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Abstract This article proposes a new surrogate based Multidisciplinary Design Optimization algorithm.
The main idea is to replace each disciplinary solver involved in a non linear Multidisciplinary Analysis
by Gaussian Process surrogate models. Although very natural, this approach creates difficulties as the non
linearity of the Multidisciplinary Analysis leads to a non Gaussian model of the objective function. However,
in order to follow the path of classical Bayesian optimization such as the Efficient Global Optimization
algorithm, a dedicated model of the non Gaussian random objective function is proposed. Then, an expected
improvement criterion is proposed to enrich the disciplinary Gaussian processes in an iterative procedure,
that we call Efficient Global Multidisciplinary Design Optimization (EGMDO). Such an adaptive approach
allows to focus the computational budget on areas of the design space relevant only with respect to the
optimization problem. The obtained reduction of the number of solvers evaluations is illustrated on a
classical MDO test case and on an engineering test case.

Keywords Multidisciplinary Design Optimization · Gaussian Process · Global optimization ·

1 Introduction

This article addresses the numerical resolution of Multidisciplinary Design Optimization (MDO) problems.
MDO deals with the optimization of complex systems involving several disciplinary solvers coupled together
in a non linear system of equations called Multidisciplinary Design Analysis (MDA). The basic idea of MDO
is to solve the optimization problem of a multidisciplinary system by taking into account the interaction
between the disciplines instead of optimizing discipline by discipline sequentially. Since the numerous de-
velopments of the second part of 20th century (see. Sobieszczanski-Sobieski and Haftka [30] for a review) a
constant struggle has been the use of high fidelity models directly in the optimization, without prohibitive
computational costs. Indeed finding an optimal design that satisfies the coupling between disciplines (i.e.
the equilibrium of the multidisciplinary system) generally needs a large number of disciplinary solver eval-
uations. To tackle this issue several formulations of the MDO problem have been proposed. Historically,
among the first and simplest formulations there are the Multidisciplinary Feasible approach (MDF) and
the Individual Discipline Feasible approach (IDF) [6]. MDF consists in solving the MDA by a non intrusive
coupling of the disciplinary solvers at each iteration of the optimization algorithm, and thus uncouples the
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resolution of the optimization problem and the resolution of the MDA non linear system. It offers the advan-
tage to reach a physically relevant solution at each step of the optimization phase, but leads to an important
numerical cost as the MDA has to be solved at each iteration of the optimization process. Contrarily, the
IDF approach uncouples the disciplinary solvers but couples the resolution of the optimization problem
and the resolution of the MDA i.e. the optimization algorithm handling both the design variables and the
coupling variables. This formulation is generally quite efficient in terms of the number of disciplinary solver
evaluations but can be difficult to set up if the number of variables is important. Accordingly several other
formulations have been proposed in the literature in order to solve the MDO problem in an efficient way.
A review of some of these approaches can be found in [20]. It should be noted that the majority of these
approaches only solve an approximation of the original MDO formulations.

One way to further reduce the cost of MDO resolution is to improve the computation of the gradient
of the objective function and thus to take advantage of gradient based optimization algorithm. A large
literature is devoted to these type of approaches among which the computation of aeroelastic gradient
by the adjoined based method is a representative example (see [19] for example). However, although very
efficient, these types of approaches are also very intrusive and designed to accurately converge to a local
optimum, which can be detrimental in case of complex objective functions. Concerning this last point
it is proposed in [32] to replace the classical gradient based optimizer used in MDO formulations by a
surrogate based optimizer. More specifically authors of [32] used the Efficient Global Optimization (EGO)
by [14] as optimizer in the MDF, IDF and simultaneous analysis and design (SAND) MDO formulations
and compared the results with gradient based and genetic optimization algorithms. An analogue idea is
proposed in [29] in which a mixed optimization method based on radial basis function and support vector
machine is used to handled mixed discrete-continuous MDO problem.

Another way to reduce the cost of MDO resolution is to replace the costly disciplinary solvers by
surrogate models. Paiva et al. [21] for example compared the use of different surrogates (polynomials,
kriging, artificial neural networks) to replace the individual discipline models in an MDO analysis. Similarly,
in Wang et al. [31], surrogate models are build to replace costly disciplinary analysis. In their approach,
the disciplinary surrogate models are build in a non adaptive way by selecting the best surrogate model
among radial basis function, Gaussian process, support vector regression, each model with different possible
kernel functions according to the concurrent surrogate model selection (COSMOS) based on fixed training
samples. The same idea is applied in [5] in which a costly computational fluid dynamic analysis is replaced
by a Gaussian process surrogate model and in [33] where kriging surrogate models are used to replace
disciplinary models in a battery thermal management system. These non adaptive approaches require very
accurate surrogate models of the disciplinary solvers over the whole design space to converge towards the
global minimum which can then lead to an important numerical cost during their construction.

