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Abstract. Biometrics authentication is now widely deployed, and from
that omnipresence comes the necessity to protect private data. Recent
studies proved touchscreen handwritten digits to be a reliable biomet-
rics. We set a threat model based on that biometrics: in the event of
theft of unlabelled embeddings of handwritten digits, we propose a la-
belling method inspired by recent unsupervised translation algorithms.
Provided a set of unlabelled embeddings known to have been produced by
a Long Short Term Memory Recurrent Neural Network (LSTM RNN),
we demonstrate that inferring their labels is possible. The proposed ap-
proach involves label-wise clustering of the embeddings and label identi-
fication of each group by matching their distribution to the label-relative
classes of a comparison hand-crafted labeled set of embeddings. Cluster
labelling is done through a two steps process including a genetic algo-
rithm that finds the N-best matching hypotheses before a fine-tuning of
those N-candidates. The proposed method was able to infer the correct
labels on 100 randomised runs on different dataset splits.

Keywords: Label inference · Handwritten digits · Density matching ·
Privacy · Long Short Term Memory · Recurrent Neural Network ·Genetic
search .

1 Introduction

The generalising use of biometrics for authentication [11] brings personal data
in the center of security systems. Most recent biometric systems [11] encode
biometric data, such as gait sequences [14], voice recording [19], faces [15], fin-
gerprints [23] or handwritten digits [21] [20] [13], into high dimensional represen-
tations commonly named embeddings. Encoding is done through trained classi-
fiers such as Convolutional Neural Networks [15] [23] for physiologic biometries
or Recurrent Neural Networks [13] [14] for behavioural ones. Those embeddings
are then compared to authenticate whether the user accessing the system is the
same as the one who was previously enrolled. When stored and transferred be-
tween devices, embeddings are subject to theft and represent a possible breach
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in a system’s security. However, unlabelled embeddings alone are not enough to
apply commonly known attacks by reconstruction [2] [5] [15] and labels are re-
quired. To label those stolen embeddings we propose to match to a hand-crafted
set of labelled embeddings, using unsupervised techniques. The task of unsu-
pervised matching of embeddings has already been vastly explored for machine
translation [6]. Most common methods involve Adversarial training [3], Normal-
isation flow [24], Wasserstein distances [9], Procrustess analysis [9], Principal
Component Analysis [10] and Stochastic optimisations [10].

In this paper, we examine the threat of an unlabelled embedding database
theft, all embeddings being extracted from handwritten digits in the context of a
One-Time-Password authentication system [21]. The embeddings are computed
from handwritten digits, thus contain information about writer identity and
digit value. This paper focuses on digit value (label) retrieval, which to our
opinion is the first problem to address in this threat scenario. The embeddings
are computed from handwritten digits, the number of classes is known to be 10,
and we make the hypothesis that the feature extractor is known to be based on
LSTMs (standard architecture for that kind of sequence data [13]).

Due to the small number of classes and the simple nature of the data, we sup-
pose that an attacker can find another database of raw handwritten digits, create
his own classifier and compute his own set of embeddings for labelling purposes.
Inspired by various unsupervised bilingual translation methods [10] [9] [24] [6],
we investigate whether it is possible to compute the optimal transformation
between the stolen set of unlabelled embeddings and the comparison set of la-
belled embeddings to infer the labels of the stolen embeddings. Being able to
label stolen embeddings and map them to a known space (the output space of
the attacker’s classifier), pose a security risk into biometric systems [2] [5]. Mai
et al. [15] showed that original face images can be reconstructed from face em-
beddings, using the black-box feature extractor that was used to compute them.
Here we only use unlabelled embeddings to get the transformation from their
proper space to the output space of a known feature extractor and then guess
their labels.

In this paper, our contributions are :

– To question whether it is possible to infer labels of unknown handwritten
digits embeddings from their statistical distribution.

– The combination of unsupervised translation methods for label inference.

– The successful labelling of those embeddings and the estimation of a transfer
function to map them into a known space.

In section 2, we expose related works about embedding matching and their
limits. Section 3 presents the proposed attack scenario. Section 4 details the
proposed method to infer the stolen embeddings labels. In section 5, we present
the data, the feature extractor architecture and the pre-processing steps. Finally,
section 6 presents the experimental work, before section 7 concludes and presents
our future works.
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2 Related Work

2.1 Template reconstruction attacks

Biometric recognition systems compute templates from physiological or behavioural
characteristics by using neural networks which are often referred to as feature
extractors. The resulting templates are then used for authentication purpose.
Cappelli et al. [2], Galbally et al. [5] and Mai et al. [15] respectively proposed
critics of the actual biometric templates by showing that fingerprints, iris and
faces templates can be reconstructed using neural networks.

