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Dimensionality transcending: a method for merging
BCI datasets with different dimensionalities

Pedro L. C. Rodrigues, Member, IEEE, Marco Congedo, Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—Objective: We present a transfer learning method
for datasets with different dimensionalities, coming from different
experimental setups but representing the same physical phenom-
ena. We focus on the case where the data points are symmetric
positive definite (SPD) matrices describing the statistical behavior
of EEG-based brain computer interfaces (BCI). Method: Our
proposal uses a two-step procedure that transforms the data
points so that they become matched in terms of dimensionality
and statistical distribution. In the dimensionality matching step,
we use isometric transformations to map each dataset into a
common space without changing their geometric structures. The
statistical matching is done using a domain adaptation technique
adapted for the intrinsic geometry of the space where the
datasets are defined. Results: We illustrate our proposal on time
series obtained from BCI systems with different experimental
setups (e.g., different number of electrodes, different placement
of electrodes). The results show that the proposed method can
be used to transfer discriminative information between BCI
recordings that, in principle, would be incompatible. Conclusion
and significance: Such findings pave the way to a new generation
of BCI systems capable of reusing information and learning from
several sources of data despite differences in their electrodes
positioning.

Index Terms—Brain-computer interfaces, EEG, Heterogeneous
domain adaptation, Symmetric positive definite matrices, Rie-
mannian geometry

I. INTRODUCTION

When setting up an experiment for measuring some physical
phenomenon, an experimenter is faced with several practical
choices, such as the kind and number of sensors to adopt,
where to place them, which sampling frequency to use,
etc. In general, it is reasonable to expect that the physical
phenomenon under study is independent to such choices and
that small changes in the experimental setup do not impact
dramatically its ability to describe the system. For example,
using 19 or 20 electrodes in an electroencephalography (EEG)
experiment does not change significantly the information that
we can observe from a subject’s brain. Similarly, if the signal
at one electrode is compromised during an EEG recording,
it should be possible to use the information from the other
sensors without having to discard the whole epoch. In this
paper, we tackle this very practical yet seldom discussed
problem. We focus our presentation on problems related to
the classification of EEG signals coming from brain-computer
interfaces (BCI), however, our theoretical contributions are
more general than this.
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In general, it is imperative to pre-process data points from
two datasets before pooling them together for joint analysis.
This is necessary because the statistical distribution of datasets
gathered under different experimental conditions are often
different from each other [1]. For instance, the statistics of
the EEG signals obtained from a subject performing a set
of BCI tasks (e.g., left-hand/right-hand motor imagery) on a
Monday morning are different from those obtained from the
same subject on a Friday afternoon. Similarly, the EEG data
of two subjects performing the same BCI experiment have
different statistical distributions.

Our proposal. In this paper, we propose a new method for
merging datasets with different dimensionalities (e.g. differ-
ent number and/or position of recording sites) and different
statistical distributions (e.g. coming from different recording
sessions), allowing for the joint analysis of datasets that would
otherwise be incompatible. Suppose we have two datasets, A
and B, containing data points with dimensionalities dA and dB.
We interpret such datasets as point clouds defined in high-
dimensional metric spaces and use concepts from computa-
tional geometry [2] to study their geometrical properties and
investigate commonalities between them. The procedure that
we present consists of the following two steps:

(1) Dimensionality matching. We transform the data points
from A and B into a common space with dimensionality
d ≥ max{dA, dB}. The transformation is isometry pre-
serving, which ensures that the statistical distributions of
the original data points in their respective spaces remain
the same in the new space.

(2) Statistical matching. We transform the elements of the
dimensionality-matched datasets so that their statistical
distributions become as similar as possible.

After these transformations, we have two datasets that are de-
fined in the same space and that have compatible statistical dis-
tributions. Since our method surpasses the intrinsic limitations
due to dimensionality mismatch, we name it dimensionality
transcending (DT).

We use a Riemannian geometric framework to manipulate
the data points from BCI datasets [3] [4]. Such approach
parametrizes the second-order statistics of multivariate EEG
time series via symmetric positive definite (SPD) matrices,
e.g., their spatial covariance matrices, and allows for the
comparison of time series in terms of their parametrizations.
The set of SPD matrices define a Riemannian manifold whose
intrinsic geometry is well known [5] and we take its properties
into account when carrying out the steps involved in the DT
procedure.
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Related work. The branch of machine learning concerned
with problems related to statistical mismatch between datasets
is called domain adaptation (DA) and has been discussed in
several works (see [6] for a survey). In its traditional form,
DA deals with datasets having the same dimensionality, but
it may be extended to cases where they differ; this is called
heterogeneous domain adaptation (h-DA). Most proposals in
the h-DA literature are based on procedures that learn the
best projection of the datasets into a common latent space in
which the differences between the two statistical distributions
are minimized. An example is transfer component analysis
(TCL) [7], a method that learns a projection into a reproducing
kernel Hilbert space and then searches for a transformation
that matches the statistics of the projected data points by
minimizing their maximum mean discrepancy [8]. Although
TCL appears to work rather well in practice, specially with
databases containing texts and images, it is not crafted for
taking into account the intrinsic geometry of the space where
the data points are defined, discarding, therefore, valuable
information for the matching of the datasets. Furthermore,
TCL relies on an optimization procedure that solves a semi-
definite programming problem that can be computationally
costly when considering high-dimensional data points. In the
EEG-BCI literature, there has been much research on the
homogenous case for DA (see [9] for a review) but, to the
best of our knowledge, no work has tackled the heterogenous
setting. The method that we propose here builds mainly on the
Riemannian Procrustes Analysis [10], which is a geometry-
aware procedure for matching the statistics of datasets defined
on the same SPD manifold.

Novelties. The three main novelties of our approach are:

• The fact of taking datasets into a higher-dimensional
space ensures that we don’t discard any valuable informa-
tion and that we may define an isometric transformation.
This is different from what is usually done in machine
learning, where projections onto lower-dimensional space
are preferred [11] [12].

