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Abstract. D’Alembert began on the scientific European scene with the publication of his first book: the Traité de 
dynamique (1743). Dynamics is born in the 1730’s and with the Traité D’Alembert became one of the main 
protagonists of that new science. Unfortunately, historians have neither manuscripts nor letters at their disposal, 
which could inform about the circumstances in which this book was written. The present article aims to precise 
those circumstances and to give essential characteristics of D’Alembert’s dynamics, in particular in the light of 
the works led by his colleagues of the French Royal Academy of Sciences. In reading D’Alembert’s ideas about 
causality and the proofs of some mechanical principles, in searching how he could have known some mechanical 
problems which appeared in the Academy around 1740, and in analyzing how he solved them, it’s possible to 
sketch hypothesis about the formation of the young man. They involve exchanges or competition with his col-
leagues who probably made him discover some mechanical problems. But D’Alembert published in 1743 the 
first book exclusively dedicated to that science with an original and specific approach which he kept during all 
his scientific career, an approach that allowed him to write that his work had nothing in common with that of the 
others. 
 
1. Introduction: corpus and historiography 

 
The aim of this paper is to bring out the specificities of D'Alembert's dynamics by 
reconsidering them in the context of the work being carried out at the Royal Academy of 
Sciences in Paris between 1735 and 1743. Our corpus includes studies by members of the 
Academy during this period, such as Alexis Claude Clairaut (1713-1765), Pierre Louis 
Moreau de Maupertuis (1698-1759), Etienne Mignot de Montigny (1714-1782), Patrick 
d’Arcy (1725-1779), Alexis Fontaine des Bertins (1704-1771) and Jean Le Rond D’Alembert. 
Underpinning the choice of this corpus and periodisation is a common purpose in evidence 
during those years, both in the type of problems being studied and in their formulations 
expressing the principles of dynamics, homogeneity which does not last beyond 1743.1 What 
should we understand here by “dynamics” and what type of problems does it entail? Clairaut 
(1739, p. 3) states 
 

a Class of Physico-mathematical Problems, the aim of which is to calculate the motions that occur 
to several bodies as they trace or follow certain lines - whether they move freely under the force of 
an initial impulsion or by accelerative forces such as gravity - when these bodies are linked 
together by string & they act reciprocally one on the other in a way that alters their motion. 

 
D’Alembert (1743, p. xxiij) employs the term “dynamics” in the title of his treatise to 

“notify his fellow Geometers” of the content, specifying that “over the last few years, the 
most accomplished Geometers have dedicated themselves to this subject”, proof that the word 
defined as “the Science of the Motion of Bodies, acting on one another in whatever manner” 
is the shared property of a community. These bodies act mutually “either by pushing or 
pulling each other by means of some body placed between them and to which they are 
attached, such as a cord, an inflexible lever, a plane, etc.” (D’Alembert, 1755, p. 174b).2 

During this period there were profound mutations in mechanics, characterized by the 
emergence of new types of problems and the elaboration of new principles.3 Very little 
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research has been carried out into the work done by members of the Academy4 as a whole, 
and although D'Alembert has been the subject of several studies5, there has been no previous 
attempt to contextualize his dynamics alongside those of his fellow Academicians.6 Their 
contribution, however, should not be overlooked: D’Alembert (1743) published the first 
treatise specifically dedicated to dynamics and Clairaut (1745) provided the first major 
overview of the question in the form of a memoir.7 Moreover, it is highly probable that 
D'Alembert was introduced to dynamical problems through his exchanges with colleagues 
whom he seemed to emulate as well as compete with. The different formulations of principles 
and solutions to problems therefore deserve analysis, both to underline the similarities in their 
approaches, and to explore the nature of their divergences.8 

H. Bos (1980, pp. 333-341) observes that the history of rational mechanics is defined by C. 
Truesdell as being that of “the axiomatic mathematical science of mechanics”. This science 
was to develop around two general and independent axioms, the fundamental principle of 
dynamics (or linear momentum) and the principle of angular momentum (or moment of 
momentum), applicable to discrete and continuous mechanical systems. The search for the 
formulation of these two axioms is, for Truesdell, the analytical instrument with which he 
explores an abundant corpus, leading him to draw some fundamental conclusions concerning 
Euler. But, following this methodology, the savants who do not develop this axiomatic or 
whose formulations are judged insufficiently clear or general remain in the shadow of Euler. 
In addition, Truesdell excludes from this history what, in the foundations of the concepts and 
principles, is metaphysical in nature (Bos, 1980, pp. 340-341; Boudri, 2002, pp. 12-13). A. 
Firode (2001, pp. 9-10) has shown that D’Alembert's principle (1743, pp. 49-51) is not 
“philosophically neutral” and that its technical and philosophical aspects are inseparable by 
nature. In the wake of this latter thesis, we will set about showing that (D’Alembert 1743) 
constitutes a rupture in academic practice that can only be fully appreciated by simultaneously 
taking into account both of these dimensions. We will underline the stances taken by 
D’Alembert as regards the choice of certain principles and show how different choices of 
axiomatization lead to specific problem-solving techniques and, in turn, how analysing the 
latter brings to light different epistemologies. 

