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Several problems, issued from physics, biology or the medical science, lead to parabolic equations set in two sub-domains separated by a membrane with selective permeability to specic molecules. The corresponding boundary conditions, describing the ow through the membrane, are compatible with mass conservation and energy dissipation, and are called the Kedem-Katchalsky conditions. Additionally, in these models, written as reaction-diusion systems, the reaction terms have a quadratic behaviour.

M. Pierre and his collaborators have developed a complete L 1 theory for reaction-diusion systems with dierent diusion. Here, we adapt this theory to the membrane boundary conditions and prove the existence of weak solutions when the initial data has only L 1 regularity using the truncation method for the nonlinearities. In particular, we establish several estimates as the W 1,1 regularity of the solutions. Also, a crucial step is to adapt the fundamental L 2 (space, time) integrability lemma to our situation.

Introduction

We analyse the existence of a global weak solution for a reaction-diusion problem of m species which diuse through a permeable membrane. This kind of problem is described by the so-called Kedem-Katchalsky conditions [START_REF] Kedem | A physical interpretation of the phenomenological coecients of membrane permeability[END_REF] and has been used in mathematical biology recently. They can describe transport of molecules through the cell/nucleus membrane [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF], the ux of cancer cells through thin interfaces [START_REF] Chaplain | Derivation and application of eective interface conditions for continuum mechanical models of cell invasion through thin membranes[END_REF] or solutes absorption processes through the arterial wall [START_REF] Quarteroni | Mathematical and numerical modeling of solute dynamics in blood ow and arterial walls[END_REF].

To describe the model, we consider, as depicted in Fig. 1, an inner transverse C 1 membrane Γ separating a domain Ω in two connected sub-domains Ω 1 and Ω 2 ,

Ω = Ω 1 ∪ Ω 2 ⊂ R d , d ≥ 2, Γ = ∂Ω 1 ∩ ∂Ω 2 .
We assume Ω 1 and Ω 2 to be piecewise C 1 domains. In order to set boundary conditions, we introduce Γ 1 = ∂Ω 1 \ Γ and Γ 2 = ∂Ω 2 \ Γ. We assume that Γ 1 and Γ 2 are non-empty. We could also consider a dierent geometry such that Ω 1 includes Ω 2 and the membrane becomes the boundary of the inner domain (see for example [START_REF] Brezis | Reinforcement problems for elliptic equations and variational inequalities[END_REF][START_REF] Li | Eective boundary conditions for the heat equation with interior inclusion[END_REF][START_REF] Li | Bulk-Surface Coupling: Derivation of Two Models[END_REF]). In contrast, the biological situation that we analyse is presented in Fig. 1 and that is why we leave open the problem with an inner domain.

Figure 1: Example of spatial domain Ω with an inner transverse membrane Γ which decomposes Ω in open sets Ω 1 and Ω 2 . The gure also shows the outward normals to the membrane.

Ignoring a possible drift, the diusion through the membrane is described by the system, for species i = 1, .., m,

           ∂ t u i -D i ∆u i = f i (u 1 , ..., u m ),
in Q T := (0, T ) × Ω,

u i = 0, in Σ T := (0, T ) × (Γ 1 ∪ Γ 2 ), ∂ n 1 u 1 i = ∂ n 1 u 2 i = k i (u 2 i -u 1 i ), in Σ T,Γ := (0, T ) × Γ, u i (0, x) = u 0,i (x) ≥ 0, in Ω, (1) 
in which D i and k i are positive constants and n λ is the outward normal of the domain Ω λ for λ = 1, 2 such that n 2 = -n 1 . In particular, we use the notation ∂ n 1 u λ i = ∇u λ i • n 1 . We denote each species density for i = 1, ..., m with

u i = u 1 i , in Ω 1 , u 2 i , in Ω 2 ,
since each one lives in both sub-domains Ω λ , for λ = 1, 2. There is a jump of u i , i = 1, ..., m across the membrane Γ that we denote by (u 2 i -u 1 i ) =: [u i ]. More precisely, for x ∈ Γ and for all i = 1, ..., m, we dene the trace in Sobolev sense

u 1 i (x) = lim h→0 - u i (x + h n 1 (x)), u 2 i (x) = lim h→0 - u i (x + h n 2 (x)).
The interest of this system stems from the boundary conditions. In fact, besides standard Dirichlet boundary condition on Γ λ , for λ = 1, 2, we have used the Kedem-Katchalsky membrane conditions [START_REF] Kedem | A physical interpretation of the phenomenological coecients of membrane permeability[END_REF] on Γ. These conditions are made up by two principles: the conservation of mass, which brings to ux continuity, and the dissipation principle such that the L 2 -norm of the solution is decreasing in time. This last property gives us that the ux is proportional to the jump of the density through the membrane with proportionality coecient k i , the membrane permeability constant. These Kedem-Katchalsky interface conditions were introduced in 1961 in [START_REF] Kedem | A physical interpretation of the phenomenological coecients of membrane permeability[END_REF] in a thermodynamic context and they were applied to biological problems only later. In 2002, Quarteroni & all. [START_REF] Quarteroni | Mathematical and numerical modeling of solute dynamics in blood ow and arterial walls[END_REF] used these interface conditions in the study of the dynamics of the solute in the vessel and in the arterial wall. In 2006, Calabrò and Zunino [START_REF] Calabrò | Analysis of parabolic problems on partitioned domains with nonlinear conditions at the interface: application to mass transfer through semi-permeable membranes[END_REF] applied their theoretical results on elliptic partial dierential equations to the study of the behavior of a biological model for the transfer of chemicals through thin biological membranes. In 2007, Serani, in her PhD thesis [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF], studied a model of the intracellular signal transduction processes in which molecules freely diuse and the membrane transport events are allowed. In 2010, Cangiani and Natalini [START_REF] Cangiani | A spatial model of cellular molecular tracking including active transport along microtubules[END_REF] considered models of nuclear transport of molecules such as proteins in living cells taking into account the active transport of molecules along the cytoplasmic microtubules. We also nd Kedem For the applications we have in mind, System (1) has mass control, membrane conditions are conservative, and we are interested in developing a theory of weak solutions based on this L 1 bound even if the reaction terms are, for instance, quadratic. For usual reaction-diusion systems, such a theory has been developed in a series of papers initiated by M. Pierre and developed later by several authors. In particular, we extend, to the case of membrane conditions, the method proposed by M. Pierre in [START_REF] Baras | Problemes paraboliques semi-lineaires avec donnees mesures[END_REF][START_REF] Bothe | Quasi-steady-state approximation for a reactiondiusion system with fast intermediate[END_REF][START_REF] Pierre | Global existence in reaction-diusion systems with control of mass: a survey[END_REF] and extended by E.-H. Laamri and M. Pierre [START_REF] Laamri | Global existence for reactiondiusion systems with nonlinear diusion and control of mass[END_REF], E.-H. Laamri and B. Perthame [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF]. This method develops a theory to treat high order nonlinearities and low regularity initial data compatible with the natural L 1 regularity of solutions. Moreover, we show that for all i = 1, ..., m, λ = 1, 2, u λ i ∈ W 1,1 (Ω λ ) (and even better), but it does not have L 1 derivatives in the whole Ω. In any case, since u i , i = 1, ..., m is a Sobolev function in Ω 1 and Ω 2 , the trace makes sense in ∂Ω and thus the denition of the jumps [u i ], i = 1, ..., m is meaningful. Finally, we dene u = (u 1 , ..., u m ) the vector solution which is characterized by nonnegative components and, as we will see later on, they are naturally L 1 functions but not L 2 . One of the diculties of a membrane problem is to derive an L 2 (Q T ) estimate.

In this work, we prove analytical results concerning existence of solutions and regularity of solutions in the case of the reaction-diusion systems with Kedem-Katchalsky conditions (1). The paper is composed of two sections. In Section 1, we introduce the assumptions and our main result about global existence of a weak solution for the Problem (1) with related lemmas. We also present a specic example in order to give a more concrete idea of the type of systems of interest for us. In Section 2, we prove this result introducing the approximation model of (1) (Subsection 2.1), proving and applying an a priori L 2 estimate on the solution (Subsection 2.2), proving a theorem about the existence of a supersolution of (1) (Subsection 2.3) and a second one on the existence of a solution (Subsection 2.4). At the end of this work, the reader can nd three Appendices. Appendix A and Appendix B contain the proof of a regularity and compactness lemma useful in the third step of the proof of our main result. Appendix C provides Sobolev and Poincaré embeddings in the case of membrane conditions and, in general, of non-uniform zero boundary conditions.

