Smaïl Cheboui 
  
Arezki Kessi 
  
Daniel Massart 
  
Algebraic intersection for translation surfaces in the stratum H(2) Intersection algébrique dans la strate H(2)

Nous étudions la quantité KVol définie par l'équation (1) sur la strate H(2) des surfaces de translation de genre 2, avec une singularité conique. Nous donnons une suite explicite de surfaces L(n, n) telles que KVol(L(n, n)) -→ 2 quand n tend vers l'infini, 2 étant l'infimum-conjectural-de KVol sur H(2).

) on the stratum H(2) of translation surfaces of genus 2, with one conical point. We provide an explicit sequence L(n, n) of surfaces such that KVol(L(n, n)) -→ 2 when n goes to infinity, 2 being the conjectured infimum for KVol over H(2).

Introduction

Let X be a closed surface, that is, a compact, connected manifold of dimension 2, without boundary. Let us assume that X is oriented. Then the algebraic intersection of closed curves in X endows the first homology H 1 (X, R) with an antisymmetric, non degenerate, bilinear form, which we denote Int(., .). Now let us assume X is endowed with a Riemannian metric g. We denote Vol(X, g) the Riemannian volume of X with respect to the metric g, and for any piecewise smooth closed curve α in X, we denote l g (α) the length of α with respect to g. When there is no ambiguity we omit the reference to g.

We are interested in the quantity KVol(X, g) = Vol(X, g) sup

α,β Int(α, β) l g (α)l g (β) (1) 
where the supremum ranges over all piecewise smooth closed curves α and β in X. The Vol(X, g) factor is there to make KVol invariant to re-scaling of the metric g. See [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] as to why KVol is finite. It is easy to make KVol go to infinity, you just need to pinch a non-separating closed curve α to make its length go to zero. The interesting surfaces are those (X, g) for which KVol is small.
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When X is the torus, we have KVol(X, g) ≥ 1, with equality if and only if the metric g is flat (see [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF]). Furthermore, when g is flat, the supremum in (1) is not attained, but for a negligible subset of the set of all flat metrics. In [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] KVol is studied as a function of g, on the moduli space of hyperbolic (that is, the curvature of g is -1) surfaces of fixed genus. It is proved that KVol goes to infinity when g degenerates by pinching a nonseparating closed curve, while KVol remains bounded when g degenerates by pinching a separating closed curve.

This leaves open the question whether KVol has a minimum over the moduli space of hyperbolic surfaces of genus n, for n ≥ 2. It is conjectured in [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] that for almost every (X, g) in the moduli space of hyperbolic surfaces of genus n, the supremum in (1) is attained (that is, it is actually a maximum).

In this paper we consider a different class of surfaces : translation surfaces of genus 2, with one conical point. The set (or stratum) of such surfaces is denoted H(2) (see [START_REF] Hubert | Samuel Prime arithmetic Teichmüller discs in H(2)[END_REF]). By [START_REF] Mcmullen | Teichmüller curves in genus two: discriminant and spin[END_REF], any surface X in the stratum H(2) may be unfolded as shown in Figure 1, with complex parameters z 1 , z 2 , z 3 , z 4 . The surface is obtained from the plane template by identifying parallel sides of equal length.

It is proved in [START_REF] Judge | Hugo The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF] (see also [START_REF] Herrlich | Systolic geometry of translation surfaces[END_REF]) that the systolic volume has a minimum in H(2), and it is achieved by a translation surface tiled by six equilateral triangles. Since the systolic volume is a close relative of KVol, it is interesting to keep the results of [START_REF] Judge | Hugo The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF] and [START_REF] Herrlich | Systolic geometry of translation surfaces[END_REF] in mind.

We have reasons to believe that KVol behaves differently in H(2), both from the systolic volume in H(2), and from KVol itself in the moduli space of hyperbolic surfaces of genus 2 ; that is, KVol does not have a minimum over H [START_REF] Herrlich | Systolic geometry of translation surfaces[END_REF].

We also believe that the infimum of KVol over H(2) is 2. This paper is a first step towards the proof : we find an explicit sequence L(n, n) of surfaces in H(2), whose KVol tends to 2 (see Proposition 2.5). These surfaces are obtained from very thin, symmetrical, L-shaped templates (see Figure 2).