• Our approach is guided by geometric considerations
and intuitions. This makes DT easy to understand and
implement. Furthermore, its two-step modularity allows
for a better sense of the transformations carried out on the
data points, allowing for improvements and adaptations
according to the characteristics of the data space being
considered.

• The transformations that we propose are not data-driven
but defined in terms of the geometry of the space where
the data points are defined. This leads to a simple, fast,
and robust method.

Structure of the paper. The paper is organized as follows.
In Section II, we present the dimensionality transcending
method by first formalizing it mathematically and demon-
strating some important properties associated to it. We also
present the methodology used to validate the DT procedure. In
Section III, we present our results on different publicly avail-
able datasets and in Section IV we discuss them. Section V
concludes the paper.

TABLE I
TABLE OF SYMBOLS USED IN THE PAPER

P(d) manifold of d-dimensional SPD matrices
δR geodesic distance defined in the space P(d)
A dataset consisting of SPD matrices defined in

P(dA) and labels from {1, . . . , L}; see Eq. (8)
ΘA statistical distribution of the SPD matrices in A
MA geometric mean of the SPD matrices in A
σA dispersion of the points in A around MA

C↑ augmented version of matrix C using the isometric
transformation defined in Eq. (14)

A↑ dataset identical to A but with the SPD matrices
augmented via the isometric transformation
defined in Eq. (14)

A(RPA) dataset identical to A but with the SPD matrices
transformed via RPA to match the statistical
distribution of another dataset

Dtrain training set used to fit the parameters
of a statistical classifier

Dtest set of data points used to asssess
the performance of a statistical classifier

II. METHODS

In this section, we present some properties of the SPD
manifold and give a mathematical formulation of the DT
procedure. Then, we present the datasets and pipelines used
to validate our proposal. Table I gives a brief description of
the mathematical symbols defined here and used in the rest of
the paper.

A. Geometry of the SPD manifold

The set of SPD matrices is defined as

P(d) =
{
C ∈ S(d)

∣∣ xTCx > 0, ∀x ∈ Rd, x 6= 0
}
, (1)

where S(d) is the set of d-dimensional real symmetric ma-
trices. Matrices in P(d) lie in a manifold [5], a set of points
with the property that the neighborhood of each C ∈ P(d) can
be bijectively mapped onto an Euclidean space, also known
as its tangent space TCP(d). Intuitively, we say that the
neighbourhood of every point in the manifold is flat, but
the whole manifold has a non-positive curvature [13]. If we
endow every tangent space of a manifold with a metric that
changes smoothly along its elements, we say that we have
a Riemannian manifold. In this case, fundamental geometric
notions are naturally defined, such as geodesic (shortest curve
joining two points), distance between two points (length of
the geodesic connecting them), the center of mass of a set
of points, etc. In this work, we use the Riemannian metric
defined for tangent vectors η, ξ ∈ TCP(d) as

〈η, ξ〉C = tr
(
C−1ηC−1ξ

)
, (2)

where C ∈ P(d) is the reference point for the inner product
and tr(·) denotes the trace operator. It is possible to show that,
for any invertible matrix W ∈ Rd×d, it holds

〈WηW T ,WξW T 〉WCWT = 〈η, ξ〉C , (3)

meaning that the inner product between two tangent vectors
is congruence-invariant. Because of such property, metric (2)
is named the affine-invariant Riemannian metric (AIRM) and
is known as the “natural” Riemannian metric for the SPD
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manifold [5], [13], [14]. The AIRM metric induces a geodesic
distance between two SPD matrices A and B in P(d) whose
explicit expression is

δ2R(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥2
F

=

d∑
k=1

log2(λk) ,

(4)

where {λ1, . . . , λd} is the set of eigenvalues of
A−1/2BA−1/2 (which are the same as for A−1B). Because
of the affine-invariance of the metric from which (4) is
induced, it is easy to show that for any invertible W ∈ Rd×d
it holds

δ2R(WAW T ,WBW T ) = δ2R(A,B) . (5)

Once we have the expression for the distance between any
two points in P(d), it is natural to define a notion of mean,
or center of mass, of a set of SPD matrices,

A =
{
C1, . . . ,CK

}
⊂ P(d) .

We define such mean as the matrix that minimizes the disper-
sion in A, as per

MA = argmin
M∈P(d)

LA(M) , (6)

with

LA(M) =

K∑
i=1

δ2R(M ,Ci) (7)

and σA = LA(MA). Note, also, that when the elements of A
are strictly positive scalars, MA is simply their geometric
mean. This explains why many researchers [5], [15]–[17]
adopt the term “geometric mean” to refer to the center of
mass of a set of SPD matrices. When K ≥ 3, there is no
closed form solution for Eq. (6) in general, however, due to
the non-positive curvature of the SPD manifold, it is possible
to show that there always exists a solution for its optimization
problem [18]. Many researchers have proposed procedures
for calculating the center of mass of a set of SPD matrices
iteratively, as in [19] and [20].

B. Problem statement

Consider two datasets,

A =
{

(CAi , `
A
i ) for i = 1, . . . ,KA

}
,

B =
{

(CBi , `
B
i ) for i = 1, . . . ,KB

}
,

(8)

with data points CAi ∈ P(dA) and CBi ∈ P(dB), and class
labels `Ai , `

B
i ∈ {1, . . . , L}, where L is the number of classes.

We assume that these SPD matrices describe the second order
statistics of feature vectors, so each of their dimensions has a
physical meaning.

We denote MA and MB the geometric means of the
matrices of each dataset, and σA and σB the dispersions
around the geometric mean. The class means for each dataset
are denoted MA

` and MB
` , with ` ∈ {1, . . . , L}, and are

geometric means defined as in Eq. (6) but calculated only on
data points from each class. Note that, in the SPD manifold,
the geometric mean of the class means is not equal to the
geometric mean of all the data points [5]. We parametrize the
statistical distributions of the data points in A and B as

A ∼ ΘA =
{
MA,MA

1 , . . . ,M
A
L , σ

A
}
,

B ∼ ΘB =
{
MB,MB

1 , . . . ,M
B
L, σ

B
}
.