Here we focus on the deep face template reconstruction [15]. Having access
to real deep face templates and the black-box feature extractor, the authors
generate artificial faces from noise vectors thanks to a generative adversarial
network [7]. Artificial deep face templates are then computed from those artifi-
cial faces thanks to the feature extractor. Artificial face and template pairs are
used to train a neighborly de-convolutional network (NbNet) that infers the in-
verse function of the feature extractor, i.e., compute the generated artificial face
images from the artificial face templates. Finally they use that NbNet network
to compute real face images from the real face templates. Their work shows that
face images can be retrieved from stolen face templates and a black box feature
extractor.

Our work differs from the work of Mai et al. [15] as we deal with unlabelled
stolen templates of handwritten digits and assume to know the architecture of the
feature extractor (without any knowledge of the weights of the network). We aim
to find the digit values (labels) of unlabelled templates, further called embeddings
for coherence with the unsupervised machine translation literature cited in this
paper. We propose to find the labels of stolen embeddings by matching their
space to the output space of a known, hand-crafted, comparison feature extractor
(here a LSTM RNN), using a transfer function. Once the transfer function is
found, that known RNN feature extractor could then serve as a black-box feature
extractor, to perform an attack similar to the one described in [15].

2.2 Unsupervised translation for embedding matching

The scope of this paper is to find the labels of stolen biometric embeddings
by matching their distribution to the one of labelled embeddings. Unsupervised
machine translation aims at achieving a bilingual translation by matching word
embeddings from a language with word embeddings of another, without knowing
the corresponding labels. The closeness of both problems leads us to explore
unsupervised translation literature.

For unsupervised machine translation, the success of the algorithm is highly
dependent on the initialisation [10] [9]. However, most of unsupervised trans-
lation methods either use a few labelled examples or the first thousands most
frequent words in each language. The initialisation strategies based on that are
not suitable for our problem. Our problem involves a lower number of classes
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but with multiple samples for each class. For that reason, most initialisation
approaches discussed hereafter cannot be directly implemented.

Grave et al. [9] propose a method to match high dimensional word embed-
dings from two different lexicons, using Procrustes Analysis [8] and Wasserstein
distance [22] with a stochastic optimisation of a rotation matrix. They achieve
state of the art performance using the 2000 most frequent words of each lan-
guage to initialise the matrix. The translation of this initialisation to our task is
not directly applicable as we do not have information about the most frequent
digits. However, we keep the idea of using Procrustes analysis to find an optimal
rotation for a given combination.

Still for unsupervised machine translation, Hoshen & Wolf [10] use Principal
Component Analysis to efficiently initialise their algorithm with the 5000 most
frequent words of each language. Their algorithm computes the optimal rotation
from a given permutation matrix, and finds the optimal permutation matrix
according to that rotation. Thanks to the high number of classes (5000) com-
pared to the low number of dimensions (50 after PCA), switching two classes in
the permutation matrix only induces small variations in the rotation matrix, so
their algorithm can do a step-by-step search. However, due to the low number
of classes (10 digits) in our problem, we cannot apply the step-by-step search.
Indeed, a permutation error would induce a much more important variation of
the rotation matrix. However, we propose to initialise with a global PCA on the
data to align both spaces and reduce the number of dimensions before further
computing.

Zhou et al. [24] match word embeddings by modeling each one as its own
gaussian distribution and fitting Gaussian Mixture Models [17] to each set of
words. The transfer function is then trained by minimizing the distance between
GMMs. Note that they also use a few identical words in both languages to add a
weak similarity constraint to their search. As we want to find the transformation
function without any example, we cannot apply that exact method. However we
keep the idea of modeling the statistic distribution of embeddings with GMMs
and the concept of normalising flow [18] to map the transfer function between
the unlabelled embeddings space and a known space.

3 Proposed attack scenario

Here we want to label a set U of stolen unlabelled embeddings. Those embed-
dings have supposedly been produced on a touchscreen biometric system [21],
for authentication by handwritten digits, as illustrated in figure 1.

The U set is composed of N unlabelled embeddings of dimension D, resulting
from the penultimate layer of a LSTM classifier designed to process 2D stroke se-
quences taken from handwritten digits from 0 to 9. For the purpose of this paper,
the number N of embeddings depends on the size of the considered dataset.