In the companion paper [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the Teichmüller disk of L(2, 2)[END_REF] we study KVol as a function on the Teichmüller disk (the SL 2 (R)-orbit) of surfaces in H(2) which are tiled by three identical parallelograms (for instance L(2, 2)), and prove that KVol does have a minimum there, but is not bounded from above. Therefore KVol is not bounded from above as a function on H(2). In [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the Teichmüller disk of L(2, 2)[END_REF] we also compute KVol for the translation surface tiled by six equilateral triangles, and find it equals 3, so it does not minimize KVol, neither in H(2), nor even in its own Teichmüller disk.

L(n, n)

Preliminaries

Following [START_REF] Schmithüsen | Gabriela An algorithm for finding the Veech group of an origami[END_REF], for any n ∈ N, n ≥ 2, we call L(n + 1, n + 1) the (2n + 1)-square translation surface of genus two, with one conical point, depicted in Figure 2, where the upper and rightmost rectangles are made up with n unit squares. We call A (resp. B) the region in L(n + 1, n + 1) obtained, after identifications, from the uppermost (resp. rightmost) rectangle, and C the region in L(n + 1, n + 1) obtained, after identifications, from the bottom left square. Both A and B are annuli with a pair of points identified on the boundary, while C is a square with all four corners identified. We call e 1 , e 2 , (resp. f 1 , f 2 ) the closed curves in L(n + 1, n + 1) obtained by gluing the endpoints of the horizontal (resp. vertical) sides of A and B. The closed curve which sits on the opposite side of C from e 1 (resp. f 1 ) is called e 1 (resp. f 1 ), it is homotopic to e 1 (resp. f 1 ) in L(n + 1, n + 1). The closed curves in L(n + 1, n + 1) which correspond to the diagonals of the square C are called g and h.

Figure 3 shows a local picture of L(n + 1, n + 1) around the singular (conical) point S, with angles rescaled so the 6π fit into 2π.

Since e 1 , e 2 , f 1 , f 2 do not meet anywhere but at S, the local picture yields the algebraic intersections between any two of e 1 , e 2 , f 1 , f 2 , summed up in the following matrix:

Int e 2 f 1 e 1 f 2 e 2 0 1 0 -1 f 1 -1 0 0 0 e 1 0 0 0 1 f 2 1 0 -1 0 (2) 
We call T A (resp. T B ) the flat torus obtained by gluing the opposite sides of the rectangle made with the n + 1 leftmost squares (resp. with the n + 1 bottom squares), so the homology of T A (resp. T B ) is generated by e 1 and the concatenation of f 1 and f 2 (resp. f 1 and the concatenation of e 1 and e 2 ). Lemma 2.1. The only closed geodesics in L(n + 1, n + 1) which do not intersect e 1 nor f 1 are, up to homotopy, e 1 , f 1 , g, and h.

Proof. Let γ be such a closed geodesic. It cannot enter, nor leave, A, B, nor C. If it is contained in A, and does not intersect e 1 , then it must be homotopic to e 1 , which is the Proof. For each intersection with e 1 , γ must go through A, from boundary to boundary.
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Obviously a similar lemma holds with f 1 instead of e 1 . For g and h the proof is a bit different :

Lemma 2.3. For any closed geodesic γ in L(n + 1, n + 1), we have l(γ) ≥ n|Int(γ, g)|.
Proof. First, observe that between two consecutive intersections with g, γ must go through either A or B, unless γ is g itself, or h : indeed, the only geodesic segments contained in C with endpoints on g are segments of g, or h. Obviously Int(g, g) = 0, and from the intersection matrix (2), knowing that

[g] = [e 1 ] -[f 1 ], [h] = [e 1 ] + [f 1 ], we see that Int(g, h) = 0.
Thus, either Int(γ, g) = 0, or each intersection must be paid for with a trek through A or B, of length at least n.

Obviously a similar lemma holds with h instead of g. Note that Lemmata 2.1, 2.2, 2.3 imply that the only geodesics in L(n + 1, n + 1) which are shorter than n are e 1 , f 1 , g, h, and closed geodesics homotopic to e 1 or f 1 .