The aim of the present paper is to introduce a new adaptive surrogate based MDO approach in which
each disciplinary solver is replaced by a disciplinary surrogate model constructed adaptively, such as to be
accurate only in areas where the multidisciplinary optimum is likely to be. Such an approach has great
potential as it allows to uncouple the MDO problem (as the IDF method) and to focus the computation
of the costly disciplinary solvers only on interesting areas with respect to the optimization. It could be
noted that the idea of disciplinary Gaussian surrogate models constructed in an adaptive way with respect
to a given improvement criterion has been recently proposed in [12] in the context of time dependent
reliability analysis of a multidisciplinary system, the numerical procedure to deal with the surrogate model
uncertainty propagation and the enrichment criterion being however different from the one proposed in the
present article. One can also note that, in the context of disciplinary solvers directly chained (no feedback
coupling), the use of disciplinary Gaussian processes has been proposed in [18] and [26] for the adaptive
construction of a global surrogate model (in the particular case of direct coupling of Gaussian surrogate
models this is nevertheless simplified as analytical expressions of mean and variance of the final quantity
of interest can be derived analytically).

The present article proposes first to formalize and to study a MDO strategy in which each disciplinary
solver is replaced by a Gaussian process surrogate model. A surrogate enrichment criterion, inspired by the
Expected Improvement introduced in the EGO algorithm [14], is then proposed to enrich the disciplinary
surrogate model based on the uncertainty they induce in the objective function. However, note that, con-
trarily to the EGO approach, the objective function is not modeled by a Gaussian process. Indeed the
probability distribution of the MDA solution and thus of the objective function are in this case unknowns
that result from the uncertainty propagation through the non linear random MDA. Approximation of these
probability distributions is one of the other main contributions of this paper. A numerical procedure is
proposed to compute the probability distribution of the random MDA output and thus to efficiently sam-
ple the random objective function. The idea is then to enrich the disciplinary surrogate model in order to
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Fig. 1 1-D toy problem. i) Disciplinary solvers and MDA solution at z?. ii) Objective function and its global minimum.

reduce the uncertainty of the minimum value and associated position. To this purpose an original two-step
uncertainty reduction is proposed. It should be noted that this new development aims at extending and
improving our previous work on this subject [10].

The rest of this paper is organized as following. First, a 1-D toy problem is introduced in Section 2.
This example will help the reader for a better understanding by graphically illustrating the various steps of
the proposed method. In Section 3 the proposed algorithm is presented and illustrated on the toy problem.
Section 3.2 introduces the way the modeling uncertainties associated with Gaussian process surrogate
models is handled. We then derive the random objective function formulation (Section 3.3) and finally
present the adaptive disciplinary surrogate enrichment strategy (Section 3.4). The algorithm is summarized
in Section 3.5. Section 4 presents an application of the algorithm, quantifying the benefits in terms of
computational cost. Concluding remarks are provided in Section 5.

2 Illustrative problem

In order to illustrate the various steps of the proposed approach, the following simple unconstrained MDO
problem is introduced and denoted as 1-D toy problem. This problem counts a single scalar design variable
z ∈ Z = [−5, 5], two scalar coupling variables y1 ∈ R and y2 ∈ R and it is defined by

min
z∈Z

fobj(z, y
?
1 , y

?
2) = cos

(
y?1 + exp(−y?2)

π

)
+

z

20
(1)

where y?1 and y?2 are solution of the following non linear system of equations, denoted as MDA{
y1(z, y2) = f1(z, y2) = z2 − cos

(
y2
2

)
y2(z, y1) = f2(z, y1) = z + y1

(2)

The minimum point of this MDO problem is reached for z? ≈ −3.0 leading to fobj(z
?) ≈ −1.15. Figure 1

i) presents the coupling between the two disciplines at z? i.e. y1(z?, y2) and y2(z?, y1), the solution of the
MDA is characterized by the black cross. Figure 1 ii) presents the objective function as a function of z and
the red cross materializes the position of the global minimum.

Next section will proposed a surrogated based approach to solve this MDO problem.