(9)

This parametrization is analogous to the description of a
mixture of Gaussian distributions in Euclidean space, where
each mixture corresponds to a class and the class dispersions
are supposed equal. Our goal is to define a procedure for
transforming the elements of both datasets so that they are
defined in the same space and for which the parametrization of
the statistical distributions of the transformed data points are as
similar as possible. Note that if dA = dB, the problem reduces
to domain adaptation in the SPD manifold as investigated
in [21].

C. Dimensionality transcending on P(d)

The two steps of dimensionality transcending applied to
SPD data are defined as follows:
• Dimensionality matching. Let EA and EB be two ordered

sets describing the physical meaning of each dimension
on the data points. For instance, if they are related to
EEG recordings, the elements of EA and EB are the
locations of the electrodes used in A and B, respectively.
To match the datasets, first we define a new set
E = EA ∪EB and augment the data points in A and B so
that they become d-dimensional SPD matrices, d = |E|,
the number of elements in E . Note that it may happen
that the ordering of the dimensions of the expanded data
points from A and B are not the same. In this case,
we may apply permutation matrices to the augmented
data points to rearrange their rows and columns so that
they correspond to the same physical quantities. We give
more details about the augmentation step in Section II-D.

• Statistical matching. Once the data points are defined in
the same space, we match their statistical distributions.
For this, we use the Riemannian Procrustes analysis
(RPA) that we have proposed in [21]. RPA is an extension
of the classical Procrustes analysis [22] to a setting where
the data points are defined in the SPD manifold. It
applies rigid transformations to data points (i.e., trans-
lation, stretching and rotation) from two datasets in order
to match their statistical distributions. By the end of
the procedure, both datasets are expected to follow the
same statistical distribution Θ. We describe this step in
Section II-E.

Figure 1 summarizes the steps described above and indicates
the features of each dataset that change after the DT procedure.

Note that the data points transformed via DT are defined
in higher-dimensional spaces than their original versions,
requiring more space to be stored. A natural question to ask
is whether it would be preferable to reduce the dimensionality
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Fig. 1. Summary of the steps in the dimensionality transcending procedure
applied to two datasets, A and B, initially defined in SPD manifolds of
different dimensionalities. The upward arrow (↑) on the names of the datasets
indicates a dimensionality-augmentation step and a (RPA) superscript means
that the Riemannian Procrustes Analysis [24] was used to match the statistics
of the datasets. Quantities colored in red are those that change after each step.

of the data points into a common space (using, for example,
the methods presented in [23]) and then apply a procedure for
statistical matching on the new data points (using, for instance,
RPA). This would avoid increasing the dimensionality of the
data points, however, it would also have the risk of losing
important discriminative information from the datasets.

An example. Suppose we have two datasets, A and B,
consisting of SPD matrices that describe the statistics of EEG
epochs recorded with electrode sets EA = {Fz,C3,C4,Pz}
and EB = {C4,C3,Cz}. The DT procedure begins with
a dimensionality matching step in which we define a new
set E = EA ∪ EB = {C3,C4,Fz,Cz,Pz} whose order is
considered as fixed. Then, we augment the dimensionality of
the data points in both A and B, so as to have new SPD
matrices defined in P(d), with d = |E| = 5. If necessary, we
may change the ordering of the electrodes of the augmented
matrices so that they correspond to the order imposed by E :
this ensures that the dimensions from the expanded versions
of A and B are comparable. Finally, we use RPA to match the
statistics of the dimensionality-augmented datasets.

D. Expanding the dimensions of a SPD matrix

In what follows, we present the general problem of trans-
forming a d′-dimensional SPD matrix into a d-dimensional
SPD matrix (d > d′). We show how such transformation has to
be defined in order to guarantee the positive definiteness of the
d-dimensional matrices and how certain geometric constraints
can be imposed.

Choosing how to expand. Without loss of generality, we
will first assume that d = d′ + 1, so that expanding a matrix
C ∈ P(d′) amounts to defining two parameters v ∈ Rd′ and
α ∈ R to obtain

C↑ =

[
C v

vT α

]
∈ R(d′+1)×(d′+1) . (10)

To guarantee that C↑ is an element of P(d′ + 1), one can
use the fact that a matrix is SPD if, and only if, all of its

principal minors have positive determinants. Since C is SPD,
the determinant of all of its principal minors are positive,
so we can conclude that C↑ will be SPD if, and only if,
its determinant is positive. From matrix analysis, we know
that [25]

det

([
C v

vT α

])
= det (C) (α− vTC−1v) , (11)

thus, a necessary and sufficient condition for the expansion of
C, denoted by C↑, to be SPD is

vTC−1v < α . (12)

Geometry of expanded points. Once we know the con-
ditions for α and v, the next natural question is how the
geometry of a set of data points A ⊂ P(d′) changes when
its elements are expanded via Eq. (10) and forms a new set
A↑ ⊂ P(d). For this, we need to understand how the distance
between two expanded data points in P(d′) relates to their
distance in P(d).

Consider we expand two SPD matrices Ci and Cj by
Eq. (10). Using a v respecting condition (12) for both Ci

and Cj , and, without loss of generality, fixing α = 1, the
Riemannian geodesic distance between the expanded matrices
is given by

δ2R(C↑i ,C
↑
j ) =

d∑
k=1

log2(λ↑k) ,

where λ((C↑i )
−1C↑j ) = {λ↑1, . . . , λ

↑
d} is the set of eigenvalues

of (C↑i )
−1C↑j . Similarly, the distance between Ci and Cj is

given by

δ2R(Ci,Cj) =

d′∑
k=1

log2(λk) ,

where λ(C−1i Cj) = {λ1, . . . , λd′}. Our goal is to be able to
write δ2R(C↑i ,C

↑
j ) in terms of δ2R(Ci,Cj). For this, we write

explicitly the expression for the expanded matrix

(C↑i )
−1C↑j =

 C−1i Cj +C−1i vv
T C−1i Cj − Id′

1− vTC−1i v
0d′×1

vT (Id′ −C−1i Cj) 1

 ,

where 0r×s is a r × s matrix filled with zeros and Id′ is a
d′-dimensional Identity matrix. Because of the block structure
of (C↑i )

−1C↑j , it is easy to show that

λ
(

(C↑i )
−1C↑j

)
= {1} ∪ λ

((
(C↑i )

−1C↑j
)

UL

)
,

where
(
(C↑i )

−1C↑j
)

UL is the upper-left block of (C↑i )
−1C↑j .