 
2. The Academic Context: the problems 
 

On 24 November 1742, D’Alembert began to read his “memoir on a general Principle to 
find the motion of several bodies which act on one another”, a reading he would pursue until 
27 February 1743 at which date the mention of the word “Treatise” appeared: “Mr 
D'Alembert continues the reading of his Memoir or Treatise on the action of Bodies”9. At the 
end of the year 1740, Clairaut set a date in 1741 to begin his reading of a memoir (“On a 
Principle to help solve a large number of Problems in Dynamics”) which he wished to publish 
in the Academy's 1740 volume of memoirs; at the end of 1741 we can find the same notice 
announcing a forthcoming reading in 1742 of a memoir with the same title.10 It did not appear 
in the volumes covering the years 1740 and 1741, and Clairaut once again set a date at the end 
of 1742 for a reading in 1743 of “On some principles to help solve a large number of 
problems in Dynamics”, to be published in the 1742 volume. The reading finally began on 2 
March 1743 and finished on 6 April 1743 at which date the Academy's records contain 
(Clairaut, 1745) in its entirety.11 In the mean time, D’Alembert asked on the Academy on 6 
March 1743 to arrange for commissioners to examine a book “the greater part of which he 
[had] already read during the previous assemblies under the title Treatise on the Motion of 
Bodies” and had the permanent secretary of the Academy inscribe his initials on “twelve little 
notebooks containing the second part of the work”12. 
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The title of the November 1742 “memoir” is similar to the title of the second part of the 
Traité which begins by setting out the principle (D’Alembert, 1743, p. 49) and includes 
fourteen problems in dynamics: the work “already read for the greater part” would seem to 
correspond to this part. In their report, the commissioners who examined the book, wrote: 

 
we do not consider it necessary to review once again the major part of this work which contains the 
most elegant solutions to the most difficult Problems […] deduced from one Principle alone […]  
When we had finished rereading this part, our assessment was not different to the one the Academy  
manifested when the author [D’Alembert] gave a reading of the work himself  […] As for the first 
part in which Mr D’Alembert studies and explains the three principles of Dynamics and Statics 
[…] having explained the principles of these Sciences with the same degree of clarity and depth as 
he had applied to the resolution of the most complicated Problems, Mr D’Alembert has been 
equally successful (RMAS, 22 juin 1743, p. 280). 

 
The content of the first part would seem to be new while the second part was already 

known. From this it would follow that the “little notebooks” corresponded to the problems 
exposed in his public reading and the signature D'Alembert requested was a way of 
establishing precedence over Clairaut.13 The reading given by the latter no doubt pushed him 
to make this request and, conversely, D'Alembert's presentation may have forced Clairaut to 
finally propose this memoir that had already been deferred several times. After setting out his 
principle and before applying it to the resolution of the problems, D’Alembert (1758, p. 72) 
wrote that 
 

this principle & most of the following Problems were included in a Memoir that I read at the 
Academy towards the end of 1742 […] The very day on which I began the reading of my Memoir, 
Mr Clairaut presented another with the title, On some Principles to help solve a large number of 
Problems in Dynamics; this Memoir, published in the 1742 volume, was read after mine with 
which, besides, it had nothing whatsoever in common.14   

 
This statement confirms that D'Alembert's lectures to the Academy were on his principle and 
the problems. The chronology shows that his reading was the first, but contradicts the claim 
that Clairaut began his reading on the same day. Elsewhere, D’Alembert (1743, p. 49) 
specified that “the greatest Geometers have only identified […] a very small number of 
Problems”. Are the ones he solves really so different from the ones tackled by Clairaut and his 
other colleagues? 

Tables 1 and 2 present numerous similarities between the problems studied at that time, 
which tempers somewhat the claim that (Clairaut, 1745) and the Traité have “nothing in 
common”. In addition, Problems IX (Clairaut, 1745) and X (D’Alembert, 1743) are discussed 
in the correspondence between Euler and Jean Bernoulli (1738); the latter published a 
solution (Maltese, 1992, pp. 104-110) and Clairaut had been introduced to this type of 
problem by Daniel Bernoulli.15 It was clearly by drawing on all this literature that 
D’Alembert, elected a member of the Academy on 13 May 1741 and whose initial works 
apparently were not in the field of dynamics16, was able to arrive at a certain number of 
problems and, in the process, perhaps pursue his own instruction; some publications were 
afterall contemporaneous to his treatise. D’Alembert (1748, p. 39) confirmed that he knew the 
works of J. Bernoulli to which he owed “almost all of the little progress I have made in 
Geometry”. 

But D'Alembert must also have exchanged ideas with his fellow members of the Academy, 
as Problem II of the Traité would suggest. In this Problem II, a body moves in a tube in 
rotation around one of its fixed points on a horizontal plan: the purpose is to find the equation 
of the curve of the body with regard to the horizontal plan. In the same problem, D’Alembert 
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considers too the cases where the tube is in a vertical plan and where it contains several 
bodies (D’Alembert, 1743, pp. 74-80)17. The solution proposed by J. Bernoulli (1742, 
pp. 248-252) to a problem of this type was only made known in 174318; this kind of problems 
was also the subject of numerous letters exchanged by D. Bernoulli and Euler between March 
1742 and February 1744 (Fuss, 1843) but they only published their solution in 1746; D. 
Bernoulli (1746) also referred to his correspondence with Clairaut. The latter, in response to a 
lost letter from Euler, mentioned the solutions to Problems III, IV and VI in (Clairaut 1745) 
and observed that “your problems were not new to me, I had even believed myself to be the 
first to conceive of them and I gave them to the Academy at the end of last year [in (Clairaut, 
1745)]”.19 D’Alembert did not correspond with J. and D. Bernoulli and the first letter he 
exchanged with Euler is dated from 3 August 1746.20 His interlocutors, then, would have 
rather been Clairaut, Maupertuis and Fontaine. J. Bernoulli wrote that he had given the two 
former savants the solution to a problem of this type, though this does not mean that the 
problem was unknown to them.21 Indeed, Fontaine (1740) alluded to some research of this 
nature undertaken within the framework of celestial mechanics.22 It is possible, then, that this 
type of problem appeared at the Academy independently of any epistolary correspondence: 
Clairaut (1740a, p. 69v) observed that “the […] Problem set out by Mr. Fontaine, in which it 
is supposed that the Body is carried off by a Tube turning at a given speed […] is rather 
curious and novel.” And as we saw in the letters to Euler mentioned above, Clairaut believed 
he was the first person to tackle such questions. Consequently, the presence of Problem II in 
the Traité de Dynamique could be linked to research being carried out at the time within the 
Academy: either D'Alembert had been informed about the questions raised by J. Bernoulli on 
this research topic by Maupertuis and/or Clairaut, or he was familiar with the works of 
Fontaine and/or Clairaut. 