3 Efficient Global Multidisciplinary Optimization

3.1 Introduction

Purpose of the method developed in this article is to solve unconstrained MDO problems of the form, find
z? ∈ Z such as

z? = arg min
z∈Z

fobj(z, y
?
c(obj)(z)) (3)

where fobj is the objective function to minimize which depends on the design variables z and on some
(possibly all) of the converged coupling variables denoted by y?c(obj)(z). The design variables z belong to a
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Fig. 2 Illustration of the proposed MDO problem involving two coupled disciplines and an objective function (1-D toy
problem). On the left, the disciplines are given by some costly black-boxes. On the right, the disciplines have been replaced
by some surrogate models (Gaussian Processes denoted by GP).

design space Z ⊂ Rn. The converged coupling variables are denoted by y?(z) = {y?i (z), i = 1, · · · , nd} and
c(obj) is a set of indexes used to identify the coupling variables involved in the computation of the objective
function. We wrote y?(z) the solution of the non linear system of nd equations, called MDA,

yi = fi(z, yc(i)), i = 1, · · · , nd ∀z ∈ Z (4)

where yc(i) is the vector of the coupling variables for the discipline i and nd is the number of disciplines. The
set of indexes denoted by c(i) identifies the coupling variables i.e. #(c(i)) ≤ (nd−1) and i /∈ c(i). Finally, fi
is the solver of discipline i. Let us note that, with the previously introduced notations, disciplines i and j
are said to have a feedback loop if i ∈ c(j) and j ∈ c(i). In the following, it is assumed that Eq. (4) contains
at least one feedback coupling. It is also assumed that Eq. (4) has a unique solution for any point of the
design space.

The starting point of the proposed MDO formulation is to replace all the disciplinary solvers by disci-
plinary surrogate models and more precisely by Gaussian process surrogate models denoted by GP in the
following. In practice the GP that is used to approximate the disciplinary solver fi is build from a Design
of Experiments (denoted by DoEfi) sampled over the space Z × C(i) where C(i) denoted the space of the
coupling variables yc(i) for the discipline i. The idea of GP approximation is then to condition a prior GP on
DoEfi and to estimate the parameters of this GP (by maximum likelihood in this work). Readers interested
in the construction of GP are referred to [24] for a complete description. In the following random quantities
will be denoted by upper case letters. Consequently the disciplinary solver fi is replaced by,

Ỹi(z, yc(i)) = µfi(z, yc(i)) + εi(z, yc(i)) (5)

where µfi(z, yc(i)) is the mean function of the GP and εi(z, yc(i)) is a zero mean GP whose covariance

function is the one of the prior GP conditioned on DoEfi . Thus for a given couple (z(0), y
(0)

c(i)
) ∈ Rn ×C(i),

that does not belong to DoEfi the obtained approximation reads,

Ỹi(z
(0), y

(0)

c(i)
) = µfi(z

(0), y
(0)

c(i)
) + σfi(z

(0), y
(0)

c(i)
)ξi (6)

where µfi(z
(0), y

(0)

c(i)
) is the mean value, σfi(z

(0), y
(0)

c(i)
) is the standard deviation and ξi is a standard Gaussian

random variable. It should be noted that the expressions of εi, µfi and σfi are fully specified by the kind of
Gaussian process approximation used. For conciseness we choose here to not detail the theory of Gaussian
process interpolation and refer the reader to [24] instead. In the following, Gaussian process with constant
mean and squared exponential covariance function is used.

This strategy is illustrated by Fig. 2 on the 1-D toy example introduced in Section 2.

3.2 Propagation of modeling uncertainty in MDA

The disciplinary GP given by Eq. (6) is now introduced in the MDA (see Eq. (4)) leading to the following
random non linear system of nd equations,

Ỹi(z, Ỹc(i)) = µfi(z, Ỹc(i)) + εi(z, Ỹc(i)), i = 1, · · · , nd ∀z ∈ Z (7)
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Fig. 3 1-D toy problem. Mean values (solid lines) and 99% confidence intervals (dashed lines) of the two disciplinary GPs
at z?. Actual disciplinary solvers (dotted lines) and MDA solution.

where Ỹc(i) stands for the random vector of coupling variables affecting the discipline i. We define the
solution of this random non linear system of equations as the joined probability distribution of the random

vector of the converged coupling variables Ỹ ?(z) =
{
Ỹ ?i (z), i = 1, · · · , nd

}
such as,

Ỹ ?i (z, Ỹ ?c(i)(z)) = µfi(z, Ỹ
?
c(i)(z)) + εi(z, Ỹ

?
c(i)(z)), i = 1, · · · , nd ∀z ∈ Z (8)

