Mathematics and Infor-
matics in Natural Sciences and Engineering (AMINSE 2019), Sep 2019, Thilisi, Georgia. 10.1007/978-
3-030-56356-1_8 . hal-02905501

HAL Id: hal-02905501
https://hal.science/hal-02905501
Submitted on 23 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02905501
https://hal.archives-ouvertes.fr

A Strategic Graph Rewriting Model of Rational
Negligence in Financial Markets

Nneka Ene', Maribel Ferndndez! and Bruno Pinaud?

Abstract We propose to use strategic port graph rewriting as a visual modelling
tool to analyse financial market processes. We illustrate the approach by specifying
a basic “rational negligence” model in which investors may choose to trade securi-
ties without performing independent evaluations of the underlying assets. We show
that our model is correct with respect to the equational model and can be used to sim-
ulate simple market behaviours. The model has been implemented within PORGY,
a graph-based specification and simulation environment.

1 Introduction

Rational negligence [1] has been identified as a behavioural pattern in financial trad-
ings, where transactions are performed without proper checks in order to maximise
benefits and reduce operational costs. For example, in 2008 ratings from credit agen-
cies (later found to be inaccurate) were used to replace costly checks, leading to
a financial crisis that the DSGE (Dynamic Stochastic General Equilibrium) mod-
els [21] were unable to anticipate. This motivated a quest for more effective and
transparent tools in the modelling of capital markets [26].

As an alternative to traditional top-down macro equilibrium models, Agent-
Based Models (ABM) have been proposed, which examine behaviour at a micro-
level [13]. In this paper we explore an alternative approach: we seek to formalise
the rational negligence theory using graph rewriting. We provide an example to
illustrate the ideas, as a step towards the development of alternative tools for the
analysis of markets to complement the current agent-based implementations.

Nneka Ene and Maribel Ferndndez
King’s College London, UK. e-mail: maribel. fernandez@kcl.ac.uk

Bruno Pinaud
University of Bordeaux, France

Rewrite rules are an intuitive and natural way of expressing dynamic, structural
changes which are generally more difficult to model in traditional simulation ap-
proaches where the structure of the model is usually fixed [8]. Graph rewriting lan-
guages are well-suited to the study of the dynamic behaviour of complex systems:
their declarative nature and visual aspects facilitate the analysis of the processes of
interest producing a shorter distance between mental picture and implementation;
they can be used for rapid prototyping, to run system simulations, and, thanks to
their formal semantics, also to reason about system properties.

We use attributed port graphs, that is, graphs where edges are connected to nodes
at specific points called ports, and where attributes are attached to ports, nodes and
edges. Attributed port graphs are useful in the development of graph models, due to
their support of both topology (via ports and edges) and data (via attributes). To con-
trol the rewriting process, we use strategies that permit to select which rules to apply
and where, including probabilistic rule applications. We present first a basic model
of asset trading following a discretised equational model presented in [1], where
the probability of asset toxicity, due diligence analysis cost and asset cost are fixed.
We then briefly discuss a more general version of the model where stochasticity is
introduced by using a probabilistic choice model of logit type [13].

Summary of Contributions.

We provide port graph rewrite rules and strategies that specify basic asset-trading
transactions, starting with an auction to select a potential buyer. These rules and
strategies model the rational negligence phenomenon [1, 20], whereby investors
may choose to trade securities without performing independent evaluations of the
underlying assets. The model has been implemented in PORGY', an interactive,
visual port graph rewriting tool. The graph rewriting approach we advocate produces
flexible models that are easy to validate, experiment with and reason about. We
illustrate it by showing the correctness of our graph rewrite rules and strategies with
respect to the equations defining the rational negligence phenomenon, and using the
implemented model to analyse simple market behaviours.

Related Work.

Graph Transformation Systems (GTSs) have been used as a modelling framework
in many areas: for example, RuleBENDER? is a simulation tool that supports rule-
based modelling of biochemical systems [30], Kappa [23] is a rule-based language
for modelling protein interaction networks, graph transformation has also been used
to outline the semantics of domain specific modelling languages [8].

"nttp://porgy.labri.fr
2 http://www.rulebender.org

A basic set of port graph rewrite rules to model rational negligence was presented
by Ene [11], focusing on implementation aspects. Here we extend the rules to in-
clude an abstract representation of an auction process and we analyse the properties
of the model: we prove that the rewrite rules and the strategies we provide correctly
simulate the equational model of rational negligence [1].

Previous rational negligence models followed an agent-based approach (see, for
example [1, 26]). Test results for our model line up with results form traditional
agent-based models (see Section 4 and [11] for a discussion of experimental re-
sults). General purpose agent-based simulation tools (see [22] for a survey) support
an imperative object-oriented approach to model development. The graph rewriting
approach used in this paper is declarative: the program consists of graph transfor-
mation rules and a strategy. Languages like Stratego [6, 36], Maude [10, 27] and
ELAN [5] support a term rewriting approach with user-defined strategies to control
the application of rules. Rascal [32] (and its predecessor ASF+DSF [33]) are closely
related, using algebraic specifications as a basis to define programs, with traversal
functions to control the application of rules. Tom [3] is an extension of Java with al-
gebraic terms, rule definitions and a strategy language, thus allowing programmers
to combine imperative object-oriented programming and strategic term rewriting.
The symbolic transformation language symbtrans designed in the context of MEM-
SALab [4] (where models are defined using partial differential equations) extends
Maple™ with conditional rewriting, strategies and pattern-matching modulo asso-
ciativity and commutativity.

