N

N

Homodyne dynamic light scattering in supramolecular
polymer solutions: anomalous oscillations in intensity
correlation function

Emilie Moulin, Irina Nyrkova, Nicolas Giuseppone, Alexander Semenov, Eric
Buhler

» To cite this version:

Emilie Moulin, Irina Nyrkova, Nicolas Giuseppone, Alexander Semenov, Eric Buhler. Homodyne
dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity
correlation function. Soft Matter, 2020, 16 (12), pp.2971-2993. 10.1039/c9sm02480h . hal-02905292

HAL Id: hal-02905292
https://hal.science/hal-02905292v1
Submitted on 17 Aug 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02905292v1
https://hal.archives-ouvertes.fr

Homodyne Dynamic Light Scattering in
Supramolecular Polymer Solutions: Anomalous
Oscillations in Intensity Correlation Function

Emilie Moulin, ' Irina A.Nyrkova, ' Nicolas Giuseppone,
! Alexander N.Semenov, ''* Eric Buhler 2*
1 Institut Charles Sadron (ICS), CNRS - UPR 22, Université de Strasbourg,
23 rue du Loess, BP 84047, 67034 Strasbourg Cedezx 2, France
2 Matiére et Systémes Complezes (MSC), UMR 7057, Université de Paris (Université Paris
Diderot), Batiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13,
France
(January 31, 2020)

T Contributed equally to this work

* Corresponding authors:
alexander.semenov@ics-cnrs.unistra.fr, eric.buhler@univ-paris-diderot.fr

Abstract

Dilute solutions of electronically active molecules capable of irradiation-
driven supramolecular self-assembly are studied by dynamic light scatter-
ing. We detect unusual well-defined oscillations in the long time range of
the homodyne intensity correlation function for all solutions that were irra-
diated with white light prior to the measurements. The oscillation effect is
attributed to the local laser-induced heating of the samples due to strong-
ly enhanced absorption manifested by the supramolecular filaments. It is
found that the oscillation frequency depends on the irradiation time, solu-
tion concentration, and the incident laser power, but is independent of the
scattering angle. These observations are explained with a semi-quantitative
theory relating the oscillation effect to thermo-gravitational convection flows
generated by laser beam. The results suggest that the presence of such ho-
modyne oscillations could be a sensitive probe for aggregation in many

complex systems.
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1. Introduction

Light scattering has provided an important tool to characterize the structure,
local dynamics and motions of particles in complex systems [1]. Indeed, polymer
solutions and gels, supramolecular self-assemblies and colloidal dispersions have been
routinely studied with laser light scattering for many decades [1-5].

Dynamic light scattering (DLS) in particular turned out to be a powerful
technique allowing to discriminate between solute particles of different sizes and
to determine the particle size distribution in a solution or suspension [1,3,4,6-9].
This method permits investigation of mixtures of widely disparate species whose
relaxation times may differ by many orders of magnitude.

A topical example for DLS application concerns self-assembly processes in solu-
tions of molecular building blocks connected by noncovalent reversible associations
(leading to formation of associative polymers, gels, fibrils, micelles, vesicles, and
other supramolecular materials) [1,2]. Such systems typically involve mesoscopic or
macroscopic structures whose composition can vary in response to external stim-
uli (temperature, pH, concentration, light). [10-13] The DLS signal is determined
through dynamical correlations of local electric polarizations in the system, and
their relaxation reflects the kinetics of the composition changes. In particular, DLS
proved to be a very efficient tool to study self-assembly processes initiated by
external triggers [6-9,12-14].

However, the DLS studies of the evolution in the self-assembling systems are
not always straightforward, as such systems are typically characterized by multi-
ple length-scales and time-dependent nature of responsive polydisperse assemblies.
Moreover, the associating units themselves can cause light absorption, fluorescence,
plasmonic and other effects compromising the standard DLS protocol. To overcome
these problems in studying novel highly complex self-assembling systems, it is essen-
tial to develop new experimental strategies characterizing the dynamics (including
local velocities and mobilities) of all individual species involved in the system.

A key difficulty met in many supramolecular and macromolecular systems is
related to the light absorption causing such unwanted side effects as local heating,
convection and thermal diffusion. This often imposes restriction on the concentration
range accessible to the experiments. The complications arising from light absorption
have deterred researchers from studying many complex systems using light scattering.
The main consequences of local heating due to absorption are the appearance of
the so-called thermal lens (which causes the incident laser beam to diverge) and the
anomalous oscillations arising in the intensity-intensity correlation function measured
by the homodyne DLS [15-17].

In this paper, we study such unusual long-lasting regular oscillations in ho-
modyne DLS spectra observed in scattering of multicomponent supramolecular
dispersions based on self-assembling triarylamines (TAA) forming highly conductive
nano-wires upon irradiation [12,13,18-22]. We discuss the possible origins of these
oscillations and respective specific details of their manifestation. We show that,
despite complications due to light absorption, the oscillations in the low-frequency
spectrum of the homodyne DLS can be used to characterize the system, in par-
ticular, to provide information on the drift velocities of the scattering particles in
solution. Note that it is the heterodyne light scattering (laser doppler velocimetry
where the incident beam is mixed with the scattered beam) that is typically used



to measure the drift velocity [23-29]. In this paper we demonstrate, however, that
observation of oscillations with a homodyne DLS can provide a simple alternative
to the more involved and complicated heterodyne DLS studies [1].

The paper is organized as follows. In the next section we describe the light-
absorbing TAA systems and the DLS technique employed in the paper. Section
3 presents detailed DLS data on intensity correlations in TAA solutions involving
unusual oscillations in their homodyne spectrum. We show that the oscillation
frequency depends on the irradiation time, concentration, and the incident laser
power, but is independent of the scattering angle. These observations are explained
from a theoretical standpoint by relating the oscillation effect to thermo-gravitational
convection flows generated by the laser beam. Section 4 is devoted to the related
discussion and theoretical analysis of the obtained homodyne DLS results.

2. Materials and methods
2.1. Formation and properties of TAA nanowires

We conduct our detailed analysis on solutions of triarylamine (TAA) derivatives
with tailored side-groups that are capable to self-assemble into highly conductive
supramolecular nanowires upon white light exposure [12-14,30]. The nature of
multi-stage cooperative self-organization of TAA entities was elucidated in detail by
a combination of experimental and theoretical tools in our previous works [14,30].
Some key features are illustrated in Fig. 1 for a typical example of monoamine
triaryl molecule (triarylamine). In the present experiments we exploited the same
TAA molecules whose systems have been well-characterized for all stages of their
self-assembly process in chloroform [14]. In particular, we showed that the light-
induced aggregation is initiated by radical cations TAA'+ which are formed by
photon-excitation of the TAA unimers in an oxidating solvent (stage (i) in Fig. la).
The radicals (adopting the form of TAA+Cl- dipoles) first aggregate with themselves
(via dipole-dipole attraction) and then with neutral TAA forming the double-
columnal critical nucleus by charge transfer in conjunction with hydrogen bonding
(of amide groups) and 7 — m stacking of aryl rings (stage (ii)). The short
fibril fragments then grow in length via end attachment of free TAA molecules
(stage (iii)). Finally, the fibrils aggregate both end-to-end and laterally forming
micrometer-long and few-nanometer thick stable bundles serving as nanowires (stage
(iv)). These nanowires, if formed under irradiation, were proved to show high
metallic electric conductivity; they can induce plasmonic effects and give the
solution a specific bright dark green color (whereas the original unimeric TAA
solution has a light yellow color).

It is important to stress that the original unimeric TAA chloroform solutions are
stable in the dark for months. Apart from white-light initiation, the self-assembly
process can be provoked also by adding a small amount of an oxidant, or by
adding of the so-called ‘seeds’ (small ultra-sonicated fragments of fibrillated TAA).
For short light-pulses the self-assembly could take a significant time (up to an hour
for Is-pulses), but it takes just a few seconds for the light exposure of 5s. Our
analysis [14] showed that initial purely unimeric solutions can self-assemble only
in the presence of radicals, and that the critical nucleus for the TAA assembly
consists of ~ 6 monomers including > 3 radicals. As a result, nucleation rate must



strongly depend on concentration, hence the nucleation essentially stops soon after
the beginning of the fibril formation, well before the reservoir of TAA is depleted,
so that the thinnest fibrils (with no lateral aggregation) may be expected have
roughly the same length at the end of the self-assembly process [14]. However, the
solute is typically dominated with ‘wires’ of different thickness (double fibrils and
their lateral stacks, bundles) which, considered together, show a significant length
polydispersity because the effective growth rate depends on the bundle thickness
(and due to rare structural defects preventing further elongation of an aggregate).

Onces formed, the TAA fibrils are extremely stable, their local structure was
proved to be unchanged for many months of incubation in the dark (a slow growth
of fibril length was nevertheless observed due to concatenation of fibrils). Besides,
the fraction of the radicals in fibrils f (originally in the range of f ~ 10 — 20%
after a 1-hour irradiation) slowly decreases during the dark incubation (within
a time-scale of 1-2 hours f approaches ~ 5% and then decays as f o 1/t),
but it can be recovered after an extra stage of white-light illumination. The
qualitative behavior of the radical amount is reflected in the UV-vis absorption
spectra, Fig. 1d. While the freshly-formed TAA fibrils with f > 10% are highly
conductive and brightly green upon the irradiation, the same fibrils with f < 3%
are brownish and less conductive. The fibrils which were initiated by seeding or a
short white-light pulse are almost colorless or slightly yellow, similar to the original
unimeric TAA solution.

We established that both the radical loss and recovery take place at the fibril
ends where the radicals can either be formed by photon absorption or decay via
pairwise radical annihilation. The pairwise nature of the radical decay (which
demands the simultaneous presence of two radicals at a fibril end) together with
the slow character of radical diffusion (from the middle of a fibril to its ends)
ensures the apparent persistence of the radicals (their decay as f o 1/t is much
slower than the ordinary exponential law).

2.2. Experimental specifications

The details of TAA synthesis, purification, chloroform solution preparation and
irradiation are described in refs. [12-14]. White visible light irradiation was done
with a 20W glow-filament lamp located at 5 c¢m from the sample (a glass test
tube with TAA solution). Absorption spectra (Fig. 1d) were recorded using a
UV-Vis-NIR spectrophotometer Cary 500 scan Varian in quartz glass cuvette with
1.0 em optical path.

The homodyne dynamic light scattering (DLS) measurements were performed in
UMR-7057 laboratory using a 3D DLS spectrometer (LS Instruments, Fribourg,
Switzerland) equipped with a 25mW HeNe laser (JDS uniphase) operating at
Ao =632.8nm (beam diameter 0.7mm at 1/e? of maximum intensity, beam divergence
1.15 mrad), a two-channel multiple tau-correlator (1088 channels in autocorrelation),
a variable-angle detection system, and a temperature-controlled index matching vat
(LS Instruments); the temperature was fixed to T = 293K. The scattering spectrum
was measured using two single mode fiber detectors and two high sensitivity APD
detectors (Perkin Elmer, model SPCM-AQR-13-FC). The power of the incident and
transmitted laser beams was measured using a Thorlabs PM 100 high sensitivity
optical power meter.



The principal optical scheme of the DLS setup is shown in Fig. 2. The incident
laser beam (of diameter dpeam =~ 2mm at L1) is focused on the sample with the
lens L1 (focal length F; = 250mm), so that the illuminated volume has cross-section
diameter of d,. ~ 100gm [5]. The beam cone divergence angle in the sample is

Ab,e ~ dyegm [ F1 ~ 8- 1073 (1)

The scattering light is collected with the lenses 12 (F, = 250mm) and L3 (F3 =
3.9mm) onto an optical fiber (with the optical core diameter dy = 4um) connected
to an efficient avalanche photodiode detector (APD). The lens L2 is placed at
distance z, = F, from the sample. The scattering volume accessible for the
detector is nearly cylindrical with the diameter d,. and the length L,. along the
primary laser beam,

Lsc o F2d4/F3 o 260/1,77’1, (2)

For the DLS studies, dilute solutions of monomeric TAA were prepared in
deuterated chloroform CDCl; and transferred into 5 mm diameter cylindrical scat-
tering cells. Dust and impurities were removed from the samples before irradiation
by filtration through 0.22um PTFE Millipore filters. Prior to irradiation with
visible light, no evidence for the presence of self-assemblies or larger objects could
be deduced from the DLS: no characteristic decays were observed in the intensity
correlation function apart from the unimer mode with relaxation time 7., >~ 3us
corresponding to the average geometrical size of ~Inm (cf. Figs. 1b,c). Moreover,
no aggregates were detected after a long (up to 8 hours) DLS run at a maximum
laser intensity (Pp = 22mW ), proving that irradiation at wave-length Ao =632.8nm
does not induce any TAA self-assembly.