Let us underline here that the joined probability density function of Ỹ ?(z) is not Gaussian as the MDA is
a non linear system. Samples of Ỹ ?(z) can be obtained by drawing various realizations of the GP surrogate
models and solving the MDA for each draw. In order to illustrate the solution of such random non linear
system of equations the proposed strategy is applied to the 1-D toy example introduced in Section 2
for which Z = [−5.0, 5.0], C(1) = [0, 25] and C(2) = [0, 25]. Disciplinary GPs are constructed with DoEf1
composed of 5 points sampled over Z×C(1) and DoEf2 composed of 4 points sampled over Z×C(2). Figure 3
presents the two disciplinary GPs with their mean value and their 99% confidence intervals (µ± 3σ) at z?.
One can note that the actual MDA solution (black cross) is far from the solution obtained with the mean
values of the GPs which shows that a direct use of the mean values of the disciplinary GPs (intersection of
the blue and the red solid lines associated to µf1(z?, y2) and µf2(z?, y1)) would lead in that case to a large
error. However it is also notable that the actual solution of the MDA belongs to the intersection domain of
the 99% confidence intervals of the disciplinary GPs which motivates the uncertainty propagation strategy.
With respect to this approach Fig. 4 presents three realizations of each disciplinary GP and three associated

realizations of the random MDA solution Ỹ ?(z?) =
{
Ỹ ?1 (z?), Ỹ ?2 (z?)

}
(black crosses).

Remark:
It should be noted that in this work we are only interested in the variation of the solution set of Eq. (7)
which justifies the modeling of the solution by the random vector Ỹ ?i (z). In particular we are not interested
in the number of solutions for a given random realization, this number being also random. This point is
beyond the scope of this article and unnecessary for the purpose of our study. However readers interested
in such developments are referred, for example, to [2].

Solving the random non linear system of equations given by Eq. (7) is not straightforward. A direct
approach would consist in approximating the random fields εi by some discretization (either spatially or
spectrally) and then to solve the obtained random non linear system of equations parametrized by a finite
number of random variables. This number depends of the correlation length of εi and depending on its value
can induce an expensive computational time. This approach has been studied in [8] using Karhunen-Loève
decomposition and can lead to an important numerical cost if the number of random variables required to
get an accurate approximation of the random fields is important.

Here a more cost-efficient approach is proposed. In order to estimate the probability distribution of Ỹ ?(z)
the idea developed in this section is to solve a simpler system of equations whose solution approximates
the distribution of the one of Eq. (7). Indeed, the objective of this uncertainty propagation step is to model
the variation of the MDA solutions due to the introduction of disciplinary GP. This variation domain is
illustrated on Fig. 3 and Fig. 4 by the intersection of the two confidence intervals (dotted lines). Hence,
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one can note that the variation of the MDA solution is driven by the variances of the disciplinary GP. As
a consequence we propose to use simplified GP models for the uncertainty propagation task by considering
perfectly dependent disciplinary GP whose expression is given by,

Ỹ ′i (z) = µfi(z, yc(i)) + σi(z, yc(i))ξi

where the variance is computed regarding Eq. (7) by ∀ z, yc(i) ∈ Z×R#c(i) , σi(z, yc(i))ξi = εi(z, yc(i)), with
ξi a standard Gaussian random variable.

Thus, we propose to solve the system,

Ỹ ′?i (z, Ỹ ′?c(i)) = µfi(z, Ỹ
′?
c(i)) + σi(z, Ỹ

′?
c(i))ξi, i = 1, · · · , nd (9)

whose solution is denoted by the random vector Ỹ ′?(z) =
{
Ỹ ′?1 (z), · · · , Ỹ ′?nd

(z)
}

. As the variances of the

simplified disciplinary GP involved in Eq. (9) and the one of the disciplinary GP involved in Eq. (7) are
equal, we assume that the probability distribution of Ỹ ′?(z) is a correct approximation of the one of Ỹ ?(z).
It should be noted that the accuracy of this approximation has been numerically checked in [8]. Moreover,
from a numerical point of view, Eq. (9) is much more simple to solve than Eq. (7) as it only involves nd
independent standard Gaussian random variables denoted by the vector Ξ = {ξi, i = 1, · · · , nd} in the
following.

Random MDA has been previously studied and several approaches have been proposed to approximate
solution of such a system (see for example [1], [25], [13], [8]). In the following, as the solvers involved in
the random MDA are simplified GP, a direct Monte Carlo (MC) method is used. MC simulation consists
in solving Eq. (9) for a given realization Ξ(j) of Ξ, for j = 1, · · · , nMC . It should be noted that, for a
given realization Ξ(j), any non linear solver can be used to solve these deterministic systems of equations
and in the following the non linear Jacobi method is retained. Moreover it should also be noted that these
systems of equations can only be solved pointwise in the design space i.e. for a fixed value z(0) of z. Figure
5 presents the solution of the random MDA for the point z? of the 1-D toy example.

