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WAVE EQUATION ON CERTAIN
NONCOMPACT SYMMETRIC SPACES

HONG-WEI ZHANG

Abstract. In this paper, we prove sharp pointwise kernel estimates and dispersive proper-
ties for the linear wave equation on noncompact Riemannian symmetric spaces G/K of any
rank with G complex. As a consequence, we deduce Strichartz inequalities for a large family
of admissible pairs and prove global well-posedness results for the corresponding semilinear
equation with low regularity data as on hyperbolic spaces.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Pointwise estimates of the wave kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Dispersive estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. Small time dispersive estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. Large time dispersive estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Strichartz inequality and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1. Strichartz inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2. Global well-posedness in Lp (R, Lq(X)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6. Further results on locally symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1. Introduction

This paper is devoted to study the dispersive properties of the linear wave equation on
noncompact symmetric space G/K of any rank with G complex, and their applications to
nonlinear Cauchy problems. This theory is well established for the wave equation on Rd with
d ≥ 3: {

∂2
t u(t, x)−∆Rdu(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x),

where the solutions u satisfy the Strichartz inequality: 1

‖∇R×Rdu‖Lp(I;H−σ,q(Rd)) . ‖f‖H1(Rd) + ‖g‖L2(Rd) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (Rd)) ,

on any (possibly unbounded) interval I ⊆ R under the assumptions that

σ = d+1
2

(
1
2 −

1
q

)
, σ̃ = d+1

2

(
1
2 −

1
q̃

)
,

2020 Mathematics Subject Classification. 22E30, 35J10, 35P25, 43A85, 43A90.
Key words and phrases. noncompact symmetric space of higher rank, semilinear wave equation, dispersive

property, Strichartz inequality, global well-posedness.
1The symbol ., let us recall, means precisely that there exists a constant 0 < C < +∞ such that

‖∇R×Rdu‖Lp(I;H−σ,q(Rd)) ≤ C
(
‖f‖H1(Rd) + ‖g‖L2(Rd) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (Rd))

)
, where p̃′ is the dual exponent of

p̃, defined by the formula 1
p̃
+ 1

p̃′ = 1, and similarly for q̃′.
1
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and the couples (p, q), (p̃, q̃) ∈ (2,+∞]× [2, 2d−1
d−3) fulfill the admissibility conditions:

1
p = d−1

2

(
1
2 −

1
q

)
, 1
p̃ = d−1

2

(
1
2 −

1
q̃

)
.

Notice that this inequality also holds at the endpoint (2, 2d−1
d−3) when d ≥ 4, but fails without

additional assumptions when d = 3 (see [GiVe95] and [KeTa98] for more details). These esti-
mates serve as a tool in order to find minimal regularity conditions on the initial data ensuring
well-posedness for corresponding semilinear wave equations, which is addressed in [Kap94], and
almost fully answered in [LiSo95; GLS97; KeTa98; DGK01].

Given the rich Euclidean theory, several attempts have been made in order to establish
Strichartz inequality for dispersive equations in other settings. We are interested in Riemann-
ian symmetric spaces of noncompact type where relevant questions are now well answered in
the rank one case, see for instance [Fon97; Tat01; MeTa11; MeTa12; APV12; AnPi14] on hy-
perbolic spaces, and [APV15] on Damek-Ricci spaces. A first study of the wave equation on
general symmetric spaces of higher rank was carried out in [Has11], where some non optimal
estimates were obtained under the strong smoothness ,assumption.

In this paper, we prove sharp estimates for the non-shifted wave equation on noncompact
symmetric spaces G/K of any rank with G complex. In this case, the Harish-Chandra c-function
and the spherical function have elementary expressions, which allow us to analyze accurately
the wave kernel. For lack of such expressions in general, our present approach is limited to the
class of symmetric spaces G/K with G complex, and maybe to a few other cases.

Consider the operatorW σ
t = D̃−σeit

√
−∆ defined on the symmetric space X = G/K, for suit-

able exponents σ ∈ C, where ρ denotes the half sum of positive roots, and D̃ =
√
−∆− |ρ|2 + ρ̃2

is the differential operator with a fixed constant ρ̃ ≥ |ρ|. To avoid possible singularities, we may
consider the analytic family of operators

W̃ σ
t =

eσ
2

Γ(d+1
2 − σ)

D̃−σeit
√
−∆,

in the vertical strip 0 ≤ Reσ ≤ d+1
2 , where Γ denotes the Gamma function, see (3.2). We

denote by ω̃σt its K-bi-invariant convolution kernel. Our first and main result is the following
pointwise kernel estimate, which summarizes Theorem 3.1 and Theorem 3.3 proved in Sect. 3.

Theorem 1.1 (Pointwise kernel estimates). For all σ ∈ C with Reσ = d+1
2 , there exists N ∈ N

such that the following estimates hold for all x ∈ X:

|ω̃σt (x)| . (1 + |Hx|)Ne−〈ρ,Hx〉
{
|t|−

d−1
2 if 0 < |t| < 1,

|t|−
d
2 if |t| ≥ 1,

where Hx ∈ a+ denotes the middle component according to the Cartan decomposition of x.

Remark 1.2. These kernel estimates are sharp in time and similar results hold obviously in the
easier case where Reσ > d+1

2 . The value of N will be specified in Theorem 3.1 and Theorem 3.3.
However, the polynomial (1 + |Hx|)N is not crucial for further computations since there is an
exponential decay following.

By using the interpolation, we deduce our second result.

Theorem 1.3 (Dispersion property). Let 2 < q, q̃ < +∞ and σ ≥ (d + 1) max(1
2 −

1
q ,

1
2 −

1
q̃ ).

Then there exists a constant C > 0 such that the following dispersive estimates hold:

‖W̃ σ
t ‖Lq̃′ (X)→Lq(X) ≤ C

{
|t|−(d−1) max( 1

2
− 1
q
, 1
2
− 1
q̃

) if 0 < |t| < 1,

|t|−
d
2 if |t| ≥ 1.
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Remark 1.4. At the endpoint q = q̃ = 2, t 7→ eit
√
−∆ is a one-parameter group of unitary

operators on L2(X).

Remark 1.5. These estimates, which are proved on real hyperbolic spaces in [AnPi14], extend
straightforwardly to all the noncompact symmetric spaces of rank 1, and more generally to all
Damek-Ricci spaces. In these cases, the large time decay is |t|−

3
2 , where ”3” corresponds to the

so-called dimension at infinity of X. In higher rank, the dimension at infinity coincides with
the manifold dimension d of G/K if and only if G is complex.

Remark 1.6. In [CGM02], M. Cowling, S. Giulini and S. Meda have described the Lp-Lq
boundedness of a semi-group of operators related to the shifted Laplacian in constant time t = 1
on general noncompact symmetric spaces. However, sharp dispersive properties with a general
t ∈ R∗ are crucial for proving Strichartz type inequalities and for studying related PDE prob-
lems. Along the lines in [CGM02], we may derive a sharp dispersive inequality in small time
|t| ≤ 1. But as mentioned by these authors, their method does not yield good estimates in large
time.

This paper is organized as follows. After recalling some basic notations and reviewing har-
monic analysis on noncompact symmetric spaces in Sect. 2, we derive pointwise kernel estimates
in Sect. 3. We prove the dispersive estimates by interpolation arguments in Sect. 4. As a con-
sequence, we deduce in Sect. 5, Strichartz inequalities for a large family of admissible pairs and
obtain well-posedness results for the associated semilinear wave equation. In Sect. 6, we discuss
similar results on a class of locally symmetric spaces.