1 Assumptions and main results

Assumptions

We gather several assumptions on the reaction term f (u) = (f 1 (u), ..., f m (u)) that are used separately throughout the paper. With some constants C, C M and M > 0, we assume that for all i = 1, ..., m and for all u = (u 1 , ..., u m ) ∈ [0, +∞) m ,

|f i (u)| ≤ C 1 + m j=1 u 2 j , (sub-quadratic growth), (2) 
m j=1 f j (u) ≤ C 1 + m j=1 u j , (mass control), (3) 
f i (u 1 , ..., u i-1 , 0, u i+1 , ..., u m ) ≥ 0, (quasi-positivity), ( 4 
)
|f i (u) -f i (v)| ≤ C M m j=1 |u j -v j |, ∀u, v ∈ [0, M ] m . (5) 
Thanks to assumption (4), solutions u i are nonnegative, and (3) provides us with mass control since the total integral of the solution is bounded with exponential growth in time.

We do not consider that the f i 's depend on (x, t) ∈ Q T , but we could extend these assumptions also to that case. We rather give an example modeling intracellular transport phenomena [START_REF] Cangiani | A spatial model of cellular molecular tracking including active transport along microtubules[END_REF][START_REF] Dimitrio | Modelling nucleocytoplasmic transport with application to the intracellular dynamics of the tumor suppressor protein p53[END_REF][START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF] in order to understand the class of systems that we have in mind. Molecule tracking across the nuclear envelope has been studied using reaction-diusion equations with Kedem-Katchalsky conditions. Small molecules can pass through nuclear pore complexes (NPCs). The translocation of larger molecules is allowed by a system for active transport across the NPCs. The cargo protein binds to a nucleocytoplasmic transport receptor known as importin, which mediates the transport throught the nuclear envelope. The energy needed is provided by the Ran complex. In order to reproduce this intracellular dynamics, Cangiani and Natalini proposed a model in [START_REF] Cangiani | A spatial model of cellular molecular tracking including active transport along microtubules[END_REF]. We denote by Ω n and Ω c respectively the nuclear and the cytoplasmic compartment with Γ nc = ∂Ω n the interface between them. In each compartment, we can write a system of coupled reaction-diusion equations of type

                     ∂ t R t = d r ∆R t + f rt (R t , T, T r ), ∂ t R d = d r ∆R d + f rd (R t ), ∂ t T r = d tr ∆T r + f tr (R t , T, T r ), ∂ t C = d c ∆C + f c (C, T ), ∂ t T = d t ∆T + f t (R t , T, T r , C), ∂ t T c = d tc ∆T c + f tc (C, T ). (6) 
The two systems are coupled through Neumann homogeneous boundary conditions and Kedem-Katchalsky transmission conditions. Reactions have at most quadratic growth and they satisfy hypothesis (2)(5). This is only an example of a biological system satisfying our assumptions. Its relevance will bring us to develop numerical results aiming to study biological phenomena tting with the theory presented in this paper.

Main result

The aim is to prove global existence when the f i 's are at most quadratic and for a membrane problem as [START_REF] Adams | Sobolev spaces[END_REF]. As mentioned before, we follow the literature concerning existence results for reaction-diusion systems by M. Pierre [START_REF] Baras | Problemes paraboliques semi-lineaires avec donnees mesures[END_REF][START_REF] Bothe | Quasi-steady-state approximation for a reactiondiusion system with fast intermediate[END_REF][START_REF] Pierre | Global existence in reaction-diusion systems with control of mass: a survey[END_REF], by E.-H. Laamri and M. Pierre [START_REF] Laamri | Global existence for reactiondiusion systems with nonlinear diusion and control of mass[END_REF] and by E.-H. Laamri and B. Perthame [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF]. A local result in the case of membrane conditions is available but taking into account local Lipschitz reaction terms with u 0 ∈ H s , for s > d 2 (e.g. [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF]).

Our main contribution is the following global existence theorem with initial data of low regularity and reaction terms at most quadratic. We rst enunciate some denitions and introduce the appropriate test functions space for our problem. We recall that

Q T = (0, T ) × Ω, Σ T = (0, T ) × (Γ 1 ∪ Γ 2 ), Σ T,Γ = (0, T ) × Γ.
Denition 1.1. For i = 1, ..., m, we dene the space of test functions

D i := (ψ 1 , ψ 2 ) ∈ C ∞ ([0, T ] × Ω 1 ) × C ∞ ([0, T ] × Ω 2 ), ψ ≥ 0, ψ(•, T ) = 0, ψ = 0 in Σ T , ∂ n 1 ψ 1 = ∂ n 1 ψ 2 = k i (ψ 2 -ψ 1 ) in [0, T ] × Γ , where ψ = ψ 1 , in Ω 1 , ψ 2 , in Ω 2 .
We investigate the existence of a global weak solution of System (1) dened by duality as Denition 1.2. We dene a weak solution of System (1) as a function u = (u 1 , ..., u m ) such that for all T > 0 and i = 1, ..., m,

u i ∈ L 1 (Q T ), f i (u) ∈ L 1 (Q T ) and for ψ ∈ D i , it holds - Ω ψ(0, x)u 0,i + Q T u i (-∂ t ψ -D i ∆ψ) = Q T ψf i . (7) 
We consider the space H 1 and its dual as in Denitions 1.3 and 1.4.

Theorem 1.1 (Existence and regularity). Assume (2)- [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF] and that k 1 = ... = k m . Then, for all u 0 = (u 0,1 , ..., u 0,m ), such that u 0 ∈ (L 1 (Ω) + ∩ (H 1 ) * ) m , System (1) has a nonnegative global weak solution in the sense of Denition 1.2 which satises for all T > 0 and i = 1, ..., m,

u i ∈ L 2 (Q T ) and (1 + |u i |) α ∈ L 2 0, T ; H 1 (Ω) , ∀α ∈ 0, 1 2 , (8) 
u i ∈ L β 0, T ; W 1,β (Ω)
and

u i ∈ L β 0, T ; L β (Γ) , ∀β ∈ 1, d d -1 . (9) 

Preliminary lemmas and proof organisation

In order to prove this result, we follow four main steps according to Pierre's method.

First step. Regularization process. We build a regularized problem with a nonnegative classical global solution u n .

Second step. An L 2 lemma. We extend the Laamri-Perthame [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF] a priori L 2 estimate of the solution given an L 1 initial data to the case of membrane conditions (see Subsection 2.2). In particular, we gain Lemma 1.1 (Key estimate with L 1 data and membrane conditions). Consider smooth func-

tions z i : [0, +∞) × Ω → R + , f i : [0, +∞) m → R, for all i = 1, ..., m, with f i satisfying the assumption (3). Assume z 0,i ∈ L 1 (Ω) ∩ (H 1
) * and that the equation holds with

k i = k            ∂ t z i -D i ∆z i = f i (z 1 , ..., z m ), in Q T , z i = 0, in Σ T , ∂ n 1 z 1 i = ∂ n 1 z 2 i = k i (z 2 i -z 1 i ), in Σ T,Γ , z(0, x) = z 0,i (x) ≥ 0, in Ω. (10) 
Then, for some constant C 3 depending on z 0 (H 1 ) * , the inequality holds

m i=1 Q T |z i | 2 ≤ C 3 .
From this lemma we derive an L 1 bound for the reaction term f n (u n ) of the regularized system thanks to [START_REF] Baras | Problemes paraboliques semi-lineaires avec donnees mesures[END_REF]. The proof uses the solution of an elliptic problem -∆w = f with membrane conditions which has a unique solution thanks to the Lax-Milgram theorem (see [START_REF] Evans | Partial dierential equations[END_REF], p.297) and we recall its statement in our context.

