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The progressive 6-year-old conserver: numerical saliency and sensitivity as core 1 

mechanisms of numerical abstraction in a Piaget-like estimation task 2 

 3 

Abstract 4 

In Piaget’s theory of number development, children do not possess a true concept of number 5 

until they are able to reason on numerical quantity regardless of changes in other 6 

nonnumerical magnitudes, such as length. Recent studies have echoed this result by arguing 7 

that abstracting number from nonnumerical dimensions of magnitude is a developmental 8 

milestone and a strong predictor of mathematics achievement. However, the mechanisms 9 

supporting such abstraction remain largely underspecified. We aimed to study how 10 

identification of the numerical equivalence in a Piaget-like estimation task by 6-year-old 11 

children is affected by (a) the degree of interference between number and nonnumerical 12 

magnitudes and (b) children’s spontaneous orientation to numerosity. Six-year-old children 13 

first performed a card sorting task assessing their spontaneous orientation towards 14 

numerosity, spacing, or item size in a set of dots. Then, they completed a Piaget-like 15 

same/different numerical estimation task using two rows of dots in which the length ratio 16 

between the two rows varied systematically. Children were less likely to accept the numerical 17 

equivalence in the Piaget-like estimation task (a) as the difference in spacing between the dots 18 

increased and (b) as the children were more spontaneously oriented towards spacing over 19 

number in the card sorting task. Our results suggest that abstracting number depends on its 20 

saliency, which varies both as a function of the context (i.e., length ratio between the two 21 

rows) and of individual differences in children’s sensitivity to the numerical aspects of their 22 

environment. These factors could be at the root of the observed development of performance 23 

in the seminal number-conservation task, which appears as a progressive abstraction of 24 

number rather than a conceptual shift, as Piaget hypothesized. 25 
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1. Introduction 31 

In Piaget’s theory of numerical development, children do not reach a proper understanding of 32 

the concept of number until they are able to perceive the conservation of the numerical 33 

properties of an array of objects despite visual transformations (Piaget, 1952). Indeed, in the 34 

seminal number-conservation task, until approximately 6 or 7 years of age, children fail to 35 

perceive the numerical equivalence between two rows of tokens after the length of one row is 36 

transformed (i.e., by spreading the tokens apart), although they are able to do so when the two 37 

rows of tokens have the same length (i.e., before the transformation). Several studies provided 38 

converging evidence that success in the number-conservation task in children and adults relies 39 

in part on the executive ability to solve the interference between irrelevant nonnumerical 40 

dimensions of magnitude (the length or density of the rows of tokens) and the pertinent 41 

numerical dimension (Houdé & Guichart, 2001, Houdé et al., 2011). The authors suggest that 42 

the participants do so by inhibiting an automatic but misleading ‘length equals number’ 43 

strategy.  44 

Since Piaget’s work, research in the field of numerical cognition has revealed the existence of 45 

numerical abilities long before children’s success in Piaget’s number-conservation task. 46 

Children’s development of the concept of number is thought to build, at least partly, upon 47 

preverbal representations of quantities that are present very early in infancy (Dehaene, 2001; 48 

Izard, Sann, Spelke, & Streri, 2009). One of these numerical intuitions consists in the ability 49 

to perceive the approximate quantity represented by a set of objects (e.g., an array of dots). 50 

Echoing Piaget’s work, many studies investigating these nonsymbolic numerical 51 

representations have reported the impact of visuospatial cues on numerical estimation (Gebuis 52 

& Reynvoet, 2012). For instance, congruency effects have been observed throughout 53 

development in the context of numerical estimation tasks, showing that the participants’ 54 

performances are influenced by irrelevant spatial dimensions of the stimuli, such as the size of 55 
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the dots, or the extent of the space occupied by the array (i.e., field area, often measured by 56 

the convex hull surrounding the dot array). In particular, field area has been shown to 57 

influence numerosity judgments in preschool and school-aged children (e.g., Gilmore, Cragg, 58 