Lemma 2.4. Let I, J be positive integers, take a ij , i = 1, . . . , I, j = 1, . . . , J in R + , and b 1 , . . . , b I , c 1 , . . . , c J in R * + . Then we have

i,j a ij I i=1 b i J j=1 c j ≤ max i,j a ij b i c j .
Proof. Re-ordering, if needed, the a ij , b i , c j , we may assume

a ij b i c j ≤ a 11 b 1 c 1 ∀i = 1, . . . , I, j = 1, . . . , J.
Then so from now on we assume that neither α or β is homotopic to e 1 , f 1 , g, h. We cut α and β into pieces using the following procedure : we consider the sequence of intersections of α with e 1 , e 1 , f 1 , f 1 , in cyclical order, and we cut α at each intersection with e 1 or e 1 which is followed by an intersection with f 1 or f 1 , and at each intersection with f 1 or f 1 which is followed by an intersection with e 1 or e 1 . We proceed likewise with β. We call α i , i = 1, . . . , I, and β j , j = 1, . . . , J, the pieces of α and β, respectively. Note that

a ij b 1 c 1 ≤ a 11 b i c j ∀i = 1, . . . , I, j = 1, . . . , J, so b 1 c 1 i,j a ij ≤ a 11 i,j b i c j = a 11 I i=1 b i   J j=1 c j   .

Estimation of KVol(L(n, n))

l(α) = I i=1 l(α i ), l(β) = J j=1 l(β j ), and 
|Int(α, β)| ≤ i,j |Int(α i , β j )|, so Lemma 2.4 says that |Int(α, β)| l(α)l(β) ≤ max i,j |Int(α i , β j )| l(α i )l(β j ) .
We view each piece α i (resp. β j ) as a geodesic arc in the torus T A (resp. T B ), with endpoints on the image in T A (or T B ) of f 1 or f 1 (resp. e 1 or e 1 ), which is a geodesic arc of length 1, so we can close each α i (resp. β j ) with a piece of f 1 or f 1 (resp. e 1 or e 1 ), of length ≤ 1. We choose a closed geodesic αi (resp. βj ) in T A (resp. T B ) which is homotopic to the closed curve thus obtained. We have l(α i ) ≤ l(α i )+1, l( βj ) ≤ l(β j )+1, so 1

l(α i )l( βj ) ≥ 1 (l(α i ) + 1)(l(β j ) + 1) . Now recall that l(α i ), l(β j ) ≥ n, so l(α i ) + 1 ≤ (1 + 1 n )l(α i ), whence 1 
l(α i )l( βj ) ≥ 1 l(α i )l(β j ) n n + 1 2 .
Next, observe that |Int(α i , β j )| ≤ |Int( αi , βj )| + 1, because αi (resp. βj ) is homologous to a closed curve which contains α i (resp. where the last inequality stands because l( αi ) ≥ n, l( βj ) ≥ n, since αi and βj both have to go through a cylinder A or B at least once. Finally, since αi and βj are closed geodesics on a flat torus of volume n + 1, we have (see [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF])

|Int( αi , βj )| l(α i )l( βj ) ≤ 1 n + 1 , so |Int(α i , β j )| l(α i )l(β j ) ≤ 1 n + 1 + 1 n 2 n + 1 n 2 = 1 n + o 1 n ,
which yields the result, recalling that Vol(L(n + 1, n + 1)) = 2n + 1.

  β j ) as a subarc, and the extra arcs cause at most one extra intersection, depending on whether or not the endpoints of α i and β j are intertwined. So,|Int(α i , β j )| l(α i )l(β j ) ≤ |Int( αi , βj )| + 1 l(α i )l( βj )

  Figure 3: Local picture around the conical point soul of the annulus from which A is obtained by identifying two points on the boundary.Likewise, if it is contained in B, and does not intersect f 1 , then it must be homotopic to f 1 . Finally, if γ is not contained in A nor in B, it must be contained in C. The only closed geodesics contained in C are the sides and diagonals of the square from which C is obtained, which are e 1 , e 1 , f 1 , f 1 , g, and h.
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Lemma 2.2. For any closed geodesic γ in L(n + 1, n + 1), we have l(γ) ≥ n|Int(γ, e 1 )|.

  To bound KVol(L(n + 1, n + 1)) from above, we take two closed geodesics α and β ; by Lemmata 2.2, 2.3, if either α or β is homotopic to e 1 , f 1 , g, or h, then

	Proposition 2.5.			
	lim n→+∞	KVol(L(n + 1, n + 1)) = 2.
	Proof. First observe that Vol(L(n + 1, n + 1)) = 2n + 1, l(e 1 ) = 1, l(f 2 ) = n, Int(e 1 , f 2 ) =
	1, so			
	KVol(L(n + 1, n + 1)) ≥ 2 +	1 n	.
		Int(α, β) l(α)l(β)	≤	1 n	,
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