Acknowledgments. The author is supported by the doctoral fellowship of the University of
Orléans and by the Methusalem Programme grant: Analysis and Partial Differential Equations.
The present paper is part of the author’s Ph.D. thesis, supervised by Jean-Philippe Anker
and Nicolas Burq, and the author would like to thank them for sharing their knowledge and
experience with him. The author also thanks the referees for their valuable suggestions.

2. Preliminaries

We review in this section some elementary notations and facts about noncompact symmetric
spaces. We refer to [Hel62; Hel00] for more details.

Let G be a complex semisimple Lie group, connected, noncompact, with finite center, and
K be a maximal compact subgroup of G. The homogeneous space X = G/K is a Riemannian
symmetric space of noncompact type and dimension d ≥ 3. Let g = k⊕p be the Cartan decom-
position of the Lie algebra of G. The Killing form of g induces a K-invariant inner product on
p, hence a G-invariant Riemannian metric on X, whose tangent space at the origin is identified
with p.

Fix a maximal abelian subspace a in p. The rank of X is the dimension ` of a. Let Σ ⊂ a be
the root system of (g, a) which is reduced, and denote by W the Weyl group associated to Σ.
Choose a set Σ+ of positive roots, let a+ ⊂ a be the corresponding positive Weyl chamber and
a+ be its closure. Notice that d = `+ 2|Σ+| in our case. As usual, ρ ∈ a+ denotes the half sum
of positive roots, counted with their multiplicities, which is given in our case by ρ =

∑
α∈Σ+ α.

It is well known that the spectrum of the negative Laplace-Beltrami operator −∆ on L2(X) is
the half-line [|ρ|2,+∞).
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Denote by n the nilpotent Lie subalgebra of g associated with Σ+, and byN the corresponding
Lie subgroup of G. Then we have the following two decompositions of G:{

G = N (exp a)K (Iwasawa),

G = K (exp a+)K (Cartan).

In the Cartan decomposition, the Haar measure on G writes∫
G
f(g)dg = const.

∫
K
dk1

∫
a+
δ(H)dH

∫
K
f(k1(expH)k2)dk2, (2.1)

where 2

δ(H) =
∏
α∈Σ+

(sinh〈α,H〉)2 �
{ ∏
α∈Σ+

〈α,H〉
1 + 〈α,H〉

}2
e〈2ρ,H〉 ∀H ∈ a+.

Denote by S(K\G/K) the Schwartz space of K-bi-invariant functions on G. The spherical
Fourier transform H is defined by

Hf(λ) =

∫
G
f(x)ϕλ(x)dx ∀λ ∈ a, ∀f ∈ S(K\G/K).

Here ϕλ ∈ C∞(K\G/K) denotes the spherical function of index λ ∈ aC, which is a radial
eigenfunction of the Laplace-Beltrami operator ∆ satisfying{

−∆ϕλ(x) =
(
|λ|2 + |ρ|2

)
ϕλ(x),

ϕλ(0) = 1.
(2.2)

In the noncompact case, the spherical functions are given by

ϕλ(x) =

∫
K
dk e〈iλ+ρ,A(kx)〉 ∀λ ∈ a, (2.3)

where A(kx) is the unique a-component in the Iwasawa decomposition of kx. It satisfies the
basic estimate

|ϕλ(x)| ≤ ϕ0(x) ∀λ ∈ a, ∀x ∈ X, (2.4)

where

ϕ0(expH) =
∏
α∈Σ+

〈α,H〉
sinh 〈α,H〉

�
{ ∏
α∈Σ+

(1 + 〈α,H〉)
}
e−〈ρ,H〉 ∀H ∈ a+. (2.5)

If G is complex, we have also

ϕλ(x) = ϕ0(x)

∫
K
dk ei〈(Ad k).λ,x〉. (2.6)

Recall that W is the Weyl group associated to Σ. We denote by S (a)W the subspace of W -
invariant functions in the Schwartz space S (a). Then H is an isomorphism between S(K\G/K)

and S (a)W . The inverse spherical Fourier transform is defined by

f(x) = const.

∫
a
dλ Hf(λ)ϕλ(x)|c(λ)|−2 ∀x ∈ G, ∀f ∈ S(a)W , (2.7)

where c(λ) is the Harish-Chandra c-function. If G is complex, the Plancherel density reads

|c(λ)|−2 = π(λ)2 =
∏
α∈Σ+ 〈α, λ〉2 , (2.8)

2The symbol f � g between two nonnegative expressions means that there exist two constants 0 < c1 ≤ c2 <
+∞ such that c1g ≤ f ≤ c2g.
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and in particular, the inverse spherical Fourier transform (2.7) becomes

f(x) = const. ϕ0(x)

∫
p
dλ Hf(λ) e−i〈(Ad k).λ,x〉.

Recall at last the asymptotic expansion of the Bessel function of the first kind:

Jm(r) ∼ r−1/2eir
∞∑
j=0

aj(m)r−j + r−1/2e−ir
∞∑
j=0

bj(m)r−j as r → +∞, (2.9)

where aj(m) and bj(m) are suitable coefficients, see for instance [Ste93, p. 338].

3. Pointwise estimates of the wave kernel

In this section, we derive pointwise estimates for the K-bi-invariant convolution kernel ωσt of
the operator W σ

t = D̃−σeit
√
−∆ on the symmetric space X:

W σ
t f(x) = f ∗ ωσt (x) =

∫
G
dy ωσt (y−1x)f(y),

for suitable exponents σ ∈ C. Via the spherical Fourier transform and (2.2), the negative
Laplace-Beltrami operator −∆ corresponds to |λ|2 + |ρ|2, hence the operator D̃ to

√
|λ|2 + ρ̃2.

The inverse spherical Fourier transform implies that

ωσt (x) = const.

∫
a
dλ |c(λ)|−2 (|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2ϕλ(x). (3.1)

As already observed for hyperbolic spaces (see for instance [APV12]), the classical Euclidean
rescaling method fails since this kernel has different behaviors depending whether t is small or
large. We will prove sharp time pointwise estimates for this kernel along the lines of [AnPi14].

Consider smooth even cut-off functions χ0 and χ∞ on R such that

χ0(r) + χ∞(r) = 1 and

{
χ0(r) = 1 if |r| ≤ 1,

χ∞(r) = 1 if |r| ≥ 2.

Let us split up

ωσt (x) =ωσ,0t (x) + ωσ,∞t (x)

=const.

∫
a
dλ χρ0(λ)|c(λ)|−2 (|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2ϕλ(x)

+ const.

∫
a
dλ χρ∞(λ)|c(λ)|−2 (|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2ϕλ(x)

where χρ0(λ) = χ0(|λ|/|ρ|) and χρ∞(λ) = χ∞(|λ|/|ρ|) are radial cut-off functions defined on a.
We shall see later that the kernel ωσ,∞t (x) has a logarithmic singularity on the sphere |x| = t

when σ = d+1
2 . To get around this problem, we consider the analytic family of operators

W̃ σ,∞
t =

eσ
2

Γ(d+1
2 − σ)

χρ∞
(√
−∆− |ρ|2

)
D̃−σeit

√
−∆, (3.2)

in the vertical strip 0 ≤ Reσ ≤ d+1
2 and the corresponding kernels

ω̃σ,∞t (x) =
eσ

2

Γ(d+1
2 − σ)

∫
a
dλ χρ∞(λ)|c(λ)|−2 (|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2ϕλ(x).