We suppose an attacker able to find or provide its own data. This data can
be used to produce a labelled set of statistically comparable embeddings. To
simulate that scenario, we train a second LSTM classifier with a disjoint set of
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Fig. 1. Illustration of the stolen embeddings, in a touchscreen biometric system for
handwritten digits.

Fig. 2. Illustration of the differences between the stolen, unlabelled embeddings and
the comparison, labelled embeddings.

2D sequences, taken from different users, as illustrated in figure 2. Those labelled
embeddings will be referred to as the L set. To exploit the stolen embeddings,
we propose a method to transfer them into a known, labelled space, namely the
output space of the second LSTM classifier. The optimal transformation between
the two spaces (i.e. the permutation matrix between unlabelled classes of U and
labelled classes of L) can be used to label the stolen embeddings. Those notions
of permutation and optimal transformation between two spaces are linked in
most of unsupervised translation works [9] [10] [6], and we manipulate both in
our proposed method.

The method we propose follows 4 steps, as illustrated in figure 3 :

1. Cluster the embeddings of U in 10 clusters, expecting each cluster to corre-
spond to a class (i.e. a digit value).

2. Apply a global Principal Component Analysis to both sets U and L, pro-
jecting embeddings on 10 dimensions;

3. Find the most likely candidate permutation between each cluster of U and
each class of L, using a likelihood score;
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4. Fine-tune the reversible transformation associated with each candidate to
get the optimal transformation, and identify the labels of U .

Fig. 3. Illustration of our labelling method.

Our main contributions, related to step 3 (labelling), are detailed in sections
4.2 and 4.3. The steps of clustering and dimension reduction that are necessary
to achieve good performance are later described in section 5.3.

4 Labelling

To effectively consider the U set as labelled, we need to find the labels of each
one of its clusters. The U set is considered labelled when each of its ten clusters
is paired with a class from L corresponding to a digit value. To represent a
possible match between clusters of U and labels of L, we use a permutation
matrix P = (pij)i,j∈[[0,9]]2 , a bi-stochastic matrix composed of 0 and 1, where

pij = 1 means the ith cluster is labelled as class j (e.g. digit value j). This
section introduces three contributions. First we propose to apply a Procrustes
analysis [8] between the cluster centers of U and the class centers of L, in order to
approximate the optimal transformation between both sets. Second, we propose a
scoring method to evaluate the success of the optimal transformation for a given
permutation. Third, we search through the space of all possible permutations to
find the best candidates, according to our scoring method. Finally, we fine-tune
the best candidates to re-rank them and find the ultimate optimal permutation.

4.1 Optimal Rotation for a given permutation

Search for transfer function as a rotation Mikolov et al. (2013) [16] pointed
out that the transformation between the word-embedding spaces of two lan-
guages can be well mapped by a linear transformation, so a multiplication ma-
trix and a bias matrix. Each sets being centered, we can ignore the bias matrix,
and each embedding being length-normalised, we consider that the trans-
fer function between spaces of embeddings is a rotation, which will be
verified in section 6.
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Procrustes Analysis Considering the transfer function is a rotation, it can be
found by a Procrustes analysis that compute a linear transformation between two
sets of matched points U ∈ RN×D and L ∈ RN×D. in case the match between
the two sets is known (i.e., which point of U corresponds to which point of L),
the linear transformation can be simply recovered by solving the least square
problem:

min
W∈RD×D

‖UW − L‖22 (1)

Here we use the 10 centers of the unlabelled clusters as CU , the 10 centers of
the labelled classes as CL and the match is given by the permutation matrix P .
As in Grave et al. (2018) [9], we compute for a given permutation matrix P the
solution to the equation 2.

min
W∈RD×D

‖CUW − PCL‖22 (2)

Procrustes analysis presents a simple solution to that problem. Let the square
matrix M ∈ RD×D be :

M = Ct
U .PCL (3)

M can be decomposed in singular values, as :

M = X ×Σ × Y ∗\(X,Y ∗) ∈ (RD×D)2 (4)

Then the W rotation matrix solution to the equation 2 is defined as :

W = X.Y ∗ (5)

Evaluation of a given rotation To select the most probable permutation
between the two sets, we have to find a reliable heuristic that evaluates its
corresponding rotation, without knowing the labels of one of the sets. We assume
that the statistical distribution of each cluster of embeddings is different enough
to distinguish it from the others, and thus find its label.