An isometric transformation. Different choices of v
will lead to different expressions for λ((C↑i )

−1C↑j ) and,
consequently, different relations between δ2R(Ci,Cj) and
δ2R(C↑i ,C

↑
j ). Among such relations, one that is particularly

interesting is when

δ2R(Ci,Cj) = δ2R(C↑i ,C
↑
j ) , (13)

meaning that the expansion preserves the pairwise distance
between the data points Ci,Cj ∈ P(d′) in the new space
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P(d). An interesting consequence is that classification algo-
rithms that use distances between data points as features (e.g.,
the MDM classifier [26]) have exactly the same performance
when applied to the data points in P(d′) or to their transformed
version in P(d). Therefore, we ensure that the dimensionality
augmentation does not affect (either negatively or positively)
the discriminatory power of classifiers over the transformed
datasets. A simple algebraic solution that preserves the pair-
wise distances is to choose v = 0d′×1, so that

(C↑i )
−1C↑j =

[
C−1i Cj 0d′×1

01×d′ 1

]
,

with
λ
(

(C↑i )
−1C↑j

)
= {1} ∪ λ(C−1i Cj) ,

and, consequently,

δ2R(C↑i ,C
↑
j ) =

d∑
k=1

log2(λ↑k) ,

=

d′∑
k=1

log2(λk) + log2(1) ,

= δ2R (Ci,Cj) .

Note that this choice also ensures that Eq. (12) is verified for
any positive α and any pair of matrices Ci,Cj ∈ P(d′). By
induction, one can easily show that the same reasoning holds
for any d′ > d and an expansion given by

C↑ =

[
C 0d′×p

0p×d′ Ip

]
,

where p = d′ − d.
Based on the results above, we may define the transforma-

tion

Ed′→d : P(d′) → P(d)

C 7→

[
C 0d′×p

0p×d′ Ip

]
,

(14)

with p = d−d′, which is an isometric transformation between
manifolds P(d′) and P(d) in terms of the AIRM distance
between SPD matrices, that is,

δ2R

(
Ed′→d(Ci), Ed′→d(Cj)

)
= δ2R (Ci,Cj) . (15)

Occam’s razor. Instead of fixing v = 0d′×1 in Eq. (10),
we could have chosen a data-driven approach for determin-
ing an appropriate vector v for a set of data points in
A = {Ci}Ki=1 ⊂ P(d′). The output of such procedure would
have to satisfy condition (12) for each element ofA. Moreover,
if the distances between each pair of matrices Ci,Cj ∈ A
were to be preserved after the expansion via Eq. (10), the data-
driven approach would have to take into account (K−1)K/2
additional constraints, which could lead to a very challenging
algorithmic problem. Furthermore, the vector v would have to
be recalculated for every new data point added to A. In light
of all such constraints, we here prefer to retain the simple
algebraic solution v = 0d′×1, which ensures the isometric

property of the dimensionality augmentation step for any pair
of data points defined in P(d′).

A time series interpretation. As mentioned in the Intro-
duction, we are particularly interested in the case where our
SPD matrices are spatial covariance matrices describing the
second-order statistics of zero-mean multivariate time series.
For a T -sample realization of a zero-mean d′-dimensional time
series, X ∈ Rd′×T , the spatial covariance matrix, C ∈ P(d′),
is estimated as

C =
1

T
XXT . (16)

We can interpret, then, that the dimensionality augmentation
transformation Ed′→d applied to C adds p = d − d′ new
dimensions to the multivariate time series X and fill them
with a T -sample realization of a p-dimensional uncorrelated
white noise, xp, with

X↑ =

[
X
xp

]
. (17)

It is worth noting that by adding uncorrelated white noise to
the new dimensions of Eq. (17), we follow a maximum entropy
approach, that is, we use no a priori information to fill the new
samples of the time series. This serves as further justification
to our choice of expanding SPD matrices via zero-padding1

instead of using a data-driven approach.
Comparison with interpolation. Our dimensionality aug-

mentation step may be interpreted as a way to fill p dimensions
of a multivariate time series X↑ with samples whose second
order statistics have some desired structure. Note, however,
that there exists other methods to solve this problem. For
instance, for magnetoencephalographic (MEG) and EEG sig-
nals the method of reference in the literature is the spherical
spline interpolation [27], which fills the signals on problematic
channels by taking linear combinations of the time series on
electrodes which are spatially close to them. Unfortunately,
although such expanded times series are d-dimensional, their
row-rank is only d′, so their spatial covariance matrices are
rank-defficient. Therefore, we cannot use the Riemannian
geometric framework presented in Section II-A to classify
them.

Statistics of the expanded data points. Consider a set of
SPD data points

C =
{
C1, . . . ,CKA

}
⊂ P(d′) , (18)

with geometric mean MC and dispersion σC . Expanding each
element of C, we obtain a new set of SPD matrices

C↑ =
{
C↑1, . . . ,C

↑
KC

}
⊂ P(d) , (19)

1Note that the origin of the SPD manifold is the identity matrix, so a zero-
padding in this space includes a diagonal of ones
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where C↑k = Ed′→d(Ck). The geometric mean of C↑ is

MC↑ = argmin
M↑∈P(d)

KS∑
k=1

δ2R(M↑,C↑k) ,

=

[
MC 0d′×p
0p×d′ Ip

]
,

= Ed′→d(M
C) .