An alternative rule-based approach uses rules to define predicates, as in the logic
programming language Prolog and its variants, including in some cases domain-
specific constraint solvers or special-purpose languages to handle constraints [17].
The multi-paradigm language Claire [7] combines the imperative, functional and
object-oriented styles with rule processing capabilities, including constructs to cre-
ate new branches in the search-tree and to backtrack if the current branch fails. The
language Prholog [9] extends logic programming with strategic conditional trans-
formation rules, combining Prolog with the pLog calculus [25] to enable strategic
programming.

We have chosen to develop our models using port graph rewriting in PORGY [14],
since it provides a visual rule-based programming-style, including user-defined
strategies. The visual, declarative nature of GTS tools such as PORGY is welcome in
the cases where users seek to primarily focus on describing what the system should
accomplish, and is especially useful for the analysis of complex systems in interac-
tive environments.

A benchmark analysing the differences between several GTS tools has been de-
veloped by Varro et al. [35]. A variety of GTS tools are available: among others we
can cite GROOVE [19], a graph-based model checker for object oriented systems;
AGG (the Attributed Graph Grammar System) [31], a graph-based language for the
transformation of attributed graphs that comes with a visual programming environ-
ment; PROGRES (Programmed Graph Rewriting Systems) [29] that offers back-
tracking and nondeterministic constructs; GrGen (Graph Rewrite Generator) [18]
that uses attributed typed multigraphs and includes features such as Java/C code

generation, and GP [28], a graph programming language, where users can define
rules and strategy expressions, with support for conditional rewriting. PORGY [14]
has been used to model social networks [15] and database design [34, 16], as well as
biochemical processes [2], where non-determinism, backtracking, positioning con-
structs, and probabilistic rule application are key features. A distinctive feature of
PORGY is that rewriting derivations are directly available to users via the so-called
derivation tree, which provides a visual representation of the dynamics of the sys-
tem modelled and can be used to plot parameters and generate charts as illustrated
in Section 4.

Overview.

We first recall key notions on securitisation and graph rewriting in Section 2. Sec-
tion 3 describes the proposed approach to the modelling of securitisation, including
a short description of rules and associated strategies. Section 4 examines key prop-
erties of the model. We finally conclude and briefly outline future plans in Section 5.

2 Background

In this section we recall the main notions of asset trading and port graph rewriting
that are needed in the rest of the paper.

2.1 Asset-Backed Securities

Assets [20] represent loans to clients or obligors who make regular installment pay-
ments to the originator to clear their debts. In a securitisation, assets are selected,
pooled and transferred to a special purpose vehicle (SPV), who funds them by issu-
ing securities. In general, an ABS (asset-backed security), or simply asset if there is
no ambiguity, is any securitisation issue backed by consumer loans, car loans, etc.

In the core rational negligence model [1], the profit %, expected by an agent
(e.g., a bank) w from trading an asset depends on whether or not w follows the
negligence rule, i.e., the rule of not performing independent risk assessment. Let z
be a binary variable indicating whether or not the agent is following the negligence
rule, then %, is a function of z. According to [1], %,(z) can be characterised by the
following equations, where p is the probability of asset toxicity, Z is the average of
all z’s in the domain, c is the cost of purchasing an asset (note that the payoff from
successfully reselling the asset is normalised to unity), x,, is the cost of performing
a complete risk analysis, k is the number of trading partners of the seller bank and
A is the set of agents.

e Expected profit for w when following the negligence rule, i.e., when z(w) = 1, if
w buys an asset and then tries to sell it to w':

U(1) = —p(1—z(W)e+[1 = p(1 —z(W))](1 —c) = 1 =p(1-Z) —¢

This is because if the asset is toxic then w will loose c¢ if w' checks, and will have
a profit of 1 — ¢ if w' does not check. Of course w does not know a priori whether
w' will or not follow the rule, but it can estimate z(w') as the average of all the
values of z in the system, Z. Note that when p = 0 the profit is 1 — ¢ as expected.
e Similarly, the expected profit for w when the rule is not followed, i.e., z(w) =0,
is defined by:
%y (0) =% (1=p)(1—c)—xy

This is because if the asset is toxic, then w will not buy it (losing only x,,), but
if it is not toxic then it will resell it with a profit of 1 — ¢ — x,,. Note that when
p = 1 the loss is x,, as expected.