Modeling of the embeddings distribution with Gaussian Mixture Mod-
els The statistical distribution of embedding from each set is approximated by
a multivariate Gaussian Mixture Model (GMM). The number of components in
the GMM is chosen via Bayesian Information Criterion [1]. We do not impose
priors, means or co-variances to the models, and use full co-variances matrices.

Global Log-likelihood scoring To measure the distance between a set of
embeddings and a GMM, we propose to use the global log-likelihood.

Let the GMM of the labelled set L be GMML = {(pi, µi, Σi) ∈ (]0, 1] ×
RD × RD×D)\i ∈ [[1,K]]}, pi, µi and Σi being respectively the prior, mean and

co-variance of the ith gaussian, with
∑K

i=1 pi = 1. Let U = {u ∈ RD} be the
set of unlabelled embeddings, and W ∈ RD×D the given rotation matrix, then
UW = {uW = W.u\u ∈ U} is the set of projected unlabelled embeddings.
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The log-likelihood between a projected embedding uW and a Gaussian i is :

logN (uW |µi, Σi) = −1

2
(K log 2π + log |Σi|+ (uW − µi)

TΣ−1i (uW − µi)) (6)

The log-likelihood between a projected embedding uW and the model GMML

is then defined as the log of the average of the likelihood with each Gaussian,
weighted by the priors P = {pi ∈ R} :

logNGMML
(uW ) = log

K∑
i=1

piN (uW |µi, Σi) = log

K∑
i=1

exp(log(pi)+logN (uW |µi, Σi))

(7)
Finally, the global log-likelihood score of the set XW is set as minus the average
of the individual log-likelihood scores :

Score(UW , GMML) =
−1

Card(UW )

∑
uW∈UW

logNGMML
(uW ) (8)

Here the Score(UW , GMML) function is defined as the likelihood score between
the GMM of a set of embeddings L and a set of embeddings U projected by a W
rotation matrix. If the transformation W is confirmed to be a rotation, then W
is invertible and its inverse is W t. Thus, we can define this score for the reversed
rotation, between embeddings L projected by a rotation W t and a GMM fitted
to a set U : Score(LW t , GMMU ).

We propose to take the maximum of the two options, evaluating in a single
score the likelihood of a transformation and its reverse :

Score(U,L,W ) = max(Score(UW , GMML), Score(LW t , GMMU )) (9)

A higher score means a better matching between sets, so by taking the maxi-
mum we use the best of both comparisons. For the rest of the article, we used
the opposite global log-likelihood score (−Score(U,L,W )) as the function to
minimize.

4.2 Genetic Search

For any given permutation, we can compute the associated optimal rotation and
evaluate its ability to statistically align both datasets. To find the candidates
that minimize the score described above, we explore the space of the possible
permutations P ∈ [[0, 1]]10×10. To find the global best rotation, we need to try
all possibles 10! = 3628800 permutations. To limit the number of tested permu-
tations, we choose to use a genetic algorithm [4] to find the fittest permutations.
The genetic algorithm considers each permutation as a chromosome, and gets
the best candidates through merging and mutations without scoring every pos-
sible permutation. We propose to represent chromosomes as ordered sequences
of 10 digits instead of matrices of zeros and ones :

C = {ci ∈ [[0, 9]] \ i ∈ [[0, 9]]} (10)
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Each element from a chromosome represents the link between a cluster of unla-
belled data and a labelled class. ci being value of the ith element means that the
unlabelled cluster ci is linked to the labelled class i (each cluster is linked to a
unique other class).

∀i, j ∈ [[0, 9]]2, i 6= j ⇔ ci 6= cj (11)

4.3 Fine-tuning

Rotations are approximated using the center of each cluster and thus might not
be as precise as if every embedding was used. As a result, the best candidate
permutation found by the genetic search might not always be the genuine one.
To refine and re-rank the k-best candidate permutations, we propose a stochastic
optimisation.The candidate with the best score after fine-tuning is expected to
give the genuine labels.

Our fine-tuning is inspired by [24], which uses gradient descent to find the
optimal rotation matrix a comparable statistical alignment problem, using two
weak constraints during training (orthogonality and unitary determinant). For
each k-best permutation candidate, we fine-tune W with the Adam stochastic
optimisation method [12] to minimize the global log-likelihood score.