Figure 1d shows the UV-Vis spectra of a 1 mM solution of TAA in chloroform
in the absence of light irradiation (0s), for samples irradiated for some time (765s,
3765s), and for a solution first irradiated during ¢ = 3765s and then stored in the
dark for 14400s (4h). We observe that the irradiated supramolecular solutions do
absorb light; in particular, the absorbance around 633 nm (the laser wavelength
used in our light scattering experiments) strongly increases with the irradiation
time, saturating for ¢ > 3000s. By comparison, incubation of irradiated solutions
in the dark leads to a decrease of the absorbance. Thus, light absorbance of TAA
solutions strongly depends on their aggregation state and irradiation pre-history.

2.3. Homodyne and Heterodyne Dynamic Light Scattering (DLS)
techniques

The setup of Fig. 2 implies irradiation of the sample with a V-polarized laser
light. The scattering vector is

4mn . 0
q=ky —ky; qzxsm (5) (3)

where k; and k, are wave-vectors of the incident and scattered light (which are
both parallel to a horizontal plane), n is refractive index of the sample (n = 1.445
at T = 20°C for pure CDCl;), and 8 is the scattering angle.



Here it is taken into account that the scattering from particles moving with
thermal speeds (vr) is typically quasi-elastic (as vy < 100m/s < ¢ = 3 x 108m/s,
the velocity of light), hence ky = k; = k = 27n/X,.

The scattered electric field Ei(t) = R[Eexp(iwt)] ! at the detector is determined
by the actual positions of the scattering centers r,,(¢) present in the scattering
volume V:

E xcy(g,t) = Z/:exp (ig . gm(t)) (4)

where ¢cy(g,t) is the Fourier transform of the particle concentration cy(r,t) calculat-
ed over the scattering volume V (here and below the prime over summation means
that it includes only those particles that are present in the scattering volume V
at the given time t). Eq. (4) is valid in the quasi-elastic approximation, that is, if
the scattering centers move slowly with speed vy < ¢A/L,., which is typically true
for soft matter studies (here Ly, ~ 0.1 — Imm is the linear size of the scattering
volume).

The instantaneous intensity of the scattered light is Iipue(t) = c;Eipue(t)?/4m, while
the mean intensity (averaged over the oscillation period 27 /w) is:

Hg,0)= 1B = BB « 25 exp (ig - [ea(0) — (1) 5)

When the mutual positions of the scattering particles r,,(¢) change, the field E,
eq. (4), and the intensity I, eq. (5), change accordingly. Hence, time correlations
in the slow-changing (compared to the light frequency) E(¢) and I(¢) functions
carry information about the particle motions.

The following two time-correlation functions are useful for interpretation of DLS
experiments: the autocorrelation function of the field:

c
6Vig,7) = (1) (B (4, 0)B(q, ) (6)
and of the intensity:

G®P(q,7) = (I(q,0)1(q,7)) (7)

The statistical averages in eqs. (6), (7) are equivalent to time-averages over a long
enough time, tprs :
1

XX = o [T X0x e+ rat (3)

The function G®), is often called the homodyne correlation function, is directly
measured by the 2-channel tau-correlator connected to the photomultiplier light
detectors of the DLS setup. Eqs. (4), (5), (7) connect G® with correlations of
the scattering particles:

G (q, ) x Falg,7) = {ev(q,7)e (g, T)ev(g,0)ci(g,0)) (9)

Here ® and S mean the real and imaginary parts of a complex number.



In accordance with eq. (4) the function G®) (called the heterodyne correlation
function) is proportional to the dynamic structure factor (autocorrelation function
of concentration fluctuations):

GM(g,7) o Fi(q,7) = {ev(q,7)ci(g,0)) (10)

It can be directly measured with the so-called heterodyne DLS, when a portion
the incident laser beam (FEg) is added to the scattered light E, eq. (4), hence
the resulting field at the detector will be Eie(t) = R[(Eo + E)exp(iwt)], where Eq
includes the phase shift. The DLS-measured count-rate autocorrelation function is
then

Grat(a:7) = (Inee(4,7) Iner(,0) (1)
where Ipet(t) = (01/87r)|E0—|—E(t)|2, cf. eq. (5). With no fluctuations of the added
light (Eo(t) = Eo = const ), we get

G\ (q,7) ~ I} + 21,GM(q,0) + 2R [GD(g,7)] + GP(g,7) (12)

where Iy = ¢;|Eo|” /87 is the added light intensity and the terms involving E(0)E(r),
or those linear or cubic in E are omitted as they vanish for d,, > 1/q. If the
added incident field FEy dominates the scattered signal: |Eo| > |E|, the last
quadratic term in eq. (12) can be neglected, hence

Ghora,7) ~ A+ R [GM(q,7)| /B

where A and B are constants (independent of 7). Therefore indeed the heterodyne
DLS allows for determination of the real part of the heterodyne correlation function:

R[6M(q,7)] = B(Cla(a,7) - Gialg, ) (13)

since G(g,00) =0 for a system in the liquid state.
In practice the DLS experiments are often described using the normalized
heterodyne and homodyne correlation functions (cf. eqs. (6), (7)):

GV(q, Fi(q, 7
g(l)( — (¢ )_ 1(¢,7)

q,7) = GM(q,0)  Fi(q,0) (14)
(2) (2)
W(g 7] = (GhEt(q’T)_Ghet(Q7oo))
?R[g (¢, )] (ng(q,()) _ng(q’oo)) (15)
(g = L@120)  6DNgr) _ Filg7) (16)

(I(q,0))* G®)(g,00)  Fi(g,0)

Hence, ¢(")(q,0) = and g¢g®(q,00) = 1 by definition. Note that G*)(q,0) =
86—;<|E(q)|2> I(q ) gives the angular dependence of the time-averaged scattering
intensity (here I(q) = (I(g,t)), where I(q,t) is defined in eq. (5)). Similarly,
G?(q,0) = I(q)?, G ( o0) = Inet(q)? (Inet(q) is defined in analogy with I(q)), so

@)y ) = L(97)1(g,0))
ST = g

(17)



2.4. Interpretations of the DLS correlation functions in some simple
cases

For illustration purposes we present below the relationships between the DLS
correlation functions and the self-intermediate scattering function for some simple
model systems.

Let us define the particle status function [1]

1, it meV
bm(t):{o, it mgV (18)

which shows if a particle m belongs to the scattering volume V at time . Then

ev(gt) =Y bm(t)exp (ig - 1,a(t)) (19)

ev(0,8) = Y bu(t) = N(2) (20)

m

where N(t) is the current number of particles in V. The summations here are now
performed over the whole system (cf. (4)). Next, we define the self-intermediate
scattering  function

Fi(g,7) = (exp (ig- [ra(r +) — 2 (8)])) (21)

which characterizes the displacement of a particle during time 7. It is important
to stress that we consider the stationary systems only in this study: any joint
probability distribution does not change with a time shift ¢, so F, depends on T,
but not on ¢. For g#0

F,(q,0)=1 and  F,(g,00) =0 (22)

2.4.a. Ideal case: dilute solution of identical point-like particles

If the scattering particles do not interact directly with each other (the solution
is dilute enough), their trajectories are statistically independent. Hence,

Fi(g,7) = <Z bin(7)bm(0) exp (ig - [rn(7) — zm<o>1)> (23)

cf. (10), (19) and note that in the light-scattering experiments the zero scattering
wave-vector is always excluded: ¢ # 0, hence <exp(ig-g)> = 0. We also note that
the exponential factor in eq. (23) reflects the statistical properties of the particle
displacement Ar,.(7) = r,,(7) — r,,(0) which are expected to be the same for all
particles in the scattering volume V. It is obvious that b, (7)b,(0) and Ar,,(7)
are statistically nearly independent if

A7, (7)] < Lae (24)

SO



Fi(g,7) = Y (bm(7)bm(0)) (exp (ig - [1n(7) — 2 (0)]) ) (25)

m

There is no need to satisfy the condition (24) for large |Ar,(7)] > 1/q since
in this case the exponential factor gets very small, hence this condition can be
replaced by

1/q < L.

The latter condition is typically satisfied in the DLS experiments. 2 Thus, eq. (23)
for the heterodyne correlation function (6) transforms into

Fi(g,m) > (N) Fi(g,7) (26)

where we used eqgs. (20), (21) and (N) = (N(t)) is the statistical average of the
number of particles in V' [1] (note also that bn,(7) = b,(0) for most of the particles
since |Ar,,(7)] < Ls.).

From the statistical independence between the scattering particles and be-
tween their Ar,(7) displacements and b, (¢) values we get for the factor Fp (cf.
eqs. (9), (19)) similarly to eq. (25):

Pl = (S H(r) < S R0)) +

y <Z b (7 (0) 3 bn<r>bn<o>> Fi(g 1)Fi(—g,7) (21)

m n#m

Then, using eqs. (18), (20), we obtain:
2
Fy(g,7)| (28)
For large systems with N > 1 particles we can neglect fluctuations of N, hence [1]
2
Fi(g,7) ] (29)

(the so-called Gaussian approzimation). In this case the two DLS correlation
functions are connected (cf.eqs. (26), (29), (22)):

Fy(q,7) — Fi(q,0) = ‘Fl(g,T)

The normalized correlation functions, eqs. (14), (16), are connected in a similar
way:

Fy(g,7) = (N(7)N(0)) + (N(N — 1))

Falg,m) = (V)" 1+

‘ 2

(30)

@(g.7)—1=8ldD(q. _ Fi(g,0)?
d?g ) —1=8|¢Vg")|, 8 Fo(q. )

(the so-called Siegert relation) [1]. From the definitions eqs. (9), (10):
F2(Q7OO) = <CV(Q7O)7C;(Q70)>2 = Fl(Q70)27

hence B =1 for the ideal case considered in the present subsection.

(31)

?Tn fact, the typical DLS range of wave-vectorsis: 0.5x 10°cm™! < ¢ < 2x10°cm™! (scattering
angle § = 30° — 150°) and the scattering volume linear sizes are Ly, ~ 0.1 — 1 mm (Fig. 2),
hence L,.q > 500 > 1.



2.4.b. Identical particles in uniform drift

Let us consider a dilute solution of identical diffusive particles which are forced
to move (by an external force and/or a macroscopic flow) with an average velocity
v. Then the particle concentration ¢(r,t) follows the diffusion equation with a

drift [1]:
— +VJ=0; J = wve(r,t) — DVe(r,t) (32)

where J(r,t) is the particle flux, and D is the diffusion coefficient which is related
to the so-called hydrodynamic radius Ry of the particles via the Stokes-Einstein
relation:

kT

= 33

6rn Ry (33)

where T is the absolute temperature and 7 is the solvent viscosity. Solving
eqs. (32) we get:

clr,t) = [ Fulr =1, t)e(r,0)d%, (34)

Fy(r,t)

1 (r — wt)?
(4xDt)? " (_ 4Dt ) %)

where d =3 is the space dimension, and ¢(r/,0) is the initial distribution.

The Green function Fy(r,t) in eq. (34) (also called the Van-Hove space-time
correlation function) is a conditional probability to find the particle at the point
r at time t if initially it was at » =0 (i.e., for the initial condition ¢(r,0) = 6§(r)).
Hence Fy(r,t) simultaneously determines the self-intermediate function Fy(q,7) (cf.

eq. (21)) [1):
Fs(q,7) = /eigz Fy(r,7)d% (36)

From eqs. (35), (36) we get for a dilute solution with a drift:
Fs(g,r) = exp(ig-gr) . exp(—qZDT) (37)

From eqgs. (14), (26), (37) we get the function ?R[g(l)(g,T)] which can be
determined in a heterodyne experiment (cf. eq. (15)):

R [g(l)(g,r)] =R [Fs(g,r)] = cos(q - vT) - exp(—¢° D7) (38)
This is an oscillating function with the period
2r
Tosc = 39
P (39)

carrying an information about the value and the direction of the drift velocity wv.
The above equations serve as a basis of the laser Doppler velocimetry [24-29].