We assume H a real Hilbert space with norm • and inner product (•, •). Let •, • denote the pairing of H with its dual space. Theorem 1.2 (Lax-Milgram theorem). Given B : H × H → R, a bilinear mapping for which there exist constants γ, δ > 0 such that for all w, z ∈ H,

|B[w, z]| ≤ γ w z (continuity) , |B[w, w]| ≥ δ w 2 (coercivity).
Finally, let f : H → R be a bounded linear functional on H. Then there exists a unique w ∈ H such that

B[w, z] = f, z , ∀z ∈ H.
We can apply the Lax-Milgram theorem for membrane problems (see [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF]). In order to justify this, we introduce some denitions. The rst ones concern the space H = H 1 under consideration, the second is the bilinear form. Denition 1.3. We dene

H 1 = H 1 0,Γ (Ω 1 )×H 1 0,Γ (Ω 2 ) as the Hilbert space of functions H 1 (Ω 1 )× H 1 (Ω 2 ) satisfying Dirichlet homogeneous conditions on Γ λ , λ = 1, 2.
We endow it with the norm

w H 1 = w 1 2 H 1 (Ω 1 ) + w 2 2 H 1 (Ω 2 ) 1 2 .
We let (•, •) be the inner product in H 1 and •, • denote the pairing of H 1 with its dual space.

Denition 1.4. We introduce the dual space of

H 1 as (H 1 ) * = H 1 0,Γ (Ω 1 ) × H 1 0,Γ (Ω 2 ) * = H 1 0,Γ (Ω 1 ) * × H 1 0,Γ (Ω 2 ) * .
Now, we dene a proper bilinear form associated to the Laplacian operator considering Dirichlet conditions on Γ λ , λ = 1, 2 and membrane conditions on Γ. Denition 1.5. We consider the continuous, coercive bilinear form B :

H 1 × H 1 → R, such that B[w, z] = Ω ∇w∇z + Γ k i (w 2 -w 1 )(z 2 -z 1 ), for w, z ∈ H 1 .
We can readily check continuity and coercivity.

B is continuous: thanks to the Cauchy-Schwarz inequality and the continuity of the trace, we can write

|B[w, z]| ≤ 1≤λ≤2 ∇w λ L 2 (Ω λ ) ∇z λ L 2 (Ω λ ) + Ck i [w] L 2 (Γ) [z] L 2 (Γ) ≤ 1≤λ,σ≤2 w λ H 1 (Ω λ ) z λ H 1 (Ω λ ) + Ck i w λ H 1 (Ω λ ) z σ H 1 (Ω σ ) ≤ C w H 1 z H 1 , B is coercive: indeed, we can estimate B[w, w] = Ω |∇w| 2 + Γ k i |w 2 -w 1 | 2 ≥ C w 2 H 1 ,
since, thanks to the Dirichlet conditions on Γ λ , λ = 1, 3, and to Theorem C.3, we have

w λ H 1 (Ω λ ) ≤ C ∇w λ L 2 (Ω λ ) , for λ = 1, 2.
Therefore, using the Lax-Milgram theorem, taking an L 2 right-hand side, the elliptic membrane problem has a unique solution w ∈ H 1 and, thanks to the RieszFréchet representation theorem ( [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], p.135) and to the equivalence of the norm B[w, w]

1
2 and the original one in H 1 , we have

f (H 1 ) * = B[w, w] 1 2 . (11) 
Moreover, throughout the paper, we are also allowed to integrate by parts functions in the Hilbert space H 1 , considering also the membrane.

Third step. Existence of a global weak supersolution. We prove a rst theorem which asserts the convergence in L 1 (Q T ) of u n to a supersolution of System [START_REF] Adams | Sobolev spaces[END_REF]. Another central result is the following compactness lemma which explains the regularity stated in Theorem 1.1 (see Appendix A and B), Lemma 1.2 (A priori bounds). We consider w solution of the problem in dimension d ≥ 2

           ∂ t w -D∆w = f, in Q T , w = 0, in Σ T , ∂ n 1 w 1 = ∂ n 1 w 2 = k(w 2 -w 1 ), in Σ T,Γ , w(0, x) = w 0 (x) ≥ 0, in Ω, (12) 
with f ∈ L 1 (Q T ) and w 0 ∈ L 1 (Ω). Then,

• w ∈ L β 0, T ; W 1,β (Ω) , ∀β ∈ 1, d d-1
and

(1 + |w|) α ∈ L 2 0, T ; H 1 (Ω) for α ∈ 0, 1 2 . • The mapping (w 0 , f ) -→ w is compact from L 1 (Ω) × L 1 (Q T ) into L 1 0, T ; L γ1 (Ω) , for all γ 1 < d d-2 and L γ2 (Q T ) for all γ 2 < 2+d d .
• The trace mapping

(w 0 , f ) -→ T r Γ (w) ∈ L β 0, T ; L β (Γ) , β ∈ 1, d d-1
is also compact.

Fourth step. Existence of a global weak solution. We conclude with a second theorem asserting the convergence in L 1 (Q T ) of u n i , i = 1, ..., m to a solution of System (1).

Proof of the existence result

We are now ready to prove Theorem 1.1 according to the previous steps.

Regularized problem

First of all, we approximate the initial data and the reaction term as

u n 0,i := ϕ δn * inf{u 0,i , n} and f n i (u n ) := f i (u n ) 1 + 1 n 1≤j≤m |f j (u n )| . ( 13 
)
For the initial data, we consider a regularized version thanks to a convolution with a mollier sequence ϕ δn which is only used to assert existence in the framework of [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF]. We readily check that f n satises assumptions (2)-( 5). In particular, for [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], there is a C M such that

|f n i (u) -f n i (v)| ≤ C M m i=1 |u i -v i |, ∀u, v ∈ [0, M ] m . (14) 
Moreover, we have

|f n i | ≤ n and n M := sup u∈[0,M ] m ,i=1,2 |f n i (u) -f i (u)| ≤ C(M )m n . ( 15 
)
We consider an approximation of System (1), for all i = 1, ..., m,

           ∂ t u n i -D i ∆u n i = f n i (u n 1 , ..., u n m ), in Q T , u n i = 0, in Σ T , ∂ n 1 u n,1 i = ∂ n 1 u n,2 i = k i (u n,2 i -u n,1 i ), in Σ T,Γ , u n i (0, x) = u n 0,i (x), in Ω. (16) 
Since f n is uniformly bounded for xed n, from [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF] we know that there exists a global classical solution u n = (u n 1 , ..., u n m ) to ( 16).

2.2

The L 2 lemma with membrane conditions

The second step of the proof is to apply to u n i , i = 1, ..., m the following Laamri-Perthame [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF] version of Pierre's lemma, adding our membrane conditions. Lemma 2.1 (Key estimate with L 1 data and membrane conditions). Consider smooth functions z i : [0, +∞) × Ω → R + , f i : [0, +∞) m → R, for all i = 1, ..., m, with f i satisfying the assumption (3). Assume z 0,i ∈ L 1 (Ω) ∩ (H 1 ) * and that the dierential equation holds with

k i = k            ∂ t z i -D i ∆z i = f i (z 1 , ..., z m ), in Q T , z i = 0, in Σ T , ∂ n 1 z 1 i = ∂ n 1 z 2 i = k i (z 2 i -z 1 i ), in Σ T,Γ , z(0, x) = z 0,i (x) ≥ 0, in Ω. (17) 
Then, for some constant C 3 depending on z 0 (H 1 ) * , the inequality holds

m i=1 Q T |z i | 2 ≤ C 3 .
It is an open problem to extend it to the case where the constants k i are dierent and it is also noticeable that the other proofs (time integration or duality) also apply only with the condition k i = k.

Proof. We consider u i = e -Ct z i for i = 1, ..., m, where C is the same constant than in [START_REF] Bathory | Existence and qualitative theory for nonlinear elliptic systems with a nonlinear interface condition used in electrochemistry[END_REF].

