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ARTICLE

Global CO2 emissions from dry inland waters share
common drivers across ecosystems
P. S. Keller et al.#

Many inland waters exhibit complete or partial desiccation, or have vanished due to global

change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions

from these sediments are too scarce to upscale emissions for global estimates or to

understand their fundamental drivers. Here, we present the results of a global survey cov-

ering 196 dry inland waters across diverse ecosystem types and climate zones. We show that

their CO2 emissions share fundamental drivers and constitute a substantial fraction of the

carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and

climate zones, with local characteristics explaining much of the variability. Accounting for

such emissions increases global estimates of carbon emissions from inland waters by 6%

(~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a

significant and likely increasing component of the inland waters carbon cycle.
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Both natural and human-made inland waters are frequently
impacted by drying1–3. Such ecosystems may partially or fully
desiccate temporarily, and in some cases inland waters have

even desiccated permanently4,5. Drying can result from natural
hydrological factors (e.g. snowmelt driven lake-level fluctuations6,
or the seasonal desiccation of intermittent streams or rivers7) or
from anthropogenic factors8 (e.g. agricultural diversions, or water
level fluctuation in reservoirs9). Indeed, climate change and
increased water abstraction are together expected to exacerbate the
widespread prevalence of dry inland waters10. Two-thirds of the
planet’s first-order mid-latitude (below 60°) streams are estimated
to flow only temporarily, as are one-third of larger, fifth-order
rivers11. Furthermore, seasonal desiccation affects 18% (~800,000
km2) of the global surface area covered by inland waters, exposing
previously submerged sediments to the atmosphere10. Such
hydrologically dynamic environments are typically excluded from
inland aquatic carbon (C) budgets and not explicitly accounted for
in the terrestrial budgets, representing a potential blind spot in
global C cycling estimates12. In accordance with previous work12,
we define dry inland waters as the areas of lotic and lentic aquatic
ecosystems on the Earth’s land masses where surface water is
absent, and sediments are exposed to the atmosphere.

Gaseous C emissions from inland waters to the atmosphere
play an important role in the global C cycle11,13–15. However,
recent studies have shown that exposed sediments following the
desiccation of inland waters can contribute CO2 emissions to the
atmosphere at greater rates than those measured from the water
surface during inundated periods16–18. Initial estimates predicted
that these emissions may be relevant at a global scale12,19. Spe-
cifically, if the fluxes from desiccated areas were added to existing
global estimates of CO2 emissions from inland waters11,20,21 they
would result in 0.4–10% higher estimates of inland CO2 emissions
to the atmosphere. However, these emission estimates from
desiccated areas were based on a small number of localised
studies, and convincing evidence for the global importance of
this pathway is still lacking. Many inland water ecosystems are
affected by water diversion, water abstraction and climate
change8,22, leading to likely future increases in exposed
sediment areas. Therefore, there is an urgent need to quantify the
global CO2 emission from dry inland waters and to deepen
our understanding of the environmental factors regulating them.

We hypothesised that CO2 emissions from dry inland waters
are above reported mean aquatic rates, thus making emissions
from dry inland waters globally relevant. We further hypothesised
that sediment-atmosphere emissions vary as a function of para-
meters controlling CO2 production rates (such as organic matter
supply, temperature and moisture) and parameters controlling
the transport of gas to the atmosphere (e.g. sediment texture) as
well as geographical properties of the sampling locations, which
influence the biogeochemical conditions. To test these hypoth-
eses, we conducted a global survey in which we quantified CO2

fluxes from 196 dry inland waters distributed across all continents
except Antarctica, representing diverse inland water ecosystem
types (rivers, lakes, reservoirs and ponds) and climate zones
(tropical, arid, temperate, continental and polar). We compared
the magnitude of these fluxes to those measured at adjacent uphill
soils as well as global estimates for inundated water bodies
compiled from the literature. To investigate potential drivers, we
modelled the influence of environmental variables on the mag-
nitude of CO2 emissions from the sediments to the atmosphere.
Because dry inland waters are environments in between aquatic
and terrestrial ecosystems, we aimed to disentangle whether CO2

emissions from dry inland waters were closer in value to those
from aquatic or terrestrial ecosystems to improve the accuracy of
current upscaling models of global CO2 emissions.