In contrast to ¢(*), the homodyne function ¢g® normally has a simple exponential
shape and does not depend on the drift v: indeed, for many particles in the
scattering volume (N) > 1 eqs. (16), (29), (37) give

2
g(2)(g,7') —1= Fs(g,T)‘ = exp(—QqZDT) (40)

10



2.4.c. Multicomponent solution (polydisperse scattering objects)

Let us turn to the more general case with several distinct types of scattering
particles in the solution contains. The amplitude E of the scattered electric field
now is (instead of eq. (4)):

E x ZM &P(g,) = Cy(q,t) (41)

where the summation is taken for all types (p) of the particles, M, is the material

(»)

constant characterizing p-particles, and cy
distribution of these particles (as defined in eq. (19) with the summation over
p-particles only). In analogy with section 2.3, one can show that the homodyne
and the heterodyne DLS experiments yield the functions %[g(l)] and ¢ defined
with eqgs. (14), (15), (16) in terms of the respective correlation functions Fy and
Fy (cf. egs. (10), (9) with Cy(q,t) instead of cy(q,t)). We define also the partial

correlation functions:

is the Fourier transform of the space

FP(g,7) = (P(g, 7)) (4,0)) (42)

F(q,7) = (P (g,7)c¥(g,0)cP (g, 7)ciP" (g, 0)) (43)

Assuming that the particles are uncorrelated (which is true in a dilute so-
lution), we define a set of self-intermediate scattering functions for each type p

(cp. eq. (21)):
F®(g,7) = (exp (iq- [rn(r) — 1,4(0)]) ) (44)

where m is a particle of the type p. The arguments of subsection 2.4.a lead to
the following ‘partial’ relations:

F{P(q,7) = (N,) F®(q, ) (45)

FiP(g,7) = (N,)? |1+

)] (46)

(cf. eqs. (26), (29)) where (N,) is the statistical average of the number of p-
particles in the scattering volume V (here we neglect fluctuations §N, assuming
that the scattering volume is large enough, N, > 1, which is equivalent to the
Gaussian approximation). The total correlation function Fy of the multicomponent
system then is:

ZM2 (g, 7)) (4,0)) = Y (N,) M2ZFP(g, 7) (47)

p

Turning to the total homodyne correlation function, Fy(g,7) o< (C*), we note
< o) (p)* (7") (P
v ey vy Cy

that it is only the terms of type > that survive in Fy after the

averaging (recalling the mutual statistical independence of the particles and that

<exp (ig . £)> =0). Hence
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Fy(q zwmm% )+ 303 MM (FP (g, 00 F)(g,0) + FP(g, )\ (g, 7))

P p'#p

Finally, using eqs. (45), (46), (44) we get (recalling that F§p)(g,0) =1):
Fy(q,7) = 33 M2 (N,) M2 (Ny) |1+ F®) (g, 7)F®) (g, 7)] (48)

Using eqs. (22), (47) we get:

F2( ) FZQ7

Z M2 F(p)(q,

= ‘Fl(g T (49)

where
=(;Mﬁmﬂ2 (50)

These results show that the relationship (30) between F; and Fj stays valid also
for polydisperse systems, and the same is true concerning the Siegert relation
between ¢(t) and ¢ —1 (eq. (31)).

Let us now turn to a solution of polydisperse diffusive particles moving with
distinct drift velocities v,,..., »,. The first correlation function, eq. (47), then reads
(on using eq. (37)):

Fi(g,7) = > (Np) MZexp (ig- v, — ¢* D7) (51)

)
The heterodyne DLS experiment (see eqgs. (14), (15)) allows to obtain
?R[Fl(g,r)/Fl(g,O)] which is now a sum of p damped oscillation modes with
frequencies wy,...wp (wp = g-v,), cf. eq. (39)). The homodyne DLS experiments (see

eqs. (16), (49)) measure (g(2)(q T)—1) = ‘Fl q,T ‘ /F3(q,00) which now includes
oscillating terms reflecting all the velocity differences:

(2) )—1= Za exp( 2q2DpT)+

+23° > apaexp [—qZ(Dp + Dp/)T] - CO8 [Tg- (Qp — Qp/)] (52)

P p'>p

see eqs. (16), (49). Here a, is a material constant related to the polarizability of
p-particles and their concentration:

(Np) My

S ) 0 "

For the case of only two distinct types of particles, the heterodyne function
?R[Fl(g,r)/Fl(g,O)] consists of just two oscillating terms with frequencies w; and

wy. Concomitantly, the homodyne function g(2)(g,7')—1 includes only one oscillating
term with frequency

12



, Av=v, — v, (54)

w:|w1—w2|:‘g-AQ

With no drift (for pure diffusion) the DLS result, eq. (52), transforms to

VI (g, 1) —1=> apexp(—¢’D,7) = /OOO G(Me ™ dl', T =¢*D (55)
)

The integral expression is generally valid for systems of polydisperse scattering
objects with different diffusion constants D. Thereby the DLS technique provides
information on the size distribution of the scattering objects: the rate I' reflects
the particle size (hydrodynamic radius) Rg (cf. eq. (33)), while the function
G(I') is related to a,, hence to the partial concentrations N,/V of the particles
(cf. eq. (53); the dependence Rg(M,) is expected to be known).

To obtain G(I') based on DLS data an inverse Laplace transform in eq. (55)
must be done, which is a difficult problem. It is usually solved using the special
regularization programs like the CONTIN algorithm [31,32]. The latter procedure
allows to distinguish between two particle populations if their respective rates I’
differ by a factor of 5 or more and the ratio of their intensities G(I'1)/G(I'y) is
below 10°.

3. Results: Unusual oscillations in the homodyne DLS
correlation function of TAA solutions

TAA self-assembling nanowires is an example of a system with complicated
multi-level internal organization. To monitor the size distribution and the growth
of the aggregates (fibrils) at various experimental conditions is a challenging task.
As explained above, the DLS technique is a suitable tool to deal with this
problem (by getting G(I'), cf. eq. (55)). However, the time-dependence of the DLS
homodyne correlation functions turned out to be unusual for TAA solutions: it
involves well-defined oscillations (with more than a dozen periods) of the intensity
correlation function g(2)(g,7') in the long time range for all irradiated samples
of TAA solutions in chloroform. As shown below, these oscillations cannot be
readily explained with the argument which led to eq. (52) due to their unusually
long-lasting character (see section 4.1 below).

For the purpose of the analysis we fit the time-dependencies of the DLS intensity
correlation functions in analogy with eq. (52). It turns out that g(® —1 shows an
initial quasi-exponential decay (with a few relaxation modes) followed by a damped
oscillatory relaxation (with a regular period and slow decay) and by the terminal
exponential decay at very long times:

L)+ Gore xp(———) X cos(0) + Goexp(——)  (56)

1 TOSC osc TE

dI(r) -1~ ZGi exp(—

see the values of the fitting parameters in Table 2. While the initial (pre-oscillation)
decay generally involves few relaxation modes (with 7; < Tos), for the terminal
decay (7 > Tosc) just one mode is typically enough for fitting. The decaying
exponents in eq. (56) correspond to diffusion of particles with hydrodynamic radii,
Ry, related to the decay time 7:
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167ksT [n\?
Ry = Ksin?(6/2) 7, K 67;73 (;) ~ 0.062 (57)
n S

(cf. eqs. (3), (33), (52)). Note however, that the fastest modes with 7, < 3 x 107"s
can be excluded from the consideration of the TAA aggregation kinetics as they
formally correspond to Rg < 0.1nm (for 6 = 90°), i.e., to submolecular scales.

Our DLS experiments show that self-assembly (induced by white-light irradiation
as explained in section 2.1) is a prerequisite for the oscillations in g¢(®). Typically
just a few seconds of irradiation is enough to impart the oscillating character of g(%.
For example, Fig. 3 shows the homodyne signal from TAA solutions monitored after
short light pulses (irradiation time of ¢;., =5-15s provides subsequent TAA dark-
phase self-assembly within < 10s [14]). The long-lasting oscillations (7osc/Tosc = 4
for ti, =5s and 10s) are apparent for all curves, with a moderate decrease
of the periods Ty for longer pulses. For the shortest pulse, ¢;, =5s, the initial
decay contains a few modes related to oligo-aggregates (relaxation rates in the range
2x107%s < 7; < 7Tx107*s correspond to 0.6nm < Ry < 0.22um, cf. eq. (57)) pointing
to a substantial amount of small aggregates in the TAA solution. Relatively noisy
character of the intensity correlation function ¢(®) for 7 < 1073s reflects the presence
of transient modes corresponding to growing fibrils with lengths up to 200nm
whose concentration changes during lhour of monitoring in the DLS experiment.
However, for longer irradiation times (¢;» = 10 and 15s) the submicron aggregates
are not detected any more (see Table 2), manifesting a significant growth of the
self-assembling TAA fibrils with the irradiation time. In parallel, some micrometric
fibers can be seen with the naked eye as they glitter in the laser beam in these
solutions. Such changes in the aggregate sizes are in line with the fibril growth
behavior reported in ref. [14].

Oscillations with periods Tose = 27 /wo >~ (5.8 — 7.5) ms which are observed for
the intermediate time-scales (Tosc/4 < T < Te) formally correspond to frequencies

wo = qAv (cf. eq. (h4)) with

) 1 )
° 2 ~22%x 10 %m (58)

A= —— —
T o Toscsin(8/2)’ 2n

(cf. eq. (3)). Hence Av =~ 41 —53um/s for the three curves of Fig. 3 (we used
6 =90° and assumed that ¢-Av = qAv).

The presence of oscillations in the long-time range of the DLS autocorrelation
function ¢® is a well-known phenomenon in systems with strong light absorption
where the incident laser beam cause heating of the illuminated part of the
solution [15-17]. Indeed, such heating can cause the thermo-gravitational convection
in the sample. As the flow velocity v(r) generally depends on the position r, the
particles in different parts of the scattering volume V can move with different drift
speeds v, leading to oscillations as described in section 2.4.c (cf. eq. (52)).

The solution of self-assembled conductive TAA fibrils we study is indeed char-
acterized by strong absorption at the laser frequency, see Fig. 1d. One could
therefore expect the emergence of a convective flow (due to laser heating) leading
to some oscillations in ¢(®). However, the principal difference between the oscillations
in the present system and the previously reported oscillations in the light-absorbing
solutions is the long-lasting character of oscillations in our case with more than a
dozen of periods (see Fig. 3b).
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By contrast, a regular convective flow pattern implies that the drift velocities
v,(r) change smoothly in the space. As a result the scattering volume V should
contain particles with different drift velocities giving rise to a superposition of
oscillating terms with different periods in ¢®). An analysis [15,33] (see also
section 4.1 below for details) shows that in such situations the amplitude of
oscillations in the autocorrelation function ¢® rapidly decay with time =, in
contradiction to the behavior of our system (a comparison is presented below in
Fig. 12).

In order to clarify the origin of the oscillations we performed a detailed
experimental investigation of this phenomenon. The list of the main experiments
can be found in Table 1. Most of them were done at the maximum laser power
Py = 21-22mW which ensures the best signal-to-noise ratios. In each experiment we
monitored the initial laser power Py (at point ‘0’, see Fig. 2), the fraction Py/Ps°!
of the light power left in the beam after passing through the sample (at point ‘27),
and the relative intensity of the scattered light, Is/I°' (at point ‘3’ corresponding
to scattering at 6 = 90°). * The well-defined oscillations in the function ¢ were
detected at long times in all irradiated samples of TAA chloroform solutions for
all concentrations studied (ranging from 0.375 to 7.5mM, or 0.023-0.45 vol%). On
the contrary, no oscillations were found in non-irradiated samples. Table 1 also
shows the values of the oscillation period Tos (cf. eq. (56)) in the cases when
oscillations in g (r) were visible in time range 107%s < 7 < 107!s.

We also observed the following interesting phenomenon: as soon as the sample
was illuminated with white light for a few seconds, the laser beam start to shift
vertically downwards (see Figure 4), while the solution starts to visibly absorb the
laser light. Within the first minute after switching-on the laser the incident beam
progressively deflects downwards and often form an interference ring pattern [34]
behind the sample. The maximal vertical shift (after stabilization of the pattern)
for the 7.5 mM solution irradiated for 1 hour corresponds to an angle GT) ~ 0.02

for the centre of the beam and up to 9(1) ~ 0.045 for the diffraction cone pattern
around the central spot (see Table 1). For briefly irradiated solutions (like 5s
irradiation followed by incubation in the ‘dark’ when only the DLS red laser light
is applied) we detected a smaller vertical shift with GT) ~ 0.004 and no apparent
diffraction pattern.