Substituting in the equation for z i , we obtain that for all i = 1, ..., m,

∂ t u i -D i ∆ u i = e -Ct [f i (z 1 , ..., z m ) -Cz i ],
with the same boundary and initial conditions as in [START_REF] Laamri | Global existence for reactiondiusion systems with nonlinear diusion and control of mass[END_REF] but for u i . Adding up and dening

U = m i=1 u i , V = m i=1 D i u i ,
we obtain

∂ t U -∆ V = e -Ct [ m i=1 f i (z 1 , ..., z m ) -C m i=1 z i ] ≤ Ce -Ct ≤ C, in Q T ( 18 
)
with conditions

       U = 0, in Σ T , ∂ n 1 U 1 = ∂ n 1 U 2 = k( U 2 -U 1 ), in Σ T,Γ , U (0, x) = U 0 (x) ≥ 0, in Ω.
Thanks to the Lax-Milgram theorem 1.2 (see also [START_REF] Brezis | Reinforcement problems for elliptic equations and variational inequalities[END_REF]), we may dene the solution of

         -∆ W = U , in Q T W = 0, in Σ T , ∂ n 1 W 1 = ∂ n 1 W 2 = k( W 2 -W 1 ), in Σ T,Γ .
So, at this point, with G = ∂ t W + V , we can write [START_REF] Li | Eective boundary conditions for the heat equation with interior inclusion[END_REF] as an elliptic inequality

             -∆G ≤ C, in Q T , G = 0, in Σ T , ∂ n 1 G 1 = ∂ n 1 G 2 = k(∂ t W 2 -∂ t W 1 ) + k m i=1 D i ( u 2 i -u 1 i ) = k[∂ t W ] + k[ V ] = k(G 2 -G 1 ), in Σ T,Γ . Lax-Milgram theorem 1.2 allows us to state the existence of a function G ∈ H 1 satisfying the system      -∆G = C, in Q T , G = 0, in Σ T , ∂ n 1 G 1 = ∂ n 1 G 2 = k(G 2 -G 1 ), in Σ T,Γ .
By comparison theorem [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF], we conclude that G ≤ G, in Q T . So, multiplying G by U and integrating over space, we compute, since U = -∆ W and G ≤ G,

Ω U G = - Ω ∆ W ∂ t W + Ω U V ≤ Ω U G ≤ Ω D U 2 2 + G 2 2D ≤ 1 2 Ω U V + C 1 ,
thanks to Young's inequality applied to √ D U and G √ D with D = min i=1,...,m D i > 0, see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], the fact that by denition D U ≤ V , and the L 2 -bound of G. Then, reorganising the terms on the right and left hand-side, we derive

- Ω ∆ W ∂ t W + 1 2 Ω U V ≤ C 1 .
Following Subsection 1.3 and the denition of the Hilbert space H 1 (see Denition 1.3), we can integrate by parts obtaining

1 2 d dt Ω |∇ W | 2 + 1 2 Ω U V ≤ ∂Ω ∂ n W ∂ t W + C 1 .
Next, we remark that

T 0 ∂Ω ∂ n W ∂ t W = T 0 Γ ∂ n 1 W 1 (∂ t W 1 -∂ t W 2 ) = - T 0 Γ k( W 2 -W 1 )∂ t ( W 2 -W 1 ) = - k 2 T 0 d dt Γ ( W 2 -W 1 ) 2 .
Therefore, integrating in time and using the relation [START_REF] Demengel | Functional spaces for the theory of elliptic partial dierential equations[END_REF], we arrive to

1 2 U (T ) 2 (H 1 ) * + 1 2 Q T U V ≤ 1 2 U 0 2 (H 1 ) * + C 1 . (19) 
Finally, thanks to Equation ( 19), we can assert that

m i=1 D i Q T u i 2 ≤ C 2 .
This concludes the proof of Lemma 2.1 since z 2 i = e 2Ct u i 2 .

Existence of a global weak supersolution

At this point we can complete the existence result of Theorem 1.1, since, thanks to Lemma 2.1 and to assumption (2), we know that the reaction term f n is bounded in L 1 . With this in hands, we can assert the existence of a supersolution of System (1).

Theorem 2.1 (Existence of a supersolution). Let u n = (u n 1 , ..., u n m ) be a nonnegative solution of the approximate System [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF]. Consider k 1 = ... = k m . As dened in [START_REF] Evans | Partial dierential equations[END_REF],

f n i (u n ) is bounded in L 1 (Q T ), for i = 1, ..., m and u n 0 → u 0 in L 1 (Ω).
Then, up to a sub-sequence, u n converges in L 1 (Q T ) and a.e. to a supersolution u of System [START_REF] Adams | Sobolev spaces[END_REF] which means that for i = 1, ..., m, and

β ∈ 1, d d-1 , f i (u) ∈ L 1 (Q T ), u i ∈ L β 0, T ; W 1,β (Ω) , T r Γ (u i ) ∈ L β 0, T ; L β (Γ) , - Ω ψ(0, x)u 0,i + Q T (-ψ t u i + D i ∇ψ∇u i ) + T 0 Γ D i k i [u i ][ψ] ≥ Q T ψf i , (20) 
for all ψ ∈ D i , ψ ≥ 0.

Proof. We divide the proof in several steps which are adaptations from Pierre's method.

Compactness of u n and T r Γ (u n ). Combining Lemma 2.1 and assumption (2), we notice

that f n i (u n ) is bounded in L 1 (Q T ) for i = 1, .
.., m. Next, we apply the compactness Lemma 1.2 (see also Lemma A.1 and its proof in Appendix A, B) to the solution u n of the approximate System [START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF]. Accordingly, after extraction, the following convergences, hold

               u n → u, in L 1 0, T ; L γ1 (Ω) m , ∀γ 1 ∈ 1, d d-2 , u n → u, a.e. in Q T , ∇u n ∇u, in [L β (Q T ) d ] m , ∀β ∈ 1, d d-1 , T r Γ (u n ) → T r Γ (u), in L 1 0, T ; L β (Γ) m , ∀β ∈ 1, d d-1 . (21) 
Pointwise convergence of the f n i 's. Since u n i satises [START_REF] Cañizo | Improved duality estimates and applications to reaction-diusion equations[END_REF] for all i = 1, ..., m, i.e.

-

Ω ψ(0, x)u n 0,i + Q T (-ψ t u n i + D i ∇ψ∇u n i ) + T 0 Γ D i k i [u n i ][ψ] = Q T ψf n i , (22) 
and our goal is to pass to the limit as n → +∞, we need to study the convergence of f n i . Thanks to the choice of f n : a.e. convergence of n M to zero and the continuity with respect to its argument, we infer

f n i (u n ) → f i (u) a.e. in Q T . By Fatou's lemma, we know that Q T |f (u)| ≤ lim inf n→+∞ Q T |f n (u n )| and, in particular, it holds f (u) ∈ L 1 (Q T ) m .
So far we did not prove L 1 -convergence of f n i (u n ), therefore we cannot pass to the limit in the Equation ( 22) obtaining a weak solution of System (1). However we can nd an inequality in the formulation of the weak solution of System (1), thus obtaining a supersolution. We arrive at this applying a truncation method.

Truncation method. The idea is that, with an appropriate truncation, we succeed in obtaining a reaction-diusion inequality in which the reaction terms are under control as n → +∞ with a xed truncation level. In this way, we are able to pass to the limit in the truncated weak supersolution formula, as n → +∞. At this point, bringing the truncation level to innity, we gain the supersolution property in Theorem 2.1.

In order to build the truncation T b at level b, since we will have to dierentiate twice T b , we replace T b by a C 2 -regularized version (otherwise T b would be a Dirac mass), still denoted by T b , so that on [0, +∞) we have

0 ≤ T b ≤ 1, -1 ≤ T b ≤ 0, T b (σ) = σ ∀σ ∈ [0, b], T b (σ) = 0 ∀σ ∈ (b, +∞).
We x η ∈ (0, 1) and we denote for all i = 1, ..., m,

U n i = j =i u n j , W n i = u n i + ηU n i .
The idea is to consider the limit for n → +∞, then η → 0 and, nally, b → +∞.