Hogan, & Inglis, 2016). In numerical comparison tasks, number/field area incongruent trials 59 

(i.e., where the most numerous array of dots is the one occupying less field area) are 60 

performed less accurately and more slowly than congruent trials (i.e., where the most 61 

numerous array is also the one occupying more field area). Recent studies have observed that 62 

the developmental trajectories of these congruency effects can differ depending on the 63 

interfering spatial dimension (Gilmore et al., 2016). In the case of field area, its impact on 64 

numerical representation can be observed all the way into adulthood (Clayton, Gilmore, & 65 

Inglis, 2015; Gilmore et al., 2016). As in the number-conservation task (whereby field area is 66 

equivalent to the length of the rows of tokens), inhibition seems to play a critical role in 67 

blocking the influence of irrelevant spatial information to make judgments based on the 68 

numerical aspects of the stimuli in numerical estimation tasks (Leibovich, Katzin, Harel, & 69 

Henik, 2017). These observations support the idea that, beyond children’s precision of their 70 

numerical representations, their ability to abstract number from other nonnumerical 71 

dimensions of magnitude is a strong predictor of math achievement (Gilmore et al., 2013; but 72 

see Keller & Libertus, 2015). This is further supported by studies demonstrating that 73 

conservation abilities in pre- and early-school years are related to children’s mathematical 74 

abilities such as math fluency (Cooper & Schleser, 2006; Ramos Christian, Schleser, & Varn, 75 

2008).  76 

Children’s numerical estimation is not only related to their ability to inhibit irrelevant spatial 77 

information. For instance, individual differences in children’s spontaneous orientation to 78 

number are predictive of math achievement (e.g., Hannula-Sormunen, Lehtinen, & Räsänen, 79 

2015). Moreover, children’s spontaneous orientation towards numerosity is related to their 80 
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ability to perform number/size incongruent trials in a nonsymbolic numerical comparison task 81 

(Viarouge et al., 2018). In the study of Viarouge et al. (2018), the authors assessed children’s 82 

relative spontaneous orientation towards three dimensions of magnitude by asking them to 83 

sort cards representing arrays of dots. No further instruction was provided on the sorting 84 

criterion the children should use. The cards could be sorted on the basis of three dimensions 85 

of magnitude: number, size, or spacing. Children who sorted the cards more frequently by 86 

number in the card sorting task (hereafter referred to as the SOMAG task for “Spontaneous 87 

Orientation to MAGnitudes”) performed better on number/size incongruent trials in a 88 

numerical comparison task. This indicated that children’s spontaneous orientation towards 89 

different dimensions of magnitude is related to their ability to solve interferences due to 90 

irrelevant visual cues in numerical estimation. Consistent with these results, a study 91 

demonstrated that kindergarteners who succeed in the number-conservation task focus more 92 

spontaneously on number than kindergarteners who fail the number-conservation task, and 93 

vice versa for length (Miller & Heller, 1976).  94 

Taken together, these findings suggested that the development of children’s numerical 95 

representations relies on a variety of mechanisms allowing them to abstract the numerical 96 

aspects of their environment from other nonnumerical dimensions of magnitude. Hence, what 97 

had been described by Piaget as a shift between two stages of numerical development, from a 98 

nonconserving to a conserving response in contexts such as the number conservation task now 99 

appears as a progressive ability to focus on the numerical aspects of one’s environment. 100 

However, so far, the mechanisms behind this progressive abstraction remain underspecified. 101 