Losses To fine-tune each matrix to minimize the global log-likelihood score
while keeping their rotation properties, we combine three loss functions :

1. Loss 1: The global log-likelihood score −Score(U,L,W )
2. Loss 2: The absolute log of the determinant of W : | log(detW )|
3. Loss 3: The difference ui − (W t ×W × ui)

The first loss fits the matrix W to the optimum transformation between the two
sets of embeddings. The second targets a determinant of 1, and the third insures
that W is orthogonal. The last two guarantee that W stays a rotation matrix.
The global loss is a non-pondered sum of the three losses.

After a few dozens of epochs, the losses are stabilized, and we getW ∗, the fine-
tuned version of W . Once each instance of W ∗ scored with global log likely-hood
score, the one with the minimum score is the best candidate, the permutation
associated giving the searched labels.

5 Data and Preprocessing

5.1 Data

The data is taken from two different datasets described in: Tolosana et al.
(2018) [21] and Tolosana et al (2019) [20], both produced by the University
of Madrid, containing data from respectively 217 and 93 users. The first set
contain 8460 stroke sequences of variable length (mean=31.9, std = 13.1, max
= 164), in 2 dimensions, representing digits drawings from 0 to 9. The second
contain 7430 sequences of variable length (mean=33.9, std = 13.2, max = 125).
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In total, it results in 16350 sequences, with an equal proportion (a tenth) of each
digit. Those sequences are divided into 4 sets of equal digit proportion, each set
containing the sequences of a randomized quarter of the total number of users.
Those sets will then be referred as : Train U, Test U, Train L and Test L.

Both Train sets are used to train the classifiers and the Test sets to evaluate
their performances. The embeddings used for unsupervised matching in the rest
of the paper are produced by passing the sequences from the Test sets through
the classifiers.

In order to multiply the experiments with the same original data, we ran-
domly split in 4 parts the set of users in 100 different ways, to get 100 different
simulations. Sets of users are always composed of 77 to 78 users, and each set
contains 3450 to 4560 sequences (mean = 4079.35) with each digit having the
same number of examples.

5.2 Architecture of the networks

The architecture of the feature extractor, assumed to be known by the attacker,
is a Long Short-Term Memory (LSTM) RNN. We train thus two classifiers with
an input in 2 dimensions and a hidden state vector of D = 64 dimensions. The
last hidden-layer is passed through a fully connected layer of dimension 10 and
an a softmax function to predict the digit value.

Both networks are trained with both Train sets using Cross Entropy Loss
as the objective function to predict the digit associated with each sequence. The
training stops when each network has a precision of 96% on its Test set. Both
networks have the same architecture but a different, random initialisation of their
parameters. 64-dimension embeddings are then extracted from the penultimate
layer of each network for all digits from the respective Test set.

The set Test L is processed by the first network to produce a set of Labelled
embeddings referred to as L set, while the set Test U is processed through the
second network to produce a set of Unlabelled embeddings referred to as U set.
All produced sets are composed of 3450 to 4560 embeddings (average of 4079.35)
in 64 dimensions, with each class having the same number of examples.

5.3 Preprocessing

Normalisation For each set, all embeddings are length-normalised, centered
as in Grave et al. (2018) [9] and length-normalised again.

Clustering The networks being trained to be classifiers, we assume they project
the original sequences in a vector space were borders can be drawn between same-
label classes. Thus, we should be able to split the data in class-related clusters.
To assert this point, we propose to use the K-means clustering algorithm to split
the unlabelled set in ten clusters. For further purposes, the groups formed by
same-label embeddings of L set will be referred as classes, as opposed to the
clusters of U .
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Principal Component Analysis We propose to initiate our method with
principal component analysis, as in Hoshen & Wolf [10]. We propose D = 10, so
the number of dimensions do not exceed the number of distinct matched points
used to compute the Procrutes rotation matrix. For the rest of the paper, we
work with the 10-dimension PCA-reduced embeddings for both sets. We compute
the means of each cluster of U and each class of L after the PCA, so we end
up with 2× 10 average embeddings representing the centers of the clusters and
classes.

6 Experiments

To provide reproducible and precise experiments, each following experiment is
carried out with the same dataset split, and results are presented for that exam-
ple dataset split. Secondly, we carry out the same experiment over the 100 pairs
of sets produced in section 5.