So the best response of agent w to a buying request is determined by the value
of % (1) — % (0). If it is positive, then negligence is better, otherwise diligence is
better. Note that

02/(1)—02/(0):p(2—c)+xw=p<11€ Z Zj—C> + Xy

JEN

Following [1], in this paper we study the behaviour produced by the trading of one
asset since this is sufficient to perform validations against equivalent DSGE analy-
ses. The goal is to study the evolution of the system till fixed point (that is, a stable
state) is reached i.e., in this case, a state such that all potential buyers in the universe
of discourse no longer alternate between diligent and negligent behaviour in their
handling of the purchase of a particular asset.

2.2 Port Graph Rewriting

A port graph is a graph where nodes have explicit connection points, called ports,
and edges are attached to ports. Nodes, ports and edges are labelled by a set
of attributes, including a mandatory attribute Name that characterises the type of
the node, port or edge. Attributes describe properties such as colour, size, etc. In
PORGY [14] labels are records, i.e., lists of attribute-value pairs. The values can be
concrete (numbers, Booleans, etc.) or abstract (expressions in a term algebra, which
may contain variables). For example, the port graph in Figure 1 depicts a toy ABS
market universe represented by a community of banks (B nodes), one of which owns
a tradeable asset (A), together with a global environment represented by the nodes
Z, Change and Auction. The edge between A and B represents ownership.

Transactions between banks are specified by means of rewrite rules. A port graph
rewrite rule L =¢ R is itself a port graph consisting of two port graphs L and R to-
gether with an “arrow” node. Intuitively, the pattern, L, is used to identify subgraphs
(redexes) in a given graph which should be replaced by an instance of the right-hand
side, R, provided the condition C holds. The arrow node may have ports and edges
that connect it to L and R; these edges specify a partial morphism between the ports
in L and R, following the single push-out approach [24] to graph rewriting (see [14]
for more details). Operationally, the arrow-node edges are used during rewriting to
redirect edges that arrive to ports in the redex from outside, ensuring that no edges
are left dangling. Table 3 shows the rules used in our model (these will be discussed
in the next sections). The arrow-node edges can be optionally displayed in PORGY;
when displayed, they are shown in red. In PORGY attribute values can be updated in
the right-hand side of a rule by means of an “algorithm tab” (see Table 3).

o) meoEe

N N
B
o L B ictian‘
FZ }/T = % 5 R
B — - .
= e
N
SR S
T

Fig. 1 Sample Port-graph: Model’s Starting Graph

For a given graph, several different rewriting steps may be possible (due to the
intrinsic non-determinism of rewriting). Strategies in rewriting systems are a means
of controlling the creation of rewriting steps. A sequence of rewriting steps is called
a derivation. A derivation tree is a collection of derivations with a common root.
Intuitively, the derivation tree is a representation of the possible evolutions of the
system starting from a given initial state (each derivation provides a trace, which
can be used to analyse and reason about the behaviour of system).

PORGY’s strategy language allows us to specify not only the rule to be used
in a rewriting step, but also the position where the rule should (or should not) be
applied. Formally, the rewriting relation is defined on located graphs, which are
port-graphs with two distinguished subgraphs P (Position subgraph, the focus of
rewriting) and Q (Banned subgraph, where rewriting steps are forbidden). The key-
words crtGraph, crtPos, crtBan in the strategy language denote, respectively
the current graph being rewritten and its Position and Banned subgraphs. For exam-
ple, the strategy expression setPos (crtGraph) sets the position graph as the

full current graph. If T is a rule, then the strategy one(T) randomly selects one
possible occurrence of a match of rule 7 in the current graph G, which should su-
perpose the position subgraph P but not superpose the banned subgraph Q. This
strategy fails if the rule cannot be applied. /d and Fail denote success and failure,
respectively. The strategy expression march(T) is used to check if the rule T can be
applied but does not apply the rule. (S)orelse(S’) tries strategy S and if it fails then
tries to apply S'. If both strategies fail then the whole statement fails. The strategy
ppick(Ty,...,T,,IT) selects one of the transformations 77, ...7T, according to the
given probability distribution I1. The strategy while(S)[(n)]do(S') executes strategy
S’ (not exceeding n iterations if the optional parameter n is specified) while S suc-
ceeds. repeat (S)[max n] repeatedly executes a strategy S, not exceeding n times; it
can never fail (when S fails, it returns I/d). We refer the reader to [14] for the full
definition of PORGY’s strategy language.

PORGY [14] offers an in-built strategy editor, a navigable derivation tree widget,
and widgets for the creation of rules and graphs. By navigating on the derivation tree
and zooming on different nodes, we can see the various stages in the simulation (see
Figure 2); if we click on the black arrows in the derivation tree we can see which
rule has been applied and identify the cause of the change in the model state.

Fig. 2 A portion of the derivation tree in PORGY. The square boxes are nodes in the derivation
tree: they contain graphs, and the black arrow represents the application of a rewrite rule.