Although the appearance of irradiated for 5s and then incubated TAA solutions
is very similar to that of the original monomeric solution (lightly yellow and
transparent), such solutions do absorb and scatter laser light, and the absorbance
increases with the incubation time #¢;,. (see Table 1 for the transmitted light
intensity, Pa(tinc), for 7.5mM solution incubated in the dark for time ¢;,. after
irradiation for 5s). By contrast, the solutions irradiated for 1h manifest the
maximum absorbance which slowly decreases during the incubation time (compare
7.5mM solutions with ¢, = 1h and #;,. = 0 — 19h). Concomitantly, they change
color from brightly green to brownish (cf. the absorbance plot in Fig. 1d).

While the period of oscillations strongly depends on the irradiation time (e.g.
Tose ~ 7 x 1073s for 7.5mM TAA solutions for #;, = 5s, and Tue ~ 2.5 x 10735 for

3The intensity values P, and I3 are normalized by the respective intensities, P§°' and I{,
measured for pure toluene using the same laser power Fj.
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tirr = lh 1ight after irradiation), it rather weakly depends on the incubation time in
the dark (slowly increasing with t;,. up to Tose = 8.5 X 1073s for #;, =5s, and up
to Tose > 3.5 X 10735 for t;, = lh after t;,. = 19h), see Figures 5a,b and Table 1.
Moreover, the oscillations become faster at higher concentrations (see Figure 6).
These observations are in accord with the expected variations of the laser light
absorption: it increases at higher concentrations and for longer irradiation time,
but becomes weaker with longer incubation time ¢;,,.

Following the literature reports on g¢®) oscillations caused by light ab-
sorbance [9,15,16,33,35] we studied the influence of the scattering angles 6 on
the intensity correlation function ¢®. As the oscillations are observed at any
concentration, dilute TAA solutions (¢ = 0.375mM) were used in order to minimize
the absorption of the laser beam and hence to weaken the dependence of the
scattered intensity I3 on the position of a scattering element along the incident
laser beam. We used long-irradiated samples (¢;» = lhour) and maximal laser
intensity (22.2mW). To minimize the effect of the incubation time variation, we
considered just 3 different scattering angles (8 = 60°, 90° and 120°) for most of
the series, and made each series of measurements within 12min time-lags (three
measurements of tprs = 200s and 1-2mins for an adjustment of the scattering
angle 6). The auto-correlation functions g(®)(q,7) for these three angles 6 were
recorded roughly every hour during the first 3 hours of the ’dark incubation’
after the irradiation. For all these series, no dependence of the period T, on
the scattering angle 6 was observed, while a weak but detectable changing in the
oscillation period was registered over the course of this experiment (cf. Table 1).
Finally, the conclusion that Tpe(f) = const was confirmed by the functions g(®(q,7)
recorded for the scattering angles between 30° and 140° (with 12 different 6)
after #;,. = 3h30min-4h05min incubation in the dark, see Figure 7 and 9c. This
is in contrast with previous reports on light-absorbing assemblies and polymers
where a clear dependence of the oscillation period on the scattering angle was
observed [15,16].

Given that light absorption leads to a local heating and convection, it is essential
to establish the effect of the incident laser light power F,. When recording the
DLS data at a fixed scattering angle (8 = 90°) for TAA solution, ¢ = 0.375mM,
illuminated for ¢;,, =1 hour and kept in the dark for ¢;,. =5 hours prior to the
measurement, we found that a variation of the incident laser power results in a
change of the oscillation period (see Figure 8 and Tables 1, 2). The oscillations
were shown to shift to slower times as the laser power decreases. At the same
time the amplitude of the oscillatory mode (with Toe between =~ 6 x 107* and
4 x 107%s) decreases making it easier to separate from the fast decay modes (with
7;) associated with diffusion of short fibril fragments.

The dependencies of the oscillation period Tos. on various experimental parameters
(TAA concentration ¢, incident laser power Py, white-light irradiation time t;,,
incubation time #;,. in the ‘dark’, and the scattering vector g) are summarized in
Fig. 9.

In addition, we have examined the effect of fibril size on the period Tos (which
is possibly related to sedimentation of self-assembling aggregates). To this end,
two sonication experiments were performed. In the first experiment two aged self-
assembled TAA solutions with ¢ = 0.375mM and ¢ = 7.5mM (which were prepared
by irradiation for t;., = 1h followed by incubation in the dark for t;,. = 42h) were
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sonicated for 2 hours in the dark. The correlation functions ¢* were recorded
just before the sonication (at ts,n = 0) and then every 30min during the sonication
stage, and finally 3 hours after the end of sonication (i.e., at tson + trest With
tson = 2h and t.ess = 3h). The results are shown in Fig. 10. The DLS recording
times were chosen here to be very short (20s) in order to avoid re-assembling of
the aggregates during the DLS measurements when the sonication was temporary
interrupted for instrumental reasons (on the adverse side, the shorter measurement
time is responsible for a higher noise level in the DLS signal). We observe that
the resulting period T, is nearly the same for all measurements.

Another sonication experiment was done with freshly prepared 0.375mM TAA
solution which was simultaneously sonicated and irradiated with white light during
1 hour. Every 10 mins the sonication/irradiation was interrupted for 10s for
brief DLS recording. The results are presented in Fig. 11. The oscillation period
slightly decreases from Tos ~ 8 X 1073s for the first record (at ts;n = 10min) to
Tose ~ 6 x 10735 at t,,, > 30min, and then it stabilizes.

4. Discussion

The regular oscillations observed in the intensity correlation function ¢ may
arise from the so-called ‘heterodyning’ of the scattered light when the detector
simultaneously receives light scattered from two (or more) distinct scattering objects
moving with different drift velocities v; and vy, cf. eqs. (52), (54). As such objects
one can consider solute particles in separate subvolumes V3 and Vi (both belonging
to the scattering volume) having distinct macroscopic drift velocities v; and vs, or
two distinct species in a common volume (e.g. small particles and large aggregates)
whose motion with distinct velocities is driven by an external force field.

The two possibilities are considered in references [15,16]. In the first reference,
Schaertl and Roos proposed an inhomogeneous convection pattern due to local
heating of dispersed gold clusters by the incident laser beam: the convection flux
velocity changes from —v to 4+v near the center of the beam inside the scattering
volume. In the next section 4.1 we shall consider a generalization of this model
for an arbitrary experimental geometry (the shape of the scattering volume and
the flow pattern in the solution) trying to explain the intermediate and long-time
oscillations in the ¢® function.

In the second reference, Sehgal and Seery introduced a model where the heavy
and the light fractions of the solute (composed of light absorbing polyaniline or
complexes of cytochrome ¢ and cytochrome ¢ peroxidase) are moving with distinct
velocities v; # vy due to a local gradient of macroscopic flow field. It leads to the
following autocorrelation function (the oscillatory relaxation model):

9(2)(g,7') —1=A4,exp [—2q2D17'] + Az exp [—2q2D27-] +

+Aexp [—q2(D1 + D2)T] - cos(g - Avr), (59)

where Av = vy — v,.
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4.1. A quantitative description of convection-related DLS oscillations.

Let us consider a solution with just one type of solute particles characterized by
the same diffusion coefficient D. In the presence of a convection flow the particles
move with different drift velocities v = v(r) depending on the particle position r.
In this case eq. (52) transforms as:

6(g,7) 1 = Aexp(~20°Dr) Gla,7), 00

g(g,7) = % /V d3r /V d®r' cos [Tg- (v(r) — Q(g’))] (61)

where we assume that the average concentration of particles, ¢(r), is the same
everywhere within the scattering volume V. The oscillations smear out at longer
time 7. Mathematically it is similar to the smearing of the intensity oscillations in
the diffraction pattern from a hole at large diffraction angles [33]. The smearing
depends on the geometry of the scattering volume V and the distribution of the
drift velocities v(r) in it.

The simplest assumption is that the drift velocity changes linearly in space,
hence so does gq-v(r) (say, it varies from a; to as in the scattering volume). As
a result, the cosine argument 7X, X = ¢- (v(r) —v(r’)), should vary within the
segment [—Tw,Tw], with w =as — a;. Depending on the geometry of the scattering
volume V, the integration of cos(7X) in eq. (61) results in

: 2
g1(wr) = [smu()c:r)] for slit aperture (62)
2J1(wT) 2
g2(wt) = [17] for cylindrical aperture (63)
wT
N sin(wr)  cos(wT) 2 .
gs(wr) = () — (wr)? for spherical aperture (64)
wT wT

where J; is the Bessel function of the first kind and first order. The equations
above correspond to the three most natural geometries of the scattering volume.
The ‘cylindrical’ aperture means that the volume V is cylindrical along the beam
and that the drift velocity v changes in a linear fashion across this volume (i.e.,
in the direction perpendicular to its axis). This situation is quite natural for a
laser beam; it was considered in ref. [15]. The ‘spherical’ aperture means that
the scattering volume V is restricted equally in all three directions (so that V
is spherical). By contrast, the ‘slit’ geometry means that all cross-sections of the
volume V along the planes of equal velocities (with the same value of g-v(r)) have
equal areas. This situation can be realized for a laser beam of uniform thickness
if the drift velocity changes along the beam (but not across it).

The smearing functions, eqgs. (62), (63), (64) (see Fig. 12b) are universal
functions of the renormalized time parameter wr. They determine the time-decay
character of the oscillations in the autocorrelation function ¢®. The slit model
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(eq. (62)) gives the slowest decay, whereas the spherical aperture model (eq. (64))
provides the fastest smearing of the oscillations. Note that the full auto-correlation
function g, eq. (60), includes also the exponential factor whose decay is defined
by an independent parameter g*D.

The theoretical predictions given in eqgs. (60), (61) are compared in Fig. 12a
with the experimentally obtained correlation functions ¢(®). The weakest theoretical
damping corresponds to the absence of diffusion (D =0, g(2)(g,7')—1 x g(g,7)) and
to the ‘slit’ geometry: g = g1, eq. (62). Hence,

. 2
#2gr) -1 -4 [T, (63

= wT
where w = w(g), w = [Q'Q(E)] - [Q'Q(z)] _ (the minimal and maximal values

within the scattering volume) and Ay is a constant related to the background
noise and slow processes (with Tgew > 7). However even in this case the data
cannot be fitted satisfactorily using the model, eq. (65): experimental oscillations
demonstrate substantially weaker damping than any of the ‘diffraction’” functions,
eqs. (62), (63), (64). For the theoretical functions, the ratios of the amplitudes
of the first to the second peak and of the first to the fifth peak are r;y ~ 2.9-5.9
and 75 ~ 14-100 , respectively, whereas the experimental data imply r;s ~ 1.2-1.5
and 75 ~ 2.2-4.8.

Such anomalous persistence of oscillations in ¢ from TAA solutions indicates
that the observed effect cannot be attributed to convection flow gradients. Rather
it may be due to a superposition of signals from two distinct scattering sources
(either subvolumes or solute components) characterized by well-defined but distinct
drift velocities. In this case we return to the oscillatory relaxation model, eq. (59),
which indeed provides a good fit of the experimental data (cf. Figs. 3, 12a). *
However, it is unlikely that the scattering volume involves two subvolumes with
different macroscopic velocities, v; and wv,, and that no intermediate velocities are
present there. Thus, we are driven to consider the last option: that there are two
distinct components moving with different velocities in the solute. In the next
sections we discuss this possibility in detail, in particular we consider the nature
of these distinct species, the origin of their drift, its direction and the possible
drift patterns in the sample.

4.2. The main prerequisites for g(¥-oscillations: sedimentation or
convection?

The discussion above makes it clear that the observed oscillations in ¢(®)(7) are
likely to be due to two sorts of scattering particles moving with distinct velocities,
v; and wv,. The relevant effective drift velocity

’l)* = )‘O/Tosc (66)

“Note that eq. (56) is equivalent to eq. (59) as long as the oscillatory part of the DLS correlation
function g(3)(7) is concerned.
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is related to Av = v; —v,. ®* Its dependence on various parameters is shown in
Fig. 9. Typically v* ~ 50 — 250 gm/s in our experiments.

Before turning to a discussion on the nature of such two species, let us consider
the origin of their assumed coherent motion. Such motion can arise, for example,
from sedimentation or convection.