Results
Magnitude of CO2 emissions from dry inland waters. Sediment
CO2 fluxes ranged from −27 to 2968 mmol m−2 d−1 (mean ± SD
= 186 ± 326, median= 93, n= 196, Fig. 1; negative values indi-
cate a net flux from the atmosphere to the sediments). This study
provides the first data confirming that elevated CO2 emissions
from desiccated sediments reported in prior localised studies17,19

(Supplementary Table 1) are globally prevalent and an intrinsic
characteristic of dry inland waters. The sampled sites include a
great diversity of environmental conditions (Fig. 1), although the
collaborative nature of the study precluded an even geographical
distribution of sampling efforts, and sites in the temperate zone
dominate the dataset. Measured CO2 emissions from dry inland
waters to the atmosphere were an order of magnitude higher
than average water surface emissions (water-to-atmosphere)
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Fig. 1 Global distribution of CO2 fluxes from dry inland waters. Size of pink dots indicates magnitude of measured CO2 fluxes. Background colours
indicate climate zones according to the Köppen–Geiger climate classification system52. Inset illustrates the spatial distribution within the most densely
sampled area.
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previously reported for lentic waters (27 mmol m−2 d−1), but
lower than average emissions reported for lotic waters (663 mmol
m−2 d−1) (Fig. 2; Supplementary Table 1).

Higher CO2 emissions to the atmosphere from exposed
sediments relative to lentic inland water surface emissions are
likely due to a closer coupling of CO2 production and gas flux in
dry sediments (due to the lack of an intervening layer of water) as
well as increased CO2 production rates due to increased oxygen
availability, as oxygenation can stimulate enzymatic activity and
overall microbial growth23. In aquatic environments, CO2 fluxes
are typically controlled by diffusion and the accumulation of CO2

is buffered by the carbonate system24,25. Streams and rivers
typically show higher gas fluxes than lentic ecosystems due to
higher turbulence and, thus, higher gas exchange coefficients26.

CO2 emissions from dry inland waters (mean= 186mmol
m−2 d−1) were in the same range, but significantly lower, than
those from adjacent uphill soils which had not been previously
inundated (mean ± SD= 222 ± 277mmol m−2 d−1, median =
144, n= 196) (Wilcoxon signed rank test, P < 0.05) (Supplemen-
tary Fig. 1). Previously inundated sediments and terrestrial (uphill)
soils are distinct environments in terms of their physical structure,
biogeochemical dynamics, and biological communities16,27,28.
Therefore, one plausible explanation for the observed difference
in CO2 emissions is the possible potential for higher root
respiration in soils compared with desiccated sediments. Root
respiration typically accounts for 50% of total soil respiration but
may reach up to 90%29,30. Furthermore, organic matter content,
which would fuel CO2 production, was greater in uphill soils
(mean ± SD= 8 ± 8%) than in dry inland waters (mean ± SD=
6 ± 7%) (Kruskal–Wallis Test, P < 0.001).

We observed CO2 uptake by the exposed sediments at eight
sites (4% of total) and by the uphill soils at five sites (3% of total).
In soils, a net uptake of atmospheric CO2 has been related to the
dissolution of CO2 in pore water and carbonate weathering31, but
direct evidence from dry inland waters supporting these
mechanisms is currently missing12.