Notice that the Gamma function will allow us to deal with the boundary point σ = d+1
2 , while

the exponential function ensures boundedness at infinity in the vertical strip.
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Theorem 3.1. Let σ ∈ C. The following pointwise estimates hold for the kernel ωσ,0t :
(i) For all t ∈ R∗, we have

|ωσ,0t (x)| . ϕ0(x).

(ii) Assume that |t| ≥ 1.
(a) If |x||t| ≥

1
2 , then

|ωσ,0t (x)| . |t|−N (1 + |x|)Nϕ0(x),

for every N ∈ N.
(b) If |x||t| ≤

1
2 , then

|ωσ,0t (x)| . |t|−
d
2 (1 + |x|)

d−`
2 ϕ0(x).

Proof. By symmetry we may assume that t > 0. Recall that

ωσ,0t (x) = const.

∫
a
dλ χρ0(λ)|c(λ)|−2 (|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2ϕλ(x). (3.3)

(i) follows from the representation (2.8) and the estimate (2.4) that

|ωσ,0t (x)| .
∫
|λ|<2|ρ|

dλ |λ|d−`|ϕλ(x)| . ϕ0(x).

Moreover (ii).(a) is straightforward since |x|t ≥
1
2 .

We prove (ii).(b) by substituting in (3.3) the integral representation (2.3) of ϕλ and the
expression (2.8) of |c(λ)|−2. Specifically,

ωσ,0t (x) = const.

∫
K
dk e〈ρ,A(kx)〉

∫
a
dλ a(λ) eit

√
|λ|2+|ρ|2+i〈λ,A(kx)〉,

where a(λ) = χρ0(λ)π(λ)2(|λ|2 + ρ̃2)−
σ
2 . Since∫
K
dk e〈ρ,A(kx)〉 = ϕ0(x),

it remains to estimate the oscillatory integral

I0(t, x) =

∫
a
dλ a(λ) eitψ(λ)

with amplitude a(λ) and phase

ψ(λ) =
√
|λ|2 + |ρ|2 +

〈
A
t , λ
〉
, (3.4)

where A = A(kx) is a vector in a such that |A(kx)| ≤ |x|. This is achieved by carrying out in
our case, the stationary phase analysis described in [Ste93, VIII.2.3]. The critical point λ0 of
the phase ψ is given by

(|λ0|2 + |ρ|2)−
1
2λ0 = −A

t .

Hence

|λ0| = |ρ| |A|t
(
1− |A|

2

t2

)− 1
2 ≤ |ρ| |x|t

(
1− |x|

2

t2

)− 1
2 . (3.5)

Denote by B(λ0, η) the ball in a centered at λ0 :

B(λ0, η) =
{
λ ∈ a

∣∣ |λ− λ0| ≤ η
}
,
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where the radius η will be chosen later. Notice that if |x|t ≤
1
2 , then |λ0| < |ρ|√

3
and |λ| < |ρ|+η for

all λ ∈ B(λ0, η). Let Pλ be the projection onto the vector spanned by λ
|λ| . Then |λ|

2Pλ = λ⊗λ
and the Hessian matrix of ψ is given by

Hessψ(λ) =(|λ|2 + |ρ|2)−
1
2 I` − (|λ|2 + |ρ|2)−

3
2λ⊗ λ

=(|λ|2 + |ρ|2)−
3
2
{
|ρ|2Pλ + (|λ|2 + |ρ|2)(I` − Pλ)

}
=(|λ|2 + |ρ|2)−

3
2


|ρ|2 0

0 (|λ|2 + |ρ|2)I`−1

 ,

which is a positive definite symmetric matrix. Hence λ0 is a nondegenerate critical point. Since
∇ψ(λ0) = 0, we have

ψ(λ)− ψ(λ0) = (λ− λ0)T
{∫ 1

0
ds (1− s) Hessψ

(
λ0 + s(λ− λ0)

)
︸ ︷︷ ︸

=M(λ)

}
(λ− λ0),

where M(λ) belongs, for every λ ∈ B(λ0, η), to a compact subset of the set of positive definite
symmetric matrices. We introduce a new variable µ = M(λ)

1
2 (λ−λ0), then |µ|2 = ψ(λ)−ψ(λ0)

and µ = 0 if and only if λ = λ0. Notice that for every k ∈ N, there exists Ck > 0 such that

|∇kM(λ)
1
2 | ≤ Ck ∀λ ∈ B(λ0, η). (3.6)

Denote by J(λ) the Jacobian matrix such that dµ = det [J(λ)] dλ, then we can choose η > 0
small enough such that

det [J(λ)] >
1

2
det
[
M(λ)

1
2

]
∀λ ∈ B(λ0, η). (3.7)

Now let us divide the study of I0(t, x) into two parts, corresponding to the decomposition

I0(t, x) =

∫
a
dλ χ−η (λ)a(λ) eitψ(λ)︸ ︷︷ ︸

=I−0 (t,x)

+

∫
a
dλ χ+

η (λ)a(λ) eitψ(λ)︸ ︷︷ ︸
=I+0 (t,x)

,

associated with the smooth cut-off functions

χ−η (λ) = χ0

( |λ− λ0|
2η

)
and χ+

η (λ) = χ∞

( |λ− λ0|
2η

)
.

Estimate of I−0 (t, x). Notice that suppχ−η ⊂ B(λ0, η). There exist 0 < η̃1 ≤ η̃2 such that
µ ∈ B(0, η̃1) implies λ ∈ B(λ0, η), and λ ∈ B(λ0, η) implies µ ∈ B(0, η̃2). By substituting
ψ(λ) = |µ|2 + ψ(λ0), we get

I−0 (t, x) = eitψ(λ̃)

∫
a
dµ ã(λ(µ))eit|µ|

2

where the amplitude

ã(λ(µ)) = χ−η (λ(µ)) χρ0(λ(µ))π(λ(µ))2(|λ(µ)|2 + ρ̃2)−
σ
2 det [J(λ(µ))]−1 (3.8)

is smooth and compactly supported in B(0, η̃2). We deduce, from (3.6) and (3.7) that ã(λ(µ)) is
bounded, together with all its derivatives. Let χ̃ ∈ C∞c (a) be a bump function such that χ̃ = 1
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on B(0, η̃2). Let M ≥ d
2 be an integer. Then

I−0 (t, x) = eitψ(λ0)

∫
a
dµ eit|µ|

2
e−|µ|

2[
e|µ|

2
ã(λ(µ))

]
χ̃(µ),

where the coefficients of the Taylor expansion of e|µ|2 ã(λ(µ)) at the origin:

e|µ|
2
ã(λ(µ)) =

∑
|k|≤2M

ckµ
k +R2M (µ),

satisfy

|ck| . |π(λ0)|2 .
( |x|
t

)d−`
, (3.9)

and the remainder

|∇kR2M (µ)| . |µ|2M+1−k ∀0 ≤ k ≤ 2M + 1, (3.10)

according to (3.5), (3.8) and the fact that |x|t ≤
1
2 . By substituting this expansion in the above

integral, I−0 (t, x) is equal to the sum of following three terms:

I1 =
∑
|k|≤2M

ck

∫
a
dµ eit|µ|

2
e−|µ|

2
µk,

I2 =

∫
a
dµ eit|µ|

2
R2M (µ)e−|µ|

2
χ̃(µ),

and

I3 =

∫
a
dµ eit|µ|

2
( ∑
|k|≤2M

ckµ
k
)
e−|µ|

2
(
χ̃(µ)− 1

)
.