The main point is to use the inequality satised by v n := T b (W n i ), taking into account the previous properties of T b and T b ,

-∆v n = -∆T b (u n i + ηU n i ) = -T b (u n i + ηU n i )|∇u n i + η∇U n i | 2 -T b (u n i + ηU n i )[∆u n i + η∆U n i ] ≥ -T b (u n i + ηU n i )[∆u n i + η∆U n i ].
This implies

v n t -D i ∆v n ≥ T b (u n i + ηU n i )[f n i + η j =i f n j ] + ηT b (u n i + ηU n i ) j =i (D j -D i )∆u n j =: R n i + ηS n i ,
where

R n i = T b (u n i + ηU n i )[f n i + η j =i f n j ], S n i = T b (u n i + ηU n i ) j =i (D j -D i )∆u n j . (23) 
So the truncation T b (W n i ) solves the problem

                           v n t -Di∆v n ≥ R n i + ηS n i , v n | Γ λ = 0, λ = 1, 2, ∂ n 1 v n,1 | Γ = T b (u n,1 i + ηU n,1 i )[∂ n 1 u n,1 i + η∂ n 1 U n,1 i ] = T b (u n,1 i + ηU n,1 i )[ki(u n,2 i -u n,1 i ) + η j =i kj(u n,2 j -u n,1 j )] =: T b,n,1 V n i , ∂ n 1 v n,2 | Γ = T b (u n,2 i + ηU n,2 i )[∂ n 1 u n,2 i + η∂ n 1 U n,2 i ] = T b (u n,2 i + ηU n,2 i )[ki(u n,2 i -u n,1 i ) + η j =i kj(u n,2 j -u n,1 j )] =: T b,n,2 V n i , v n (0, x) = T b u n i (0, x) + ηU n i (0, x) . (24) 
Consequently, we may write for all i = 1, ..., m, for all ψ ∈ D i ,

- Ω ψ(0)v n (0) - Q T ψ t v n - T 0 Γ D i (ψ 1 ∂ n 1 v n,1 -ψ 2 ∂ n 1 v n,2 ) + D i Q T ∇v n ∇ψ ≥ Q T (R n i + ηS n i )ψ, - Ω ψ(0)v n (0) + Q T (-ψ t v n + D i ∇v n ∇ψ) - T 0 Γ D i V n i (ψ 1 T b,n,1 -ψ 2 T b,n,2 ) ≥ Q T (R n i + ηS n i )ψ. (25) 
So, as we said, the truncated function is a supersolution but with reaction terms (see the following) converging in L 1 or bounded independently from n.

• Limit for n → +∞ with b, η xed.

Since u n was a convergent solution (see ( 21)) and T b (W n i ) represents the truncation at level b with b xed, by the dominated convergence theorem,

v n = T b (W n i ) n→+∞ -→ T b (W i ) = T b (u i + ηU i ) in L 1 (Q T ) and a.e..
Since T b (σ) = 0 for σ > b, by denition, it holds R n i = 0 on the set u n i + ηU n i > b. But on u n i + ηU n i ≤ b, for s = 1, ..., m, u n s are uniformly bounded. In fact,

u n i ≤ b and u n j ≤ b η , ∀j = i. (26) 
By the dominated convergence theorem, using (3), we nd

R n i n→∞ -→ R i := T b (u i + ηU i )[f i + η j =i f j ] in L 1 (Q T ).
On the other hand, we remark that

∇v n = ∇T b (W n i ) = T b (u n i + ηU n i )[∇u n i + η∇U n i ] ∇v = T b (u i + ηU j )[∇u i + η∇U j ] in L 1 (Q T )
and we have also convergence of the traces on Γ and Γ λ , λ = 1, 2. Therefore, to pass to the limit as n → +∞ in [START_REF] Serafini | Mathematical models for intracellular transport phenomena[END_REF], we only need to control Q T ψS n i . We have (see the proof later on) Lemma 2.

([21]

) There exists C depending on b, ψ and the data, but not on n, η ∈ (0, 1) such that

Q T ψ S n i ≤ Cη -1 2 .
So we can pass to the limit as n → +∞ in ( 25) with b, η xed and we obtain

- Ω ψ(0)v(0) + Q T (-ψ t v + D i ∇v∇ψ) - T 0 Γ D i V i (ψ 1 T b (W 1 i ) -ψ 2 T b (W 2 i )) ≥ Q T R i ψ + η Q T S n i ψ ≥ Q T R i ψ -Cη 1 2 , with V i = [k i (u 2 i -u 1 i ) + η j =i k j (u 2 j -u 1 j )].
• Limit for η → 0 with b xed. Then,

W i → u i , V i → b i (u 2 i -u 1 i ) and R i → T b (u i )f i .
• Limit for b → +∞. Then, the truncation is converging to the function itself and its derivative to 1 and so we obtain the statement (20):

-

Ω ψ(0, x)u 0,i + Q T (-ψ t u i + D i ∇ψ∇u i ) + T 0 Γ D i k i [u i ][ψ] ≥ Q T ψf i .
We now turn to the proof of Lemma 2.2. Proof. Remembering [START_REF] Quarteroni | Mathematical and numerical modeling of solute dynamics in blood ow and arterial walls[END_REF], in order to prove Lemma 2.2, we need that

Q T ψT b (W n i ) j =i (D j -D i )∆u n j ≤ Cη -1 2 .
Consequently, we have to study the following integral

Q T ψT b (W n i )∆u n j = Q T div(ψT b (W n i )∇u n j ) -Q T div(ψT b (W n i ))∇u n j = T 0 Γ (ψ 1 T b (W n,1 i )∂ n 1 u n,1 j + ψ 2 T b (W n,2 i )∂ n 2 u n,2 j ) -Q T [T b (W n i )∇ψ + ψT b (W n i )∇W n i ]∇u n j .
We remark that

T 0 Γ (ψ 1 T b (W n,1 i )∂ n 1 u n,1 j + ψ 2 T b (W n,2 i )∂ n 2 u n,2 j ) ≤ C, Q T T b (W n i )∇ψ∇u n j ≤ C, since ψ λ ∈ C ∞ ([0, T ]×Ω λ ) for λ = 1, 2, |T b | ≤ 1 and, thanks to Lemma A.1, u n j ∈ L 1 0, T ; W 1,1
(Ω) and it is L 1 on the membrane. The other integral can be computed using the Cauchy-Schwarz inequality and considering the cases {W n i ≤ b} and

{W n i > b} in Q T : Q T ψT b (W n i )∇W n i ∇u n j = {W n i ≤b}∪{W n i >b} ψT b (W n i )∇W n i ∇u n j = = {W n i ≤b} ψT b (W n i )∇W n i ∇u n j ≤ C {W n i ≤b} |∇u n j | 2 1 2
{W n i ≤b}

|∇W n i | 2 1 2
, since T b (σ) = 0 for σ > b, by denition, and so also T b (σ) = 0. In order to control the second integral in the right-hand side, we can use the lemma (see the proof later on):

Lemma 2.3. ( [START_REF] Pierre | Global existence in reaction-diusion systems with control of mass: a survey[END_REF]) Let w be solution of [START_REF] Dimitrio | Modelling nucleocytoplasmic transport with application to the intracellular dynamics of the tumor suppressor protein p53[END_REF]. Then, for all b > 0,

D {|w|≤b} |∇w| 2 ≤ b Q T f + Ω |w 0 | . (27) 
Applying Lemma 2.3 and considering (26), we infer

{W n i ≤b} |∇W n i | 2 1 2 ≤ C.
Concerning the rst integral at the right-hand side, we remark that

{W n i ≤b} |∇u n j | 2 1 2 = U n i ≤ b η - u n i η |∇u n i | 2 1 2 ≤ {u n j ≤ b η } |∇u n i | 2 1 2 ≤ b 1 2 η 1 2 C 1 2 for i = j, {W n j ≤b} |∇u n j | 2 1 2 = {u n j ≤b-ηU n j } |∇u n j | 2 1 2 ≤ {u n j ≤b} |∇u n j | 2 1 2 ≤ (bC) 1 2 .
This concludes the proof of Lemma 2.2.