In the case of sedimentation, such collective drift would be rapid enough to be
observable by naked eye: for a typical DLS experiment lasting for ¢tprs ~ 1 hour (cf.
Fig. 3 showing Ty ~ Tms) the expected particle displacement is Av tprg ~ 20cm,
which is much longer than the sample size. Moreover, some TAA samples were
incubated for many hours (see Table 1), but no sedimentation was ever detected
in the solutions. Furthermore, the DLS experiments were also performed on TAA
solutions sonicated in the dark for 2 hours to cut/shorten the TAA fibrils and
destroy their large aggregates. The sonication therefore must diminish or suppress
the hypothetical sedimentation effect: one can expect that the sedimentation speed
should decrease after sonication. However, the sonicated samples still display the
characteristic oscillations with nearly the same period (Fig. 10) or even shorter
period corresponding to a faster Av (Fig. 11).

Therefore, it is the convection that should be favored as a possible reason
for oscillations. A thermal convection is expected here since the studied TAA
solutions absorb laser light rather strongly due to conductive (metallic) nature of
TAA aggregates (typically with 20-50% of laser power absorbed in the samples,
see Table 1). The light energy serves to heat the solution locally (around the
laser beam) thus reducing its density and inducing gravitational flow as shown
schematically in Fig. 13: the flow is directed mainly upward in the beam region.
This convection flow is considered in more detail in the next section 4.3 (its
velocity is also estimated there).

, depends on

Eq. (54) shows that the frequency of oscillations, w = ‘g- (v — vy)
the scattering vector and velocity orientations. For example, let us assume that
the scattering species 1 are convected with velocity v; = v, while there is not drift
for species 2 (vy =0). Then Av =19, —v, =0,

w=lg- 2o =g-o) (67
If the scattering vector ¢ = ky —k; is horizontal (which is the standard case in
DLS, cf. Fig. 2), the relevant velocity component is also horizontal. By symmetry
the horizontal projection of v is expected to be parallel to the incident beam (k).
Hence w = |(k, — k1) - v| = kv (1 — cos @), so it must strongly depend on the scattering
angle . Such dependence, however, was not observed: rather, w = 2x/T,s is found
to be nearly independent of 6 (see Fig. 9c). This observation suggests that the
scattering vector ¢ has a permanent vertical component ¢, (independent of ) and
that v is nearly vertical: v =vn, (n, is vertical unit vector).

While the vertical drift velocity in the scattering volume is pretty compatible
with the thermal convection flow pattern (cf. Fig. 13 and the next section), it is

less clear how a nonzero g, can emerge. Here we see 2 possibilities. One way to

5The effective drift velocity v™ corresponds to nAv - ¢/k in eq. (59). As before, k = 27n/X¢ is
the wavenumber, n ~ 1.45 is the refractive index of the solution, cf. eq. (3).
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get g, # 0 is simply via a not precise alignment of the DLS setup allowing for a
small angle between the direction of the scattered light and the true gravitation
horizontal plane. ® Another possibility is related to thermal refraction of the
main laser beam downwards due to temperature gradient in the vertical direction,
cf. Fig. 4.

Let us first consider the possibility of a non-perfect orientation of the optical
table (with unit normal vector nprs) with respect to the gravitation vertical
direction m,. Indeed, due to the DLS set-up alignment procedure, the wave-vector
of the primary beam k; and the scattered light wave-vector k, lay perfectly in the

DLS set-up plane, i.e.
ki -nprs =ky nprs =10 (68)

cf. Fig. 2. Now suppose this plane is tilted with respect to the horizon:
n, nprs = cosy < 1, where the tilt angle 4 between nprs and the vertical direction
(unit vector mn,) is small: 4 < 1. Choosing the Cartesian coordinate system
with z-axis along n, and y-axis perpendicular to both n, and nprg, so that
nprs =(siny,0,cos~), we find:

w =g o] = [(ky -, — by - m.)v.| = ko, [sin (g1 + 0) — sin g (69)

where ¢; is the angle between the incident beam and the y-axis. For any value
of p1 the frequency w = w(f) strongly depends on 6. In particular, as 6 is varied
in the experimental range 30° < 8 < 150° (cf. Fig. 9¢), w must vary at least by a
factor of 2. Obviously, such strong angular dependence of w contradicts the data
of Fig. 9c¢c showing that Tose = 27 /w is practically constant with less than 10%
deviations. Hence, the effect of deviation from horizontality of the DLS setup can
be neglected.

The remaining second possible reason for ¢, # 0 is the thermal refraction of the
main laser beam: the solution is strongly heated right above the beam (due to
light absorption and convection), while below it the heating effect is much weaker
due to low thermal conductivity of the solution and significant upward convective
flow (see Fig. 13). The laser-induced heating thus leads to a strong refractive index
gradient, dn/dz < 0, near the beam. The gradient must give rise to a vertical
downward deflection of the beam as it passes through the sample (cf. Fig. 4),
showing the so-called thermal lensing effect. Such deflection was indeed observed in
most experiments on irradiated TAA solutions, cf. section 3. The typical deflection
angles are between 6, ~ 0.004 (for briefly irradiated TAA samples, t;» = 5s, which
were then incubated for 1 hour to accomplish the fibrillization) and 6, ~ 0.02 for
the 7.5 mM TAA solution irradiated for 1 hour (the case of maximum absorption).
As a result, the wave-vector k; of the primary beam tilts down, ki, = —k6,, while
the scattered light (k) remains perfectly horizontal (due to alignment of the DLS
set-up). Hence, ¢, = ky, — k1, = kf,, and there is no angular dependence of the
oscillation period Tose = 27/w any more:

6The DLS set-up is routinely checked for the quality of alignment (which should be parallel to
the optical table). However, a verification of horizontality of the table as such is not included
in the protocol.
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A
w =v,q, = v,kb,, Tose = 20 (70)

nv,0,

4.3. The convection flow pattern

Eq. (67) with vertically oriented v gives w = ¢,v,, hence the dependence of the
oscillation frequency w on the parameters is primarily defined by the convection
velocity v, near the beam. To figure out the convection flow field, we adopt a
simplified model assuming an infinite sample size along the vertical axis (z-axis),
which is reasonable since the sample height (~ 5cm) is much larger than its
radius R = 2.5mm (R is half of the diameter of the scattering cell). We also
assume that the flow is uniform along the beam (z-axis), with 2-dimensional
velocity in yz plane (Fig. 13). Thus, we consider a thermo-gravitational convection
flow in a slit (=R <y < R) rather than in a cylindrical cell. The main goal
here is to estimate the convection velocity v, in the scattering volume, near the
origin y = z = 0 corresponding to the center of laser beam. The beam diameter
dpearm ~ 100pm < R. The flow field presumably involves 2 convection rolls extending
up to the height ~ H above the beam and on the distance ~ R below it (cf.
Fig. 13).

To established the convection flow, we need to consider simultaneously 2 fields:
velocity v(r) and temperature T'(r), or AT(r) = T(r) — Tout, where T, is the
temperature in the bath outside the sample. The temperature rise AT is generated
by the laser light energy absorption with rate ool per unit volume, where I = I(r)
is the beam intensity and og is the absorption coefficient. The absorbed heat then
propagates outside the beam by convection and thermal diffusion according to the
master thermo-conductivity transport equation:

%—1; +v-VT = DrV?T + 0ol /C, (71)
where Dr = Ar/C, is the thermo-diffusion constant, Az is thermal conductivity of
the solution, C, is its heat capacity per unit volume and 9/0t is time-derivative
which is set to 0 below as we consider a stationary flow. The flow velocity is
governed by the Navier-Stokes equations with kinematic viscosity v = n/po, where
n is the shear viscosity of the solution and po is its density:

6—2:—@+L—I—VV2Q (72)
ot Po Po
where II is excess local pressure equal to the difference between the true pressure
and the ideal pressure in the liquid at rest without heating: Il = Il e + pogz. The
volume force f here is the buoyant force (directed upwards) due to temperature
expansion of the liquid, f = fyn,, with

fo = —Apg =~ 3pogAT (73)

where Ap < po, g is the gravity acceleration and » ~ 1.27-107® 1/K is the thermal
expansion coefficient of the solvent (chloroform).
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The TAA solutions we consider are rather dilute (solute volume fraction ¢ <
0.5%), hence it is possible to approximate their density, heat capacity, thermal
conductivity and viscosity by the pure solvent values (at 20°C):

po~ 1.49-5_ €, ~ 143 x 107

cm? cm

erg

3. K

cr
CAr~0.13 % 105-7%{

S - CIn

, N~ 057cP  (74)

Hence Dr ~ 9-10"*cm?/s and v ~ 4-1072cm?/s meaning that heat diffusion is slow
as compared with vorticity diffusion: Dr < v. In addition, we adopt the following
conditions (verified at the end) to simplify the model:

Dr < Ry, R?vy < vH (75)

where vg is the characteristic flow velocity.

The buoyant force (73) driving the flow is defined by the temperature field
T(y,z) which is described below. We first focus on the region near the origin,
ly| < R. Here the flow velocity v must be directed vertically (along z-axis),
v & vo(2)n,, where the subscript ‘0" indicates that y = 0. Then eq. (71) gives in

—=z

the stationary case (87/0t=0)

or y ool(r)
wy, = DrVT+ 2 (76)

where V2T = gg %. It is useful to recall that the beam intensity is localized
in the region r» = y? + 22 < dpeam: I(r) is negligible for z > dpem. In this regime
eq. (76) is analogous to a simple diffusion equation (with z/ve playing the role of
time). Assuming that wo(z) &~ const (cf. eq. (85) below) and neglecting the term

0*T/82* in V2T, the solution of eq. (76) for z > dpeam reads:

W y’ _
AT(y, z) ~ mo? exp (_E) , 03 = 2Drz/vo (77)
where
et 0'0P
W = 78
wC, (78)
and
P = /I(z)dydz (79)

is the total laser power. Here we take into account that AT ~ 0 below the beam
(2 <0, |z| > dpecam) where T & T,y

Now we note that the term 92T/8z® can be neglected in eq. (76) if o, < z
which is equivalent to z > Dr/ve (we used here the solution, eq. (77)). This
condition can be understood with a simple scaling argument. For a given distance
z from the beam center, the characteristic drift time is |z|/ve and the thermo-
diffusion time is 2?/Dz (cf. eq. (71)). Therefore the drift dominates over diffusion
in z-direction if

2> zp = Dr/ve = vo7p, ™ EDT/vg (80)
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which coincides with the stated above condition to neglect the term 8°T/dz* in
eq. (76).

More general results on the temperature field, AT(y,z), are outlined in the
Appendix A. The predictions, eqgs. (77), (A9), (All), (Al2), are important. They
show that the heating effect is localized above the beam in a zone |y| < oy ~ \/zzp
which is narrow as long as o, < R. The latter condition is satisfied if

z< H~R?|zp (81)

Hence, eqs. (77), (A9) are valid for zp < z < H. For z ~ H the laser-induced
heat is spread over the whole cross-section of the sample and get absorbed by the
sample walls. As a result both AT and the velocity field decay exponentially for
z > H (hence, of course, vg(z) is not constant any more in this regime). Therefore,
the length H can be indeed considered as the effective height of convection roll.
Note that H > R due to the first condition (75). Note also that the mean
temperature increment at a height z above the beam, zp € z < H is

0'0P B K
2w,C,R 2R

AT ean(2) = % / AT(y, z)dy = (82)

i.e. it does not depend on the coordinate z (we used here eqs. (77), (78)).