The origin of Problem IV in the Traité also deserves to be examined. In this problem, a 
body 𝑃 moves along a curve and pulls two bodies by means of two inflexible strings: D’Alembert 
looks for the speed of 𝑃 and the equations of the movement of the two bodies (D’Alembert, 1743, pp. 
86-95). Maupertuis (1735) resolved Problem II in (Clairaut 1739) (see Table 1) which he said 
had been presented to him by Koënig; by assuming one of the two masses to be infinite, as 
Maupertuis does, this problem corresponds to Problem III in (Clairaut 1739) where a body 
moves along a straight line and pulls only one body by means of a string, a problem which 
appears in a corollary to Problem IV in D’Alembert (1743). Clairaut and Maupertuis stayed at 
Bale at the end of 1734 in the company of J. Bernoulli and while there, they met Koënig23: 
these problems and the methods the two members of the Academy put forward to solve them 
– using the conservation of vis viva – certainly owed something to these visits. Clairaut 
(1739, p. 1), however, claimed that these types of problems had originally emerged during a 
disagreement with Fontaine over tractrices and therefore seemed to associate their existence 
with an academic context. 

Beyond the obvious similarities between the kind of problems addressed respectively by 
Clairaut and D’Alembert (Table 1), the latter's claim that they had “nothing in common” 
should probably first and foremost be understood as expressing differences of an 
epistemological order as we will see in the following section.24 
 
3. Academic Context: Principles and Methods 

 
The Academicians were looking for “some Principles that give the Solution to a large number 
of Problems in Dynamics” (Clairaut, 1745, p. 1), a “general Method” or “Methods” (Clairaut, 
1739, p. 3). They sought to determine the trajectory and velocity of an “infinity of Bodies” 
(Montigny, 1744), “solve all the questions related to Dynamics using one and the same 
Method, very simple and direct” (D’Alembert, 1743, p. xxiv), and establish a “general 



5 
 

principle of dynamics” regardless of how the bodies may act on one another (d’Arcy, 1752, p. 
348). Table 1 summarizes the principles and methods employed: what are they? 

Clairaut's dynamics is built around the principle of “accelerative forces”, which comes 
back to the fundamental principle of dynamics, and the principle of the conservation of vis 
viva for an isolated system, the latter being presented in the form of a “theorem” if there are 
forces external to the system.25 The first principle is associated with 1) the principle of inertia 
that appears via the inertial paths that, free, unattached, the bodies would follow, and 2) the 
law of action-reaction, implying that the bodies at the end of the inflexible string or rods are 
subjected to the same degree of tension. Without explicitly presenting such an axiomatic, 
Clairaut adopts Newton's three laws of motion and extends the object of Newtonian 
mechanics – the material point – to discrete dynamical systems. In Problem III (Clairaut 1739, 
p. 11), P is given “an impulse of some kind” and covers the distance Pp during a unit of time 
dt, M crossing the distance Mm (Fig. 1). If “the string was suddenly cut”, during dt, P and M 
would cross Pp=pq and mn=Mm by virtue of their inertial motion. But the action/constraint 
of the string on 𝑝 and 𝑚 prevents 𝑃 and 𝑀 from tracing these short lines and “we can consider 
this action as a force of attraction which acts simultaneously from p towards m & from m 
towards p, in inverse ratio of their masses”; “the force of the string” will make 𝑃 travel 𝑝𝑓 and 
𝑀 travel 𝑚𝑜, with 𝑝𝑜 and 𝑚𝑓 inversely proportional to the mass of the bodies, this in 
accordance with the law of action-reaction. Clairaut assumes 𝑑𝑡 is constant and plots an 
inertial trajectory (𝑚𝑛 during 𝑑𝑡 without the action of the string) with the tension (which will 
make 𝑚𝑜  during 𝑑𝑡) to obtain the curve for 𝑀 as a succession of segments.  