Our study is thus aimed to better characterize the mechanisms involved in numerical 102 

abstraction, which is crucial to understand the predictive value of early numerical 103 

representations for math achievement.  104 
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Both the ability to inhibit irrelevant dimensions and the spontaneous orientation to these 105 

dimensions are likely to contribute to this development. From this perspective, children’s 106 

performance in the seminal number conservation task should depend both on the strength of 107 

the interference between the numerical and nonnumerical dimensions and on children’s 108 

sensitivity to the numerical dimension of the task. In classic nonsymbolic numerical 109 

comparison tasks using arrays of dots, isolating nonnumerical dimensions of magnitude to 110 

study their impact on performance is particularly tedious. Indeed, all the dimensions of 111 

magnitude cannot be controlled for simultaneously. This is why we will use a Piaget-like 112 

number conservation task, whereby a same-different numerical judgement is performed on 113 

two horizontally arranged rows of tokens. This context allows investigating the impact of 114 

length/field area on numerical representation, while keeping other dimensions of magnitude 115 

such as size and total surface area constant. To date, no study has manipulated this level of 116 

saliency in a systematic manner, while conjointly taking into account individual measures of 117 

spontaneous orientation towards magnitudes. 118 

 119 

In the current study, we asked 6-year-old children to perform the SOMAG task used in 120 

Viarouge et al. (2018) to assess their relative spontaneous orientation towards different 121 

magnitudes (number, size, spacing). The participants were also asked to perform a 122 

computerized “same/different” numerical estimation task with horizontally arranged dots (as 123 

in Piaget’s number-conservation task after the length of one row is transformed). The spacing 124 

of the dots in one row (and thus the length ratio between the two rows) was systematically 125 

varied. Using a Piaget-like same-different task will allow isolating for the first time the 126 

selective impact of the field area dimension on numerical equivalence perception by 127 

manipulating the strength of the interference between field area and number in a systematic 128 

manner at a crucial age of numerical development in Piaget’s theory. We investigated whether 129 
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children’s ability to perceive the numerical equivalence between the two rows of dots (a) 130 

varies systematically with the degree of interference between the nonnumerical and numerical 131 

dimensions of magnitude and (b) is related to children’s spontaneous orientation towards the 132 

various dimensions of magnitude present in the tasks. We reasoned that, if succeeding in the 133 

same-different numerical estimation task requires inhibition of irrelevant nonnumerical 134 

dimensions, then children should make more errors as the difference in dot spacing increases. 135 

Indeed, as the difference in dot spacing increases, the nonnumerical dimensions of magnitude 136 

will interfere to a greater extent with numerical processing. Additionally, children who 137 

spontaneously focus more on number over spacing in the SOMAG task should make less 138 

errors in the same-different numerical estimation task, because spacing is less salient for these 139 

children and thus interferes to a lesser extent with their numerical processing. Note that, since 140 

item size is maintained constant across the trials of the same-different task, children’s 141 

performances should only correlate with their spontaneous orientation towards number over 142 

spacing, but not with their orientation towards number over size.                143 

 144 

2. Materials and Methods 145 

2.1. Participants 146 

We collected data on the SOMAG task and a numerical same-different task described below 147 

in ninety-three typically developing children (47 girls, mean age = 6.1 ± 0.62 years) from 148 

kindergarten and first grade classes at three public schools. Sensitivity analyses were 149 

performed using G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007), revealing that, 150 

given our sample size, an alpha-level of .05 and a level of power of .80, minimum effect sizes 151 

that can be significantly detected were f = .12 for the repeated-measures ANOVA and r = .23 152 

for the correlation analyses described below.  153 
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The same group of children also performed a nonsymbolic numerical comparison task, and 154 

the results were reported in (Viarouge et al., 2018). Participation was voluntary after 155 

obtaining signed informed consent from the children’s parents. Since the SOMAG task 156 

assesses children’s spontaneous orientation towards either numerical or nonnumerical 157 

dimensions of magnitude, this task was always administered first for all children. The 158 

numerical same-different and comparison tasks were counterbalanced across the participants. 159 