6.1 Clustering

We split the unlabelled embeddings in 10 clusters with the K-means algorithm.
The result of this clustering is in the table 1. We measured the cohesion of the
clusters relative to the original labels of the embeddings. We found a cohesion

Table 1. Embeddings of each label and their associated cluster number after K-means
clustering

Label \ Cluster 0 1 2 3 4 5 6 7 8 9 Σ

0 0 12 4 4 9 1 4 3 363 0 400

1 0 1 395 4 0 0 0 0 0 0 400

2 394 0 2 1 0 3 0 0 0 0 400

3 0 0 0 0 1 1 0 392 0 6 400

4 1 0 7 375 0 4 13 0 0 0 400

5 0 0 0 1 14 0 0 4 1 380 400

6 0 382 0 0 0 1 0 0 14 3 400

7 6 0 4 0 2 380 6 0 1 1 400

8 0 4 7 0 350 1 2 2 30 4 400

9 0 6 1 6 2 0 381 0 3 1 400

Maximum : 394 382 395 375 350 380 381 392 363 380 3792

of 3792
4000 = 0.948 after the clustering, meaning 94,80% of the embeddings can be

grouped together by a clustering.
For a better precision, we measure the clustering cohesion for every set of

embeddings over the 100 different split of data. The global cohesion was between
92.26% and 96.04% (mean = 94.45%). This is an acceptable cohesion, knowing
that the originally trained classifier got a 96% of accuracy over the test set.
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This confirms that our unlabelled embeddings can be split in label-wise clus-
ters. This also means that when we have 100% accuracy on the clusters labelling,
an average of 94.45% of the individual embeddings will be correctly labelled.

6.2 Principal Component Analysis

Each set of embeddings from the 100 splits is projected in P = 10 dimensions
using PCA. The total ratio of explained variance is between 80,4% and 88,2%
(mean = 84,9%).

6.3 Rotation

To prove that the relation between the two sets of embeddings can be well
mapped as a rotation, we suppose the labels of both sets to be known, just for
the purpose of this experiment. We apply Procrustes analysis on the centers of
the label-wise clusters of both sets to compute the optimal rotation W between
the two sets. Then we project every embedding of the unlabelled set with W .
For each projected embedding, we measure the nearest labelled cluster center,
the projection being considered as successful if that nearest cluster has the same
label as the original embedding. The table 2 presents the results of that as-
sociation. This experimentation shows 94.31% accuracy, meaning 4,103 out of

Table 2. Embeddings projected with Optimal rotation: Label by Nearest Cluster

Label \ Nearest Cluster 0 1 2 3 4 5 6 7 8 9

0 402 0 1 0 13 1 14 0 1 3

1 0 412 1 0 19 0 2 1 0 0

2 0 0 429 0 1 1 1 3 0 0

3 1 0 0 417 0 3 2 3 7 2

4 3 3 1 0 402 0 0 4 5 17

5 1 0 0 4 3 401 10 9 7 0

6 7 0 0 3 0 4 420 0 0 1

7 1 2 2 0 4 1 0 425 0 0

8 14 6 3 2 1 15 2 2 386 4

9 0 1 0 1 21 1 1 1 0 409

4,350 embeddings from the unlabelled set were associated with the right cluster.
When reproducing this experiment with every pairs of sets from the 100 splits
we observe 92.44% and 95.86% accuracy (mean = 94.50%). From there, we can
consider that the transformation between the two spaces can be well approxi-
mated as a rotation, as thus confirm that if we get the right permutation, over
92% of the embeddings will be correctly labelled. We are therefore looking for
the optimal rotation between the Labelled space and the Unlabelled one. Thus,
as said in subsection 4.1, the transfer function between the spaces of both sets
of embeddings is considered a rotation.
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6.4 Reliability of the global log-likelihood score

To test the reliability of that score function we use every one of the 10! combi-
nations to compute the 10! rotations associated, and measure the score of the
rotated set for each of them. The genuine permutation is supposed to obtain the
lowest score. We group all permutations by their number of correct matches and
plot them on figure 4 with the corresponding scores. The first column is only the
expected permutation, and the others are the scores of permutations with 2 to
10 mismatches. The second graphic is a zoom on the lower part of the first one.
The figure shows that the genuine permutation only obtains the third lowest

0 2 3 4 5 6 7 8 9 10

0

2

4

6

8

boxplot of the log likelyhood score repartition, by number of errors of permutation

0 2 4 6 8 10
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

zoom on the low scores
other  alues
genuine  alue

Fig. 4. box plot of the global log likelihood score of every embedding, as a function of
the number of errors.

score. The score depends on the GMM and since the GMM initialisation is ran-
dom, the score is slightly different each time. After running this experiment 10
times on this particular dataset split to smooth the variations due to the GMM
initialisation, the genuine permutation is always observed between the 1st and
the 6th rank. Over all the candidate permutations, the global log-likelihood score
gives the genuine permutation one of the lowest scores. Therefore, we have to not
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only consider the candidate with the lowest score, but a list of the k candidates
with the lowest scores, to be sure to have the genuine candidate among them.
That is why we have to fine-tune the rotations in order to re-rank the k-best
permutations.