(20)

with p = d−d′. Moreover, because of the isometric property of
transformation (14), we have that σC

↑
= σC . Finally, note that

if each element of C had a class label associated to it, the class
means of their expanded counterparts would be determined as
in Eq. (20).

E. Matching the statistics of two datasets

Expanding the dA-dimensional data points from A and the
dB-dimensional data points from B yields two new datasets,

A↑ =
{

(CA
↑

i , `Ai ) for i = 1, . . . ,KA

}
,

B↑ =
{

(CB
↑

i , `Bi ) for i = 1, . . . ,KB

}
,

(21)

where the CA
↑

i and CB
↑

i are all d-dimensional SPD matrices.
The next step is to transform the elements of each dataset
so that their statistical distributions, ΘA↑ and ΘB↑ , become as
close as possible. To do so, we use the Riemannian Procrustes
analysis (RPA), which is a generalization of the classical Pro-
crustes Analysis to a non-Euclidean setting [10]. The method
considers the distributions of points in two datasets (the source
and target datasets) as shapes in a high-dimensional space and
performs rigid geometric operations to make their shapes as
similar as possible (see Figure 2 for a visual representation
of these operations). The steps involved in the procedure are
summarized as follows:
• Re-center the data points in A↑ and B↑ such as

CA
↑(rct)

i =
(
MA↑

)−1/2
CA

↑

i

(
MA↑

)−1/2
,

CB
↑(rct)

i =
(
MB↑

)−1/2
CB

↑

i

(
MB↑

)−1/2
.

(22)

This forms two new datasets, A↑(rct) and B↑(rct), whose
statistical distributions are parametrized by

ΘA↑(rct) =
{
Id,M

A↑(rct)

1 , . . . ,MA↑(rct)

L , σA
}
,

ΘB↑(rct) =
{
Id,M

B↑(rct)

1 , . . . ,MB↑(rct)

L , σB
}
.

(23)

The reader with a signal processing background will
recognize Eq. (22) as a whitening step applied to the
multivariate time series associated to each of the SPD
matrices. In differential geometry, these operations are
also known as the parallel transport on the SPD mani-
fold [29]. Intuitively, the re-centering step may be seen
as a translation of the center of mass of the data points
from each dataset to a common reference.

class A-      and class B-      for target dataset

class A-      and class B-      for source dataset

Fig. 2. Representation of the sequence of operations of RPA applied to
a simulated source and target datasets (see [24] for more details on the
simulation). Each point on the scatter plot represents a SPD matrix and the
axes for the figures were obtained using diffusion maps [28]. The filled dots
(degree of transparency set to α = 0.30) represent the target dataset whereas
the triangles are the source dataset. Each color represents a class and the
black star is the Identity matrix. (A) Distribution of the SPD matrices in
the source and target datasets as they are originally available and (B) after
re-centering their geometric means to the Identity. In (C) the distribution
after the stretching operation and (D) after the rotation. See the animation
in https://youtu.be/QzyikCLNAWI linking the operations of each
figure. (Figure reused from [24]. Copyright c© 2019, IEEE)

• Stretch the dispersion around the mean for the points in
A↑(rct) and B↑(rct) so that they are equal to one, as

CA
↑(rct+str)

i =
(
CA

↑(rct)

i

)1/σ2
A
,

CB
↑(rct+str)

i =
(
CB

↑(rct)

i

)1/σ2
B
.

(24)

This yields two new datasets A↑(rct+str) and B↑(rct+str) with
equal dispersions and distributions parametrized as

ΘA↑(rct+str) =
{
Id,M

A↑(rct+str)

1 , . . . ,MA↑(rct+str)

L , 1
}
,

ΘB↑(rct+str) =
{
Id,M

B↑(rct+str)

1 , . . . ,MB↑(rct+str)

L , 1
}
.

The stretching operation is analogous to the variance
normalization usually done in statistical data analysis. We
may interpret its combination with the re-centering as a
standardization procedure.

• Rotate the data points from B↑(rct+str) to make its class
means as close as possible to the class means ofA↑(rct+str).
We have then

CA
↑(rct+str+rot)

i = CA
↑(rct+str)

i ,

CB
↑(rct+str+rot)

i = UTCB
↑(rct+str)

i U ,
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with U obtained from the optimization problem

minimize
UTU=Id

L∑
c=1

δ2R

(
UTMB↑(rct+str)

c U , MA↑(rct+str)

c

)
. (25)

The rotation step acts to match the class means of the
datasets via the application of an orthogonal matrix. The
precise interpretation of this transformation in terms of
changes in the time series associated to each SPD matrix
remains an open question, but we know that it is closely
related to the differences in the electrode positioning of
each dataset [24].

• Form two new datasets

A↑(RPA) =
{

(CA
↑(rct+str+rot)

i , `Ai ) for i = 1, . . . ,KA

}
,

B↑(RPA) =
{

(CB
↑(rct+str+rot)

i , `Bi ) for i = 1, . . . ,KB

}
.

By the end of the RPA procedure, the statistical distribu-
tions of the datasets become as close as possible. One way
to measure such proximity is in terms of the maximum-
mean discrepancy, as shown in [30].

F. Pre-processing BCI data

A typical BCI experiment consists of several trials during
which a subject performs a task and the goal is to be able
to infer which task the subject was performing based on the
EEG signals. Put in mathematical terms, if the recordings
are obtained on d electrodes, and each one of the K trials
is composed of T time samples, the typical BCI dataset is
composed of a set of coupled pairs

X = {(Xi, `i)}Ki=1 ⊂ Rd×T × {1, . . . , L} ,

where Xi is the i-th EEG trial recorded in the experiment and
`i its associated label (out of L possible classes). Different BCI
paradigms consist of different cognitive tasks and the recorded
signals are filtered differently. For instance, in motor imagery
(MI), the epochs in X are usually bandpass filtered between
8 Hz and 35 Hz, whereas for experiments based on the P300
component of event-related potentials, the samples are filtered
between 1 Hz and 24 Hz. All our EEG processing is performed
using MNE for Python [31].