In order to estimate I1, we write the integral as a product

I1 =
∑
|k|≤2M

ck
∏̀
j=1

∫ +∞

−∞
dµj e

itµ2j e−µ
2
jµ

kj
j ,

where ∫ +∞

−∞
dµj e

−(1−it)µ2jµ
kj
j = 0

if kj is odd, while ∫ +∞

−∞
dµj e

−(1−it)µ2jµ
kj
j = 2(1− it)−

kj+1

2

∫ +∞

0
dzje

−z2j z
kj
j

by a change of contour if kj is even. From (3.9), we obtain

|I1| .
( |x|
t

)d−`
t−

`
2 = t−

d
2

( |x|√
t

)d−`
. t−

d
2 |x|−

d−`
2 ,

since |x|t < 1
2 . Next, we perform M integrations by parts based on

eit|µ|
2

= − i
2t

∑`
j=1

µj
|µ|2

∂
∂µj

eit|µ|
2 (3.11)

and obtain

I2 = O(t−M ),
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according to (3.10). Finally, as µ 7→
(∑

|k|≤2M ckµ
k
)
e−|µ|

2(
χ̃(µ)−1

)
is exponentially decreasing

and vanishes near the origin, we perform N ≥ d
2 integrations by parts based on (3.11) again

and obtain

I3 = O(t−N ).

By summing up the estimates of I1, I2 and I3, we deduce that

|I−0 (t, x)| . t−
d
2 (1 + |x|)

d−`
2 . (3.12)

Estimate of I+
0 (t, x). Since the phase ψ has a unique critical point λ0, then for all λ ∈ suppχ+

η ,
∇ψ(λ) 6= 0. In order to get a large time decay, we estimate the oscillatory integral I+

0 (t, x) by
using several integrations by parts based on

eitψ(λ) =
1

it

(
ψ̃(λ)

)−1
∑̀
j=1

λj
∂

∂λj
eitψ(λ), (3.13)

where

ψ̃(λ) = |λ|2(|λ|2 + |ρ|2)−
1
2 +

〈
A
t , λ
〉

is a nonzero symbol of order zero for all λ ∈ suppχ+
η . After performing N such integrations by

parts, I+
0 (t, x) becomes

I+
0 (t, x) = const.(it)−N∫

a
dλ eitψ(λ)

{
−
∑̀
j=1

∂

∂λj
◦ λj

ψ̃(λ)

}N{
χ+
η (λ)a(λ)

}
︸ ︷︷ ︸

<+∞

,

for every N ∈ N. The last integral is finite since the amplitude a is supported in B(0, 2|ρ|)
thanks to the cut-off χρ0. Hence

|I+
0 (t, x)| . t−N , (3.14)

for every integer N ≥ 0. According to (3.12) and (3.14), we conclude that

|ωσ,0t (x)| . |I0(t, x)|
∫
K
dk e−〈ρ,A(xk)〉 . t−

d
2 |x|

d−`
2 ϕ0(x).

�

Remark 3.2. In the proof of Theorem 3.1, we have replaced the spherical function ϕλ(x) by
its general integral expression (2.3). Moreover, this proof also works without using the explicit
expression (2.8) of the density |c(λ)|−2. Thus we can derive similar estimates for any symmetric
space G/K by the same approach.

Theorem 3.3. Let σ ∈ C with Reσ = d+1
2 . The following pointwise estimates hold for the

kernel ω̃σ∞(t, x), for all t ∈ R∗ and x ∈ a:

|ω̃σ,∞t (x)| .

{
|t|−

d−1
2 ϕ0(x) if |t| < 1,

|t|−N (1 + |x|)Nϕ0(x) if |t| ≥ 1,

for every N ∈ N.

Remark 3.4. Similar estimates hold in the easier case Reσ > d+1
2 . By symmetry we assume

again that t > 0. We divide the proof into two parts, depending whether |x|t ≥
1
2 or not.
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Proof for |x|t ≥
1
2 . Substituting the integral representation (2.6) of ϕλ allows us to write the

kernel as

ω̃σ,∞t (x) = const.
eσ

2

Γ((d+ 1)/2− σ)
ϕ0(x)∫

p
dλ χρ∞(λ)(|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2e−i〈x,λ〉︸ ︷︷ ︸

=I∞(t,x)

.

We split up I∞(t, x) into two parts

I∞(t, x) =

I−∞(t,x)︷ ︸︸ ︷∫
p
dλ χρ0(tλ)χρ∞(λ)(|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2e−i〈x,λ〉

+

∫
p
dλ χρ∞(tλ)χρ∞(λ)(|λ|2 + ρ̃2)−

σ
2 eit
√
|λ|2+|ρ|2e−i〈x,λ〉︸ ︷︷ ︸

I+∞(t,x)

,

by using the smooth radial cut-off functions χρ0(tλ) and χρ∞(tλ). The first integral I−∞(t, x)
vanishes if t ≥ 2 and is easily estimated as follows, if 0 < t < 2 :

|I−∞(t, x)| .
∫
p
dλ χρ0(tλ)χρ∞(λ)|λ|−Reσ

≤ t−
d−1
2

∫
p
dλ χρ0(λ)|λ|−

d+1
2 . t−

d−1
2

for all σ ∈ C with Reσ = d+1
2 . In order to study the second integral I+

∞(t, x), we introduce
polar coordinates and rewrite

I+
∞(t, x) =

∫ +∞

0
dr χρ∞(tr)χρ∞(r)(r2 + ρ̃2)−

σ
2 eit
√
r2+|ρ|2

∫
|λ|=r

dσ(λ) e−i〈x,λ〉. (3.15)

Here the inner integral is a modified Bessel function. Specifically∫
|λ|=r

dσ(λ) e−i〈x,λ〉 = r
d
2 |x|

2−d
2 J d−2

2
(r|x|), (3.16)

where J(d−2)/2 denotes the classical Bessel function of the first kind. Since I+
∞(t, x) vanishes if

tr < |ρ|, we may restrict ourselves to tr ≥ |ρ|, hence r|x| ≥ rt
2 ≥

|ρ|
2 . Then from (2.9), there

exist constants C+
d and C−d such that

J d−2
2

(r|x|) = C+
d (r|x|)−1/2eir|x| + C−d (r|x|)−1/2e−ir|x| +R(r|x|), (3.17)

where the remainder R(r|x|) is O
(
(r|x|)−

3
2

)
. Substituting (3.16) and (3.17) in (3.15) implies

I+
∞(t, x) =I+,1

∞ (t, x) + I+,2
∞ (t, x) + I+,3

∞ (t, x)

=C+
d |x|

− d−1
2

∫ +∞

0
dr χρ∞(tr)χρ∞(r)(r2 + ρ̃2)−

σ
2 r

d−1
2 eit
√
r2+|ρ|2ei|x|r

+ C−d |x|
− d−1

2

∫ +∞

0
dr χρ∞(tr)χρ∞(r)(r2 + ρ̃2)−

σ
2 r

d−1
2 eit
√
r2+|ρ|2e−i|x|r

+ |x|−
d−2
2

∫ +∞

0
dr χρ∞(tr)χρ∞(r)(r2 + ρ̃2)−

σ
2 r

d
2 eit
√
r2+|ρ|2R(r|x|).
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On the one hand, the last integral is estimated as follows:

|I+,3
∞ (t, x)| . |x|−

d+1
2

∫ +∞

0
dr χρ∞(tr)χρ∞(r) r−2,

for all σ ∈ C with Reσ = d+1
2 . Hence

|I+,3
∞ (t, x)| . |x|−

d+1
2

∫ +∞

|ρ|
dr r−2 . |x|−

d+1
2 (3.18)

for large time and

|I+,3
∞ (t, x)| . |x|−

d+1
2

∫ +∞

|ρ|t−1

dr r−2 . t|x|−
d+1
2 . |x|−

d−1
2 (3.19)

for small time.