Homogeneity among climate zones and ecosystem types. Our
global study did not reveal significant differences in CO2 fluxes
between climate zones (Fig. 2). Nonetheless, this result needs to be
interpreted with caution due to the unbalanced sampling sizes and
the underrepresentation of sites in the polar zone. CO2 emissions
from polar (mean ± SD= 60 ± 58mmolm−2 d−1, median = 36),
continental (mean ± SD= 174 ± 140mmolm−2 d−1, median=

125), temperate (mean ± SD= 178 ± 308mmolm−2 d−1, median
= 99), arid (mean ± SD= 233 ± 470mmol m−2 d−1, median= 61)
and tropical sites (mean ± SD= 236 ± 403mmolm−2 d−1, median
= 69) all fell within the same range (Fig. 2). CO2 emissions from
temperate sites experiencing dry winters (16% of temperate sites)
were significantly lower than emissions from temperate sites
located in either dry-summer locations (13%) or those lacking dry
seasons (71%) (Kruskal–Wallis Test, P < 0.05). This result indicates
an effect of the interaction between temperature and moisture with
hot and wet conditions facilitating high gas fluxes.

All studied lentic ecosystem types (i.e. reservoirs, lakes and
ponds) showed higher CO2 emissions from dry sediments than
globally estimated for their inundated stages (Fig. 2). CO2

emissions from dry sediments of ponds (mean ± SD= 267 ± 221
mmol m−2 d−1, median = 252) were significantly higher than
those from streams (mean ± SD= 128 ± 218 mmol m−2 d−1,
median = 64) and reservoirs (mean ± SD= 194 ± 478 mmol
m−2 d−1, median= 82) (Kruskal–Wallis Test, P < 0.05) and
marginally higher than those from lakes (mean ± SD= 215 ±
353 mmol m−2 d−1, median= 111) (Fig. 2). This result empha-
sises the global importance of small waterbodies17,18,21,32, which
are extremely prevalent global biogeochemical hotspots21,33, and
which furthermore frequently exist as only temporary ecosystems,
increasing the proportional relevance of their dry fluxes17.
Possible reasons for higher CO2 emissions from dry ponds
compared with other ecosystem types may be high temperature
and a large perimeter to area ratio which leads to organic matter
accumulation in their sediments. Indeed, higher CO2 emissions
from ponds match the higher content of organic material we
found at desiccated pond sites (18 ± 20%) compared with streams
(3 ± 4%, Kruskal–Wallis Test, P < 0.05), lakes (14 ± 17%), and
reservoirs (10 ± 11%).

Variation in CO2 fluxes from dry inland waters was higher
between sites than between climate zones or between the studied
ecosystem types (Fig. 2). Hence, local conditions prevailed over
geographical patterns, indicating that the drivers of CO2

emissions in dry inland waters might be universal, thus
facilitating the evaluation of this process at the global scale.

Drivers of CO2 emissions from dry inland waters. The rela-
tionships between CO2 fluxes and environmental variables were
modelled using a linear mixed-effects model (LMM) (Fig. 3).
LMM modelling of CO2 fluxes explained 39% of the total variance
by the fixed effects and 52% by the entire model (Supplementary
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Fig. 2 CO2 fluxes separated by climate zones and ecosystem types. Box= 25th and 75th percentiles, whiskers = 1.5* inter-quartile range. Black line =
median. Blue lines represent average estimates of CO2 emissions for inland waters as reported in the literature11, 20, 21. Colours refer to climate zones as
defined in Fig. 1. Note that the y-axis is presented on a log10 scale to show a wide range of flux values. Letters indicate significant differences between
ecosystem types (Kruskal–Wallis test and Dunn’s post hoc test, P < 0.05).
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Table 2). Organic matter content, moisture, temperature and the
interaction between organic matter content and moisture were
the strongest predictors of CO2 fluxes from dry inland waters
(analysis of variance, P < 0.001; Fig. 3, Supplementary Table 2),
followed by the interaction of temperature with moisture and
elevation, latitude and conductivity (analysis of variance, P < 0.05;
Fig. 4). These results indicate that there is a universal control
mechanism across ecosystems and climates. Under low-moisture
conditions, neither the organic matter content of the sediments
nor their temperature affected CO2 emissions, because microbial
activity is inhibited by water limitation34 (Fig. 3, Supplementary
Table 2). Hence, an increase in organic matter or temperature
alone is not enough to produce high CO2 emissions. In contrast,
high moisture facilitates the contact between microorganisms and
available labile organic matter, but high moisture in combination
with limited availability of organic matter to fuel CO2 production
results in low CO2 emissions (Fig. 3). The same effect can be
observed when low temperature limits microbial activity. Beyond
the joint influence of moisture and organic matter on CO2