The main focus of the next part is to evaluate the influence of the GP surrogate modeling uncertainty
of the coupling variables on the objective function.

3.3 Random objective function

First of all let us recall that this paper is interested in MDO problems of the form, find z? ∈ Z such as

z? = arg min
z∈Z

fobj(z, y
?
c(obj)(z)). (10)

The previous section has shown that using disciplinary GPs in the MDA leads to random coupling

variables denoted by Ỹ ?(z) =
{
Ỹ ?i (z), i = 1, · · · , nd

}
. As a consequence, the objective function of the
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Fig. 5 1-D toy problem. Probability density function of the random MDA solution (Ỹ ?1 , Ỹ
?
2 ) (approximation obtained by

MC simulation with and Gaussian kernel smoothing for the illustration).

MDO problem (which is a function of the coupling variables) is also modeled as a random variable or more
precisely as a random field over the design space Z,

Yobj(z, Ỹ
?
c(obj)(z)) = fobj(z, Ỹ

?
c(obj)(z)), ∀z ∈ Z (11)

The proposed method to characterize this random variable is based on an approximation of Yobj(z, Ỹ
?
c(obj)(z))

by polynomial chaos expansion (PCE) [11]. PCE approximation consists in the following decomposition,

Ŷobj(z, Ξ) =
P∑
j=1

a
(obj)
j (z)Hj(Ξ) ∀z ∈ Z (12)

where Hj , j = 1, · · · , P are the nd-variate Hermite polynomials, P is the number of selected polynomial

terms and a
(obj)
j (z), j = 1, · · · , P are the coefficients of the expansion to be determined. The retained

truncation strategy consists in keeping all the polynomials with a degree less or equal to d, thus P = (nd+d)!
nd!d!

.
Computation of these coefficients can be obtained by various approaches. In the following the regression
approach introduced in [4] is retained. It should be noted that this method is easy to set up in the context
of the study as a large number of samples of Yobj(z, Ỹ

?
c(obj)(z)) can be obtained at a very low numerical cost

from the MC solution of the random MDA described in Section 3.2. The number of MC simulations will
be chosen accordingly to the number P of coefficients to compute. Figure 6 presents the results of PCE
approximation of Yobj(z

?, Ỹ ?c(obj)(z
?)) compared with the associated MC approximation with d = 3 on the

1-D toy example.

It is notable on this 1-D toy example that the distribution of Yobj(z
?, Ỹ ?c(obj)(z

?)) is clearly not Gaussian
and that a low degree PCE d = 3 leads to a fair approximation. The PCE approximation allows to

compute an approximation of Yobj(z
?, Ỹ ?c(obj)(z

?)),∀z ∈ Z but coefficients a
(obj)
j (z), j = 1, · · · , P need

to be computed pointwise i.e. for a fixed value of z. In the following an original continuous approximation
of this random field proposed in [9] that will be further used to explore the design space is introduced.

From now on it is assumed that the uncertainty quantification by PCE has been performed on a DoE

denoted by DoEUQ =
{
z(i), i = 1, · · · , nUQ

}
. The obtained PCE formed the following random vector

Ŷobj(Ξ) =
{
Ŷobj(z

(i), Ξ), i = 1, · · · , nUQ
}

7



−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

5

10

15

20

yob j

Yob j(z?,Ỹ ?
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The random vector Ŷobj is a discretization of the random field Ŷobj(z, Ξ). As shown in [1] the Karhunen
Loève expansion of this random vector can be easily obtained thanks to the coefficients of the polynomial
chaos expansions and reads,

Ŷobj(Ξ) = µŶobj
+

nUQ∑
k=1

 P∑
j=2

atjϕ̂kφj(Ξ)

 ϕ̂k (13)

where aj =
{
a
(obj)
j (z(1)), · · · , a(obj)j (z(nUQ))

}
, j = 2, · · · , P , µŶobj

= a1 and ϕ̂k are the nUQ eigenvectors

of the covariance matrix KŶ =
∑P
i=2 aia

t
i. From Eq. (13) it is proposed in [9] to approximate the random

field Ŷobj(z,Ξ) by Gaussian process interpolation of the mean value and of the eigenvectors based on the
vectors µŶobj

and ϕ̂k respectively. This leads to the following representation of the random field,

Ŷobj(z,Ξ) ≈ Ỹobj(z,Ξ, η) = µ̃Ŷobj
(z, η0) +

nUQ∑
k=1

 P∑
j=2

atiϕ̂kφj(Ξ)

 ϕ̃k(z, ηk), ∀z ∈ Z (14)

where µ̃Ŷobj
(z, η0) and ϕ̃k(z, ηk) are respectively the GP interpolation of the mean vector µŶobj

and of the

eigenvectors ϕ̂k. The term η = [η0, · · · , ηk, · · · , ηnUQ ]t is a random vector of nUQ + 1 independent normal
random variables modeling the uncertainty associated with these GP interpolations. At this point, two
remarks can be made.