On the other hand, in order to estimate I+,1
∞ (t, x) and I+,2

∞ (t, x), it is sufficient to study the
integral

Ĩ+
∞(t, x) =

∫ +∞

0
dr χρ∞(r)χρ∞(tr)(r2 + ρ̃2)−

σ
2 r

d−1
2 eit
√
r2+|ρ|2e±i|x|r.

Notice that

χρ∞(r)χρ∞(tr) =

{
χρ∞(r) if t ≥ 2,

χρ∞(tr) if t ≤ 1
2 .

(3.20)

We split up Ĩ+
∞(t, x) into three parts, corresponding to the decomposition

Ĩ+
∞(t, x) = Ĩ+,1

∞ (t, x) + Ĩ+,2
∞ (t, x) + Ĩ+,3

∞ (t, x)

where

Ĩ+,1
∞ (t, x) =

∫ +∞

0
dr χρ∞(r)χρ∞(tr)(r2 + ρ̃2)−

σ
2 r

d−1
2
{
eit
√
r2+|ρ|2 − eitr

}
e±i|x|r,

Ĩ+,2
∞ (t, x) =

∫ +∞

0
dr χρ∞(r)χρ∞(tr)r

d−1
2
{

(r2 + ρ̃2)−
σ
2 − r−σ

}
ei(t±|x|)r,

and

Ĩ+,3
∞ (t, x) =

∫ +∞

0
dr χρ∞(r)χρ∞(tr) r−1−i Imσei(t±|x|)r,

for all σ ∈ C with Reσ = d+1
2 .

Estimates of Ĩ+,1
∞ and Ĩ+,2

∞ . The first two parts are easily estimated. By using

eit
√
r2+|ρ|2 − eitr = O( tr ) and (r2 + ρ̃2)−

σ
2 − r−σ = O(r−Reσ−2)

for all r ∈ suppχρ∞, we obtain

Ĩ+,1
∞ (t, x) = O(t) and Ĩ+,2

∞ (t, x) = O(1) (3.21)

for all σ ∈ C with Reσ = d+1
2 .

Estimate of Ĩ+,3
∞ . We claim that

|Ĩ+,3
∞ (t, x)| . | Imσ|+ 1

| Imσ|︸ ︷︷ ︸
Cσ

. (3.22)
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Denoting by ξ = t± |x|, we divide our estimate into two parts, depending whether |ξ| ≥ 1
2|ρ| or

not.

• If |ξ| ≥ 1
2|ρ| , we perform an integration by parts based on eiξr = 1

iξ
∂
∂re

iξr. Then

Ĩ+,3
∞ (t, x) =

i

ξ

∫ +∞

0
dr eiξr

∂

∂r

{
χρ∞(r)χρ∞(tr) r−1−i Imσ

}
. (3.23)

If the derivative hits either χρ∞(r) or r−1−i Imσ, then the corresponding contributions to (3.23)
are bounded by

C(1 + | Imσ|).

If the derivative hits χρ∞(tr), which matters only in the case t < 2, according to (3.20), then
the corresponding contribution to (3.23) is bounded by

Ct

∫ 2|ρ|t−1

|ρ|t−1

dr r−1 < 2(ln 2)C.

Hence Ĩ+,3
∞ (t, x) = O(1 + | Imσ|) for all t > 0 and x ∈ a satisfying |x|t ≥

1
2 and

∣∣t± |x|∣∣ ≥ 1
2|ρ| .

• If |ξ| < 1
2|ρ| , we split up

Ĩ+,3
∞ (t, x) =

( ∫ 1
|ξ|

0
+

∫ +∞

1
|ξ|

)
dr χρ∞(r)χρ∞(tr) r−1−i Imσeiξr,

We estimate both terms by performing different integration by parts. On the one hand,∫ 1
|ξ|

0
dr r−1−i Imσχρ∞(r)χρ∞(tr) eiξr

=
i

Imσ
r−i Imσχρ∞(r)χρ∞(tr)eiξr

∣∣r= 1
|ξ|

r=0︸ ︷︷ ︸
= O(1)

− i

Imσ

∫ 1
|ξ|

0
dr r−i Imσ ∂

∂r

{
χρ∞(r)χρ∞(tr)eiξr

}
︸ ︷︷ ︸

= O(1) (∗)

=O
( 1

| Imσ|
)
.

On the other hand,∫ +∞

1
|ξ|

dr eiξrχρ∞(r)χρ∞(tr) r−1−i Imσ

=
1

iξ
eiξrχρ∞(r)χρ∞(tr) r−1−i Imσ

∣∣r=+∞
r= 1
|ξ|︸ ︷︷ ︸

= O(1)

+
i

ξ

∫ +∞

1
|ξ|

dr eiξr
∂

∂r

{
χρ∞(r)χρ∞(tr) r−1−i Imσ

}
︸ ︷︷ ︸

= O(1+| Imσ|) (∗∗)

=O(1 + | Imσ|).

Let us explain the estimates (∗) and (∗∗). In both cases, the derivative ∂
∂r produces 3 or 2

terms, depending whether t ∈ (1
2 , 2) or not. The contributions of ∂

∂re
iξr = iξeiξr to (∗) and
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of ∂
∂rr
−1−i Imσ = −(1 + i Imσ)r−2−i Imσ to (∗∗) are easily dealt with. The contribution of

∂
∂rχ

ρ
∞(r), whose support is contained in the interval [|ρ|, 2|ρ|], to (∗) is obviously bounded,

while its contribution to (∗∗) vanishes, as 1
|ξ| > 2|ρ|.

Consider finally the contributions of ∂
∂rχ

ρ
∞(tr) = t(χρ∞)′(tr) when t is small. Regarding

(∗), it is easily estimated by t
∫ 2|ρ|t−1

|ρ|t−1 dr = |ρ|. Regarding (∗∗), notice that it vanishes unless
|ξ| ≥ t

2|ρ| . In this case, it is estimated by

t

|ξ|

∫ 2|ρ|t−1

|ρ|t−1

drr−1 ≤ 2|ρ| ln 2.

This concludes the estimate of (3.22).

We deduce from (3.21) and (3.22) that

Ĩ+
∞(t, x) = O(t+ Cσ).