Eq. (77) shows that the force fy(y,z) = sxpogAT driving the flow (cf. eq. (73))
is localized near the zz plane in a significant region of the sample (for 0 < z < H,
H > R). Therefore the force f, can be replaced by the surface forces 2F, applied
at y =10 with

R
Fy= [ fly,2)dy

Using eq. (77) we find that F, does not depend on z for z > zp:

1~
Fy ~ §W%pog = Fbo, 2p<L 2z H (83)

By contrast, this force is exponentially small below the beam, z <0, |z|> zp (cf.
eq. (All)):

Fy~ FYexp(—|z|/2p), 2<0 (84)

The uniform surface force 2F? above the beam applied at y =0 must naturally
generate two unidirectional simple shear flows on both sides of the zz plane (for
y <0 and y > 0). Assuming the no-slip boundary condition at the solid surfaces:
v=0 at y = +tR, we get the velocity profile (v is directed vertically):

By

1%%d2;%R—M%—R<y<R,R<Z<H (85)

The above velocity profile (85), however, violates the volume conservation (incom-
pressibility) condition in the convection slit demanding that

/_1; v,(y,2)dy =0 (86)
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Physically this condition is provided by an appropriate pressure gradient II' = 9I1/9z
generating a two-dimensional analogue of the Poiseuille flow (with 8%*v,/dy? = 1I'/7,
cf. eq. (72)). Thus, the total velocity becomes

/

(v - ) (57)

By
v,~ —(R—|y|)+ —
ml )+

where we used the boundary condition v,(+R) =0 and the symmetry of the flow
in the slip —R <y < R. From the condition (86): II' = 1.5F2/R yielding

RF?
v wo(l Iyl /R)(1 =31yl [B), wo= b R<z<H (38)

Note that flow velocity in the specified region does not depend on z, and that it is
directed upwards near the center (for |y| < R/3) and downwards at the periphery
of the sample forming the pattern shown in Fig. 13. Using eqgs. (78), (83), (88))
we find

1/2
#pPog
~ PR 89
° (877017 7 ) (89)

The resulting vo is the vertical convection velocity in central part of the flow (for
y< R, R<z< H). For z < R the flow velocity slightly decreases due to the
virtual absence of the buoyant force below the beam (cf. eq. (84)). This effect is
neglected in the present study. It is important to note, however, that generally the
vertical velocity vo = vo(y, z) changes very little in the region of interest, |z| < R,
ly| < R, and this feature justifies the assumption v,(y,z) = vo = const introduced
before eq. (77) and used to derive eqs. (77), (AT).

To estimate the numerical value of v, = v, eq. (89), we now need to know how
the product ooP depends on the solution concentration ¢ and the incident laser
power Py. The corresponding analysis can be found in Appendix B, see eq. (B6).
The result is

ooP ~ BBack, exp(—acR) (90)

(the pre-factor B3 can be found in eq. (B5) and the absorption coefficient a in
eq. (B3)).

For example, for TAA solution with ¢ = 0.375mM irradiated for 1-hour we get
from eq. (90): ooP ~ 3.9mW/cm at Py = 22.2mW. The corresponding convection
velocity v, = vy (defined in eq. (89)) is v, ~ 0.17cm/s. The frequency of
the oscillations, w = 27/Tose, in the autocorrelation function ¢(®(q,7) is defined
in eq. (70) (note that v is directed vertically). FExperimental data show that
Tose & 5.5+ 0.2ms for 30° < § < 150° (cf. Fig. 9c) does not depend on the
scattering angle 6. Using this Tos, the theoretical v, and eq. (70), we get
the vertical tilt angle 6, ~ 0.04 &~ 2° which is a reasonable estimate (roughly in
agreement with independent estimates of the tilt angle, cf. section 4.2) supporting
the adopted assumption that the oscillations are defined by the thermo-convection
velocity.

The theoretical dependence of the oscillation period T, = 27/w on the laser
power Py, obtained for 6, =0.035 and ¢ =0.37A>mM using eqs. (70), (89), (90), is

shown in Fig. 14a, where the experimental data (cf. Fig. 9d) are presented as well.
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A similar comparison for the concentration dependence of 27/w at Py, = 22mW
(cf. Fig. 9b) is shown in Fig. 14b. A good agreement is observed in both cases.

Turning to the temperature field, the typical laser-induced temperature increment
in the layers above the laser beam (for zp < z < H) can be obtained with eq. (82);
for example, it gives ATjean =~ 0.5 W/R = 2m2pTy/R ~ 0.09K for ¢ = 7.5mM and
Py ~ 22mW. By contrast, the local temperature rise in a narrow zone right
above the beam with z ~ zp, y < \/zzp, is much stronger (cf. eqs. (Al3), (A2)):
ATpeqm ~ 0.2400P/ (CpDr) = 3T}, 30 ATpeam ~ 5K for the same ¢ and P,.

Let us finally verify the conditions (75) adopted above. The typical convection
velocity is v, = vg ~ 0.lecm/s (cf. eq. (89)). Hence Dr/ve ~ 0.lmm, and the first
condition (75) is satisfied: Dr/vg ~ dpeam < R = 2.5mm. The second condition (75)
is equivalent to v > Dr (cf. eqs. (80), (81)), which simply follows from the
chloroform material constants, eq. (74).

4.4. The nature of solute species providing the velocity contrast

The results of the previous section strongly support our hypothesis that oscilla-
tions of g (g,7) must be related to the thermal convection flow v(r) induced by
laser heating. However, as discussed in sections 3 and 4.2, the effect is also hinged
on the existence of two distinct solute species moving with different velocities, v,
and wv,, in irradiated TAA solutions.

Both microscopy and light-scattering data [9,12-14,18,20,30,36] suggest that
most TAA molecules in irradiated solutions form fibrils of typical length L = 1pm
(in the studied concentration range of 0.3 — 10mM). These micrometer-scaled self-
assembling fibrils (together with shorter fibrils and other submicron aggregates) can
be considered as the first component which must follow the macroscopic flow with
velocity vy, = v(r) (recall that the characteristic size of convection flow, eq. (88), is
much larger than the sizes of such aggregates).

Let us turn to the nature of the second component moving with a different
velocity. The studies on chloroform TAA solutions [12-14,18,20,30,36] show that
in addition to fibrils (of thickness d ~ 5 — 15nm) the solute molecules also form
much longer fibrillar aggregates (bundles) of thickness ~ 20 — 50nm and almost
indefinite length. Such fiber-like bundles can associate to produce highly viscous
thermoreversible gels and entanglement networks. It is then possible to expect
that a gel is formed below the beam (colder region), so that dangling chains from
the gel can reach the laser beam region serving as the immobile component (with
vy = 0). However, this explanation is not exactly consistent: the gel formation may
be expected before the laser is switched on, and then the gel should lead to a
dramatic increase of the solution viscosity which is not observed (the viscosity of
TAA solutions is comparable to that of the solvent).

One may further argue, however, that a microgel (involving small gel particles)
is formed instead of a continuous gel phase: in this case a strong viscosity increase
may be avoided. However, if a large immobile gel particle of size Ly > dpeqm enters
the scattering volume it would suppress convective flow there. On the other hand,
if a microgel particle is smaller than the scattering volume size (dpegm ~ 100pm),
it would be driven by the convection flow, so its velocity v, would not differ much
from v;.
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To overcome this restriction let us consider a gel particle of size r, < dpeam
and argue that it could be electrically trapped in the beam region. In fact, the
particle is a network of TAA fibers which are known to be highly conductive after
irradiation (with metallic-type conductivity) [14,18,20,30,36]. Hence the gel particles
are expected to behave like metal particles in the laser beam if the network mesh
size ¢ 1s smaller than the laser wavelength A. Using this analogy and assuming a
spherical particle of radius r, we get the trapping energy U ~ 0.5 r, 3n2E?, where
E is the effective electric field in the beam related to its intensity I = nE2cl/47r

with ¢, the velocity of light in vacuum [37]. The effective laser power is
P~ (w/4)Id2 . . Thus
8
U~ _nr3p/dbeam
a

The highest energy U ~ Pdpegm/c is attained for the largest particles with r, ~
dpeam /2. For P ~ 20mW and dpegm ~ 100pm it becomes U ~ 10~7erg. This
energy is much larger than the thermal energy kgT (at ambient T =~ 293K):
U/kgT ~ 2-10%. Hence, the considered gel particle can be indeed strongly trapped
by the laser beam under equilibrium conditions. However, in the presence of a
convective flow the trapping is possible only if the laser-induced force f; ~ U/dpeam
is stronger than the hydrodynamic drag force fq ~ 6mrpnu,. For rp ~ dpeam /2 and
v, ~ 0.lem/s (as estimated in the previous section) this is not really the case:

fe/fa~ U/ (BWdZeamnvZ) ~ 0.1

It is therefore not likely that the gel particles can be trapped in the laser beam
for the range of laser powers (Pp < 20mW) used in our DLS studies.

It is possible, however, that microgel particles involve very long dangling fibers.
If the microgel is located well below the scattering volume, such giant fibers (with
L > dyeam) could be dragged and extended by the convective flow (note that this
flow is elongational near and below the laser beam, cf. Fig. 13). As a result a
few thick and oriented fibers can stay basically immobile in the scattering volume
(being anchored to the microgel) and therefore serve as the second scattering
component with v, &~ 0 (cf. Fig. 15). On the other hand, the convective flow of
typical TAA fibrils (of L 2 1gm) should be effectively unperturbed if the distance
between the giant fibers along the laser beam exceeds their length.

Yet another type of scattering species can be provided by gas bubbles of air
dissolved in chloroform. The laser-induced heating of the sample can accelerate
formation of these bubbles. Their nucleation should normally take place at the
solid surfaces, so the bubbles must be dragged by the convective vortex motion
to reach the scattering volume. This is possible only if the velocity v, of their
gravitational rising (always directed upwards and measured with respect to the local
flux of the solution) is sufficiently low compared to the convective flow velocity
v(r). In this case there would be two species in the scattering volume: TAA
fibrils (moving with the flux velocity v; = v(0,0) ~ v,n, which is directed upwards)
and the bubbles (moving also upwards with the velocity vy, = vy 4 v,), hence the
g?) oscillation eq. (67) would be defined by wvy: w = g,vp. In the peripheral part
of the vortex convective motion (cf. eq. (88) for |y| = R/3) the bubbles move
downwards with velocity |v,| — v, hence they follow the flow and can accumulate
in time. The bubble rising velocity v, depends on its radius r, and can be found
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by balancing the buoyancy force f, ~ 4?ﬂrg’pog and the viscous drag force on an
empty sphere fj >~ 4mnryv, [38]:

1
v X =T pog/n (91)

3
(cf. also [39]). With v, & 0.lcm/s (cf. section 4.3) the condition of the dominance
of the convection flow over the buoyancy rising (v < kv, where k£ < 1 is a
numerical factor) leads to

ry < Vk - 10pm

cf. eq. (91). For k =~ 0.1 this condition reads as r, < 3um, hence the respective
bubbles are still large enough (3> A¢/n) and could give rise to a considerable
scattering intensity comparable to the contribution of TAA fibrils. However, such
large bubbles would be easily visible (with naked eye) as glittering particles. Such
bubbles were not observed for the systems we studied, hence we tend to reject
the bubble hypothesis and return to the model of microgels with dangling tails,
Fig. 15.

5. Conclusions

In this paper we considered DLS data on dilute solutions of photosensitive
arylamine-based compounds (TAA) in deuterated chloroform (CDClz). The solute
molecules self-assemble forming long supramolecular fibrils and fibers upon white
light exposure [12,13]. We show (by UV-Vis spectrometry) that the self-assembly
is accompanied with a dramatic increase of the visible light absorbance of the
studied TAA solutions [14]. This increase is found to be relatively slow, with
time-scale ~ 5 min which is longer than the time required to convert nearly all
TAA molecules in the aggregated state (few dozens of seconds [14]). However, the
relevant time-scale should rather correspond to the growth time for the number of
spins in the fibrils, which is much longer, typically ~ 1 hour [14]: the spins are
known to be responsible for high electroconductivity of the fibrils. It is likely that
the increase of light absorbance is related to the emerging high conductivity of
supramolecular arylamine filaments which show metallic properties upon white light
exposure [18,20,30,36]. It is important that high absorbance of irradiated TAA
solutions in red part of visible spectrum was independently confirmed by direct
measurements of transmitted laser beam intensity (see section 3).

Surprisingly, the photoinduced self-assembly also leads to a dramatic change of
the DLS properties of the solutions showing long-lasting well-resolved oscillations
in the intensity correlation function, ¢(®(7), of the scattered laser light. Such
feature is not expected for equilibrium Brownian systems which must always show
a monotonically decaying correlation functions g®(7), cf. eq. (55). Thus, one of
the main results of this paper is that self-assembly in solutions can be indicated
by the emergence of oscillations in the DLS correlation function ¢®). Moreover,
we anticipate that the presence of such oscillations could be a sensitive probe for
aggregation in many complex systems, including solutions of supramolecular and
protein polymers, as well as conjugated and conducting macromolecules.
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The oscillations we report here are strikingly well-developed and persistent,
making our systems very distinct from the previously published oscillations in
homodyne spectra g of diverse light-absorbing systems, refs. [15,16,33,35]. We
studied in detail how the oscillation frequency w depends on various parameters.
It is shown that w regularly increases with the irradiation time ¢;.,, with TAA
concentration ¢, and with the laser power Py. Amazingly, we also observed that
w does not depend on the scattering angle 6 (see Figs. 7, 9c), and this is the
second major result of this study. It indicates that in our system the relevant
processes (producing oscillations) have no horizontal velocity component, contrary
to the systems of refs. [15,16].