– In practice we observed that the random vector Ŷobj(Ξ) is generally strongly correlated. Hence the
Karhunen Loève expansion, given by Eq. (13), can be accurately approximated by truncating it to
the M eigenvectors associated to the M highest eigenvalues of the covariance matrix. In practical
applications we often observed M � nUQ while M is chosen so that the cumulative sum of the M
highest eigenvalues is strictly higher than 1 − 10−6. This remark is very important in practice as it
allows to limit the number of GP interpolations to construct.

– As Gaussian processes have been used twice, two different denominations will be used in the following:
– to approximate each disciplinary solver fi (see Eq. (6)) are denoted disciplinary GP,
– to approximate the mean value and the eigenvectors of the Karhunen Loève decomposition (see

Eq. (14)) are denoted KL-GP.

One can note that the approximation of the random field modeling the objective function (Eq. (14))
depends on two sources of uncertainty. The first one, modeled by the random vector Ξ, is due to the use of
disciplinary GP surrogate models in the multidisciplinary analysis. The second one, modeled by the random
vector η, is due to the interpolation of the discretization of the random field modelling the random objective
function. It is also notable that Eq. (14) can be evaluated analytically for all points of the design space
and for all realizations of the random vectors Ξ and η. Thus, it is a valuable tool to rapidly explore the
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objective function with respect to the design variables by considering both sources of uncertainty previously
introduced. Before moving to the next section, the proposed approximation is illustrated on the 1-D toy
example. To this purpose DoEUQ is defined with nUQ = 4 points as

DoEUQ = {−4.3,−2.5, 0.5, 3.7}

Figure 7 presents the KL-GP interpolations of the mean function µ̃Ŷobj
(z, η0) (Fig. 7 i) ) and the two first

eigenvectors ϕ̃k(z, ηk) (Fig 7 ii) and iii) ). These figures allow to visualize the effect of the uncertainty
associated to the KL-GP interpolation in the representation of the random field modeling the objective
function. Hence these figures only represent the uncertainty linked to the discretization of the objective
function random field with respect to the design variables and modeled by the random vector η. The
uncertainty due to the use of the two disciplinary surrogate models (modeled by the random vector Ξ) that
affect the terms atiϕ̂kφi(Ξ) of Eq. (14) is illustrated by Fig. 8 which presents some random realizations
of the proposed random field approximation (Eq. (14)). It should be noted that contrarily to the KL-GP
interpolation of the mean function and of the eigenvectors, the random field obtained by combining both
sources of uncertainty is no longer Gaussian. Moreover, Fig. 8 presents the actual value of the objective
function. One can note that the random field obtained using the disciplinary GP is far from being accurate
enough to localize the minimum of the deterministic objective function. On this illustrative example, with
only five evaluations of discipline 1 and four evaluations of discipline 2, it already allows to conclude that
the minimum of the objective function is probably not localized in the neighborhood of 0.

At this point we would like to make a few comments regarding the way noise may affect the proposed
approach. Indeed numerical noise can exist at multiple stages:

– we can have numerical noise in disciplinary simulations that would affect the disciplinary Gaussian pro-
cesses (GP), which were considered interpolating here. We assume here that the disciplinary simulations
are sufficiently converged such that the associated noise is negligible.

– we can have numerical noise in the PCE. This depends on the variance of the estimation of the PCE
coefficients (size of the random samples and truncature degree). First, note that in our case, the size of
the random samples is large since the MDA is solved using the disciplinary GPs (numerically inexpen-
sive). Second, note also, that even in presence of noise, the PCE is used to construct a KL expansion
over the design space. This KL expansion will tend to filter out noise, since we truncate the expansion
at order M .

– interpolating GP approximations are again constructed on the mean and eigenvectors of the KL expan-
sion. As explained in the previous point, as only the dominant modes of the KL expansion are kept, we
do not expect to have significant noise at this stage. There may however be bias in the approximations
if the PCE is poorly converged, thus biasing the KL expansion.

We think that for many problems the noise at these three stages can be kept in check by a careful analysis
of the convergences. If appropriate convergence is intractable and one has to settle with non-negligible noise
levels, then noisy kriging [22] could be considered and adapted.