The influence behind such a method is suggested by references to Newton. Clairaut in 
(1745, p. 21-22) developed a similar technique which he set out in the form of a “general & 
direct principle”. The physical conditions (inextensible string, inflexible rods), when 
combined geometrical lemma (Clairaut, 1739, p. 3 and p. 10 ; 1745, pp. 24-25) can be put into 
an equation. The lemma, which Fraser (1985) has shown can be interpreted as expressing 
radial and tangential accelerations in polar coordinates, also feature in D’Alembert (1743, p. 
73) who makes explicit reference to Clairaut (1739) and who is probably influenced by this 
memoir. They allow Clairaut to determine the expressions of 𝑚𝑜 and 𝑝𝑓 linked together by the 
law of action-reaction, which leads him to formulate an equation of the type =

 (𝐾𝑀 = 𝑦, 𝑝 a constant and 𝑚 the mass of 𝑃); the conservation of the vis viva leads 

then to an expression of 𝑑𝑡 which, replaced in the previous equation, finally allows the curve 
𝑀 to be plotted.26 

Clairaut, then, determines the expressions of forces in linkage conceived as accelerative 
forces. In (Clairaut, 1738), he takes stock of the forces (forces of constraint, gravity, linkages 
in the system) acting on each element of a compound pendulum; Clairaut counterbalances 
these forces in linkage by applying the law of the lever.27 In (Clairaut, 1745), he refers to 
accelerative forces within a non-inertial reference frame (Bertrand, 1848; Bertoloni Meli, 
1993), giving him radial accelerations, like those of bodies in rotating tubes, which, in 
combination with the principle or “theorem” of vis viva leads to the equation of motion. 

Although the second principle (conservation of vis viva) can be combined with the first 
(accelerative forces), it can also be used independently: Clairaut (1740b) deploys it as a 
variant to the method explained above based on a review of the different forces in linkage. 
Using this principle, he solves Problem VII (Clairaut 1739) (see Table 1) and underlines that it 
could also be applied to all the other problems in the memoir. Lastly, in (Clairaut, 1745, §X, p. 
10), in regards to a problem that he had been “set by […] Mr. Jean Bernoulli” ‒ the same as 
the one in Hermann (1727), Bernoulli (1735) and D’Alembert (1743, pp. 81-86) ; (see Table 
1) ‒ and starting from a review of the forces in linkage in an isolated system, Clairaut 
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demonstrates that the sum of vis viva is conserved, principle that he establishes as a general 
rule for all mechanical systems without providing a “general demonstration”. 

What characterises Clairaut's approach is the use of two methods and the assumption that 
they are equivalent, one based on the expressions of the linkages in the system, and the other 
on a conservative principle. However, the demonstration of the conservation of vis viva, since 
it is based on accelerative forces, would also suggest a hierarchy between the principles. 
Finally, over the course of his calculations, Clairaut (1745) establishes the conservation and 
the moment of momentum theorem by combining the principle of accelerative forces and the 
conservation or “theorem” of vis viva, but without ever conceptualising it. 

Montigny analyses Problem VIII in Clairaut (1742) (see Table 1) and generalises it to 
include any number of objects. Although it was only read in public on 11 and 15 March 1741 
in Clairaut's presence, the work was actually composed in 1740.28 Montigny makes use of a 
similar method than Clairaut combining the principle of accelerative forces – a radial 
acceleration for the bodies attached on an inflexible rod – with the conservation of vis viva, 
which leads to the conservation of the moment of momentum without it being formulated as a 
principle. In d’Arcy (1752), the latter is formulated and combined with the conservation of vis 
viva for the resolutions of the same problem above than Montigny and Clairaut or others 
problems where d’Arcy looks for the equations of motion of bodies contained in a rotating 
tube; the problem mentioned in § 2 above (see Table 1). In the works of Montigny and 
d’Arcy, as with Clairaut, there is always an operation which involves replacing a unit of time 
𝑑𝑡 taken to be constant, with an expression between space and velocity obtained using the 
principle of vis viva, in order to arrive at a differential equation of motion.  

As for D’Alembert, he solves similar problems by recourse to his own principle. 
D’Alembert’s principle is based on breaking down the initial impulses given to a system into 
components made up of final movements – those having a real impact on the objects 
depending on the constraints within the system – and other movements which are then 
destroyed, because in equilibrium: if exposed only to the latter, the system would remain at 
rest29. The conditions for equilibrium acting on these components are the linchpin to obtain 
the equation of motion, and for this the analysis of the linkages in the system is primordial. 
This principle combines three others principles – inertia, equilibrium and composition of 
motion – which D’Alembert demonstrates by criticising the standard proof based on force 
(Firode, 2001)30. The importance of his critical reflexions on causality, his rejection of force 
(accelerative, vis viva) and his striving to reduce dynamics to a single principle (Le Ru, 1994 ; 
Firode, 2001 ; Boudri, 2002, pp. 103-135) lead to solutions of an entirely different nature to 
the ones proposed by his fellow Academicians. 

Firstly though, as we have seen, Clairaut also attributes importance to these linkages and 
the conditions acting on them; Bertoloni Meli (1993, pp. 307-308 and p. 310) claims that this 
approach is identical to D’Alembert's. However, Nakata (2002) has observed that whereas 
Clairaut draws up the actions of linkage with inertial tendancies, D’Alembert breaks them 
down into components, one of which, by virtue of his principle, is found to be in equilibrium; 
Nakata (2002, p. 30) underlines that “it is rather difficult to understand the meaning of 
d’Alembert’s idea”. The difference seems to be epistemological. D’Alembert attends only to 
the effects and not to the forces that produced them; the contrary, from his perspective, 
renders mechanics unintelligible, and its foundations obscure. A contrario, equilibrium results 
solely from the impenetrability of bodies and their motion. Analysing the problems by 
attending only to the linkages is tantamount to forging a dynamics based solely on impacts, 
the fundamental principles of which D’Alembert deduced theoretically (equilibrium, 
composition). Although such an approach may not clear up questions of causality, studying 
mechanical interactions founded on impenetrability and equilibrium/constraint is a greater 
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source of clarity and intelligibility than Clairaut's composition of forces (Firode, 2001, p. 
133). 