By combining this estimate with (3.18) and (3.19), we get next

|I+
∞| . Cσ|x|−

d−1
2 . Cσt

− d−1
2 ,

if t is small and

|I+
∞| . Cσ(t|x|−

d−1
2 + |x|−

d+1
2 ) . Cσt

−N (1 + |x|)N−
d−3
2 ,

if t is large, for any N ∈ N. Together with the estimate of I−∞, this allows us to conclude the
proof of Theorem 3.3 in the case |x|t ≥

1
2 . �

Remark 3.5. This proof relies on the expression (2.6) of spherical functions, which is available
if G is complex but not in general.

Proof for |x|t ≤
1
2 . Substituting the expressions (2.3) of ϕλ and (2.8) of |c(λ)|−2 implies

ω̃σ,∞t (x) = const.
eσ

2

Γ((d+ 1)/2− σ)

∫
K
dk e〈ρ,A(xk)〉∫

a
dλ χρ∞(λ) π2(λ) (|λ|2 + ρ̃2)−

σ
2 eitψ(λ)︸ ︷︷ ︸

=ĨI∞(t,x)

,

where the phase ψ is defined as (3.4). Since |A(xk)|
t ≤ |x|

t ≤
1
2 , we know from (3.5) that the

critical point λ0 of ψ satisfies |λ0| < |ρ|√
3
. Hence ψ has no critical point in the support of χρ∞,

and ĨI∞(t, x) makes sense after several integrations by parts based on (3.13).

Consider first the large time case where t ≥ 1. After performing N integrations by parts
based on (3.13), ĨI∞(t, x) becomes

ĨI∞(t, x) = const.(it)−N∫
a
dλ eitψ(λ)

{
−
∑̀
j=1

∂

∂λj
◦ λj

ψ̃(λ)

}N{
χρ∞(λ) π2(λ) (|λ|2 + ρ̃2)−

σ
2

}
.

If some derivatives hit χρ∞(λ), then the range of integration reduces to a spherical shell where
|λ| � |ρ| and we obtain the bound O(t−N ). Otherwise, since (in the support of χρ∞) λj

(
ψ̃(λ)

)−1,
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π2(λ) and (|λ|2 + ρ̃2)−
σ
2 are inhomogeneous symbols of order 0, 2|Σ+ and −Reσ = −d+1

2
respectively, we have

|ĨI∞(t, x)| . t−N
∫
a
dλ χ∞(λ)|λ|2|Σ+|−Reσ−N . t−N

provided that N > Reσ = d+1
2 . Hence, for all t ≥ 1 such that |x|t ≤

1
2 ,

|ω̃σ,∞t (x)| . t−N
∫
K
dk e〈ρ,A(xk)〉 = t−Nϕ0(x),

for all σ ∈ C with Reσ = d+1
2 , and for every integer N > d+1

2 .

Notice that the same argument implies similar estimates in small time with t−
d+1
2 , where the

negative power is too large. In order to reduce it to t−
d−1
2 , we split up ĨI∞(t, x) into two parts

ĨI∞(t, x) = ĨI
−
∞(t, x) + ĨI

+

∞(t, x)

=

∫
a
dλ χρ0(tλ)χρ∞(λ) π2(λ) (|λ|2 + ρ̃2)−

σ
2 eitψ(λ)

+

∫
a
dλ χρ∞(tλ)χρ∞(λ) π2(λ) (|λ|2 + ρ̃2)−

σ
2 eitψ(λ),

where ĨI
−
∞(t, x) is easily estimated:

|ĨI
−
∞(t, x)| .

∫
|ρ|≤|λ|≤2|ρ|t−1

dλ |λ|2|Σ+|−Reσ . t−2|Σ+|+Reσ−` = t−
d−1
2 , (3.24)

for all 0 < t < 1 and for all σ ∈ C with Reσ = d+1
2 . After M integrations by parts based on

(3.13), ĨI
+

∞(t, x) becomes

ĨI
+

∞(t, x) = const.(it)−M∫
a
dλ eitψ(λ)

{
−
∑̀
j=1

∂

∂λj
◦ λj

ψ̃(λ)

}M{
χρ∞(tλ)χρ∞(λ) π2(λ) (|λ|2 + ρ̃2)−

σ
2

}
.

Hence

|ĨI
+

∞(t, x)| . t−M
∫
|λ|≥|ρ|t−1

dλ |λ|2|Σ+|−Reσ−M

. t−M
∫
r≥|ρ|t−1

dr

r
r2|Σ+|−Reσ−M+`.

Therefore, for all σ ∈ C with Reσ = d+1
2 , we have

|ĨI
+

∞(t, x)| . t−M t−d+Reσ+M = t−
d−1
2 (3.25)

provided that M > d−1
2 . From (3.24) and (3.25), we deduce that

|ω̃σ,∞t (x)| . t−
d−1
2

∫
K
dk e〈ρ,A(xk)〉 = t−

d−1
2 ϕ0(x),

for all 0 < t < 1 such that |x|t ≤
1
2 and for all σ ∈ C with Reσ = d+1

2 . Thus we have proved the
last case, and the proof of Theorem 3.3 is complete. �

Remark 3.6. In the last proof, we have used the integral expression (2.3) of the spherical
function ϕλ(x), which holds in general, and the particular expression (2.8) of the Plancherel
density |c(λ)|−2 when G is complex. In general, |c(λ)|−2 is not a polynomial, nor even an
inhomogeneous symbol of order d − `, which is known to be a major difficulty in higher rank
analysis.
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4. Dispersive estimates

In this section, we prove our main result about the Lq′ → Lq estimates for the operator
W σ
t = D̃−σeit

√
−∆. We introduce the following criterion based on the Kunze-Stein phenomenon,

which is a straightforward generalization of [APV11, Theorem 4.2] and which is crucial for our
dispersive estimates.

Lemma 4.1. Let κ be a K-bi-invariant measurable function on G. Then

‖ · ∗κ‖Lq′ (X)→Lq(X) .
{∫

G
dx ϕ0(x)|κ(x)|

q
2

} 2
q

for any q ∈ [2,+∞). In the limit case q =∞,

‖ · ∗κ ‖L1(X)→L∞(X) = supx∈G |κ(x)|.

Proof. For s ∈ [2,+∞), we define As as the space of all K-bi-invariant functions on G such
that ∫

G
dx ϕ0(x)|κ(x)|s/2 <∞.

Given κ in As, we set

‖κ‖As =
(∫

G
dx ϕ0(x)|κ(x)|s/2

)2/s
.

For s = +∞, we denote by A∞ the space of L∞(G, dx) K-bi-invariant functions on G and by
‖.‖A∞ the L∞-norm. We show in the following that, for any q ∈ [2,+∞], we have

Lq
′
(G) ∗ Aq ⊂ Lq(G),

which yields our lemma.
The case where q = 2 follows by Herz’s criterion (see [Cow97]):

‖ · ∗κ‖L2(G)→L2(G) ≤
∫
G
dx ϕ0(x)|κ(x)| = ‖κ‖A2

for every κ in A2. When q = +∞, taking f in L1(G) and κ in A∞, we have that for every x in
G,

|f ∗ κ(x)| ≤
∫
G
dy |f(y)||κ(y−1x)| ≤ ‖κ‖A∞‖f‖L1(G).