3 The ABS-GTS Model

In this section we provide a graph-based model of the ABS process as specified
by the equations given in Section 2.1. The ABS trading process is modelled hier-
archically. The asset trading model sits at the top level of the model hierarchy. It
is non-deterministic in nature. Below this system lie several subsystems that model
origination, structuring of the deal, SPV transfers and profitability of the sale. In
the rest of the paper we focus on the top tier level, which is where the ‘rational
negligence’ phenomenon can be observed.

Asset-transfer transactions are modelled using a combination of global and local
data: the global state includes Z (an indicator of market behaviour obtained as the
average value of each individual bank’s approach, represented by the bank’s attribute
z) and a Change indicator, to detect whether the market has reached a stable state.
See Tables 1 and 2 for a description of the nodes used. Similar nodes were used
in the model implemented in [11]; here we have additional nodes to represent the
Auction and Bidders.

Model execution begins with a parameterised initialisation phase that produces
a sample universe with one asset, linked to the owner bank (see Figure 1). Colour
attributes in nodes and ports are used to distinguish between classes of objects and
to aid in the identification of states of interest (such as negligent behaviour, as ex-
plained below).

Entity Name Attribute Description
Payoff (payoff) Returns from re-selling an asset
Bank/Bidder/Potential
Buyer (B/BD/PB) z Indicates whether or not, as a rule, the
bank performs independent risk analyses
Bank ID (b_id) Bank identifier
Current Value (c_val) |Cost of purchasing an asset
Probability An asset is toxic if the borrowers of the
of Toxicity (p-tox) |underlying loans are likely to default
Asset (A) or are in default
Actualised Toxicity |Current toxicity level
(a_tox)
Perception (pe) External rating of the asset by rating
agencies
Due Diligence Cost |Full cost of an independent risk
(ddcost) assessment
Change change Change in bank approach
Sum of change Sums all changes in a current cycle
(sumofchange)
z Represents the global average z
Number of Iterations |Counter that keeps track of
Z (numofiterations) AllTrade iterations
Number of Agents |Variable that keeps track of number
(numofagents) of banks
Ul Profitability of being negligent
Theta uo Profitability of being diligent
DeltaU1U0O Difference between U1 and U0
Auction Kind Abstract single-sided auction

Table 1 Nodes and Attributes

Tables 3 and 4 describe the rewrite rules handling asset transfer in our model.
As in the foundational paper [1], our current implementation has been limited to
the trading of one asset among k banks. The starting state of the model is the graph
shown in Figure 1 and it is from this point that the derivation tree begins to undergo
construction as the execution strategy calls on rules that create step-wise transforma-

Entity Ports Description
Bank. Bidder O (Owns) Edges attached to this port link to
assets owned by the bank
C (Contacts) Communication channel with another bank
Asset OB (Owned_by) |Connects the asset to its current owner
z E (Environment) |Global entity that tracks current average sentiment
O (Owns) Links to assets owned by the bank
PotentialBuyer|C (Contacts) Communication channel with another bank
GE (Generates) |Declares a relationship with an analysis node
Change CH (change) Keeps track of behaviour changes
Theta PB (Produced_by) |Links to entity that produces this node
Auction B (Buyers) Links to bidders
S (Seller) Links to seller

Table 2 Ports in each kind of node

tions. Specifically, the asset transfer processes are governed by the strategies Auc-
tion, AllTrade and FixedPointSearch (see Strategies 1, 2 and 3 below).

Auction (Strategy 1) starts by specifying that rules will apply anywhere in the
current graph (line 1). Line 2 applies rule sellorder, to represent a sell request from
the asset owner. After a number of buy orders are received (specified in line 3 by
repeated applications of the rule buyorder), an auction takes place and one of the
bidders is selected (line 4, rule matchorders). The auction is then closed (line 5).

A basic description of the strategy AllTrade (Strategy 2) is as follows: Line 1
starts a trading cycle (the number of iterations is bound by the number of banks,
k). Each iteration corresponds to one transaction: First an auction takes place (the
Strategy Auction is called in line 1). After the auction, the potential buyer then
begins the analysis in line 2 to decide whether or not to follow the negligence rule. It
does this by computing the profitability of choices as described in Section 2.1 using
rule beginanalysis. If diligence is more profitable the deviation rules will apply,
otherwise the bank follows the negligence rule (see the orelse in lines 3 and 4).
The rule updatez used in line 5 updates the global Z. We repeat k times in order to
give all banks an opportunity to trade.

Strategy 3 controls the full execution: AllTrade is iterated until there are no
changes in the agent behaviours (i.e., as long as the change rule can be applied).

A variant of strategy AllTrade replaces the orelse operator (lines 3 and 4) by
a ppick operator, to model probabilistic choice of logit type between following
or deviating from the negligence rule. The probability distribution used in this case
implements the stochastic “trembles” described in [13] and can be written within
our strategy environment as follows:

ppick ((one (followresult);one(followdecision)),

(one (deviationresult) ; one (deviationdecision)),
udfLogitModel)
where udfLogitModel is a function that reads the profitability of being negligent
or diligent (attributes U1 and UO in the node Theta of the graph produced by the rule
beginanalysis) and returns the following values as a list:

Name of Rule Description

sellorder

Initiates sell-order communication with Auction

\@/

ln:tlnn Aum

buyorder

Initiates buy-order communication with Auction

= OR-.

matchorders

Handles the match of sell-buy orders

@4m

T

)

close

Closes the auction

beginanalysis

Computes profitability % (1), % (0) of PB, generating
anode Theta with attribute DeltaUl1U0 = % (1) — % (0).