There are only 2 general reasons to get oscillations in g¢®): (i) due to inertial
effects which are totally negligible at the wave-length of light for incompressible
liquids like the studied solutions; (ii) due to non-equilibrium effects.

Focusing on the second possibility we showed that enhanced absorbance in TAA
solutions leads to their non-uniform heating by the laser beam and to the thermal
lensing effects due the emerging temperature (7') and refractive index (n) gradients
(see section 3). In turn, a vertical gradient of n» causes a small vertical downward
shift of the incident laser beam (on the angle 6,), while a significant increase
of T near and above the scattering volume generates an upward convection flow
in this region (see Figs. 4, 13). As a third major achievement, we developed a
quantitative theory of this thermo-gravitational convection predicting the relevant
vertical flow velocity vy as a function of the system parameters like the thermal
expansion coefficient s of the solution, and its absorption coefficient a which
was obtained based on the transmitted laser intensity. The theory explains the
observed independence of the oscillation frequency w on the scattering angle 6.
It also reproduces well (at the semi-quantitative level) the dependence of w on
the laser power P, and solution concentration c¢ (see Fig. 14). The only fitting
parameter 6, was set to 2° which is in good agreement with the observed deflection
of the laser beam.

Thus, based on the discussion in sections 4.2, 4.4 we showed that the observed
oscillations in the DLS intensity correlation function ¢(®(q,7) are related to thermo-
gravitational convection generated by laser heating and leading to macroscopic drift
of the scattering particles. It is also shown that the slow decay of the oscillations
cannot be explained by a continuous variation of the particle drift velocity within
the scattering volume. The oscillation effect points to the presence of two types of
scattering particles in the solute moving with different velocities and a considerable
velocity contrast Awv = v; —v,. As argued in section 2.4.c (and was proposed
before [16]) the oscillation frequency w must be proportional to Awv. We thus
show that it is possible to determine the drift velocity difference by doing simple
homodyne light scattering experiments. It appears that the order of magnitude
of the oscillation frequency, w o Awv, and its dependencies on the parameters
are correctly described by the assumption that Av is simply proportional to the
convection velocity v,. One type of the scattering species can be attributed to
micron-size supramolecular TAA fibrils. However, the nature of the second distinct
scattering component is less evident. As a possible candidate we propose that
this role is played by giant TAA fibers spanning from the scattering volume to a
microgel particle.
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APPENDIX A: Temperature field AT(y,z) in a smooth
convection flow due to the heating by a narrow laser beam

Here we solve eq. (71) exactly for the case when the motion of the solvent is
assumed to be homogeneous: v = v, and directed vertically upwards. To simplify
the treatment we also assume that a very narrow beam is switched-on at t=0:

R (A1)

where é(r) = 6(y)é(z) is the 2-dimensional delta-function, cf. eq. (79).  The
temperature field AT(y,z,t) is hence essentially two-dimensional in space.

We first discuss the short-time asymptotic solution of eq. (71). The thermal
diffusion is fast compared to the drift vo in the region close to the beam,
224+ y? < 23, cf. eq. (80). Omitting the convection term wv-VT we solve the
diffusion equation (71) (which becomes decoupled from the velocity field) to get
the time-dependent temperature field T'(r,t) after switching-on the laser beam at
t =0. The result for the temperature field at ¢ > 0 (obtained on assuming that
AT =0 for t <0 which means no heating without laser beam) is

oo 1t 1 r? r? ooP
AT(r,t) = dt =T, E = ———— (A2
(L ) Op 0 471'DTt eXp( 4DTt) b (4DTt) b 471'DTOp ( )
where
Ei(z) = / et yt] at (A3)
is the integral exponential function. For small @:
1)k—|—1 k
Ei(z) ~ lnw—l—z R (A4)

v ~ 0577 is the FEuler-Mascheroni constant, FE;(l) ~ 0.22 and Ei(z) ~ e */z
for # > 1. For fixed distance r from the beam, the temperature rise can be
approximated as

(t/tp(r))e_tD(’")/t, t < tp =7r?/4Dr;

A
In(t/tp(r)) =7, tp <t < p = Dr/v} (A5)

AT([,t) ~ Tb X {
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if » < zp (the latter condition is needed for the inequality tp < 7p). The
conditions » < zp and t < 7p = zp/ve and are needed to neglect the convection
term vy - VT in eq. (71).

After switching-on the laser beam, AT is first exponentially low (for ¢t < tp),
then it grows logarithmically up to the maximum

AT*(r) ~ Tyln(p/tp) ~ 2Ty In (2p/7) (A6)

at t ~ 1p, cfleq. (AD). At longer times t 2 7p: AT saturates due to the convection
(drift vg) providing a flux of fresh cold liquid from the lower part of the solution
(with z < —zp) where T = Ty, see Fig. 13.

The general solution of eq. (71) with v = von, and localized beam, eq. (Al),
can be written for ¢t > 0 using Green functions (cf. eq. (A2)):

(z — ’l)()t/)2 + y2) dt’ B

t
AT(y, z,t) = Tb/ exp (—
0

4Drt! t
VoZ vot/r Vor 17\ dr
= Tyexp (210)T) /0 P <_410)T T ?D . (AT)

where 7 = t'vg/r, » = /y? + 22. Here we assumed (as before) that the laser beam
was turned on at t =0, so AT =0 for ¢ <0. The above equation for AT (like
eq. (A2)) is valid for r>> dpeam-

Let us now focus on the steady regime, wvot/r — 0o, when the convection flow
is fully developed. Setting the upper limit in the integral (A7) to 4oo, we get
for t> mp (cf. eq. (80)):

AT(y, z) ~ 2Ty exp (%) K, (L) (A8)

ZD 221)

where Ko is a modified Bessel function, Ko(z) = [;”exp(—zcoshr)dr; Ko(z) ~
In(2/z) —v, z < 1; Ko(z) =~ +/7/(2z)e™®, &> 1. For z> zp eq. (A8) can be

simplified as
Tz 2
AT(y, z) >~ 2Ty TDexp (_432'1)) (A9)

which coincides with eq. (77). At shorter distances dpeam < 7 < 2zp, the asymptotic
result 1s

4
AT ~ 2T, [m o 7] (A10)
T

The above equation agrees with the more approximate eq. (A6). Finally, below
the beam, at z <0, |z| > zp we obtain from eq. (A8):

TZD

AT(y, z) ~ 2Ty, | =22 exp (— v )exp (—ﬂ) (A1)

|| dzzp ZD

Hence, the temperature increment is exponentially small, so T~ T,,; in this region
below the beam.
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The temperature profile right above the beam, at y =0, z > dpeam, 18

AT(z) ~ 2Ty exp (i) K, (L) (A12)
221) 221)
In particular,
AT (zp) ~ 3.048T} ~ 024222 (A13)
ZD = . b ~ . DTOp

APPENDIX B: Evaluation of the light absorption rate o¢P
causing the convection

The convection velocity wvg in the scattering volume (within the sample illumi-
nated by a focused laser beam) is defined in eq. (89). Apart from the material
constants of chloroform, cf. eqs. (73), (74), vo depends on the absorption coefficient
oo and the local laser power P. Here we evaluate them based on our experimental
data, Table 1.

To this end we first note that pure solvent (chloroform) nearly does not absorb
visible light, so oo must be entirely due to the solute (TAA). A linear dependence
of o9 on ¢ is naturally expected at low concentrations c:

0o = Qc (B1)

Hence the expected transmitted laser power P, after the sample in a DLS
experiment (cf. Fig. 2) is proportional to the incident laser power P, and the
exponential decay factor:

Py = Boa Py exp(—2acR) (B2)

where R = 2.5mm is the inner radius of the test tube and Bgs is the instrumental
coefficient accounting for the power loss outside the sample (due to interface
reflections, diaphragms, etc.). Bo2 can be defined as Bos = PZ(O)/PO ~ 0.72 £ 0.025,
where P2(0) is the transmitted laser power for the case when instead of the sample
a test tube with pure solvent (¢ =0) is used (see second line in Table 1).

The absorption coefficient a depends on the irradiation pre-history of a TAA
solution (i.e., on ti, and #p,., cf. Fig. 1d and Table 1). To find a for solutions
irradiated during #;, = 1 hour (with t;,. = 0) we compare the transmitted laser
power P, after the sample for pure solvent and for TAA solutions of several
concentrations ¢ (using the maximum incident laser power Py ~ 21 — 22mM to
reduce the experimental error). Thus, for ¢ = 0.375mM from Table 1 we get
BozPo/ Py ~ 1.09 — 1.25, whereas for ¢ = 7.5mM this ratio is BoaPo/Ps ~ 8.2 — 9.25.
Using the data for ¢ = 7.5mM and the relation (B2) we find the absorption
coefficient:

a = [2Rc] " In[Boz Po/ P2(c)] = 0.58 £ 0.05 (cm - mM) ™ (B3)

for t;, = 1 hour and t;,. = 0. For longer incubation time ¢;,. the absorption
coefficient decreases: a =~ 0.5 4+ 0.05 (Cm-mM)_l for tip. = lh and a ~ 0.125 +
0.015 (cm-mM)™" for tin. = 19h.
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We now recall that the effective power P corresponds to laser intensity in the
scattering volume located near the the center of the sample. The laser beam
power P; just before entering the decaline bath (cf. Fig. 2) is lower than P,; our
measurements give Py = P, where the factor g ~ 0.88 accounts for the power
loss due to reflections caused by lens L1 and its aperture. Next, P| = BP; is the
laser power at the beginning of the passway inside the TAA solution bath. The
coefficient B was calculated using the Fresnel formula for the reflection coefficient
R = R(3,j) at an interface between two media (z) and (j):

Rii,j) = M ma )

(; + m;)? (B4)

where n; is refractive index of medium ¢. The transmission coefficient K(¢,7) =
1 — R(3,j), so the total coefficient of transmission through the air-glass-decaline-
glass-chloroform sequence of interfaces is:

3
B=T]K(t+1)~0.965, BB ~ 0.85 (B5)
=0
where ng = 1 (air), ny = ng = 1.4585 (quartz), ny = 1.481 (decaline), ny = 1.4458
(chloroform). An additional laser absorption in TAA solution (from the point of en-
tering till the center of the test tube) leads to P ~ P/ exp(—acR) = PyBf exp(—acR).
Finally, we get the light energy absorption rate in the scattering volume

ooP ~ BBack, exp(—acR) (B6)
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TABLES

TABLE 1. The main DLS characteristics of the studied samples: the reference
solvents (toluene, CDCl;) and the TAA solutions in chloroform (CDClz). The main
preparation parameters of the TAA samples (concentration, irradiation time t;.,,
incubation time in the dark after irradiation, t;,.) are indicated together with the
incident laser light power Fp, the transmitted laser power P,, the intensity of the
scattered light, I3™® (measured by the APD at 6 = 90%), and the corrected net
sample scattering intensity without the dark noise, Is 7, and the oscillation period
Tose of g®(7). The ratios Pp/P' and Is/If are also shown (P and I are
the reference values measured for pure toluene and the same laser intensity Fp).
The error bars are: ~ 0.03 —0.05mW for Py; ~ 7% + 0.1mW for P,; ~ 0.5kHz

for I, and ~ 1% for Tog..

TABLE 2. Parameters of the theoretical fits based on eq. (56) for the DLS data
on the intensity correlation functions ¢ (r) — 1 shown in Figures 3, 8. The
columns indicate Figure numbers, curve labels, initial (short-time) decay parameters
7; and G, oscillation parameters Tose, Tose and Gese, and terminal decay parameters

7. and Ge..

FIGURE CAPTIONS

FIG. 1. (color online) (a) Chemical structure of the tailored triarylamine (TAA)
molecule (chemical formula CzeHa9CIN2Os, molecular weight of 593.25g/mol)
used in our experiments (upper left); schematic representation of the supramolec-
ular self-assembling micrometric conducting nanowires formed by the amine
molecules upon light irradiation. Molecular models of TAA unimer (b), and of
the double fibril (front and side views) (c) which are the basic elements of
the TAA self-assembling nano-wires. (d) UV-Vis absorption spectra of a 1mM
freshly-prepared TAA solution in chloroform before irradiation (¢;» = 0s, black
line), after a period, t;» = 765s, of irradiation with 20W glow-filament white
lamp (blue line), after t;., = 3765s (green line) and after both irradiation (for
tirr = 3765s) and incubation in the dark for t;,. = 14400s (dashed grey line).
The inset shows the time evolution of the absorbance at A = 635nm for the
first TAA solution during the irradiation stage (0-3765s) and the dark stage
(3750-18165s); the dashed line is a guide to the eye.