The results described below remained identical when controlling for the order of the two 160 

tasks. Children were tested individually by groups of three or four in a quiet room. Apart from 161 

encouraging comments, no feedback on accuracy in the numerical same-different task or on 162 

the chosen sorting criteria in the SOMAG task was given. Each child received a certificate 163 

with stickers for their participation in the study. The teachers and parents were instructed not 164 

to talk with the children about the specific content and goals of the study. The study was 165 

carried out in accordance with national and international norms that govern the use of human 166 

research participants.  167 

 168 

2.2. Material and design 169 

SOMAG task. In each trial of this computerized task, children were presented with three 170 

images introduced to them as cards showing arrays of dots. Two cards (targets) were 171 

horizontally aligned at the top of the screen, while the third card (reference) was centered at 172 

the bottom of the screen. Children were asked to spontaneously pick one target card to go 173 

with the reference card. The instructions were as follows: “Which card goes best with that one 174 

(pointing at the bottom card)? This one (pointing at the card on the left) or that one (pointing 175 

at the card on the right)? Give me your answer without thinking too much!” The 176 

experimenters were instructed not to mention any of the dimensions of magnitude tested in 177 

this task (number, size and spacing). Children responded using the same keys as in the 178 
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numerical same-different task. They were instructed to press the right key (green sticker) 179 

when they wanted to pick the top right card and the left key (red sticker) when they wanted to 180 

pick the top left card. 181 

The collections of dots shown on the cards could be sorted according to the number of dots, 182 

aspects of the dot size or of the spacing of the dots (the Size and Spacing dimensions were 183 

defined following DeWind, Adams, Platt, & Brannon, 2015). The task included three 184 

experimental conditions, depending on the two competing dimensions of magnitude matching 185 

with the bottom card (see Figure 1): in one condition, the top cards matched with the bottom 186 

card in either number or Size, while Spacing was maintained constant across the three sets of 187 

dots (later referred to as the “NumSize” condition); in one condition, the top cards matched 188 

the bottom one in Number or Spacing, while Size was maintained constant (“NumSpace” 189 

condition); and in one condition, the top cards matched the bottom one in either Size or 190 

Spacing, while the number of dots was maintained constant (“SizeSpace” condition). 191 

  192 
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 193 

 194 

For each dimension, two levels of magnitude were used, which were selected so that they 195 

would be easily discriminable by children. A ratio of 1:2 was used for variations in Size and 196 

Spacing, while a ratio of 2:3 was used for the number of dots (sets of either six or nine dots). 197 

Across all trials, we counterbalanced the location of the higher level of magnitude (the larger 198 

Size, Spacing or number could either be on the two top cards or on the bottom card), and the 199 

location of the two competing dimensions of magnitude (either on the top left or top right 200 

card). Each trial started with the presentation of a centered fixation cross for 1500 ms, 201 

followed by the presentation of the three cards for a maximum duration of 4500 ms. The next 202 

trial started when the child gave his/her response, either before or after the end of the 203 

Figure 1: Examples of the stimuli used in the SOMAG task, for each of the three 
experimental conditions. In each condition, one dimension (Number, Size, or Spacing) is 
maintained constant. The bottom reference card can be sorted with one of the two top target 
cards according to one of the two remaining dimensions (e.g. NumSize condition pits the 
Number and Size dimensions against each other). 
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presentation of the cards. There were 16 trials per condition, resulting in 48 trials total, with a 204 

randomized presentation, and for a total duration of the task of approximately 4 minutes. 205 

 206 

Numerical same-different task. In each trial of the numerical same-different task, children 207 

were presented with two horizontal rows of evenly spaced blue dots on a white background 208 

and were asked to perform a “same/different” numerical judgment. The two rows were left 209 

aligned with each other and were located respectively on the top and bottom half of the screen 210 

(at a 1.7° visual angle from the center). The spacing between the dots of each row was varied 211 

so that the length of the two rows differed by one of four possible length ratios (1:2, 2:3, 6:7, 212 

and 9:10). The location (top or bottom) of the longer row was counterbalanced across trials. In 213 