Then, D’Alembert does not posit a time constant 𝑑𝑡 in his calculation of trajectories. Fraser 
(1985, pp. 50-51), who does not explain anymore than Nakata (2002, p. 30) the reasons 
behind this omission, relays Lagrange's criticism of this practice for “complicating” the 
calculations. D’Alembert asserted his decision not to posit “𝑑𝑡 or a constant interval of time, 
in order to formulate the Equation of the Curve without determining the expression of 
velocity, which would be necessary if we made 𝑑𝑡 constant, as 𝑑𝑡 is , we can only substitute 
𝑑𝑡 once we know the value of 𝑢” and pursued his argument by specifying that 𝑢 could be 
obtained “by different means”, but this would not be necessary if one uses the method he 
proposes (D’Alembert, 1743, p. 77).31 This refusal of a “𝑑𝑡 constant” can notably be found in 
D'Alembert's examination of Problem IV of his Traité. His method could be interpreted as the 
rejection of a technique, much in use at the Academy, calling for an additional principle, one 
formulated by Clairaut, Montigny and also d’Arcy, based on this time constant 𝑑𝑡 which they 
replace by an expression obtained through the conservation of vis viva. 

On the one hand, D’Alembert rejects the use of the principle of accelerative forces, and, in 
the final analysis, of a Newtonian type method in which the combination of forces with 
inertial motion plays a key role; on the other, he rejects certain principles on the grounds that 
they lack clarity (because linked to causality) and cannot be generalised. Hence, the 
conservation of vis viva only applies to elastic collisions or continual actions that do not 
collide with hard bodies (D’Alembert, 1757, pp. 115a-115b) and the principle formulated by 
d'Arcy (1752), namely the conservation of the moment of momentum, must be combined with 
another principle. These principles can be useful in abridging calculations, but D'Alembert 
qualifies them as “secondary” and not “primordial” for the principal reason that “the 
metaphysics” behind them “will never be clear” (D’Alembert, 1755a, pp. 175b-176a). 

According to D’Alembert (1755b, pp. 492b), principles must be presented in conformity 
with a “metaphysics of propositions” or assertions, in other words, with “the clear and precise 
presentation of general and philosophical truths on which all scientific principles are based”; 
it is a question of “general principles on which each science is based, & which, like seeds of 
particular truths, it covers and must expose” (D’Alembert, 1767, p. 255). The geometer calls 
for a “simple” metaphysics, presenting principles that are “clear” and “tangible” illustrated, in 
mechanics, by “the impenetrability of bodies, at the origin of their reciprocal action”. He 
evokes the existence of “common and primordial notions”, beyond dispute, on which all men 
agree and which could underpin a science (D’Alembert 1755b, pp. 492a-493a; 1759, pp. 27-
29). This would apply to space and time, the combination of which provides a definition of 
motion, the principle object of mechanics, whereas a “contentious and opaque Metaphysics” 
on the nature of motion is “foreign to this science” (D’Alembert 1755b, p. 493a, p. 494b ; 
1759, p. 27-29). D’Alembert states his aim is to “neutralise”, through rigorous definition, any 
meaning other than scientific of certain concepts and principles (Le Ru 1994, p. 107-110), 
thereby imparting to mechanics “an intangible and timeless conceptual framework” by 
forging primordial notions common to all men and rendering definitions unchanging, 
definitive (Firode 2001, p. 82-84). The certitude of mechanical science and its deductive 
structure are based on “common notions” of space and time, and on the mathematical 
definition of motion, the impenetrability of bodies and the principles which these notions give 
rise to: clear principles, reduced to their smallest possible number, conditions which guarantee 
their fecundity (D’Alembert 1743, p. ij-iij). D’Alembert excludes from mechanics principles 
judged to be obscure or unuseful, and although the conservation of vis viva does appear in his 
Traité, it is only after having been demonstrated using the principle of D'Alembert (1743, p. 
169-186), which results in this conservation being relegated to the status of a “secondary” 
principle in the axiomatic framework of dynamics.32 
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In the Problem II of his Traité33, D’Alembert (1743, pp. 79-80) alludes to the “true 
Metaphysics of the Problem”, specifying that the solution is founded on a “difference between 
two forces”: one which would move the body at a given speed were it free, and another which 
moves the body linked to the system at the same speed.34 In other words, the difference 
between an initial force (which assumes that “all the other bodies [in the system] have been 
eliminated”) and a final force (obtained once part of the initial force has been spent 
“overcom[ing] the action of these same Bodies”). This difference is the quantity of force 
counterbalanced by virtue of D'Alembert's principle. It is indeed a “true Metaphysics” to the 
extent that the principle is founded on “true Principles of the thing”, in other words the 
physical nature of the bodies – their impenetrability – and their related principles – inertia, 
equilibrium and composition of motion. 

 
4. Conclusion 
 

Truesdell (1960, p. 188; 1968, p. 164) underlines “the intricacy of [D’Alembert’s] method” 
and considers “obscure his statements and procedures”; he also refers to (1968, p. 249 et p. 
262) “the D’Alembert-Euler principle”, seeing a form of D’Alembert's principle in Euler 
(1740). (D’Alembert 1743, p. 72) refers to Euler's method (1740), but is critical of the lack of 
demonstration and its limited application to only a few problems35. These aspects – 
demonstration of a principle, the full scope of what it can be applied to – are part of this 
“metaphysics of assertions” which contributes to the axiomatic framework of dynamics and 
betters our understanding of the choices behind his proposed solutions that we could only 
partially interpret if we confined our reading to the technical aspects.36 D’Alembert (1743, pp. 
76-77, pp. 79-80) acknowledged the lengthiness of his method and the existence of other 
more elegant and expeditive ones, but he sought to inscribe the science of mechanics into this 
“metaphysics of assertions” which, we could add, implies a “metaphysics” of problem-
solving. 