FIG. 2. The schematic DLS set-up. The lens L1 focuses the incident beam (with
wavevector ki) onto the test tube with a sample solution (TS) placed into the
thermostated decaline bath (DB). The lenses 1.2 and L3 focus the light (with

wavevector ky) scattered from the scattering volume (SV) onto the photodetector

"The experimental APD data, I3*®, have been corrected as I3 = I3 — I$*™ where Igo™ ~
1.45 4+ 0.12 kHz is the ‘dark noise level intensity’ measured on the detector when the laser is
shut off and the sample is out of the decaline bath (I$*™* comes from the parasitic light, thermal
noise on the detector, etc.).
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(PD). The scattering vector is q = ks —k; (the scattering angle is 8). The focal
lengths of the lenses are respectively: Fy = Fy = 250mm and F3; = 3.9mm. The
characteristic distances shown on the scheme are: #; = ; = 250mm, 3 = 125hmm.
The intensity of laser light was measured at the laser exit (incident power P,
at point ‘0’), before entrance in the sample, at point ‘1’ (laser beam intensity
P;) and after the sample, at the point ‘2" (P,, the transmitted intensity)
using the same type of the power meter. The scattering intensity I3 and
the intensity autocorrelation function G®)(q,7), eq. (7), were measured by the
photodetector PD at the point ‘3’. The intensities at the point ‘1”7 inside the
test tube (P] = BPl) and at the point ‘+’ near the SV (P = BP; exp(—acR))

were calculated as described above eq. (90).

FIG. 3. Intensity correlation functions measured in the homodyne DLS (averaging
time tprs = 1 hour, scattering angle § = 90°) for ¢ =7.5mM (0.45 vol%) TAA
chloroform solutions irradiated with short white pulses prior to the measure-
ment. ® (a) The traditional log-log plot of time-dependence of autocorrelation
functions ¢®(q,7) — 1 for three irradiation times (t;,, =5, 10, and 15s). (b)
Semi-log plot of the same autocorrelation functions. Black crosses show the
DLS data (with incident laser power Py =22.2 mW). Red curves represent the
theoretical fits using eq. (56). The curves are shifted vertically to improve the
visibility.

FIG. 4. A scheme illustrating an expansion of the incident laser beam (due to the
thermal lensing effect) and its vertical shift (due to the vertical temperature
gradient near the beam coming from strong light absorption in TAA solutions).
The photograph (right) shows the diffraction rings pattern in the transmitted
beam observed on a screen at a distance L =160cm from the scattering sample.
Here the incident light wave-vector, ko, does not coincide with the wave-vector
k; of the transmitted light: k; = ko — q,. The scattered light wave-vector, ks,
is perfectly horizontal (like ko), but the effective scattering vector q = ky —k; is
not: it involves a vertical component g, ~ 6,k, where 6, = Az/L.

FIG. 5. Intensity autocorrelation function, g(®(7)—1, averaged over tprs = 200s for
a TAA solution with ¢ = 7.0bmM and various incubation times #;,. in the dark
after it was irradiated for (a) ¢, =5s and (b) t;», = lh. The data are recorded
for the scattering angle 6 = 90° and laser power Py =22.2mW. The curves are
shifted vertically to improve the visibility.

FIG. 6. TAA concentration dependence of the intensity correlation function, g(®(r)—
1 (averaged over tprs = 200s, recorded at 6 = 90° and P, = 22.2 mW). All
solutions were illuminated for #;, = lh prior to the measurements (¢, = 0). The
curves are shifted vertically to improve the visibility.

FIG. 7. Angular dependence of the intensity correlation function: ¢®(7) —1 was
recorded at various scattering angles, 8, for ¢ = 0.375mM TAA solution irradiated

8For irradiation of TAA samples we routinely use a 20W white glow-filament lamp placed at a
distance of bcm from the sample. This procedure is the same as used in our previous works on

TAA self-assembly, refs. [12,14].
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for t;, = 1lh and left at rest in the dark for ¢;,. = 3h30min. The incident laser
power is Py = 22.2mW; tprs ~ 200s for 6 = 90° — 140°, tprs ~ 60s for

6 = 70° — 80°, and tprs ~ 20s for # = 30° — 60°. The dashed line shows the
f-independent position of the first oscillation. The curves are shifted vertically
to improve the visibility.

FIG. 8. Variation of the intensity correlation function with the incident laser power
Py for 0.375mM TAA solution irradiated for #;., = lhour and left at rest in the
dark for #;,. ~ 5h15min-5h35min . The function g(2)(7') was measured at 6 = 90°,
the DLS-averaging time was tprs = 200s. The log-log plots of g (g,7)—1 are
shifted vertically to improve the visibility. The data (black crosses) are fitted
using eq. (56) (the respective red curves), see Table 2 for the fitting parameters.

FIG. 9. The period of oscillations, Tose = 27/w (circles), and the associated effective
drift speed v*, eq. (66) (triangles), are plotted as functions of: (a) irradiation
time tg, (for 7.5mM TAA solution); (b) TAA concentration ¢ (for solutions
irradiated for ¢;» =1 hour); (c) scattering vector ¢ (for solution of ¢ = 0.375mM
irradiated for t;, =1 hour and incubated for ¢;,. ~ 3.5 —4h); and (d) incident
laser power Py (for solution of ¢ = 0.37hmM irradiated for ¢;, = 1 hour). In
(a-c) the incident laser power is Py = 22.2mW, in (a,b,d) the scattering angle is
6 = 90°. The dashed lines are guides to the eye.

FIG. 10. Intensity correlation function from two aged self-assembled TAA solutions
with ¢ = 0.375mM (a) and ¢ = 7.5mM (b) obtained during their sonication in the
dark for 2h (after their irradiation for ¢;, = lh and incubation for t;,. = 42h).
The functions g¢®)(r) were recorded every 30mins during the sonication, and
finally at t,., = 3h after the end of 2h sonication. The DLS averaging time was
tprs = 20s for all measurements apart from the last measurement (for #,.s = 3h)
where tprg = 200s. The curves are shifted vertically to improve the visibility.

FIG. 11. Intensity correlation function of a freshly prepared TAA solution of
¢ =0.375mM which was simultaneously sonicated and irradiated with white light
during 1 hour. The data were recorded every 10 mins. tprg = 10s was chosen
to be very short so that the sonication/illumination process was only briefly
interrupted, explaining the higher noise level. The curves are shifted vertically
to improve the visibility.

FIG. 12. (a) Fittings of the experimental auto-correlation function g¢®(r) (from
Fig. 3b, for t;,» = 5s) with the ‘oscillatory relaxation model’ (implying two distinct
drift speeds v; and wvy), eq. (56) (red line), and with the ‘velocity gradient
model’ for the slit geometry, eq. (65) (black line). (b) The three classical
diffraction ‘smearing functions™ g; (‘slit’, black line), g» (‘cylindrical’, blue line)
and gs (‘spherical’, green line), eqs. (62), (63), (64), respectively. All fitting
and smearing functions are shown for the same period Tpee = 27/w =T x 10735
used for theoretical fits with eq. (56).

FIG. 13. Convection flow in the slit —R <y < R filled with light-absorbing viscous
liquid (a), the heated zone above the laser beam (b) and the temperature
profile AT(z) = T(z) — Tows in the center of the slit, for y =0 (¢). The beam

of diameter dpeqm directed along the x-axis is shown with red/yellow star. The
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cross-over distance zp = Dr/ve separates the proximal zone (where the diffusion
is more important than the drift) and the far zone (where the heat propagation
is dominated by the drift).

FIG. 14. The oscillation period Tue of g(2)(7') as a function of: (a) the incident
laser power P, (for TAA solution with ¢ = 0.37h5mM), and (b) the TAA
concentration ¢ (for Py = 22.2 mW). All solutions were irradiated for ¢;., = lhour
(tine = 0) prior to the measurements of ¢()(r), the scattering angle was 8 = 90°.
The solid curves are theoretical predictions obtained using eqs. (70), (89) with
v, = vy and 0, = 0.035 ~ 2°.

FIG. 15. On the origin of two distinct velocities in the scattering volume: small
fibrils move through the beam with the convective flow velocity v, = vy while
long fibers are anchored to microgel particles with vy &~ 0.
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Table 1.

Sample tirr finc Py P, P2/P2[OI I3eXp I; I3/I3t0] Tosc
(mW) | (mW) (kHz) | (kHz) (ms)
Toluene - - 22.2 16.1 1 27.83 26.4 1 -
CDCl; - - 22.2 16.0 0.99 16.06 14.61 0.55 -
Decalin bath - - 21.6 15.8 1.01 10.51 9.06 0.35 -
without test tube
TAA 7.5mM 0 - 22.2 14.9 0.93 21.98 20.53 0.78 -
TAA 7.5mM 5s 0 min 22.2 14.7 0.91 22.55 21.10 0.80 7.1
10 min 22.2 14.9 0.93 22.27 20.82 0.79 7.6
30 min 22.2 14.0 0.87 22.90 21.45 0.81 6.9
1 hour 22.2 14.7 0.91 22.24 20.79 0.79 7.6
2 hours 22.2 14.2 0.88 19.69 18.24 0.69 8.3
3 hours 22.2 14.2 0.88 19.73 18.28 0.69 6.8
4 hours 22.2 14.9 0.93 19.69 18.24 0.69 6.7
19 hours |21.2 12.6 0.82 19.16 17.71 0.70 8.5
TAA 7.5mM 1 hour |0 min 22.2 1.86 0.12 3.54 2.09 0.08 2.7
10 min 22.2 2.10 0.13 3.94 2.49 0.09 24
30 min 22.2 2.17 0.13 4.14 2.69 0.10 2.5
1 hour 22.2 2.42 0.15 4.42 2.97 0.11 2.3
2 hours 22.2 3.53 0.22 5.39 3.94 0.15 2.6
3 hours 22.2 4.38 0.27 6.19 4.74 0.18 2.5
19 hours |21.2 9.22 0.60 12.67 11.22 0.44 3.5
42 hours |22.2 - - 13.98 12.53 0.47 3.8
TAA 0.375mM |1 hour |0 min 21.2 13.13 0.82 13.25 11.80 0.45 6.4
1 hour 22.2 13.2 0.82 15.76 14.31 0.54 54
2 hours 22.2 13.8 0.86 14.51 13.06 0.49 5.7
3 hours 22.2 13.6 0.84 15.15 13.70 0.52 5.7
19 hours |21.2 14.6 0.95 14.83 13.38 0.53 8.0
42 hours |22.2 - - 14.3 12.85 0.49 9.0
TAA 0.375mM |1 hour |5h15min |22.0 14.7 0.92 17.12 15.67 0.60 6.0
5h20min | 12.0 8.25 0.95 9.42 7.97 0.56 8.0
5h25min | 5.0 2.75 0.76 4.67 3.22 0.54 12.3
5h30min | 2.5 1.47 0.81 2.70 1.25 0.49 24
5h35min 1.0 0.50 0.69 1.77 0.32 0.42 42
TAA 3.75mM 1 hour |0 min 22.2 - - 6.6 5.15 0.20 3.7
TAA 0.75mM 1 hour |0 min 22.2 - - 94 7.95 0.30 5.6




Table 2.

Figure Curve T (s) G; Tose(s) Toes (S) Gose T. (s) G.

5s 5%10° 23 0.0070 0.027 0.0095 0.12 0.025
2.5%10” 0.70
2x10° 0.05
- 3.5%10° 0.03
Fig3 7%10° | 0.003

10s 5%10° 15 0.0075 0.033 0.90 0.27 4.15
1.7x107 2.0

15s 5%10° 15 0.0058 0.015 1.8 0.15 10
1.2x107 3.0

222mW | 5x107 0.4 0.0060 0.025 0.065 0.13 0.25
5x10™ 0.07

12mW 3%x107 0.9 0.0080 0.02 0.03 0.1 0.07
5%10° 0.07
3.5x10™ 0.03

Figs SmW | 1.5x10° 0.3 0.0123 0.05 0.04 0.25 0.1
4x107 0.1
3%x10° 0.05

25mW | 2x10° 0.5 0.024 0.1 0.01 0.22 0.025
6x107 0.15
1.5x10° 0.02

ImW 5%10° 0.7 0.042 0.3 0.025 1.0 0.15
1x10™ 0.17
2x107 0.06
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