6.5 Genetic Search

We are searching through all possible permutations using chromosomes consist-
ing of ordered sequences of 10 naturals numbers (see equation 10). Each element
represents the link between a cluster of unlabelled data and a digit class.

A Initialisation The search is initialised with 150 Chromosomes and each of
them is evaluated by computing its rotation matrix and their score as ex-
plained in subsection. 4.

B Selection The 20 chromosomes with the lowest score are selected.

C Merging Two chromosomes from the 20 selected are randomly taken, and
merged to create a new one. The common elements stay the same while the
elements that are different are randomly selected from one or the other. If
the new chromosome has not been seen yet, it is added to the list, and an
other merge is done until reaching the 100 more chromosomes.

D Mutation One of the 20 selected chromosomes is randomly selected. 2 to
10 elements of that chromosome are randomly selected and then rotated to
obtain a new, mutated chromosome. If the new chromosome have not been
seen yet, it is added to the list, and an other mutation is done until reaching
the 50 more chromosomes.

E End of the Main Loop Finally, after getting a list of 170 chromosomes, the
score of each is evaluated, and the algorithm get back to step B : the se-
lection. It loops over until the 20 selected chromosomes stabilise and stay
the same 100 loops in a row. The output is the list of those k = 20 selected
chromosomes

We use the genetic search to find the 20 best permutations according to
the global log-likelihood score. An experiment takes around 55 loop each to be
completed, so around 104 permutations are evaluated over the 3.6×106 possible
ones. At the end of the search, the genuine combination is part of the k = 20
best candidates. An example of the score for each one of the 20 best candidates
is presented in table 3.

For the given example, the genuine candidate, [0 1 2 3 4 5 6 7 8 9], is
not the best one selected. It is ranked third. Thus fine tuning is required, in
subsection 6.6. To present more consistent results, we run this genetic search
over the 100 splits of data and registered the rank of the genuine permutation
for each pair of sets. The genuine candidate is ranked first 62 times out of 100,
note that it is also ranked 20th once. Figure 5 presents an histogram of the ranks
obtained for each dataset split.
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Table 3. Example of a table of the scores for the first 20 candidates after a genetic
search. *genuine candidate.

Rank Candidates Score

1 0 4 2 3 1 5 6 7 8 9 -1.465

2 8 1 2 3 4 6 5 7 0 9 -1.360

3* 0 1 2 3 4 5 6 7 8 9 -1.310

4 8 0 2 3 6 7 5 1 4 9 -1.074

5 8 7 2 3 4 6 5 1 0 9 -1.025

6 8 1 2 3 7 6 5 4 0 9 -0.937

7 7 1 2 3 4 6 5 0 8 9 -0.867

8 0 1 2 3 4 6 5 7 8 9 -0.853

9 0 1 2 3 4 8 5 7 6 9 -0.559

10 0 2 4 3 1 5 6 7 8 9 -0.553

11 0 7 2 3 4 6 5 1 8 9 -0.509

12 0 2 7 3 1 5 6 4 8 9 -0.461

13 0 7 2 3 4 5 6 1 8 9 -0.457

14 6 0 2 3 8 7 5 1 4 9 -0.403

15 7 6 8 9 5 1 4 0 2 3 -0.386

16 0 5 2 3 6 7 1 8 4 9 -0.364

17 0 1 2 3 4 5 8 7 6 9 -0.361

18 6 0 2 3 4 7 5 1 8 9 -0.355

19 0 4 7 3 1 5 6 2 8 9 -0.331

20 8 1 2 3 4 0 5 7 6 9 -0.305

6.6 Fine Tuning

The genetic search gave us a quick reliable way to find a set of good candi-
dates, we now target to find the absolute best permutation by fine tuning each
candidate, using the density matching algorithm 4.3.