Finally note that the construction of the KL-GP interpolation may appear quite complex. Other, simpler
approaches (direct interpolation of the PCE coefficients by GPs), have been investigated by the authors in
a somewhat different context in [9] and were found to be less efficient numerically, which is why we settled
for the approach as it is proposed currently.

Next section further exploits this idea and presents a criterion devoted to find the relevant point of the
design space where the accuracy of the random field approximation given by Eq. (14) should be increased,
in order to get a surrogate-based optimum more accurate.

3.4 Adaptive strategy, uncertainty reduction

As explained in the introduction the purpose here is to solve a deterministic MDO problem by using
disciplinary surrogate models. The previous section has shown how the uncertainties associated to each
disciplinary GP can be efficiently propagated to the objective function and how this random objective
function can be modelled as a random field over the design space (see Eq. (14)). Objective of this section is to
reduce the uncertainty of the random objective function in the areas of the design space where the minimum
is likely to be. As in the EGO (Efficient Global Optimization [14]) algorithm, an exploration criterion is
proposed; however contrarily to the EGO algorithm (where only the interpolation uncertainty has to be
considered), the uncertainty of the random objective function depends on two sources of uncertainty. As a
consequence a two-step uncertainty reduction approach is proposed.
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Fig. 7 1-D toy problem. Illustration of the GP interpolation used in Eq. (14). Mean GP approximation (red solid line),
99% confidence interval (dashed red lines), random realizations (black solid lines) i) Mean value of the KL decomposition
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interpolation of KL decomposition mean and eigenvectors.
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– First a criterion inspired by the Expected Improvement is used in order to determine the point z(new)

of the design space where the uncertainty of Ỹobj(z,Ξ, η) should be reduced. It should be noted that
this criterion considered both sources of uncertainty, the one due to the disciplinary GP (modeled by
Ξ) and the one due to the KL-GP interpolation of the mean and eigenvectors (modeled by η). At this
point the random field Ỹobj(z,Ξ, η) is discretized at z(new) i.e. uncertainty quantification by PCE is

carried out at z(new) leading to Ŷobj(z
(new), Ξ) (eliminating the uncertainty source modeled by η at

z(new)). This criterion has been developed in [9] and only important steps are recalled in Section 3.4.1.
– The second step focuses on the random vector Ŷobj(Ξ). The idea of this second step is to reduce the

uncertainty only with respect to Ξ by enrichment of the disciplinary GP. This second step is one of the
original developments of this article presented in details in Sections 3.4.2 and 3.4.3.

3.4.1 Where to reduce the uncertainty of the random field Ỹobj(z,Ξ, η)?

To answer this question, the random variable modeling the minimum value of the continuous random field
Ŷobj(z,Ξ), which is the random field obtained by PCE at every point of Z, is defined by,

Ŷ
(obj)
min (Ξ) = min

z∈Z
Ŷobj(z,Ξ)

and its discretized version,

Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ = min

k=1,··· ,nUQ

{
Ŷobj(z

(k), Ξ), k = 1, · · · , nUQ
}

(15)

Inspired by the work of [14] on optimization of black-box function by GP, the Expected Improvement with
respect to both sources of uncertainties, Ξ and η, is now defined as, ∀z ∈ Z

EI(z) = E
[(
Ŷ

(obj)
min (Ξ)|z ∈ DoEUQ − Ỹobj(z,Ξ, η)

)
1
Ỹobj(z,Ξ,η)6Ŷ

(obj)
min (Ξ)|z∈DoEUQ

]
(16)

where
1
Ỹobj(z,Ξ,η)6Ŷ

(obj)
min (Ξ)|z∈DoEUQ

= 0 if Ỹobj(z, Ξ, η) > Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ and

1
Ỹobj(z,Ξ,η)6Ŷ

(obj)
min (Ξ)|z∈DoEUQ

= 1 if Ỹobj(z, Ξ, η) 6 Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ.