We now turn to the proof of Lemma 2.3. Proof. We multiply the Equation ( 12) by a truncation (non regularized) function T b (w) and integrate over Q T to obtain

Q T T b (w)∂ t w - Q T DT b (w)∆w = Q T T b (w)f, Ω w(T ) w0 T b (w)dw - T 0 Γ D[T b (w 1 )∂ n 1 w 1 + T b (w 2 )∂ n 2 w 2 ] + Q T DT b (w)|∇w| 2 = Q T T b (w)f.
We denote the antiderivative of T b as

T (σ) = σ 0 T b (s)ds. So, we compute Ω w(T ) w0 T b (w)dw = Ω T w(T ) - Ω T (w 0 ), - T 0 Γ D[T b (w 1 )∂ n 1 w 1 + T b (w 2 )∂ n 2 w 2 ] = T 0 Γ D k (w 2 -w 1 )(T b (w 2 ) -T b (w 1 )) ≥ 0.
Since Ω T w(T ) ≥ 0 and T b (w) ≤ b, we deduce

D {|w|≤b} |∇w| 2 ≤ b Q T f + Ω |w 0 | .
This concludes the proof of Lemma 2.3.

Global existence of a weak solution

We conclude the proof of Theorem 1.1. As before, we consider the approximate system as built in Subsection 2.1. Following the previous Theorem 2.1, we prove that the supersolution ( 20) is also a subsolution and, then, a solution of our System (1).

Theorem 2.2. We consider System [START_REF] Adams | Sobolev spaces[END_REF] together with the conditions on the reaction term ( 2)-( 5) and u 0 ∈ (L 1 (Ω) + ∩ (H 1 ) * ) m . Moreover, we take k 1 = ... = k m . Then, System (1) has a weak solution on (0, +∞).

Proof. By Theorem 2.1, up to a sub-sequence, the approximate solution u n converges to a weak supersolution. Let us prove that it is also a weak subsolution. We recall some results obtained before:

         u n → u, in L 1 0, T ; L γ1 (Ω)) m , ∀γ 1 ∈ 1, d d-2 , ∇u n ∇u, in [L β (Q T ) d ] m , ∀β ∈ 1, d d-1 , T r Γ (u n ) → T r Γ (u), in L 1 0, T ; L β (Γ) m , ∀β ∈ 1, d d-1 ,
where for i = 1, ..., m, f i (u) ∈ L 1 (Q T ) and ∀ψ ∈ D i , we have [START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF]. We introduce the following notations:

W n = 1≤i≤m u n i , Z n = 1≤i≤m D i u n i , V n = 1≤i≤m D i k i (u n,2 i -u n,1 i ), W = 1≤i≤m u i , Z = 1≤i≤m D i u i , V = 1≤i≤m D i k i (u 2 i -u 1 i ).
Adding up the equations for u n i , for i = 1, ..., m, in the weak form, we deduce

- Ω ψ(0)W n 0 + Q T (-ψ t W n + ∇ψ∇Z n ) + T 0 Γ [V n ][ψ] = Q T ψ 1≤i≤m f n i . (28) 
Since we have assumed (3), -1≤i≤m

f n i + C(1 + W n ) ≥ 0, with f n (u n ) → f (u) a.e. in Q T and W n converges in L 1 (Q T ). Applying Fatou's lemma on - 1≤i≤m f n i + C(1 + W n ) ≥ 0, we infer Q T -ψ 1≤i≤m f i (u) ≤ lim inf n→+∞ Q T -ψ 1≤i≤m f n i (u n ).
By a.e convergence of all functions, by L 1 (Q T )-convergence of W n and by Fatou's lemma, we have at the limit for (28) that

- Ω ψ(0)W 0 + Q T (-ψ t W + ∇ψ∇Z) + T 0 Γ [V ][ψ] ≤ Q T ψ 1≤i≤m f i .
Consequently, W is not only a supersolution but also a subsolution. This means that the sum W is a solution and, since its addends u i are weak supersolutions by Theorem 2.1, u is a global weak solution and the proof is completed.

Finally, following all the four steps of the proof (from Subsection 2.1 to Subsection 2.4), we have proved Theorem 1.1 in the case of interest with quadratic nonlinearities. We point out that this result, as well as Theorem 2.1 and 2.2, needs the restricted assumption k 1 = ... = k m , since it arises in Subsection 2.2. As said before, we leave as an open problem to remove this restriction. It would also be interesting to see if the method in [START_REF] Cañizo | Improved duality estimates and applications to reaction-diusion equations[END_REF] can be applied to nearly constant membrane coecients rather than to the diusion coecients. Another open problem, previously introduced, concerns the geometry of the domain. In fact, as we can see in [START_REF] Brezis | Reinforcement problems for elliptic equations and variational inequalities[END_REF][START_REF] Li | Eective boundary conditions for the heat equation with interior inclusion[END_REF][START_REF] Li | Bulk-Surface Coupling: Derivation of Two Models[END_REF], we could consider the membrane as the boundary of the domain Lemma A.1 (A priori bounds). We consider w solution of the following problem in dimension

Ω 2 which is included in Ω 1 = Ω \ Ω 2 .

Declarations

d ≥ 2            ∂ t w -D∆w = f, in Q T , w = 0, in Σ T , ∂ n 1 w 1 = ∂ n 1 w 2 = k(w 2 -w 1 ), in Σ T,Γ , w(0, x) = w 0 (x) ≥ 0, in Ω, (29) 
with f ∈ L 1 (Q T ) and w 0 ∈ L 1 (Ω). Then,

• w ∈ L β 0, T ; W 1,β (Ω) , ∀β ∈ 1, d d-1
and

(1 + |w|) α ∈ L 2 0, T ; H 1 (Ω) for α ∈ 0, 1 2 . 
• The mapping

(w 0 , f ) -→ w is compact from L 1 (Ω) × L 1 (Q T ) into L 1 0, T ; L γ1 (Ω) , for all γ 1 < d d-2 and L γ2 (Q T ) for all γ 2 < 2+d d .
• The trace mapping

(w 0 , f ) -→ T r Γ (w) ∈ L β 0, T ; L β (Γ) , β ∈ 1, d d-1
is also compact.

Notice that we do not use the information w ∈ L 2 (Q T ) here but w ∈ L ∞ (0, T ; L 1 (Ω)). That is used in [START_REF] Pierre | Global existence for a class of quadratic reaction-diusion system with nonlinear diusion and l 1 initial data[END_REF] and leads to the exponent β < 4 3 .

Proof. The proof is based on manipulating nonlinear quantities and Sobolev imbeddings. We divide it in several steps. Some L 2 regularity of ∇w. Multiplying the equation of w in (

and integrating on Ω, we obtain three terms which we estimate separately.

We begin with the Laplacian term. Recalling the membrane conditions and applying the Leibniz rule and the divergence theorem, arguing by a regularization and a limit technique, we gain, since

w (1+|w| 1 
µ ) µ is an increasing function, Ω w (1 + |w| 1 µ ) µ ∆w = Γ w 1 (1 + |w 1 | 1 µ ) µ ∂ n1 w 1 + Γ w 2 (1 + |w 2 | 1 µ ) µ ∂ n2 w 2 - Ω |∇w| 2 (1 + |w| 1 µ ) µ+1 = Γ w 1 (1 + |w 1 | 1 µ ) µ - w 2 (1 + |w 2 | 1 µ ) µ k(w 2 -w 1 ) - Ω |∇w| 2 (1 + |w| 1 µ ) µ+1 ≤ - Ω |∇w| 2 (1 + |w| 1 µ ) µ+1
.