Between the works of D'Alembert and those of his fellow members of the Academy, there 
are a number of points in common. Firstly, some of the problems featured in the Traité de 
dynamique appear to have originated in an academic context, which raises the question of 
D’Alembert's relations with his colleagues and, faced with a lack of source material on his 
formative years, thereby opens up new roads of enquiry. Then, the solutions to different 
problems presented by both Clairaut and D’Alembert hinge on intrinsic coordinates for 
mechanical systems, in our case polar coordinates, and the “accelerative forces” - namely, 
radial and tangential components of acceleration expressed in polar coordinates ‒ are 
calculated on a case-by-case basis depending on the type of system: neither savant formulated 
general analytical expressions for these forces.37 In addition, the principle of “accelerative 
forces” is not formulated in Cartesian coordinates.38 Lastly, the moment of momentum 
theorem and its conservation were not truly conceptualised before d’Arcy (1752), although 
this conservation does appear in D’Alembert (1743).39 However, by taking on major 
epistemological challenges which had a determining effect on his problem-solving methods, 
D’Alembert's project in the field of dynamics had “nothing in common” not only with the 
works of his fellow academicians, but, more generally, with those of the other savants 
celebrated in his day. 
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Fig.  1 : Clairaut (1739, p. 22)
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Table 1: Correspondence between problems in dynamics tackled by Academicians with the type of principles they applied in bold: (Problem (Pb); principle of accelerative forces (AF); 
principle of vis viva (VV); D’Alembert's principle (DAP); AR (action-reaction); MM (moment of momentum theorem or conservation of the moment of momentum); GL (geometric lemma of 
acceleration in polar co-ordinates). In these problems it must be found the curves, the speeds or the differentials equations of motions of the bodies after initials impulses given to the 
mechanical system i.e. the strings, rods, tubes etc. which connect the bodies together. 

 Maupertuis Clairaut Fontaine Montigny D’Alembert d’Arcy 
Bodies joined by an inflexible 
string on a horizontal plane 

1735 
VV 

Pb II (Solution III) (1739) 
VV 

    

Compound pendulum in a 
constrained system (rod) :  
 

 Pb I et II (1740b) 
AF+the law of the lever 
VV 

  Pb I, Corollaire I (1758)  DAP  

Compound pendulum (string)    Pb VII (1739) 
AF+VV 

  Pb V (1743, 1758)  DAP  

Mobile(s) in a rotating tube on a 
vertical or horizontal plane  

 Pb. I (1745) AF+VV ; GL+AR   Pb II (1743, 1758) DAP+GL Pb I MM+VV 

Pb. II (1745)  AF+VV ; GL+AR   Pb II, Rem. II (1743, 1758)  DAP+GL  

§§ V, VI, VIII (1745) AF AF  Pb II, Rem. III (1743, 1758) DAP+GL  
Pb III, IV, V (1745)  AF+VV ;  
GL+AR 
 

  Pb II, Rem. IV (1758)  DAP+GL  

Pb VI (1745) AF+VV 
 
Pb II § XXXII (1745)  AF+VV ;  
GL+AR 

  Pb II,  Rem. IV (1743), Rem. V (1758)  
DAP+GL 
Pb II, Rem. VII (1758) DAP+GL 

 

Motion of two bodies on two 
adjacent lines connected by a 
string over a pulley 

 § X (1745) AF   Pb III, Cor. IV (1743, 1758) DAP  

Body/ies towed in a groove by 
another moving body 

1735 
VV 

Pb III (1739) ; Pb. X (1745) 
GL+VV ; AF+VV 

  Pb IV, Cor. I et II (1743, 1758)  
DAP+GL 

 

Bodies in motion on a moving 
plane 

 Pb IX (1745) AF+VV ; AR   Pb X (1743, 1758)  DAP AR 

Bodies mounted on an inflexible 
rod rotating around a fixed ring 
into which it can slide 

 Pb VIII (1745) GL+AR   AF+VV  Pb II MM+VV 

Tube moving around a fixed 
point and containing a body 

 Pb XI (1745) GL+AR    Pb III 
MM+VV 
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 Pb I Pb II and 
Geometric 

Lemma 

Pb III Pb V Pb VII40 Pb XII41 Pb XIV42 

J. Bernoulli 1717  1729    1727 
Hermann   1729     
Clairaut  1739      
Euler 1740   1741 1740   
D. Bernoulli    1738, 1740    
J. (II) Bernoulli      1740  
MacLaurin       1742 
Bouguer       1728 

Table 2: Savants mentioned in the fourteen problems in D’Alembert (1743) 
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NOTES 
 