We use the RG framework described in Section II-A to
manipulate the trials of the BCI experiment. For this purpose,
for each trial Xi ∈ X we estimate a SPD matrix Ci ∈ P(d)
which describes its second-order statistics. For data following
the MI paradigm, this matrix is simply the spatial covariance
matrix of the EEG signals in the trial, as given by Eq. (16)
(note that because of the bandpass filtering, the signals in Xi

are zero-mean), whereas for the P300 paradigm it is a special
augmented covariance matrix defined in P(2d), as described
in [32]. We classify the BCI data using the minimum distance
to mean clasifier (MDM), which is a geometry-aware classifier
that generalizes the nearest-centroid classifier to the case
where the data points are defined in the SPD manifold [26]. In
the training phase, the MDM calculates the geometric means
for each class of a training dataset (Dtrain). In the testing phase,
each SPD matrix from the testing dataset (Dtest) is associated
to the label of the closest class mean. Note that we could have

used other more flexible and powerful classifiers for SPD data,
such as the probabilistic classifier proposed in [33]. However,
since this contribution is mainly concerned with the statistical
and dimensionality matching of datasets, we have preferred to
illustrate this proposal using the simplest classifier available
yet well validated for BCI classification [3].

G. Datasets

We present examples with BCI data from both MI and
P300 paradigms. For MI, we use the Zhou2016 [34],
BNCI2015001 [35], and AlexMI [36] datasets. The
Zhou2016 dataset consists of recordings on 14 elec-
trodes from 4 subjects executing either a left-hand/right-
hand or a feet/right-hand motor imagery task; we denote
these sub-datasets by Zhou2016-LR (LR for left-hand/right-
hand) and Zhou2016-FR (FR for feet/right-hand). Dataset
BNCI2015001 is composed of EEG signals from 13 elec-
trodes and 12 subjects (from which we have selected 7 with the
best self-scores, e.g., the score of a classifier trained and tested
on the same dataset), all executing a feet/right-hand motor
imagery task. Dataset AlexMI contains recordings from 8
subjects performing right hand/feet motor imagination (from
which we selected the 4 with best self-scores). The classes on
all datasets are balanced.

The examples on the P300 paradigm use the
BNCI2014009 [37], BI.2012 [38], and BI.2013 [39]
datasets. All three datasets were recorded with 16 electrodes,
but each one used a different positioning. For BNCI2014009
we used the 5 subjects with the best self-scores (out of 10
available subjects), for BI.2012 we selected the best 8
subjects out of 24 available subjects, and for BI.2013 we
selected the 8 subjects with the best self-scores out of 25
available subjects. All P300 datasets are from recordings
on experiments with a 6-by-6 grid with flashing cues,
but the subjects’ cognitive tasks are slightly different : in
BNCI2014009 they must concentrate on letters to spell
words, whereas in BI.2012 and BI.2013 the subjects are
asked to fix their attention on target cues representing “aliens”
to be destroyed. The classes of the trials are unbalanced, with
one “target” trial for every five “non-target” trials.

All datasets mentioned above are publicly available on the
MOABB framework [40].

H. Experiments

The goal of our experiments is to assess whether dimen-
sionality transcending allows a classifier to leverage from
discriminative information in EEG data recorded from other
subjects, even if they were obtained under different experi-
mental setups. We consider the semi-supervised cross-subject
transfer learning paradigm for BCI, where one wants to
determine the unknown labels from a target dataset (Tu) using
information from a few labeled trials in the target dataset (T`),
as well as the full information available from a source dataset
(S) containing recordings from another subject. We compare
three classification pipelines assuming that there are different
numbers of labeled covariance matrices from each class on the
T` dataset:
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• calibration: the data points in Tu are classified using a
MDM classifier trained with only the labeled data points
available in the T` dataset, such as

Dtrain = T` and Dtest = Tu .

• DT-uns: only the unsupervised steps (hence DT-uns) of
the RPA are used, re-centering and stretching, for match-
ing the statistics of two dimension-matched datasets. A
MDM classifier is trained on a set containing the labeled
covariance matrices from the target dataset as well as
the dimension-matched and RPA-transformed data points
from a source subject (for which we know all the labels),
such as

Dtrain = T`↑(rct+str) ∪ S↑(rct+str) and Dtest = T ↑(rct+str)
u .

This variant is relevant because it does not require knowl-
edge of the labels of the trials on the target dataset.

• DT: full RPA (re-centering, stretching, rotation) is used to
match the statistics of two dimension-matched datasets. A
MDM classifier is trained on a set containing the labeled
covariance matrices from the target dataset as well as
the dimension-matched and RPA-transformed data points
from a source subject (for which we know all the labels),
such as

Dtrain = T`↑(RPA) ∪ S↑(RPA) and Dtest = T ↑(RPA)
u .

Note that we could have considered other pipelines where
the statistical matching step would be carried out differently.
However, in [10] we have demonstrated the superiority of RPA
as compared to other statistical matching methods in the SPD
manifold. Furthermore, other procedures from the literature
on heterogeneous domain adaptation are not suitable for data
points defined on a SPD space, which is why we have not
included them in our comparisons.

We use the area under the ROC curve (AUC score) for
quantifying the classification performance of the MDM clas-
sifier in all analyses. We randomly split the target dataset
into labeled and unlabeled subsets five times and average
the classification scores obtained in each realization. We
may say that dimensionality transcending is useful for cross-
subject transfer learning when the score of the DT pipeline is
superior to that of the calibration pipeline, since it means that
information from a source subject improved the classification
score on a target dataset.

III. RESULTS

Figures 3 and 4 provide a qualitative summary of the results
for the cross-subject classification scores. The scores of the
classification pipelines on each target subject are displayed on
different rectangular regions in which the vertical lines indicate
the scores for the calibration pipeline. The scatter points in
each rectangular box represent the cross-subject scores for
each source subject and each classification pipeline. The black
dots represent the results with DT and the gray dots the results
with DT-uns. The rectangular boxes are ordered according to
the score of the calibration pipeline.