We analyse now the reaction term. We remark that 0 ≤ w (1+|w|

1 µ ) µ
≤ 1 and, using that

f ∈ L 1 (Q T ), we conclude Ω w (1 + |w| 1 µ ) µ f ≤ Ω |f | = f L 1 (Ω) .
Next, for the time derivative, we dene the anti-derivative 0 ≤ ψ µ (w) =

w 0 v dv (1+|v| 1 µ ) µ ≤ w, then w (1 + |w| 1 µ ) µ ∂ t w =: ∂ t ψ µ (w).
Therefore, combining the previous equality and inequalities, we nd

Ω ∂ t ψ µ (w) + D Ω |∇w| 2 (1 + |w| 1 µ ) µ+1 ≤ f L 1 (Ω) .
At this point, we can integrate in time and obtain

D Q T |∇w| 2 (1 + |w| 1 µ ) µ+1 ≤ Ω ψ µ w 0 (x) + f L 1 (Q T ) ≤ w 0 L 1 (Ω) + f L 1 (Q T ) .
Since, for all µ > 1 there is a C µ such that

(1 + |w| 1 µ ) µ+1 ≤ C µ (1 + |w|) 2(1-α) , α = 1 2 1 - 1 µ ,
we conclude that

Q T (1 + |w|) 2(α-1) |∇w| 2 ≤ C µ D w 0 L 1 (Ω) + f L 1 (Q T ) , 0 < α < 1 2 .
And thus, there is a constant C α which also depends on

w 0 L 1 (Ω) + f L 1 (Q T ) such that Q T |∇(1 + |w|) α | 2 ≤ C α , 0 < α < 1 2 . ( 30 
)
Integrability of w. The Sobolev imbedding (see Appendix C ) gives

Ω (1 + |w|) α2 * 2 2 * ≤ C Ω |∇(1 + |w|) α | 2 , 2 * = 2d d -2 . ( 31 
)
which is only useful when α2 * > 1, i.e. d-2 2d < α. Then, we can interpolate between L 1 and L α2 * and nd

Ω (1 + |w|) γ 1 γ ≤ C Ω (1 + |w|) θ Ω |∇(1 + |w|) α | 2 1-θ 2α , 1 γ = θ + 1 -θ α2 * .
We may choose 1-θ 2α = 1, and, recalling that α < 1 2 , we nd the integrability

w ∈ L 1 0, T ; L γ1 (Ω) with γ 1 = d 2 d(1 -α) -1 < d d -2 .
We may also choose γ(1-θ) 2α = 1, α < 1 2 and nd the integrability

w ∈ L γ2 (Q T ) with γ 2 = 2 1 + αd d < 2 + d d .
Regularity of ∇w. On the other hand, Hölder inequality gives

Ω |∇w| β = Ω |∇w| β (1 + |w|) η (1 + |w|) η ≤ Ω |∇w| βr (1 + |w|) ηr 1 r Ω (1 + |w|) ηp 1 p ≤ C Ω |∇(1 + |w|) α | 2 1 r Ω (1 + |w|) ηp 1 p with 1 r + 1 p = 1, β = 2 r ≤ 2, ηr = 2(1 -α).
We can choose ηp = γ 1 from above, which requires η

1 2(1-α) + 1 γ1 = 1, β = η 1-α = 2γ1 γ1+2(1-α)
and we nd, thanks to the estimate (30),

Ω |∇w| β ∈ L 1 (0, T ) with β < d d -1 .
This concludes the proof of the gradient estimate. Moreover, considering that β < γ 2 , thanks to Sobolev imbeddings, we can infer that w ∈ L β (0, T ; L β (Ω)).

The trace. The regularity of the trace derives from its continuity property [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF] (p.315), i.e.

T 0 Tr(w) β W 1-1 β ,β (Γ) ≤ T 0 w β W 1,β (Ω) , 1 ≤ β < d d -1 . (32) 

B Compactness

In order to conclude the proof of Lemma A.1, it remains to adapt compactness arguments to the case of the membrane problem. A proof based on a dual approach, see [START_REF] Baras | Problemes paraboliques semi-lineaires avec donnees mesures[END_REF][START_REF] Bothe | Quasi-steady-state approximation for a reactiondiusion system with fast intermediate[END_REF], could be used. We rather go to a direct proof.

Compactness in space. It can be obtained using the Rellich-Kondrachov theorem [START_REF] Adams | Sobolev spaces[END_REF], since we know the approximate family is bounded in the spaces W 1,β (Ω λ ), λ = 1, 2 which are compactly embedded in

L γ1 (Ω λ ), with γ 1 < d d-2 .
Compactness in time. We use the Fréchet-Kolmogorov criteria, see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF] for instance. Let ϕ(x) be a nonnegative, radially symmetric, C ∞ c (R d ) standard mollier with mass 1. We dene the family (ϕ δ ) δ>0 by

ϕ δ (x) = 1 δ d ϕ x δ , ϕ δ L 1 (Ω) = 1. (33) 
Moreover, we have

g * ϕ δ L p (Ω) ≤ ϕ δ L 1 (Ω) g L p (Ω) , (34) 
and it holds ( [START_REF] Evans | Partial dierential equations[END_REF], p.273) that for any function g ∈ W 1,p (Ω),

g * ϕ δ -g L p (Ω) ≤ δ ∇g L p (Ω) . (35) 
About the derivative of order k of ϕ δ , we know that

∇ k ϕ δ (x) = 1 δ d+k ∇ k ϕ x δ , ∇ k ϕ δ L 1 (Ω) ≤ C δ k . (36) 
Proof. To complete the proof of time compactness, we shall prove that, as h → 0,

T -h 0 Ω |w(t + h, x) -w(t, x)|dxdt → 0. (37) 
By comparison with the mollied versions, the triangular equality yields

T -h 0 Ω |w(t + h, x) -w(t, x)|dxdt ≤ T -h 0 Ω |w(t, x) -w(t, •) * ϕ δ (x)|dxdt + T -h 0 Ω |w(t + h, x) -w(t + h, •) * ϕ δ (x)|dxdt + T -h 0 Ω |w(t + h, •) * ϕ δ (x) -w(t, •) * ϕ δ (x)|dxdt
Here, δ depends on h (to be specied later on) and converges to zero. It suces to prove that each integral converges to zero as h → 0.

First term. We analyse the rst term in the right-hand side. It holds that

T -h 0 Ω |w(t, x) -w(t, •) * ϕ δ (x)|dxdt ≤ δ T -h 0 ∇w(t, x) L 1 (Ω) dt ≤ Cδ(h), (38) 
thanks to w regularity and to (35), which proves that it converges to zero as h → 0.

Second term. For the second integral, we can proceed as for the st one obtaining

T -h 0 Ω |w(t + h, x) -w(t + h, •) * ϕ δ (x)|dxdt ≤ Cδ(h). (39) 
Third term. Remembering (29), the last term can be written as 

T -h 0 Ω |w(t + h, •) * ϕ δ (x) -w(t, •) * ϕ δ (x)|dx dt = T -h 0 
T -h 0 Ω |w(t + h, •) * ϕ δ (x) -w(t, •) * ϕ δ (x)|dx dt ≤ T -h 0 t+h t D w L 1 (Ω) ∆ϕ δ L 1 (Ω) + T -h 0 t+h t f L 1 (Ω) ϕ δ L 1 (Ω) .
Finally, thanks to (33) and (36), we obtain choosing

δ = h 1/4 T -h 0 Ω |w(t + h, •) * ϕ δ (x) -w(t, •) * ϕ δ (x)|dx dt ≤ C[ h δ 2 + h] ≤ C √ h
and (37) follows combining this estimate with (38) and (39).

Applying the Fréchet-Kolmogorov theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], we conclude that the set of functions w ∈

L 1 (Q T ) under consideration is compact in L 1 (Q T ). Consequently, we claim compactness in L 1 0, T ; L γ1 (Ω) with γ 1 < d d-2 and in L γ2 (Q T ) with γ 2 < 2+d d .
In fact, since we have L 1convergence of L p -functions, we deduce convergence in the space L q , for q < p.

Compactness of traces in L β 0, T ; L β (Γ) . Space compactness can be deduced, in each Ω λ , from trace continuity and a compactness result for the boundary ( [START_REF] Demengel | Functional spaces for the theory of elliptic partial dierential equations[END_REF], p.167) such that W 1-1 β ,β (Γ) ⊂⊂ L β (Γ). Time compactness is again achieved through the Fréchet-Kolmogorov theorem. Following the same proof as before and changing the order of the time integrals, we need to recall Kedem-Katchalsky membrane conditions from which we can infer that ∂ t T r Γ (w) ∈ L 1 (0, T ; L 1 (Γ)) and so we can conclude the proof.

C Sobolev and Poincaré inequalities with membrane

For completeness, we explain why the Sobolev embeddings can be extended to the membrane problem, leading to (30) and (31). More precisely, we explain how to arrive to

φ α (w 1 ) 2 L 2 * (Ω 1 ) + φ α (w 2 ) 2 L 2 * (Ω 2 ) ≤ C ∇φ α (w 1 ) 2 L 2 (Ω 1 ) + ∇φ α (w 2 ) 2 L 2 (Ω 2 ) .
There are two diculties. First, the boundary condition is not Dirichlet everywhere. Second we are dealing with a singular domain Ω and so we cannot use directly the Sobolev or Poincaré inequalities in Ω, but only some easy generalizations that we explain now.