Lo \/.*

Bz

Algorithm tab:

ThetaUl =1—A.p_tox(1 —Z.z) —A.cval
Theta.UO = (1 —A.p_tox)(1 —A.c_val) — A.ddcost
Theta.DeltaUlUO = Theta.U1 —Theta.UO

updatez

Updates the attribute z in node Z.
“a PR

2 N

E LI
z z |

Table 3 Rewrite Rules 10

Algorithm tab: Z.z - ((Z.z% (Zﬁuhwfagents — 1)) + B.z)/Z.numofagents

Name of Rule Description
Applies if DeltaU1U0 > 0. It generates a follow
node if more profitable to not do a full risk analysis.

followresult T:E j;a

[

follow

Arrow-node Condition:

If Theta.DeltaUl1UO > 0

Applies if DeltaUl1UO < 0. It generates a deviation

node if more profitable to do a full risk analysis

(Similar to followresult).

Transfers asset and prepares for a new transaction (i.e. cleans

up after the decision negligence rule), updating bank’s attribute z,
updating the Change counter if necessary.

|)
| [.
J %

deviationresult

followdecision

(e

[crene| (3R f‘

Transfers asset and prepares for a new transaction (i.e. cleans
up after the decision to deviate from the negligence rule), updating
bank’s attribute z, updating the Change counter if necessary
(Similar to followdecision).
Sets the Change counter back to 0 if greater than 0.

.
change [Ghorse ‘\®/‘) e

Y 4

_ g

deviationdecision

Algorithm tab:
Change.change = 0
Change.sumofchange = 0

Table 4 Rewrite Rules

PBUi(z=1) BUi(z=1)

exp’
CXP‘%U" (z=1) + CXP‘@Ui (z=0)

exp
CXp‘@Ui (z=1) + exp@Ui (z=0)

and 1—()

where i is the current agent number and 4 is the intensity of choice parameter that
controls the ease at which fixed point is reached (as specified in [13]).

Levels of toxicity, asset value and due diligence cost are parameters of the sim-
ulation, which can be changed in our model by updating values of bank and asset
node attributes.

11

setPos(crtGraph);
one(sellorder);
repeat(one(buyorder))(n);
one(matchorders);
repeat(one(close))

[N S

Strategy 1: Auction

repeat(#Auction#;
one(beginanalysis);
(one(deviationresult);one(deviationdecision)) orelse
(one(followresult);one(followdecision));
one(updatez))(k)

[N S

Strategy 2: AliTrade

1 #AllTrade#;
2 while(match(change))do(
3 one(change);
4 #AllTrade#)
Strategy 3: FixedPointSearch

4 Model Properties

First, we show that our model specification is correct with respect to the equational
semantics (Section 2.1). This ensures that our model captures the ABS process of
interest, and predictions from the ABS models under the same conditions coincide
with the predictions produced by our system.

Lemma 1. Starting from an initial graph that contains at least two bank nodes, one
of which owns an asset, and an Auction node, Strategies 1 (Auction), 2 (AllTrade),
and 3 (FixedPointSearch) never fail>.

Proof. Strategy 1 starts with a setPos command, which cannot fail, and then exe-
cutes a sell order (which cannot fail if the graph has at least two banks, one of which
owns an asset, and an auction node), followed by a repeat command, which accord-
ing to PORGY’s semantics [14] can never fail, then matches the buying and selling
orders (this rule cannot fail since the previous repeat command generates a redex)
and finally the strategy executes another repeat command which cannot fail. Strat-
egy 2 (AllTrade) executes a command of the form repeat(S)(k), which can never
fail. Since AliTrade cannot fail, strategy FixedPointSearch can only fail if the rule
change in the body of the while loop fails, which is impossible due to the condition
in the “while” (there is at least one match for change).

Theorem 1 (Correctness). The graph-based model defined by the initial state,
rewrite rules and strategies defined above is correct with respect to the equation-
ally defined ABS process (see Section 2.1). More precisely, the graphs generated by

3 A strategy fails if it attempts to apply a rule that is not applicable.

12

the application of the rewrite rules with the given strategy represent states reached
by the system governed by the equational ABS model.