emissions induced by respiration, abiotic processes depending on
pore water characteristics can affect the C cycle of drying sedi-
ments35. Abiotic CO2 emissions linked to carbonate precipitation
and dissolution can be a potent source of total C emissions36.
Sediment pore water can additionally lead to an uncoupling of

CO2 production and emissions in dry sediments due to reduced
physical gas transfer rates26.

Elevation, latitude and conductivity likely represent local
geographical conditions as well as small-scale patterns, which
were not included in our sampling design. These could be, for
instance, organic matter quality/lability, the presence of terrestrial
vegetation (primary production), CO2 inputs via groundwater
discharge, composition of the microbial community, or carbonate
formation, which previous studies have identified as being
potentially important16,17. Finally, antecedent conditions such
as the time since desiccation or the past input of organic matter
into the system may also influence CO2 emissions37,38.

Discussion
Our study encompasses 196 dry inland waters (and adjacent
uphill terrestrial sites), spanning all major lotic and lentic aquatic
ecosystem types and global climate zones. We show that drivers
of CO2 emissions from desiccated sediments to the atmosphere
are globally consistent, and are better predictors of CO2 emissions
compared with regional variability associated with climate and
ecosystem type. CO2 emissions from dry inland waters were
generally lower than those reported for flowing streams and
rivers11, but higher than from lentic waters11,20,21. This pattern is
consistent for most ecosystems across all climate zones. These
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results strongly indicate that dry inland waters are significant and
globally prevalent sources of CO2 to the atmosphere12.

Desiccated areas are usually excluded from global inventories
of water bodies39 and so their contribution is missing in current
global C budgets of inland waters11,14,20. A global upscaling of
our measured CO2 emissions results in global C emissions from
dry inland waters of 0.12 ± 0.13 Pg C y−1 (Supplementary
Table 3), which is equivalent to 6 ± 6% of the currently estimated
global C emissions from inland waters (2.1, range= 1.56 – 2.94
Pg C y−1)11. Because of the considerable variation of global CO2

emissions from dry inland waters, a final evaluation of their
contribution to global CO2 emissions from inland waters remains
difficult. However, partial exposure of sediments might become
disproportionally more relevant in regions with a projected
increase in water stress due to global change22,40. Hence, CO2

emissions from dry inland waters could increase significantly in
more arid regions, and other climate zones subject to large sea-
sonality such as monsoon climates, even if the increase in global
emissions remains modest.

In any case, the net effect of including desiccated areas in
current global inventories of C emissions from inland waters
would depend on how desiccated areas have been considered in
former studies, which is not always traceable. For instance,
excluding CO2 emissions from dry inland waters, as done in
recent studies11 would at first sight imply an underestimation of
current inland waters CO2 emissions to the atmosphere. How-
ever, the mistaken assignment of an intermittent stream as a
permanent flow area may instead result in an overestimation of
fluxes, as flowing waters appear to generally emit more CO2 than
the dry phases of intermittent rivers. On the contrary, dry areas of
ponds, lakes and reservoirs, which global CO2 flux assessments
assigned wrongly as wetted areas would likely result in an
underestimation of net fluxes. Recent global emission inventories
have either disregarded desiccated areas11,41 (i.e. likely under-
estimating emissions) or incorporated intermittent streams using
rough approaches, probably underestimating their area19,38 (i.e.
likely overestimating emissions). Certainly, no current global
estimate considers desiccated areas in ponds, lakes and reservoirs,
and thus these fluxes are likely to be underestimated. In sum, an
assessment of the impact of desiccated areas on the global inland
waters C inventory requires a much more accurate estimate of
temporarily and permanently desiccated areas. Recent develop-
ments in remote sensing10 may help to incorporate desiccated
areas from lakes, reservoirs and large rivers, but an accurate
estimate of intermittent stream and pond area is still a challen-
ging endeavour considering most desiccated areas in vast regions
of the world are obscured by cover (e.g. dense trees, clouds). This
should be a research priority if CO2 emissions from stream, rivers
and ponds are to be accurately incorporated into global inland
water C flux estimates.