We also provide a quantitative comparison of the scores
with the DT pipeline against those with calibration based on
statistical hypothesis testing. We did our statistical analysis
using paired t-tests with p-values obtained via permutation
methods [41]:
(1) For each target subject i, we perform a signed paired t-

test comparing the scores of method DT to calibration
along all source subjects. Each of these tests yields a
statistic Ti and a p-value pi is obtained via permutations
tests.

(2) We combine the p-values of all the target subjects using
Stouffer’s Z-score method [42]. This yields a single p-
value for the comparison between methods as well as the
direction to which the null hypothesis has been rejected
(i.e., whether method DT is better than calibration or
vice-versa).

(3) We adjust the p-values of each pairwise comparison using
Holm’s step-down procedure [43] to account for the
multiple comparison problem.

The results are displayed in Table II, where the average
values of the classification pipelines are taken over all the
cross-subject classification scores for all pairs of source-target
subjects.

IV. DISCUSSION

As mentioned in Sec. II-H, the goal of our experiments
was to investigate whether pipelines using dimensionality
transcending (unsupervised and supervised) have better scores
than just doing calibration. To assess this, we first examine
the positions of the scatter points in Figure 3 and Figure 4
and compare them to the vertical lines corresponding to the
calibration scores. We observe that the scores tend to be
higher for target subjects for whom the calibration score is
higher; this goes in line with observations from [21], where
the target subjects with the best self-scores were also the best
“receivers” of data from source subjects. We also observe that,
in general, the results with DT-uns are inferior to that of
calibration, whereas those for DT are, in most cases, superior
to calibration, implying that the rotation step of RPA is indeed
essential for the statistical matching of the datasets. This can
be explained by the fact that the electrode positioning of the
databases are different and the rotation matrix in RPA acts to
mitigate such differences. Because of the poor performance
of DT-uns, we limit our quantitative analysis to the results
with DT. Table II shows that this pipeline is better (or at least
equivalent) than calibration on most situations, confirming
that it is indeed a good approach for leveraging discriminative
information from other datasets.

It is interesting to observe how dimensionality transcending
performs when the cognitive tasks of the subjects of each
database are different. We first consider motor imagery data:
BNCI2015001 and AlexMI have trials for right-hand/feet
MI tasks, whereas Zhou2016-LR has classes left-hand/right-
hand. The results in Table II (two last rows on the left
column) show that DT yields poorer results as compared
to when the cognitive tasks are the same; they are in fact
worse than calibration most of the time. This is related
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# of labeled covariances: 5 # of labeled covariances: 5 # of labeled covariances: 10

# of labeled covariances: 10# of labeled covariances: 20# of labeled covariances: 20

Fig. 3. Results for the MI paradigm. We represent the AUC scores for cross-subject classification considering different pairwise combinations of source and
target databases. The scores of each target subject are displayed in different rectangular boxes, with the different scatter points indicating the scores obtained
for each source subject. Different color markers indicate different classification pipelines (DT-uns is in gray and DT in black; see text for a description
of each pipeline). The vertical line inside each rectangular box indicates the calibration score for the corresponding target subject for different number of
labeled covariance matrices (indicated in the figure) in the target dataset.

to the fact that datasets containing signals which are not
physiologically comparable are not expected to share the same
discriminative information and, therefore, are incompatible for
transfer learning. In our second example, the experimental
protocols behind the generation of the P300 data were not
always the same (subjects were asked to focus on a letter
to spell in BNCI2014009 and a ‘target alien’ in BI.2012
and BI.2013). However, the cognitive tasks on both datasets
were all based on concentrating on a given target cue. Con-
sequently, the discriminative features used to do classification
on these datasets were all related to the P300 component of
the event-related potentials in the EEG signals. This explains
why DT works well for all pairs of P300 databases, despite
the differences in cognitive tasks. It is also worth noting
that dimensionality transcending does not provide any new
discriminative information: if the electrodes originally chosen
for a certain dataset do not have any discriminatory power
for a given BCI task, expanding the dimensionality of the
data points will not improve the performance of classifiers
trained on them. It remains an open question, however, how
the difference in the number of electrodes on the source and
target datasets quantitatively impacts the performance of the
DT procedure.

Finally, we should comment on the relation between our
choice of classifier and the performance of the DT pipeline.
The RPA procedure used in DT’s statistical matching step was

derived in [10] for a setting where the datasets are sufficiently
well described as a balanced mixture of Riemannian Gaussians
in the SPD manifold (one mixture for each class, both with
the same dispersion around the class mean). In such case,
the geometric transformations in RPA are optimal and the
MDM classifier is the most adequate classifier, since it is solely
based on the difference between the means of the mixtures.
However, if the hypothesis above is not satisfied, the RPA
procedure should be adapted to match the statistics of datasets
according to their characteristics and a different classifier
might be preferable. In the context of BCI classification and,
more particularly, for the datasets used in our numerical
illustrations, the RPA+MDM tandem has already demonstrated
good results [10], which motivates the choice of the MDM
classifier.

V. CONCLUSION

In this work, we have tackled the problem of merging
datasets that describe the same phenomenon but contain data
points with different dimensionalities and/or different fea-
tures. Our proposal, that we name “dimensionality transcend-
ing”, consists of two steps: dimensionality matching followed
by statistical distribution matching. We have illustrated our
method using data from BCI experiments and investigated
whether DT could be used for cross-subject classification when
the data of the source and target subjects came from different
databases. Our results show that a classification pipeline using
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# of labeled covariances: 36 # of labeled covariances: 36 # of labeled covariances: 36

# of labeled covariances: 36 # of labeled covariances: 36 # of labeled covariances: 36

Fig. 4. Results for the P300 paradigm. We represent the AUC scores for cross-subject classification considering different pairwise combinations of source and
target databases. The scores of each target subject are displayed in different rectangular boxes, with the different scatter points indicating the scores obtained
for each source subject. Different color markers indicate different classification pipelines (DT-uns is in gray and DT in black; see text for a description of
each pipeline). The vertical line inside each rectangular box indicates the calibration score for the corresponding target subject when a certain number of
labeled covariance matrices (indicated in the figure) are available in the target dataset.