By interpolation between the cases q = 2 and q =∞, we obtain that[
L2(G), L1(G)

]
θ
∗
[
A2,A∞

]
θ
⊂
[
L2(G), L∞(G)

]
θ

with θ = 2/q. On the one hand,[
L2(G), L1(G)

]
θ

= Lq
′
(G) and

[
L2(G), L∞(G)

]
θ

= Lq(G).

On the other hand, since[
L1(G,ϕ0dx), L∞(G,ϕ0dx)

]
θ

= Lq/2(G,ϕ0dx),

we have
[
A2,A∞

]
θ

= Aq. This concludes the proof of Lemma 4.1. �
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4.1. Small time dispersive estimate.

Theorem 4.2. Assume that 0 < |t| < 1, 2 < q < +∞ and σ = (d+ 1)(1
2 −

1
q ). Then

‖D̃−σeit
√
−∆‖Lq′ (X)→Lq(X) . |t|

(d−1)( 1
2
− 1
q

)
.

Proof. We divide the proof into two parts, corresponding to the kernel decomposition ωσt =

ωσ,0t + ωσ,∞t . According to Lemma 4.1, we have

‖ · ∗ωσ,0t ‖Lq′ (X)→Lq(X) ≤
{∫

G
dx ϕ0(x)|ωσ,0t (x)|

q
2

} 2
q
.

By using the Cartan decomposition, together with the fact that δ(H) . e2〈ρ,H〉, we obtain∫
G
dx ϕ0(x)|ωσ,0t (x)|

q
2 .

∫
a+
dH ϕ0(H)|ωσ,0t (H)|

q
2 e2〈ρ,H〉.

According to Theorem 3.1 and to the estimate (2.4) of the ground spherical function ϕ0, we
obtain next∫

a+
dH ϕ0(H)|ωσ,0t (H)|

q
2 e2〈ρ,H〉 .

∫
a+
dH (1 + |H|)

q
2

+1e−( q
2
−1)〈ρ,H〉 < +∞

for any q ∈ (2,+∞). Hence

‖ · ∗ωσ,0t ‖Lq′ (X)→Lq(X) < +∞.

For the second part ωσ,∞t , we use an analytic interpolation between L2 → L2 and L1 → L∞

estimates for the family of operators W̃ σ,∞
t defined by (3.2) in the vertical strip 0 ≤ Reσ ≤ d+1

2 .
When Reσ = 0, the spectral theorem yields

‖W̃ σ,∞
t ‖L2(X)→L2(X) . ‖eit

√
−∆‖L2(X)→L2(X) = 1.

for all t ∈ R∗. When Reσ = d+1
2 , Theorem 3.3 gives

‖W̃ σ,∞
t ‖L1(X)→L∞(X) . ‖ω̃

σ,∞
t ‖L∞(X) . t

− d−1
2 .

By applying Stein’s interpolation theorem for an analytic family of operators, we obtain

‖W̃
d+1
2

(1−θ),∞
t ‖Lq′ (X)→Lq(X) . t

− d−1
2

(1−θ),

with θ = 2
q . In conclusion,

‖W σ
t ‖Lq′ (X)→Lq(X) . |t|

−(d−1)( 1
2
− 1
q

)
,

for 0 < |t| < 1, 2 < q < +∞ and σ = (d+ 1)(1
2 −

1
q ). �

4.2. Large time dispersive estimate.

Theorem 4.3. Assume that |t| ≥ 1, 2 < q < +∞ and σ = (d+ 1)(1
2 −

1
q ). Then

‖D̃−σeit
√
−∆‖Lq′ (X)→Lq(X) . |t|

− d
2 .

Proof. We divide the proof into three parts, corresponding to the kernel decomposition

ωσt = 1
B(0,

|t|
2

)
ωσ,0t + 1

X\B(0,
|t|
2

)
ωσ,0t + ωσ,∞t .
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By using Lemma 4.1 and Theorem 3.1, we have

‖ · ∗{1
B(0,

|t|
2

)
ωσ,0t }‖Lq′ (X)→Lq(X)

.
{∫
{H∈a+:0<|H|< |t|

2
}
dH ϕ0(H)|ωσ,0t (H)|

q
2 e2〈ρ,H〉

} 2
q

.t−
d
2

{∫
|H|< |t|

2

dH (1 + |H|)
q
2

(d+1)e−( q
2
−1)〈ρ,H〉

} 2
q

︸ ︷︷ ︸
<+∞

and

‖ · ∗{1
X\B(0,

|t|
2

)
ωσ,0t }‖Lq′ (X)→Lq(X)

.
{∫
|H|≥ |t|

2

dH (1 + |H|)
q
2

(d+1)e−( q
2
−1)〈ρ,H〉

} 2
q
,

which is O(|t|−N ), for any N ∈ N. Instead of ωσ,∞t , we consider again the kernel ω̃σ,∞t . The
associated operators satisfy

‖W̃ σ,∞
t ‖L1(X)→L∞(X) . t

−N ∀N ∈ N,

when Reσ = d+1
2 , according to Theorem 3.3. By applying Stein’s interpolation theorem for an

analytic family of operators and by summing up these estimates, we obtain

‖W σ
t ‖Lq′ (X)→Lq(X) . |t|

− d
2 ,

for |t| ≥ 1, 2 < q < +∞ and σ = (d+ 1)(1
2 −

1
q ). �

Remark 4.4. The standard TT ∗ method used to prove the Strichartz inequality breaks down in
the critical case. The dyadic decomposition method carried out in [KeTa98] takes care of the
endpoints, but it requires a stronger dispersive property than Theorem 4.2 in small time, namely
our main theorem.

Proof of Theorem 1.3. It follows from Theorem 4.2, Theorem 4.3 and the Lq kernel estimate

‖ωσt ‖Lq(X) ≤ ‖ω
σ,0
t ‖Lq(X) + ‖ω̃σ,∞t ‖Lq(X) .

{
|t|−

d−1
2 , if 0 < |t| < 1,

|t|−
d
2 , if |t| ≥ 1,

for 2 < q < +∞ and σ = d+1
2 (1

2 −
1
q ). Indeed, by using standard interpolation arguments

between 
‖W σ

t ‖L1(X)→Lq(X) . ‖ωσt ‖Lq(X) . t
− d−1

2 ,

‖W σ
t ‖Lq′ (X)→L∞(X) . ‖ω

σ
t ‖Lq(X) . t

− d−1
2 ,

‖W σ
t ‖L2(X)→L2(X) = 1,

for small time and 
‖W σ

t ‖L1(X)→Lq(X) . ‖ωσt ‖Lq(X) . t
− d

2 ,

‖W σ
t ‖Lq′ (X)→L∞(X) . ‖ω

σ
t ‖Lq(X) . t

− d
2 ,

‖W σ
t ‖Lq′ (X)→Lq(X) . |t|

− d
2 ,

for large time, we conclude. �
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5. Strichartz inequality and applications

Let σ ∈ R and 1 < q < ∞. Recall that the Sobolev space Hσ,q(X) is the image of Lq(X)

under the operator (−∆)−
σ
2 , equipped with the norm

‖f‖Hσ,q(X) = ‖(−∆)
σ
2 f‖Lq(X).

If σ = N is a nonnegative integer, then Hσ,q(X) coincides with the classical Sobolev space

WN,q(X) = {f ∈ Lq(X) | ∇jf ∈ Lq(X), ∀1 ≤ j ≤ N},
defined by means of covariant derivatives. The following Sobolev embedding theorem is used in
next subsection.