Proof. We show that one trading transaction in our system corresponds to one trad-
ing transaction in the equational model. Let w be the bank that owns the asset (i.e.,
the bank linked by an edge to the asset), and let w' be the potential buyer (selected by
auction). Rule beginanalysis computes the value of the projected profitability made
by w' following and not following the negligence rule using the attributes p-tox,
c-val and dd-cost (i.e., probability of toxicity, current value and due diligence cost)
in the asset, which correspond to the values of p, ¢ and x in the equational model.
It computes the difference between %;,(1) and %,,(0) using the equations given in
section 2.1 and stores it in the attribute DeltaU1UQ, as indicated in its algorithm
tab. The result of this computation is the value specified by the equational model.
The strategy ensures that the potential buyer selects the most profitable choice (lines
3-4 of Strategy 2), and the rule updatez recomputes the global Z value as outlined
in Table 3, as follows:
Zix (k—1)+z(w')

k
which gives the average value specified in the equational model.

Ziy1 =

Theorem 2 (Completeness). The graph-based model defined by the initial state,
rewrite rules and strategies defined above is complete with respect to stability as
specified by the equational ABS model (see Section 2.1). More precisely, if the equa-
tional model reaches a stable state, so does our model.

Proof. (Sketch) The transactions of the equational ABS model are mimicked by
the iterations in our strategy. A stable state in the equational model is reached
when banks do not change their approach to negligence, which corresponds to ab-
sence of “Change” in our model: the Change flag is updated as required when rules
followdecision and deviationdecision are applied (see Table 4).

Theorems 1 and 2 ensure that our model reaches a stable state if and only if the
ABS equational model (see Section 2.1 and [1]) reaches the same stable state.

Theorem 3 (Termination). The graph program consisting of the initial graph,
rewrite rules and strategy described above terminates.

More generally, if the rule updatez also changes the values of the asset attributes
(reflecting external changes in risk analysis cost, toxicity and asset value) then the
graph program terminates if and only if stable state is reached.

Proof. A state is stable if no bank has changed its mind regarding its negligence
choice when given an opportunity to trade. If stable state has been reached, there is
no change after executing AllTrade hence the while loop found in line 2 of Strategy 3
stops. Conversely if our strategy terminates then the change rule does not apply since
this is the condition to exit the while, hence no bank has changed its behaviour in
AllTrade (stability has been reached). Thus, the graph program terminates if and
only if the initial graph reaches a stable state.

13

Moreover, if the parameters of the asset do not change during the simulation then
the program is guaranteed to terminate, because in this case Z is monotonic (once
a bank decides towards diligence or negligence, the rest follow the trend). Thus, in
this simple case, the program terminates.

Experiments and Analysis.

A base case validation of the model is described in [11], in which test results line up
with results from a traditional ABM simulation given in [1]. In Figure 3 we recall
some experimental results, where average Z value is plotted versus depth of the
simulation. A natural question arises: What events could have mitigated or further
instigated a negligent behaviour? By increasing toxicity values for example we can
take into account the increase in interest rates that led to increased default rates and
the 2008 crisis. Our experiments show that when toxicity is increased (attribute p in
node A) the system reaches a stable state where all banks perform independent risk
analysis, as expected. In particular, for high values of p (that is, high probability of
toxicity), we observe the expected result when the initial state contains a mixture
of negligent and diligent agents: a sharp drop in Z, corresponding to a sharp switch
towards diligence which in turn will generate stability. An illustration of this can
be seen in Figure 3(c) and notice that given high due diligence costs Figures 3(b)
and 3(d) highlight a negligent approach whereas Figures 3(c) and 3(e) reflect the
favouring of a diligent approach. However, even for high toxicity, if the initial state is
a set of negligent agents, the model reaches equilibrium without switching approach
as seen in Figure 3(f).
We observe the following behaviours:

1. Negligent equilibrium: If in the initial graph Z ~ 1, then the system arrives at neg-
ligent equilibrium (i.e., a result that reflects a community decision to no longer
perform due diligence on a particular asset) even when the asset has high proba-
bility of toxicity.

Explanation: For Z ~ 1 the profitability equation outlined in section 2.1 reduces
to: % (1) — % (0) = 1 — ¢+ x,, given that the difference between % (1) and ex-
pected profit when the rule is not followed (i.e. % (0)) is p(Z — ¢) + x,,. This
linear equation is computed at each iteration of the repeat loop. The result is
positive given that ¢ and x,, are both positive constants smaller than 1.

Similarly, we observe that if p is high but in the initial graph the majority of banks
are deviating from the negligence rule, then the system reaches a due diligence
stable state.

2. Indefinite propagation: A continuous increase in the number of negligent bank

agents means that a market crash can be postponed. This condition, although not
feasible in a real market, is valid in equational models.
Explanation: A continuous increase in the number of agents used in calculating
the average current sentiment, Z, as outlined in section 2.1 and as computed by
PORGY, means that the value of Z used in deciding whether or not to perform an
independent risk analysis can remain unchanged.