24 test trials, both rows had an equal number of dots (6, 7 or 8). The length of the longest row 214 

represented either 12.4°, 14.6°, or 16.7° of visual angle, depending on the number of dots 215 

presented, and the length of the shortest row varied according to the length ratio tested. To 216 

prevent children from learning that the number of dots was the same in both rows while 217 

maintaining a short duration of the experiment, 16 additional trials had a different number of 218 

dots (6 vs. 7, or 7 vs. 8 dots), leading to a total of 40 trials. These numerical ratios were shown 219 

to be perceivable by 6-year-olds with an accuracy level of approximately 75% (Halberda & 220 

Feigenson, 2008). The task started with four training trials to make sure that the children 221 

understood the instructions correctly. All four training trials showed rows with a length ratio 222 

of 1:2, two “equal number” trials (6 tokens in each row), and two “unequal number” trials (6 223 

vs. 7 tokens), with counterbalanced location of the longest row. Each trial started with the 224 

presentation of a centered fixation cross for a duration of 1500 ms, followed by the 225 

presentation of the two rows of dots for a maximum duration of 1200 ms. This presentation 226 

time was chosen to prevent the use of counting during the task. Children were asked the 227 

following: “Do the two rows have the same number of dots, or a different number of dots?” 228 
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Children were instructed to respond using the K and D keys on an AZERTY keyboard. One 229 

green and one red sticker were placed on each of the two keys, and children were instructed to 230 

press the green key (“K” on the right) when they thought the number of dots was the same in 231 

both rows and the red key (“D” on the left) when they thought the number of dots in each row 232 

was different. Due to the tendency of some of the children to spontaneously give their 233 

responses verbally or by pointing at the screen, the experimenters then pressed the 234 

corresponding response key themselves. For this reason, reaction times were not included in 235 

the analyses reported below. When children responded that the number of dots in each row 236 

was different, the experimenter followed by asking, “Which row had more?” The child gave a 237 

verbal response, which was coded by the experimenter by pressing the up or down arrow key, 238 

depending on the location of the chosen row on the screen. The next trial started as soon as a 239 

“same number” response or the location of the row judged as containing more dots was 240 

provided. The 40 trials were presented in a different random order for each child, and the total 241 

duration of the task was approximately 5 minutes. 242 

 243 

3. Results 244 

 245 

Effect of the strength of the number/length interference 246 

Three children systematically alternated the right and left responses throughout the task 247 

without following the instructions. Their data were removed from the analyses described 248 

below. One child’s performance fell over the average ± 2.5 standard deviations on both 249 

accuracy levels for numerically equal and different trials and was not further analyzed, which 250 

led to a total of 89 children included in the analyses. All the results of the statistical analyses 251 

reported below were similar when adding the data from this child. For each child, we 252 

computed the average accuracy score on the 24 test trials (same number of dots in each row) 253 
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for each length ratio. Children judged the two rows as containing a different number of dots 254 

89% of the time across all trials. However, a repeated-measures ANOVA using length ratio as 255 

a within-subject factor showed a significant effect of the ratio on the children’s performances, 256 

F(3, 264) = 24.36, p < .0001, η�
�= .22, with accuracy scores increasing with the length ratio 257 

(1:2 = 4.31%; 2:3 = 4.12%; 6:7 = 12.92%;  9:10 = 22.85%). Post hoc Bonferroni tests 258 

confirmed a significant difference in performance between the 2:3 and 6:7 length ratio (p < 259 

.01) and between the 6:7 and 9:10 length ratio (p < .001) but not between the first two length 260 

ratios (p = 1, Figure 2).  261 

 262 

 263 

It is worth noting that 86 of the 89 children who judged two numerically equal rows as 264 

different subsequently stated that there were more dots in the longer row (significant Binomial 265 

tests, p < .012), confirming the use of a misleading “length equals number” rather than a 266 