1. Clairaut, writing to Euler on 7 December 1743, said he had “given up this subject since the beginning of the 
year” (Juškevič, Taton, 1980, pp. 146-147). (Montigny, 1744) is the only essay this savant wrote on these 
problems; Montigny presents his essay at the Academy in 1741, see RMAS (11 and 15 March 1741). (d’Arcy, 
1752) features an overview of the methods developed mostly in (Clairaut, 1745) and includes a text read aloud at 
the Academy in 1743, see RMAS (24 July 1743, p. 333). (D’Alembert, 1758) sheds some light on the solutions 
given in (D’Alembert, 1743). In order to respect this homogeneity in the problems being studied, we have 
excluded from our corpus (Maupertuis 1742; 1748). Texts read at the Academy can be much later published; our 
article studies debates mainly take place internally at the Academy and so the most important dates are more the 
dates of reading than those of publication. 
2. On the appearance of the word “dynamics” at the Academy, see (Ariga, 2013). On the emergence of this field 
and the division of mechanics into statics and dynamics, see (Schmit, 2014; 2015). 
3. See notably, (Truesdell, 1960; 1968), (Bos, 1980), (Maltese, 1992), (Bertoloni Meli,1993). 
4. (Maltese, 1992, pp. 113-120), (Bertoloni Meli, 1993, pp. 307-310) and (Nakata, 2002, pp. 19-32) analyse 
Clairaut's first principle and/or the first problem (Clairaut, 1745); Bertrand (1848), Truesdell (1960, pp. 222-223) 
and Bertoloni Meli (1993) draw attention in Clairaut's memoir to the use of force in référentiels mobiles. 
(Maltese, 1992, p. 120-122) analyse a problem set out by d’Arcy (1752). The work of Maupertuis (1735), 
Fontaine (1740) and Montigny (1744) have not been the subject of research. 
5. See notably, Fraser (1985), Vilain (2000), Firode (2001), Nakata (2002), Viard (2002). 
6. Nakata (2002) would seem to be the only exception, but his study focuses solely on a comparison between  
D’Alembert and Clairaut based on two problems. 
7. (Bernoulli 1742) is not exclusively concerned with dynamics. 
8. In a chapter devoted to movements on mobile surfaces, Maltese (1992) does not study D’Alembert's (1743) 
responses to this question. Truesdell (1968, pp. 111-113) only mentions Clairaut's work on the figure of the 
Earth, and restricts D’Alembert's (1743) contribution to the appearance of the “earliest differential equations of 
motion for systems”, as does Maltese (1992, pp. 148-165). 
9. For these readings, see RMAS (24 November 1742, p. 424; 28 November 1742, p. 436; 1 December 1742, p. 
437; 5 December 1742, p. 438; 15 December 1742, p. 457; 9 February 1743, p. 103; 16 February 1743, p. 111; 
23 February 1743, p. 117; 27 February 1743, pp. 123-124). Clairaut was present throughout. 
10. RMAS (23 December 1740, p. 230r; 23 December 1741, p. 489). 
11. RMAS (22 December 1742, p. 461; 2 March 1743, p. 151; 13 March 1743, p. 164; 16 March 1743, p. 168; 
20 March 1743, p. 184; 23 March 1743, p. 185; 30 March 1743, p. 199; 3 April 1743, p. 201; 6 April 1743, p. 
204). D’Alembert was absent on 20 and 23 March, as well as on 3 April. Neither he, nor Montigny were marked 
present on 6 April even though they were reading a report. 
12. (RMAS, 6 March 1743, pp. 123-124). 
13. (D’Alembert, 1743) corresponds to a quarto format comprising 186 pages and 4 plates, of which the second 
part makes up 137 pages. Assuming that the “12 little notebooks” were in quarto, that would give us 96 
handwritten pages that could correspond to this part. 
14. These lines do not feature in the 1743 edition. 
15. As Clairaut tells Euler on 15 July, 1742 (Juškevič, Taton, 1980, p. 136). In Problems IX in (Clairaut, 1745, p. 
41) and X in (D’Alembert, 1743, pp. 141-142) a body falls on an inclined plan which can have also a rectilinear 
movement on a horizontal surface: the problem is to find the motions of the body and of the inclined plan. For an 
analysis of D’Alembert’s solution see (Fraser, 1985). 
16. Research conducted in the fields of mathematics (Gilain, 2007) and fluid mechanics RMAS (6 February and 
20 July 1740, pp. 19r-19v and pp. 155r-155v; 2 August and 16 August 1741, pp. 369-404 and pp. 424-438; 17 
March and 24 July 1742, pp. 126-133 and pp. 349-356). 
17. For a detailed analysis of this problem and a detailed comparison between D’Alembert’s solution and the 
solutions in Clairaut and Euler, see (Fraser 1985) and (Nakata, 2002). For the same problem in J. and D. 
Bernoulli, in Clairaut, and in Euler, see (Maltese, 1992). 
18. Although the year 1742 is inscribed on the first page of the volumes of (Bernoulli 1742), the first volume 
contains a letter from J. Bernoulli dated 9 January 1743, a “Editor Lectori” (editorial letter addressing the reader) 
which ends “Vale. Dabam Genevæ, Cal. Mart. 1743” with two engravings from 1743. We would like to thank N. 
Guicciardini for having drawn our attention to the “Editor Lectori” and one of the engravings. 
19. Clairaut to Euler, 7 September 1743, (Juškevič, Taton, 1980, pp. 149-150). In Problem III, the tube moves in 
a horizontal plan and contains two bodies in movement: Clairaut looks for the equation of motion of the tube. In 
Problem IV, under the same hypotheses, he gives the trajectories of both bodies. In Problem VI, there is any 
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number of bodies and Clairaut finds the movement of the tube in a horizontal plan. See (Clairaut, 1745, pp. 30-
37). 
20. Passeron (2009 ; 2015). 
21. Problem set by Samuel Koënig to Bernoulli. Bernoulli to Euler, 15 March and 27 August 1742 (Fuss, 1843, 
pp. 67-71 and pp. 72-81). 
22. The analyses presented by Fontaine (1740) contained an error detected by Clairaut and corrected in the same 
volume (Fontaine 1740). (Fontaine 1764, pp. 319-321) reproduces this study. There was a colloquium on 
Fontaine in Cuiseaux (Saône-et-Loire, France) on September 3rd and 4th 2004 but the acts are not published. 
Ryoichi Nakata and Jérôme Viard gave two talks on Fontaine’s mechanics. 
23. As testified by Koënig's letter to Maupertuis dated 27 January 1739 (Le Sueur, 1896, p. 110-111). 
24. D’Alembert will have later bad relations with Clairaut and Fontaine but we have no documents for this 
period which could give indications. 
25. The first would correspond to the proportion between a given force and the acceleration produced; the 
second to the conservation of kinetic energy in an isolated system and, in the presence of forces external to the 
system, to the theorem of kinetic energy. 