We are going to prove the Theorem C.1 (Gagliardo-Nirenberg-Sobolev inequality with membrane). We consider the bounded domain

Ω = Ω 1 ∪ Ω 2 ⊂ R d , d ≥ 2, with piecewise C 1 sub-domains Ω 1
and Ω 2 and a C 1 membrane Γ = ∂Ω 1 ∩ ∂Ω 2 which decomposes Ω in the two parts. We take the function

v = (v 1 , v 2 ) ∈ H 1 (see Denition 1.3), then, for λ = 1, 2, v λ L 2 * (Ω λ ) ≤ C(Ω λ ) ∇v λ L 2 (Ω λ ) d , (40) 
and consequently

[ v 1 L 2 * (Ω 1 ) + v 2 L 2 * (Ω 2 ) ] ≤ C(Ω 1 , Ω 2 ) [ ∇v 1 L 2 (Ω 1 ) d + ∇v 2 L 2 (Ω 2 ) d ]. (41) 
The reason why we want to prove this theorem is that the domain Ω described above is not enough regular to use the usual Gagliardo-Nirenberg-Sobolev inequality ([5], p.284). Consequently, we need to build smoother domains containing each Ω λ , λ = 1, 2, in which we can apply known results and then, with a restriction to Ω, we can nd (40) and (41). The construction is made considering an extension of Γ and a domain with the same internal structure as Ω such that it contains Ω and each extension of the Ω λ is of class C 1 .

We rst recall the standard Sobolev inequality ( [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], p.284) in a bounded open set.

Theorem C.2 (Sobolev embedding). Let Q be a bounded open subset of class C 1 in R d . There is a constant C Q such that for all v ∈ H 1 (Q), we have

v ∈ L 2 * (Q) and v L 2 * (Q) ≤ C Q v L 2 (Q) + ∇v L 2 (Q) d .
Proof. We recall how to prove Theorem C.2 departing from the case of the full space. We use the regularity of the domain which assures us the existence of a linear and continuous extension operator T : H 1 (Q) → H 1 (R d ), which is also the extension from L 2 (Q) into L 2 (R d ) ([5], p.272).

So, we obtain that:

• taken v ∈ H 1 (Q), T (v) ∈ H 1 (R d ) and T (v) = v on Q; (42) • T (v) 2 L 2 (R d ) ≤ C 2 extenL 2 (Q) v 2 L 2 (Q) ; (43) 
• ∇T (v) 2 L 2 (R d ) d ≤ C 2 extenH 1 (Q) v 2 H 1 (Q) . (44) 
Moreover, for construction (see the proof of the extension theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], p.272), this operator is in H 1 0 (R d ). Consequently, using a corollary of the Sobolev inequality ( [START_REF] Evans | Partial dierential equations[END_REF], p.265), we get that

T (v) ∈ L 2 * (R d ) and T (v) L 2 * (R d ) ≤ C sob (d, 2) ∇T (v) L 2 (R d ) d .
We proceed with some estimates due to the application of ( 42), ( 43), (44). First of all, we deduce

∇v 2 L 2 (Q) d = ∇T (v) L 2 (Q) d ≤ ∇T (v) L 2 (R d ) d ≤ C extenH 1 (Q) v 2 H 1 (Q) = C extenH 1 (Q) v L 2 (Q) + ∇v L 2 (Q) d .
Since T (v) ∈ L 2 * (R d ) and T (v) = v on Q, we get v ∈ L 2 * (Q) and Proof. If the statement is not true, we can nd a sequence v n such that each v n ∈ H 1 (Q) and

v 2 L 2 * (Q) = T (v) 2 L 2 * (Q) ≤ T (v) 2 L 2 * (R d ) ≤ (C sob (d, 2)) 2 ∇T (v) 2 L 2 (R d ) d ≤ (C sob (d, 2)) 2 C 2 extenH 1 (Q) v 2 L 2 (Q) + ∇v 2 L 2 (U )
v n 2 L 2 (Q) > n ∇v n 2 L 2 (Q) d + Σ0 |v n |dS 2 .
On account of the homogeneity (normalizing), we may assume that v n L 2 (Q) = 1, for each n. So we infer that

n ∇v n 2 L 2 (Q) d + Σ0 |v n |dS 2 < 1, (46) 
which implies that

∇v n 2 L 2 (Q) d < 1 n .
Therefore, ∇v n → 0 in L 2 (Q). Moreover, v n is bounded in H 1 (Q), so, up to a sub-sequence, it converges weakly in H 1 (Q) to some v. So ∇v n ∇v, that means ∇v = 0. This shows that v is a constant (since Q is connected). For the continuity of the trace operator and (46), we deduce At the same time, thanks to the Rellich-Kondrachov compactness theorem [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF][START_REF] Evans | Partial dierential equations[END_REF], up to a sub-sequence, v n converges strongly in L 2 (Q) to v = 0. Hence, since v n L 2 (Q) = 1, we arrive to a contradiction.

At this point we are able to give the proof of Theorem C.1.

Proof. We apply Theorems C.2 and C.3. First of all we consider the extension of Γ into the space R d such that now Γ separates the space into two pieces P λ with λ = 1, 2. Since we have Dirichlet boundary conditions on Γ λ , we can extend the function to zero in the whole P λ . So now, considering Q λ a domain of class C 1 such that Ω λ ⊂ Q λ ⊂ P λ and for λ, σ = 1, 2, Q λ ∩ P σ is a portion of Γ, we can apply Theorems C.2 and C.3 to

ṽλ = v λ , in Ω λ , 0, in Γ λ ∪ {Q λ \ Ω λ }.
This proves Theorem C.1 in Q λ and, so, in Ω λ .

  -Katchalsky conditions in recent works studying tumor invasion such as in the pressure equation in Gallinato & all. ([14], 2017) or in the tumor cell density's equation in Chaplain & all. ([10], 2019). In [19] (2019), Li & all. proposed a rigorous derivation of bulk surface models which describe cell polarization and cell division including also transmission conditions. Let us also mention an example of transmission condition in electrochemistry: Bathory & all. ([3], 2019) proposed a problem frequently used when modelling the transfer of ions through the interface between two dierent materials.
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[

  x) * ϕ δ (x)ds dx dt = D∆w + f ] * ϕ δ ds dx dt = Dw * ∆ϕ δ + f * ϕ δ ds dx dt after exchanging derivatives in the convolution. From (34) we deduce

2 L 2

 22 d . The proof of Theorem C.2 is complete. Since we do not impose Dirichlet conditions on the full boundary, we need the following generalized Poincaré inequality ([20] p.82). Theorem C.3 (Poincaré inequality). Suppose Q a bounded and connected open subset of R d of class C 1 and consider a portion of its boundary Σ 0 ⊂ ∂Q such that |Σ 0 | > 0. Then, there exists aconstant C(Q, Σ 0 ) such that ∀v ∈ H 1 (Q) such that T r Σ0 (v) = 0, v (Q) ≤ C(Q, Σ 0 ) ∇v 2 L 2 (Q) d .(45)

  n |dS = Γ0 |v|dS = |c||Γ 0 |, and so v = 0.
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A Regularity

We now analyse in detail regularity in our problem referring to Lemma 1.2 that we have rewritten here below, whereas in the next Appendix, we discuss about compactness. We extend previous results for reaction-diusion systems without membrane [START_REF] Baras | Problemes paraboliques semi-lineaires avec donnees mesures[END_REF][START_REF] Bothe | Quasi-steady-state approximation for a reactiondiusion system with fast intermediate[END_REF][START_REF] Laamri | Reaction-diusion systems with initial data of low regularity[END_REF][START_REF] Laamri | Global existence for reactiondiusion systems with nonlinear diusion and control of mass[END_REF][START_REF] Pierre | Global existence in reaction-diusion systems with control of mass: a survey[END_REF] and we refer to [START_REF] Quittner | Superlinear parabolic problems[END_REF] for the general theory of parabolic equations. We also refer to [START_REF] Laamri | Global existence for reactiondiusion systems with nonlinear diusion and control of mass[END_REF] for a regularity lemma.