14

5
PRSPPI SIS EIITITS S

o o o

(a) Low Toxicity, High Due (b) High Toxicity, High Due (c) High Toxicity, Low Due
Diligence Cost, Mixture of Diligence Cost, Mixture of Diligence Cost, Mixture of
Diligent and Negligent Banks Diligent and Negligent Banks Diligent and Negligent Banks

[

N WauoN®e o

(OEEEERER R ER R nE Brr e arr G

owe o o

(d) High Toxicity, High Due (e) High Toxicity, Low Due (f) High Toxicity, Low Due
Diligence Cost, Diligent Diligence Cost, Diligent Diligence Cost, Negligent
Banks Banks Banks

Fig. 3 Experiment Results. y-axis: Count of the number of negligent banks. The intersection of x
and y axes in the case of a starting universe of purely diligent banks corresponds to the co-ordinates
(0,0) as opposed to (11,0) in the case where we begin with negligent banks. Curves tending upwards
reflect a negligent equilibrium result

3. Dangerous Equilibrium: A negligent stable state can be reached despite high
toxicity under certain circumstances (high due diligence costs).
Explanation: A sensitivity analysis shows that for a certain range of high due
diligence cost values, negligent equilibrium can be obtained despite high toxicity
values, even if initially negligence is not the norm, see Figure 3 (b and d).

The results obtained with the basic experiments performed so far suggest that the
graph rewriting approach, and in particular the derivation tree provided by PORGY,
could be used to get insights beyond simulation runs. For example, the derivation
tree could be used to search for states with specific properties, or to identify the
occurrence of specific events (e.g., the first application of a specific rule). More
meaningful analyses could be carried out, such as calculating propagation speeds
(i.e., number of steps it takes for rule sentiment to be adopted by all agents relative
to the size of network or the rate of change of average sentiment within different
environments), taking into the account the pay-down factor of the loans supporting
the asset and the expected contractual degradation of the asset itself, etc.

15

5 Conclusions

We have shown that strategic port-graph rewriting provides a basis for the design
and implementation of graph models of the rational negligence phenomenon. Whilst
ABMs rely on the internal processing of its agents, GTSs provide at each point
in time a holistic view of the system state and a visual trace of the specific rules
that trigger specific behaviours. In future, we will further develop the model using
hierarchical graphs [12] to capture all tiers of the model, and also generalise the
rules to permit dynamic changes in key attributes such as asset toxicity and costs.

References

10.

11.

12.

. Kartik Anand, Alan Kirman, and Matteo Marsili. Epidemics of rules, rational negligence and

market crashes. The European Journal of Finance, 19(5):438-447, 2013.

. Oana Andrei, Maribel Fernandez, Hélene Kirchner, and Bruno Pinaud. Strategy-driven ex-

ploration for rule-based models of biochemical systems with Porgy. In William S. Hlavacek,
editor, Modeling Biomolecular Site Dynamics: Methods and Protocols. Springer, 2018.

. Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles.

Tom: Piggybacking rewriting on Java. In Franz Baader, editor, Term Rewriting and Appli-
cations, 18th International Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceed-
ings, volume 4533 of Lecture Notes in Computer Science, pages 36—47. Springer, 2007.

. Walid Belkhir, Alain Giorgetti, and Michel Lenczner. A symbolic transformation language

and its application to a multiscale method. Journal of Symbolic Computation, 65:49 — 78,
2014.

. Peter Borovansky, Claude Kirchner, Hélene Kirchner, and Christophe Ringeissen. Rewriting

with strategies in ELAN: A functional semantics. Int. J. Found. Comput. Sci., 12(1):69-95,
2001.

. Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/xt 0.17.

A language and toolset for program transformation. Sci. Comput. Program., 72(1-2):52-70,
2008.

. Yves Caseau, Francois-Xavier Josset, and Francois Laburthe. Claire: Combining sets, search

and rules to better express algorithms, 2004. arXiv.

. Juan de Lara, Esther Guerra, Artur Boronat, Reiko Heckel, and Paolo Torrini. Domain-specific

discrete event modelling and simulation using graph transformation. Software and System
Modeling, 13(1):209-238, 2014.

. Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. An overview of pplog. In

Yuliya Lierler and Walid Taha, editors, Practical Aspects of Declarative Languages - 19th
International Symposium, PADL 2017, Paris, France, January 16-17, 2017, Proceedings, vol-
ume 10137 of Lecture Notes in Computer Science, pages 34—49. Springer, 2017.

Francisco Durén, Steven Eker, Santiago Escobar, Narciso Marti-Oliet, José Meseguer, Rubén
Rubio, and Carolyn L. Talcott. Programming and symbolic computation in Maude. J. Log.
Algebraic Methods Program., 110, 2020.

Nneka Ene. Implementation of a port-graph model for finance. In Proceedings of TERM-
GRAPH 2018: Computing with terms and graphs, pages 14-25, 2019.

Nneka Ene, Maribel Fernandez, and Bruno Pinaud. Attributed hierarchical port graphs and
applications. In Proceedings Fourth International Workshop on Rewriting Techniques for
Program Transformations and Evaluation, WPTE@FSCD 2017, Oxford, UK, Sth September
2017, pages 2-19, 2017.