“density equals number” strategy. We computed, for each participant, the slope of the linear 267 

regression of the accuracy scores against the level of length ratio. This measure allowed us to 268 

evaluate individual differences in the impact of the length ratio in the numerical same-269 

different task. We observed a significant correlation between this slope and the slope obtained 270 

Figure 2: Performance on the numerically equal trials of the numerical estimation task, for 
each level of length ratios between the two rows of dots. Error bars represent ± one standard 
error of the mean. 
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from the accuracy scores on the 16 filler trials (numerically different rows), r(87) = -0.86, p < 271 

.001, showing that the ratio of length impacted the children’s performances both on the 272 

numerically equal and different trials, and confirming the reliability of our measure.  273 

 274 

Effect of the spontaneous orientation to numerical and nonnumerical dimensions of 275 

magnitude 276 

Despite the same instructions being repeated throughout the SOMAG task, some children had 277 

a hard time choosing sorting criteria. Of the 89 children included in the analyses of the 278 

numerical same-different task, 13 children did not follow the instructions of the SOMAG task 279 

and systematically alternated between the left and right response keys. These children might 280 

have been confused by the absence of a clear rule to follow and decided to follow a reassuring 281 

strategy. Their data were removed from the following analyses, which were run on a total of 282 

76 children. We verified that the effect of length ratio on the performance in the same-283 

different task was still present in this sample (F(3, 225) = 23.6, p < .001, η�
� = .22), with 284 

similar increasing accuracy scores (1:2 = 4.39%; 2:3 = 3.73%; 6:7 = 13.16%; 9:10 = 24.34%). 285 

The SOMAG task provided individual scores corresponding to the total number of times each 286 

dimension of magnitude (numerosity, Size, Spacing) was spontaneously chosen as a sorting 287 

criterion by the child in the three experimental conditions (NumSize, NumSpace, and 288 

SizeSpace). We ran correlational analyses between the SOMAG task scores and children’s 289 

average performances in the numerical same-different task (see Table 1 for a full description 290 

of the correlations). The average performance in the test trials of the numerical same-different 291 

task (i.e., trials in which there was a conflict between number and length/field area) was 292 

associated with the score in the NumSpace condition of the SOMAG task, r(74) = .30, p < 293 

.01, but not with the NumSize or the SizeSpace condition, p > .49. This correlation remained 294 

significant after controlling for the exact age of the participants, r(74) = .35, p < .01. This 295 
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association showed that children who chose to sort the cards according to their numerosity 296 

rather than the spacing of the dots in the SOMAG task were also more likely to make correct 297 

numerical judgments regardless of the difference in the spacing of the dots between the two 298 

rows in the numerical same-different task (Figure 3).  299 

 300 

 301 

Note that, while there was a significant correlation between the two SOMAG conditions 302 

involving Size (r(74) = .75, p < .001) we found no significant relation between the two 303 

conditions of the SOMAG involving the Number dimension (r(74) = .03, p = .77, Table 1). 304 

Thus, choosing Number as a sorting criterion over Spacing was not systematically related to a 305 

general tendency of orienting towards numerical over nonnumerical dimensions of magnitude. 306 

A multiple regression analysis confirmed that adding the NumSize and SizeSpace conditions 307 

to the model did not significantly change the observed relation between NumSpace and our 308 

same-different task (∆R2 = .01, F(2, 72) < 1). 309 

 310 

 311 

 312 

 313 

Figure 3: Correlation between the spontaneous orientation to Magnitudes in the three 
experimental conditions of the SOMAG task and the performance in the numerical estimation 
task. 
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 314 