DT always attained superior (or at least equivalent) perfor-
mance as compared to calibration, even with just a few labeled
epochs, which is a remarkable result.

We have used the Riemannian geometry framework for
working with SPD matrices describing the statistics of EEG
recordings from BCI experiments. Because of this, we have
presented a version of the DT technique tailored for the SPD
manifold. It is easy, however, to extend the DT procedure to
any other kind of data defined in a Riemannian manifold (e.g.,
the Euclidean space). To do so, we first need to determine an
isometric transformation capable of taking data points with
different dimensionalities into a common space (for instance,
by padding zeros to an Euclidean feature vector) and, then, use
some domain adaptation technique for matching the statistics
of the datasets, such as the one proposed in [44] which
uses optimal transport to match statistical distributions of data
points defined in any metric space.

Our contribution is part of a larger effort in the machine
learning research community with the goal of designing al-
gorithms capable of extracting information shared between
datasets with different dimensionalities, different statistical
distributions, etc. The aim of such methods is to go against
the current state of affairs of the “big data era”, where
large amounts of experimental data are gathered by different
laboratories with total disregard to whether they can be jointly
used for performing statistical tasks. On a societal point of
view, such methods may be seen as “ecological”, since they try
to reuse and learn from information that already exists and for
which some effort has already been put into its generation, the
ultimate goal being to avoid the consumption of unnecessary
energy for obtaining new data points as well as for storing
them.

The topics considered in this paper open several important
questions to be investigated in the future. For instance, the
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TABLE II
MEAN VALUES OF THE AREA UNDER THE ROC CURVE (AUC) SCORE FOR CROSS-SUBJECT CLASSIFICATION USING PIPELINES CALIBRATION AND DT,
ALL DESCRIBED IN THE TEXT. FOR EACH DATABASE BEING USED AS target, WE CONSIDER THREE DIFFERENT SIZES OF ITS LABELED PARTITION. THE
FONTSTYLE OF THE AVERAGE SCORES REPRESENTED IN THE TABLE ARE DETERMINED FROM THE STATISTICAL TESTS THAT COMPARE THEIR VALUES

WITH THAT OF CALIBRATION; SEE TEXT FOR AN EXPLANATION ON THE STATISTICAL PROCEDURE THAT WE USED. WHEN THE SCORE OF DT IS IN BOLD
WITH A GRAY BACKGROUND, IT MEANS THAT IT IS BETTER THAN CALIBRATION IN AVERAGE, WHEREAS A SCORE THAT IS UNDERLINED INDICATES

THAT THE PIPELINE’S PERFORMANCE IS INFERIOR TO CALIBRATION IN AVERAGE; A SCORE WITH NO FONTSTYLE IS ONE THAT IS NOT STATISTICALLY
SIGNIFICANTLY DIFFERENT AS COMPARED TO CALIBRATION. THE LETTERS “T” AND “S” ON THE LEFT OF THE TABLE INDICATE WHICH DATABASE IS

USED AS target AND source IN EACH COMPARISON.

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

# of labeled covariances :

parametrization of the statistical distributions of the SPD data
points in the source and target datasets could be done so to
take into account more complex distributions. Note, however,
that in this case DT’s distribution matching step would have to
be carried out with a modified version of RPA. Another rele-
vant question is how to use pooling and ensembling strategies
for gathering information from several databases containing
data points with different dimensionalities and combine them
to form a single robust classifier as explored in [45].

VI. ACKNOWLEDGEMENT

This work is partly supported by the ERC Grant CHESS
2012-ERC-AdG-320684.

REFERENCES

[1] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covariate shift adap-
tation by importance weighted cross validation,” J. Mach. Learn. Res.,
vol. 8, pp. 985–1005, Dec. 2007.

[2] F. Mémoli and G. Sapiro, “Comparing point clouds,” in Proceedings
of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing - SGP 04. ACM Press, 2004.

[3] M. Congedo, A. Barachant, and R. Bhatia, “Riemannian geometry for
EEG-based brain-computer interfaces; a primer and a review,” Brain-
Computer Interfaces, pp. 1–20, 2017.

[4] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain-
computer interfaces: A review,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 10, pp. 1753–1762, oct
2017.

[5] R. Bhatia, Positive definite matrices. Princeton university press, 2009.

[6] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, oct 2010.

[7] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, Feb 2011.

[8] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” J. Mach. Learn. Res., vol. 13, pp. 723–773,
Mar. 2012.

[9] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rako-
tomamonjy, and F. Yger, “A review of classification algorithms for EEG-
based brain–computer interfaces: a 10 year update,” Journal of Neural
Engineering, vol. 15, no. 3, p. 031005, apr 2018.

[10] P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes
analysis: Transfer learning for brain-computer interfaces,” IEEE Trans-
actions on Biomedical Engineering, pp. 1–1, 2018.

[11] P. L. C. Rodrigues, F. Bouchard, M. Congedo, and C. Jutten, “Dimen-
sionality reduction for BCI classification using Riemannian geometry,”
in Graz BCI Conference 2017, 2017.

[12] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D. Engemann,
“Manifold-regression to predict from MEG/EEG brain signals without
source modeling,” in NeurIPS 2019 - 33th Annual Conference on
Neural Information Processing Systems, Vancouver, Canada, Dec. 2019.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02147708

[13] M. Moakher, “A differential geometric approach to the geometric mean
of symmetric positive-definite matrices,” SIAM J. Matrix Anal. Appl.,
vol. 26, no. 3, pp. 735–747, Mar. 2005.

[14] X. Pennec, “Intrinsic statistics on Riemannian manifolds: Basic tools for
geometric measurements,” Journal of Mathematical Imaging and Vision,
vol. 25, no. 1, p. 127, 2006.

[15] M. Congedo, “EEG Source Analysis ,” Habilitation à diriger des
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