16

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

J.Doyne Farmer, M. Gallegati, C. Hommes, A. Kirman, P. Ormerod, S. Cincotti, A. Sanchez,
and D. Helbing. A complex systems approach to constructing better models for manag-
ing financial markets and the economy. The European Physical Journal Special Topics,
214(1):295-324, 2012.

Maribel Ferndndez, Hélene Kirchner, and Bruno Pinaud. Strategic port graph rewriting: an
interactive modelling framework. Mathematical Structures in Computer Science, 29(5):615—
662, 2019.

Maribel Ferndndez, Hélene Kirchner, Bruno Pinaud, and Jason Vallet. Labelled graph strategic
rewriting for social networks. J. Log. Algebraic Methods Program., 96:12—40, 2018.

Maribel Fernandez, Bruno Pinaud, and Janos Varga. A port graph rewriting approach to re-
lational database modelling. In Proceedings 29th International Conference on Logic-based
Program Synthesis and Transformation, LOPSTR 2019, Porto, October 2019, Lecture Notes
in Computer Science. Springer, 2020.

Thom W. Frithwirth. Parallelism, concurrency and distribution in constraint handling rules: A
survey. Theory Pract. Log. Program., 18(5-6):759-805, 2018.

Rubino Geill and Moritz Kroll. Grgen.net: A fast, expressive, and general purpose graph
rewrite tool. In Applications of Graph Transformations with Industrial Relevance, Third Inter-
national Symposium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised Selected
and Invited Papers, pages 568-569, 2007.

. Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria

Zimakova. Modelling and analysis using GROOVE. STTT, 14(1):15-40, 2012.

Gary Gorton and Andrew Metrick. Securitization. Working Paper 18611, National Bureau of
Economic Research, December 2012.

Charles Ka Yui Leung and Thomas A. Lubik. Introduction: Dynamic stochastic general
equilibrium modelling and the study of Asia-Pacific economies. Pacific Economic Review,
17(2):204-207, 2012.

Kalliopi Kravari and Nick Bassiliades. A survey of agent platforms. Journal of Artificial
Societies and Social Simulation, 18(1):11, 2015.

Jean Krivine, Vincent Danos, and Arndt Benecke. Modelling epigenetic information mainte-
nance: A Kappa tutorial. In Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, pages 17-32, 2009.

Michael Lowe. Algebraic approach to single-pushout graph transformation. Theor. Comput.
Sci., 109(1&2):181-224, 1993.

Mircea Marin and Temur Kutsia. Foundations of the rule-based system pLog. J. Appl. Non
Class. Logics, 16(1-2):151-168, 2006.

Sheri Markose, Yang Dong, and Bewaji Oluwasegun. An multi-agent model of rmbs, credit
risk transfer in banks and financial stability: Implications of the subprime crisis, 2008.
Narciso Marti-Oliet, José Meseguer, and Alberto Verdejo. Towards a strategy language for
Maude. Electronic Notes in Theoretical Computer Science, 117:417 — 441, 2005. Proceedings
of the Fifth International Workshop on Rewriting Logic and Its Applications (WRLA 2004).
Detlef Plump. The graph programming language GP. In Symeon Bozapalidis and George
Rahonis, editors, Algebraic Informatics: Third International Conference, CAI 2009, Thessa-
loniki, Greece, May 19-22, 2009, Proceedings, pages 99—122. Springer, 2009.

Andy Schiirr, Andreas J Winter, and Albert Ziindorf. The PROGRES approach: Language
and environment. In Handbook of graph grammars and computing by graph transformation,
pages 487-550. World Scientific Publishing Co., Inc., 1999.

Adam M. Smith, Wen Xu, Yao Sun, James R. Faeder, and G.Elisabeta Marai. Rulebender:
integrated modeling, simulation and visualization for rule-based intracellular biochemistry.
BMC Bioinformatics, 13(8), 2012.

Gabriele Taentzer. AGG: A graph transformation environment for modeling and validation of
software. In Applications of Graph Transformations with Industrial Relevance, volume 3062
of Lecture Notes in Computer Science, pages 446—453. Springer Berlin Heidelberg, 2004.
Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal:
From algebraic specification to meta-programming. Electronic Proceedings in Theoretical
Computer Science, 56:15-32, Jun 2011.

17

33.

34.

35.

36.

M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF meta-environment: A component-based language development environment. In
Reinhard Wilhelm, editor, Compiler Construction, pages 365-370, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

Janos Varga. Finding the transitive closure of functional dependencies using strategic port
graph rewriting. In Proceedings Tenth International Workshop on Computing with Terms and
Graphs, TERMGRAPH@FSCD 2018, Oxford, UK, 7th July 2018, pages 50-62, 2018.
Gergely Varrd, Andy Schiirr, and Déniel Varr6. Benchmarking for graph transformation. In
2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2005),
21-24 September 2005, Dallas, TX, USA, pages 79-88. IEEE Computer Society, 2005.

Eelco Visser. Stratego: A language for program transformation based on rewriting strategies.
In Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th International Con-
ference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings, volume 2051 of
Lecture Notes in Computer Science, pages 357-362. Springer, 2001.

18