 315 

4. Discussion 316 

By conjointly taking into account the impact of the strength of the interference between 317 

numerical and nonnumerical dimensions of magnitude and individual differences in 318 

spontaneous orientation to number, the current study shed new light on the mechanisms 319 

underlying the development of children’s ability to abstract number. We showed that both 320 

factors significantly contribute to children’s ability to handle the number/length interference 321 

in a Piaget-like same-different numerical task. 322 

First, we provided evidence that a systematic manipulation of the length ratio between the two 323 

rows of dots in a Piaget-like same/different numerical estimation task affects children’s 324 

performance. Specifically, we found that children’s ability to make a “same” judgment on two 325 

rows containing an equal number of dots decreased progressively as the difference in the 326 

lengths of the two rows increased. Thus, children’s performance on this task decreased as the 327 

interference between the nonnumerical and numerical magnitudes increased. This result adds 328 

further support to the idea that the performance observed in numerical judgement tasks are 329 

Measures 1 2 3 4 

1. Same-Different Task -  0.3 ** 0.06 0.08 

2. SOMAG NumSpace 
(Number) 

 - 0.03 0.14 

3. SOMAG NumSize 
(Number) 

  - - 0.75 *** 

4. SOMAG SizeSpace (Size)    - 

Table 1: Table of correlations between the performance on the test trials of the same-different 
task and the different SOMAG conditions. For each of the SOMAG conditions, the 
correlations were computed based on the dimension between parentheses.  
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impacted by nonnumerical magnitudes, even in a same-different task thought to tap more 330 

directly into magnitude representation (Van Opstal & Verguts, 2011).  331 

One of the key advantages of the Piaget-like same/different numerical estimation task 332 

designed in the present study is it allows systematic manipulation of the strength of the 333 

interference between number and a nonnumerical dimension, with a fixed level of numerical 334 

difficulty. Indeed, in our test trials (where the two rows contained the same number of 335 

tokens), the evolution of the performance cannot be explained in terms of numerical difficulty 336 

and can only be attributed to an influence of the nonnumerical aspects of the task. We argue 337 

that manipulating the length ratio modified the strength of the interference between length and 338 

number, and concurrently the probability to rely on the “length equals number” misleading 339 

heuristic. In turn, this manipulation varied the level of inhibitory control required to block 340 

such a misleading strategy in order to perceive the numerical equivalence in our same-341 

different task. This is in line with previous findings showing that the inhibition of the ‘length 342 

equals number’ strategy is needed to overcome systematic errors in a Piaget-like number-343 

conservation task (Houdé & Guichart, 2001, Houdé et al., 2011).   344 

Second, we found that children tended to make fewer errors in the numerical same-different 345 

task when they sorted the cards in the SOMAG task more frequently by number than by 346 

spacing. This correlation suggests that the prepotency to rely on the ‘length equals number’ 347 

misleading strategy in the number conservation task is also dependent on individual 348 

differences in children’s spontaneous orientation towards relevant or irrelevant dimensions of 349 

the stimuli. 350 

Note that the children’s performance in our numerical same-different task was not related to 351 

their spontaneous orientation towards number over size or towards size over spacing, as 352 

assessed by the SOMAG task. This is consistent with the material of our same-different task, 353 

whereby the size of the dots is maintained as a constant and only dimensions related to 354 
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density and field area vary. Thus, our results suggest a specificity of spontaneous orientation 355 

towards magnitudes, with different predictive values of orientation towards number over size 356 

v. over spacing, depending on the experimental context and/or possibly age. This hypothesis 357 

is further supported by the lack of correlation between the NumSize and NumSpace 358 

conditions in the SOMAG task. 359 

This specificity is interesting to put in perspective with the results reported in the study of 360 

Viarouge et al. (2018) based on data collected for the same group of children. These results 361 

showed that both the NumSize and the NumSpace SOMAG conditions explained significant 362 

and distinct parts of the variance in the performance on Size/Number incongruent trials of a 363 

nonsymbolic numerical comparison task.  364 

The different patterns of correlation with the SOMAG reported in the current study might be 365 

explained by differences between the numerical same-different and comparison tasks. As 366 

mentioned above, one important aspect of the current study is that the same-different task 367 

allows separating the Size and Spacing dimensions more clearly than in the numerical 368 

comparison tasks, such as the one used by Viarouge et al. (2018). Indeed, in the latter task, 369 

given that the Spacing dimension is related both to field area and sparsity (DeWind et al., 370 