26. By the conservation of vis viva 𝑚( ) + ( ) = 𝐴 with 𝐴 as a constant, 𝑚and 1 the  mass of  𝑃 and 𝑀. 

27. Both the problem and the technique deployed to solve it are identical in Bernoulli (1742, t. 4, p. 382-386). 
28. See (RMAS, 11 and 15 March 1741, p. 82 and p. 86). 
29. D’Alembert gives his principle as a “method very simple and very direct” which could solve “all the 
questions of dynamics”: “decompose motions a, b, c &c. given to bodies by initials impulses each in two others 
motions a, α ; b, β ; c, χ ; &c. of such kind as if we gave only to the bodies a, b, c &c. they could keep these 
motions without interacting together; and if we gave only α, β, χ, &c. the system of bodies would stay at rest; it 
is clear that a, b, c &c. will be the finals motions the bodies will have because of theirs mutual actions”. See 
(D’Alembert, 1743, p. xxiv and p. 50). 
30. These three principles are also called “laws” or “theorems”. The first principle contains two laws: the first 
one deals with bodies at rest which stay at the same state until a force acts on them, the second one that a body 
pushes in motion keep a rectilinear motion with the same speed without others forces. The second principle is the 
compound motion of two or several impulses acting on one body i. e. what could be called the parallelogram of 
forces. The last principle concerns equilibrium between two hard bodies which collide: if they have the same 
momentum in an opposite direction they are said to be in equilibrium. See (D’Alembert, 1743, pp. 3-4; p. 22; p. 
37).  
31. With 𝑑𝑥 as the distance covered during 𝑑𝑡 at velocity 𝑢. 
32. D’Alembert (1743, p. 169-186) calculates the conservation of vis viva with the help of his principle. 
D’Alembert (1757, pp. 115a-115b) suggests that he reads his demonstration at the Academy when he presented 
his Traité in 1742 and 1743. He writes that he gives in his Traité a demonstration “in all cases” and (Clairaut 
1745) demonstrates it “in a particular way”; he writes too that he is the first to prove the conservation of vis viva 
for hydrodynamics see (D’Alembert, 1757). There is no demonstrations of this principle in (Montigny 1741), 
(d’Arcy, 1752) and (Fontaine, 1740; 1764).  
33. D’Alembert supposes a body in a rotating tube and that the law of rotation of the tube is given; he looks for 
the curve of the body. See (D’Alembert, 1743, p. 78-80). 
34. Unfortunately, due to the lack of space, we cannot give here an analysis of Problem II. For a detailed study of 
this problem, see (Fraser, 1985) and (Nakata, 2002). 
35. (Euler, 1740) deals with compound pendulums and small oscillations of rigid or flexible bodies, see 
(Truesdell, 1960, p. 167-170) and (Vilain 2000). In order to find the length of a simple pendulum isochronal to a 
compound pendulum, Euler considers that the reversed final accelerations of the bodies of the compound 
pendulum are equipollent to the initials impulses per unit of mass given to these bodies. D’Alembert uses this 
method but only after having proved it by his principle as formulated in his Traité (1743) and so only in taking 
into account the physical nature of bodies and their laws which are demonstrated, see (D’Alembert, 1749, pp. 35-
36). On the differents formulations of D’Alembert’s principle, see (Fraser, 1983, pp. 223-225) and (D’Alembert, 
2006, pp. 101-103 and notes 86-89). 
36. It would be impossible to sum up the origin of D'Alembert's principle if it is apprehended merely as the 
generalisation of a pre-existing mathematical method, as it is in (Truesdell, 1960, p. 191). 
37. On the systematic use by Euler and Clairaut of these analytical expressions in polar coordinates in the field 
of celestial mechanics from 1747 onwards, see Bertoloni Meli (1993, pp. 314-318). 
38. On Euler's use of accelerative forces expressed in cartesian coordinates, see Truesdell (1960, pp. 250-253 ; 
1968, pp. 167-171), Bertoloni Meli (1993, pp. 315-316). 
39. Note that this theorem and its conservation are in large measure applied to discrete and discontinuous 
dynamical systems. According to Truesdell (1968, note 14, p. 248), the Traité de dynamique « contains no 
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allusion to moment of momentum, torque, or the area integral, although Chapters II and IV of the Seconde Partie 
concern the integrals of momentum and energy, respectively » ; Viard (2002) invalidates this commentary. 
40. Study of the movement of a body that sways on a horizontal plane. 
41. Analysis of the velocity of two bodies attached to the ends of two rods rotating around their free extremities 
at the moment of their collision. 
42. Calculation of a body's final velocity, a moving body colliding simultaneously with others at rest. 
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