We also note that our global estimates of dry CO2 emissions
are likely to be conservative as the global surface area of desic-
cated inland waters is likely underestimated12. Furthermore,
rewetting events are short periods of high biogeochemical activity
that may contribute significantly to CO2 fluxes42 and are not
purposely included in our estimates. Rapid pulses of CO2 pro-
duction following rewetting have been observed in a variety of
soil ecosystems42,43 as well as in dry river beds37,38.

The substantial variation between sites demands a better
understanding of the underlying mechanisms driving CO2

emissions from dry inland waters to the atmosphere. Further
research is necessary to determine the effect of temporal and
seasonal variability on CO2 emissions from dry inland waters, to
link these emissions with the consumptive loss of sediment
organic matter and to assess the role of growing vegetation on net
CO2 emissions. Furthermore, little is known about the emissions

of other GHGs such as methane (CH4) or nitrous oxide (N2O)
from dry sediments of inland waters. While desiccation and
subsequent oxygenation of the sediment might minimise emis-
sions of CH4 from dry sediments44, there are nevertheless reports
of high CH4 emissions immediately after drying3,42. In addition,
we expect desiccation to have a major impact on nitrogen cycling
with consequences for N2O emissions; that is lower denitrifica-
tion but higher nitrification, with both processes contributing to
N2O production45. Further research is necessary to improve our
understanding of the magnitude and drivers of the emissions of
these GHGs from dry inland waters.

Upscaling CO2 emissions from dry inland waters for global
estimates is particularly relevant because dry areas are predicted
to increase in the future due to the observed and predicted decline
in inland water levels following projected trends in global
climate22,40 and human activities10,46. An improved under-
standing of the global patterns and drivers of desiccated sediment
CO2 emissions to the atmosphere is thus crucial for an accurate
understanding of contemporary landscape C cycling, as well as
predictions of future atmospheric CO2 concentrations due to
anthropogenic activities.

Methods
Sampling design. To obtain a global data set of CO2 fluxes and sediment and soil
characteristics, measurements were performed by 24 teams in 17 countries. The
methodology was defined in a standardised sampling protocol. The objective of this
study was to record a dataset with the best possible geographical coverage.
Therefore, and to enable all partners to conduct the sampling campaigns, we chose
parameters and methods that were relatively easy to measure and to apply. All sites
were chosen by the local teams, who ensured that sites were independent and not
hydrologically connected in a direct upstream–downstream relationship. Sampling
was performed at two locations on each site, the dry sediment of the water body
and the adjacent uphill soil. The measurements of CO2 flux and additional soil and
sediment parameters were performed at three plots, typically separated by a few
metres, within each site. In cases where the whole ecosystem had dried up (e.g.
small ponds, ephemeral streams), measurements were performed at representative
parts of the bare sediment. In case of partial drying, measurements were performed
at the emerged sediments at the shore. All raw data were collected and centrally
analysed. The sampling sites were classified into four inland water ecosystem types,
based on the information provided by the local sampling teams. We defined a
stream as a natural watercourse that flows permanently or intermittently47, a lake
as a naturally occurring low point in the landscape that contains standing water at
least during certain periods48, a reservoir as a human-made lake48 and a pond as a
standing surface water body type that is considerably smaller than a lake or
reservoir49.