Theorem 5.1. Let 1 < q1, q2 <∞ and σ1, σ2 ∈ R such that σ1 − σ2 ≥ d
q1
− d

q2
≥ 0. Then

Hσ1,q1(X) ⊂ Hσ2,q2(X). (5.1)

We refer to [Tri92] for more details about function spaces on Riemannian manifolds. Let us
state next the Strichartz inequality and some applications. The proofs are adapted straightfor-
wardly from [AnPi14; APV12] and are therefore omitted.

5.1. Strichartz inequality. Recall the linear inhomogeneous Klein-Gordon equation on X:{
∂2
t u(t, x)−∆u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(5.2)

whose solution is given by Duhamel’s formula:

u(t, x) = (cos t
√
−∆)f(x) +

sin t
√
−∆√
−∆

g(x) +

∫ t

0

sin(t− s)
√
−∆√

−∆
F (s, x)ds.

We consider first the case d ≥ 4 and discuss the 3-dimensional case in the final remark. Recall
that a couple (p, q) is called admissible if (1

p ,
1
q ) belongs to the triangle{(

1
p ,

1
q

)
∈
(

0, 1
2

]
×
(

0, 1
2

) ∣∣∣ 1
p ≥

d−1
2

(
1
2 −

1
q

)}⋃{(
0, 1

2

)}
.

1
p

1
q

1
2

1
2
− 1

d−1

0 1
21

p
= d−1

2

(
1
2
− 1

q

)
Figure 1. Admissibility in dimension d ≥ 4.

Theorem 5.2. Let (p, q) and (p̃, q̃) be two admissible couples, and let

σ ≥ d+1
2

(
1
2 −

1
q

)
and σ̃ ≥ d+1

2

(
1
2 −

1
q̃

)
.

Then all solutions u to the Cauchy problem (5.2) satisfy the following Strichartz inequality:

‖∇R×Xu‖Lp(I;H−σ,q(X)) . ‖f‖H1(X) + ‖g‖L2(X) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (X)) . (5.3)

The admissible range in (5.3) can be widen by using the Sobolev embedding theorem.
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Corollary 5.3. Assume that (p, q) and (p̃, q̃) are two couples corresponding to the square[
0,

1

2

]
×
(

0,
1

2

)⋃{(
0,

1

2

)}
,

see Fig.(A) in the following. Let σ, σ̃ ∈ R such that σ ≥ σ(p, q), where

σ(p, q) =
d+ 1

2

(1

2
− 1

q

)
+ max

{
0,
d− 1

2

(1

2
− 1

q

)
− 1

p

}
,

and similarly σ̃ ≥ σ(p̃, q̃). Then the Strichartz inequality (5.3) holds for all solutions to the
Cauchy problem (5.2).

1
p

1
q

1
2

0
1
2

1
2
− 1

d−1

(a) Case d ≥ 4.

1
p

1
q

1
2

0
1
2

(b) Case d = 3.

Remark 5.4. Theorem 5.2 and Corollary 5.3 still hold true in lower dimension d = 3 with
similar proofs. But the endpoint (1

2 ,
1
2 −

1
d−1) is excluded from the admissible triangle in this

case, see Fig.(B).
5.2. Global well-posedness in Lp (R, Lq(X)). We refer to [AnPi14; APV12] for more detailed
proofs of the following well-posedness results. By using the classical fixed point scheme with the
previous Strichartz inequality, one obtains the global well-posedness for the semilinear equation{

∂2
t u(t, x)−∆u(t, x) = F (u(t, x)),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(5.4)

on X with power-like nonlinearities F satisfying

|F (u)| ≤ C|u|γ , |F (u)− F (v)| ≤ C
(
|u|γ−1 + |v|γ−1

)
|u− v|, γ > 1.

and small initial data f and g. For every d ≥ 3, consider the following powers

γ1 = 1 +
3

d
, γ2 = 1 +

2
d−1

2 + 2
d−1

, γc = 1 +
4

d− 1
,

γ3 =


d+6
2

+ 2
d−1

+
√

4d+( 6−d
2

+ 2
d−1)

2

d if d ≤ 5,

1 + 2
d−1
2
− 1
d−1

if d ≥ 6,

γ4 =

1 + 4
d−2 if d ≤ 5,

d−1
2 + 3

d+1 −
√(

d−3
2 + 3

d+1

)2
− 4d−1

d+1 if d ≥ 6,

and the following curves

σ1(γ) =
d+ 1

4
− (d+ 1)(d+ 5)

8d

1

γ − d+1
2d

,

σ2(γ) =
d+ 1

4
− 1

γ − 1
, σ3(γ) =

d

2
− 2

γ − 1
.
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Denote by 0+ any small positive constant. In dimension d ≥ 3, the equation (5.4) is globally
well-posed for small initial data in Hσ,2(X)×Hσ−1,2(X) provided that

σ = 0+, if 1 < γ ≤ γ1,

σ = σ1(γ), if γ1 < γ ≤ γ2,

σ = σ2(γ), if γ2 < γ ≤ γc,
σ = σ3(γ), if γc < γ ≤ γ4,

Observe that one obtains the same global well-posedness results on noncompact symmetric
spaces of arbitrary rank with G complex as on real hyperbolic spaces, without further assump-
tions.

6. Further results on locally symmetric spaces

Let Γ be a discrete torsion-free subgroup of G. The locally symmetric space Γ\X, equipped
with the Riemannian structure inherited from X becomes a Riemannian manifold. Consider
the Poincaré series

P (s;x, y) =
∑
γ∈Γ

e−sd(x,γy), s > 0, x, y ∈ X,

and denote by δ(Γ) = inf{s > 0 | P (s;x, y) < +∞} its critical exponent. In [Zha20], the
author has studied the wave equation and has obtained similar Strichartz inequality and global
well-posedness results as in Sect. 5, in the case where Γ\X is a rank one locally symmetric space
such that Γ is convex cocompact and δ(Γ) < |ρ|.

Recall that,in the rank one setting, Γ is called convex cocompact if the quotient group
Γ\CH(ΛΓ) is compact, where CH(ΛΓ) is the convex hull of the limit set ΛΓ of Γ. While
this notion yields many interesting examples in rank one, it is known to yield a rather limited
class in higher rank (see [KlLe06] and [Qui05] for more details).

However, thanks to our wave kernel estimates Theorem 3.1 and Theorem 3.3, we can study
along the lines of [Zha20] the wave equation on higher rank noncompact locally symmetric
spaces, under slightly different assumptions:
(1) G is complex,
(2) δ(Γ) < |ρ|,
(3) there exists C > 0 such that for all x, y ∈ X, P (s;x, y) ≤ CP (s;0,0), where 0 = eK

denotes the origin of X.
The first assumption ensures sharp wave kernel estimates on X, from which we can deduce

wave kernel estimates on Γ\X. Notice that such information is still lacking for G real. The
second assumption plays the same role as in rank one. On the one hand, it ensures that the
wave kernel on Γ\X is well defined. On the other hand, there is a L2 Kunze-Stein phenomenon
under this assumption. In order to get the desired dispersive estimates on Γ\X, a uniform
upper bound of the Poincaré series is required. Notice that we could deduce the last condition
(3) from the convex cocompactness of Γ in rank one. We refer to [Zha20] and the references
therein for more details about wave type equations on locally symmetric spaces.
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