2015), variations in these dimensions could have occurred, which in turn might explain why 371 

the NumSpace condition was correlated with performance on Size/number incongruent trials. 372 

Importantly, in the numerically equal trials of our same-different task, both the size and total 373 

surface area of the two rows of dots are maintained as constant, and the impact of different 374 

levels of dots spacing in the context of a fixed numerical difficulty is fully isolated. Another 375 

potential explanation for this different pattern of correlations might have to do with what the 376 

different conditions of the SOMAG are actually capturing. The correlation between the two 377 

conditions involving Size suggests that children’s choices were strongly influenced by this 378 

dimension. Added to the lack of correlation between the NumSpace and the other two 379 
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conditions, this suggests that the NumSpace condition might be capturing children’s 380 

spontaneous orientation to Number more specifically. This could then explain why this 381 

condition relates to both tasks involving interferences with number, regardless of the 382 

competing nonnumerical dimension. 383 

A limitation of our study is the lack of a separate measure of children’s inhibitory control 384 

ability. This would have allowed us to determine the respective contribution of inhibitory 385 

control ability and spontaneous orientation towards number over spacing to the performance 386 

observed in our Piaget-like same-different task. Further studies are needed to better 387 

understand the relation between the ability to process number in contexts in which irrelevant 388 

non-numerical dimensions interfere with it, the spontaneous orientation towards relevant and 389 

irrelevant magnitudes, and the ability to inhibit these irrelevant dimensions. 390 

Finally, our study provides new insights into the possible mediating factors of the relation 391 

between early numerical abilities and formal mathematics. In particular, these findings help 392 

specify the mechanisms involved in the abstraction of number by suggesting to take into 393 

account individual differences in spontaneous orientation to numerical and nonnumerical 394 

magnitudes. Indeed, recent studies have questioned the predictive value of numerical 395 

intuitions for math achievement. In particular, some authors have suggested that inhibitory 396 

control acts as a mediating factor of this relation, with mixed results. According to this view, 397 

children’s capacity to grasp the invariance of number with regard to other dimensions of 398 

magnitude would be crucial for their true understanding of the concept of number, beyond the 399 

precision of their early numerical representations. This capacity to abstract number from other 400 

quantities might be particularly important in early school years, when the covariance of 401 

number with dimensions such as length might be unintentionally reinforced through 402 

education. For instance, the use of nonsymbolic representations of integers via rows of evenly 403 

spaced images might strengthen the misleading “number equals length” heuristic.  404 
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 405 

 406 

5. Conclusion 407 

Altogether, these results indicated that the development of numerical representations in 408 

children relies on a variety of factors contributing to children’s ability to abstract number 409 

from other irrelevant, nonnumerical dimensions of magnitude. In particular, we showed that 410 

conserving responses in a Piaget-like numerical estimation task appear progressively 411 

dependent on the saliency of the numerical dimension. This saliency depended both on the 412 

degree of interference with nonnumerical magnitudes and on individual differences in 413 

spontaneous orientation towards these dimensions. 414 

Our results also provided additional evidence that cognitive development does not rely 415 

exclusively on the acquisition of knowledge of increasing complexity (Piaget, 1952) but also 416 

on children’s ability to inhibit misleading strategies and previously acquired knowledge 417 

(Bjorklund & Harnishfeger, 1990; Houdé, 2000) and ability that can be expressed more or 418 

less easily by the children depending on the context (i.e., the level of interference) and their 419 

spontaneous orientation towards different dimensions of the context.  420 

In light of current debates regarding the predictive value of numerical intuitions for math 421 

achievement, our study helps specify the factors involved in numerical development and 422 

provides new insights regarding the possible mediating factors of this relation.   423 
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