CO2 flux. Closed chamber measurements were performed to measure the CO2 flux
directly. Opaque chambers connected to an infra-red gas analyser were inserted
about 1 cm into the sediment. The CO2 concentration within the chamber was
monitored for <5 min and the flux was determined by a linear regression based
on the change in CO2 partial pressure (pCO2) over time. The CO2 flux (mmol
m−2 d−1) was calculated according to Eq. (1), where dpCO2/dt is the slope of the
change in pCO2 with time [µatm d−1], V is the volume of the chamber [m3], S is
the surface area covered by the chamber [m2], T is the air temperature [K] and R is
the ideal gas constant= 8.314 l atm K−1 mol−1.

FCO2
¼ dpCO2

dt

� �
� V

RTS

� �
ð1Þ

When intrusion of the chamber to the ground was prevented (e.g. by a stony
surface), the chamber was sealed to the ground using clay50. Chamber placement
was restricted to plots with bare ground and sampling of vegetated surface was
avoided. Positive values represent emissions from the sediment to the atmosphere
while negative values indicate an inflow from the atmosphere to the ground.

Environmental variables. A set of 14 environmental variables was estimated for
each site. Of these, ten variables were measured in situ or determined locally. We
measured air and sediment temperature, determined sediment texture following
the FAO manipulative test51 and collected sediment samples at every measurement
plot. For measuring sediment temperature, the sensing head of a thermometer was
inserted 2–3 cm into the sediment. In the laboratory, one part of fresh sediment
sample was mixed with 2.5 parts distilled water and pH and conductivity were
measured in the suspension using conventional electrodes. Furthermore, we
determined water content and organic matter gravimetrically by drying 5 g of fresh
sediment at 105 °C until constant weight, followed by combustion at 500 °C.
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Five major climate zones were assigned to sites based on their location using the
‘World Maps Of Köppen-Geiger Climate Classification’ dataset52: tropical
(Köppen–Geiger group A), arid (Köppen–Geiger group B), temperate
(Köppen–Geiger group C), continental (Köppen–Geiger group D) and polar
(Köppen–Geiger group E). For an in-depth analysis of temperate sites, the 2nd-
order sub-groups dry-summer (Köppen–Geiger group Cs), dry-winter
(Köppen–Geiger group Cw) and without-dry-seasons (Köppen–Geiger group Cf)
were additionally distinguished. Annual mean temperature and annual
precipitation for each site were taken from the WorldClim database53.

Data analysis. We tested the influence of environmental variables (Supplementary
Table 4) on CO2 emissions from dry inland waters by fitting LMM to the response
variable CO2 flux. This was done using the function lmer of the lme4 package54 of
R55. We selected air temperature, organic matter content, texture, moisture, con-
ductivity, latitude, elevation, type of ecosystem (i.e. stream, lake, reservoir, pond)
pH, climate zone, annual mean temperature and annual precipitation as well as
2nd order interactions between moisture, temperature and organic matter as fixed
effects. Air temperature was included instead of sediment temperature because of
the high correlation between these parameters (r= 1). We included the team
performing the analysis as a random effect to account for unmeasured team-level
variation (random intercepts). Afterwards the model was simplified by removing
non-significant predictors from the model (Supplementary Table 4).

For all steps of the analysis, one value per parameter was obtained per location
and site by averaging the three measured plots. We log-transformed CO2 flux (x+
28), conductivity, organic matter content, moisture (x+ 0.1) and elevation to meet
the condition of normality and homogeneity of variance. All statistical analyses
were conducted using R version 3.4.455. Statistical tests were considered significant
at P < 0.05.

Data availability
The source data underlaying Figs. 1–4, Supplementary Fig. 1 and Supplementary
Tables 2–4 are provided as a Source data file.
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