For each candidate permutation, the fine-tuning rotation matrix is initialised
with the one previously computed using Procrustes analysis on the centers. Each
candidate rotation matrix is fine-tuned for 200 epochs with the configuration
detailed in subsection 6.6. The global log-likelihood of the statistical alignment
is computed again afterwards. Table 4 corresponds to the same experiment as
table 3 but after applying fine-tuning.

The genuine candidate effectively got the best score, while the previous best
candidate moved back to rank 5. For this example, the permutation that matches
the cluster of i with the label i (∀i ∈ [[0, 9]]) is selected and the clusters are
correctly labelled.

To present more consistent results, we run the proposed fine-tuning over the
100 splits of data and register the rank of the genuine solution for each pair of
sets. The genuine solution is ranked first every time. Before fine-tuning,
the average score on the 20 selected candidates is -1.910 while the average score
of the genuine candidate is -2.325, for an average rank of 3.27. After fine-tuning,
the average score on the 20 selected candidates became -4.453 while the average
score of the genuine candidate went down to -5.042, for an average rank of 1.00
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Histogram of the ranks of the wanted solution, over 100 runs of the genetic search

Fig. 5. Histogram of the ranks of the wanted solution after a genetic search.

7 Conclusion - Future work

This paper presents a statistical alignment method for high dimensional unla-
belled embeddings of handwritten digits, in the event of a theft. Our method is
inspired by unsupervised bilingual translation and reconstruction of biometric
templates literature. We aim to find the digit value (label) of each embedding.
Provided a set of unlabelled embeddings produced by a LSTM RNN, we train a
comparison RNN with the same architecture to produce hand-crafted compari-
son labelled embeddings.

We proposed to label the stolen embeddings by matching their clusters to
the label-wise classes of the comparison embeddings. The labelling consists in a
genetic search through all possible permutations between clusters and classes to
find the 20 candidates with the lowest global log-likelihood score. Each of those
candidates is fine-tuned and the fine-tuned candidate with the lowest score is
expected to represent the genuine permutation.

We have applied this method on 100 different distinct splits of the original
dataset. Our experiment showed that after the genetic search, the genuine can-
didate got an average rank of 3,27, and got ranked first every time after fine
tuning. Thus the proposed method proved to be a reliable way to recover most
labels of the stolen handwritten digits embeddings (without further exploita-
tion we report a 94.45% average accuracy over the labeling of the individual
embeddings due to the clustering cohesion).

Future work will be dedicated to the relaxation of the constraints (higher
number of classes, unknown network architecture, other biometrics) and the
reconstruction of the signals. Overall, our work highlight the importance of per-
sonal data protection, especially embeddings from biometric systems, and open
perspectives for further threat models analysis and associated defenses.
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Table 4. Table of the scores for the first 20 candidates after fine-tuning. *genuine
candidate

Updated Previous Candidates Updated Previous
Rank Rank Score Score

1* 3 0 1 2 3 4 5 6 7 8 9 -5.914 -1.310

2 9 0 1 2 3 4 8 5 7 6 9 -5.827 -0.559

3 6 8 1 2 3 7 6 5 4 0 9 -5.770 -0.937

4 2 8 1 2 3 4 6 5 7 0 9 -5.603 -1.360

5 1 0 4 2 3 1 5 6 7 8 9 -5.602 -1.465

6 10 0 2 4 3 1 5 6 7 8 9 -5.420 -0.553

7 13 0 7 2 3 4 5 6 1 8 9 -5.335 -0.457

8 20 8 1 2 3 4 0 5 7 6 9 -5.334 -0.305

9 17 0 1 2 3 4 5 8 7 6 9 -5.322 -0.361

10 7 7 1 2 3 4 6 5 0 8 9 -5.269 -0.867

11 5 8 7 2 3 4 6 5 1 0 9 -5.219 -1.025

12 12 0 2 7 3 1 5 6 4 8 9 -5.043 -0.461

13 19 0 4 7 3 1 5 6 2 8 9 -5.026 -0.331

14 15 7 6 8 9 5 1 4 0 2 3 -4.999 -0.386

15 8 0 1 2 3 4 6 5 7 8 9 -4.985 -0.853

16 4 8 0 2 3 6 7 5 1 4 9 -4.775 -1.074

17 14 6 0 2 3 8 7 5 1 4 9 -4.731 -0.403

18 18 6 0 2 3 4 7 5 1 8 9 -4.727 -0.355

19 16 0 5 2 3 6 7 1 8 4 9 -4.687 -0.364

20 11 0 7 2 3 4 6 5 1 8 9 -4.622 -0.509
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