One can note that EI(z) is positive for z /∈ DoEUQ and that EI(z) = 0 if z ∈ DoEUQ. The point z(new)

where the uncertainty quantification by PCE should be performed is thus solution of the optimization
problem,

z(new) = arg max
z∈Z

(EI(z)) (17)

It can be noticed that at a given point z(0) ∈ Z, a positive value of the Expected Improvement (as defined
by Eq. (16)) could have two reasons:

– Large uncertainty due to the KL-GP interpolation of the design space discretization (modelled by the
random vector η) increases the variability of the random variable Ỹobj(z

(0), Ξ, η), thus the random event(
Ŷ

(obj)
min (Ξ)|z ∈ DoEUQ > Ỹobj(z

(0), Ξ, η)
)

may have a non negligible probability. Enrichment in such

areas helps the exploration of the optimization design space.
– If the uncertainty associated with the KL-GP interpolation of the design space discretization is low (com-

pared to the one due to Ξ), then a large value of EI(z) means that the random variable Ỹobj(z
(0), Ξ, η) ≈

Ŷobj(z
(0), Ξ) contributes significantly to the random variable Ŷ

(obj)
min (Ξ). This means that the uncertainty

stemming from the disciplinary GPs approximations is significant at this z(0), and it would be beneficial
to reduce it at this point by enrichment of the disciplinary surrogate models.

It should be noted that the EI defined by Eq. (16) is different from the one proposed in [14] in the context of
optimization of black-box functions. In particular, as the approximation Eq. (14) is not a Gaussian process,
the EI defined by Eq. (16) can not be computed analytically and will be estimated by MC sampling (see [9]
for details about estimation and optimization of the EI). Figure 9 presents the EI for the 1-D toy example
in the same conditions as Fig. 8.

One can note on Fig. 9 that the EI reaches its maximum in a promising area of the design space Z
(z(new) ≈ −3.5) and that the other local maxima are located at the bounds of the design space which is
coherent with the dispersion of the random field modeling the objective function illustrated on Fig. 8. In
addition one can note that the EI value is very low in the neighborhood of z = 0 as predicted intuitively
in the comments of Fig. 8. However, comparing to the EI defined by [14] one might be surprised by the
behavior of the EI depicted by Fig. 9.
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Fig. 9 1-D toy problem. Expected improvement (blue crosses) and its maximum (red cross).

– Firstly, the proposed EI seems not null at points that belongs to DoEUQ (it is especially visible on
Fig. 9 at z = −4.3), which appears in contradiction with its definition provided by Eq. (16). This
can be explained by noting that the DoEUQ points act as singularities and that the variations of EI
in their neighborhood can be highly non linear. Indeed, variations of Ỹobj(z, Ξ, η) with respect to the
random variable η are expected to be relatively smooth in the neighborhood of the points DoEUQ as,
by construction, variation of the Gaussian process only depends on the distance between the current
point z and the points of DoEUQ. However the variations of Ỹobj(z, Ξ, η) with respect to the random
variable Ξ are arbitrary and lead to the strong non linearities observed around the points of DoEUQ.

– Secondly, the value of the EI depicted by Fig. 9 is relatively low at the optimum of the deterministic
problem (z? = −3). Eventually, if this point belongs to DoEUQ, the EI would be null. However it is
important to keep in mind that the purpose of the proposed expected improvement is to find areas of
the design space where the random variables Ỹobj(z

(0), Ξ, η) ≈ Ŷobj(z(0), Ξ) contributes significantly to

the random variable Ŷ
(obj)
min (Ξ).

The question of reducing the uncertainty of Ŷ
(obj)
min (Ξ) by improving the disciplinary surrogate models will

be now studied.

3.4.2 Uncertainty reduction by improvement of the disciplinary GP

Previous section proposed a criterion that allows to identify a point z(new) ∈ Z where the uncertainty
quantification by PCE needs to be performed in order to improve our knowledge on the random variable
modeling the minimum value of the random field Ỹobj . As a consequence this point is added to DoEUQ
and the PCE approximation Ŷobj(z

(new), Ξ) is computed and added to the random vector Ŷobj(Ξ) ={
Ŷobj(z

(1), Ξ), · · · , Ŷobj(z(nUQ−1), Ξ), Ŷobj(z
(new), Ξ)

}
. Then, thanks to these PCE approximations, it is

straightforward to estimate the probability mass function of Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ defined by Eq. (15)

which is a discrete random variable. Indeed, let us denote by Pmin(z(i)) the probability that z(i) to be the
minimum of Ŷobj(Ξ), its expression reads, ∀ i ∈ [1, · · · , nUQ]

Pmin(z(i)) = P
(

min Ŷobj(Ξ) = Ŷobj(z
(i), Ξ)

)
≈ 1

nMC

∑nMC

k=1 1min Ŷobj(Ξ(k))=Ŷobj(z(i),Ξ(k))

(18)
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Fig. 10 1-D toy problem. Probability mass function of Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ after adding the point z(new) = −3.5 to the

initial DoEUQ.

It should be noted that the cost of this MC estimation is negligible as it only involves PCE evaluations.
From a practical point of view, nMC realizations associated to a value of Ξ are computed, Ŷobj(z

(i)) is

then evaluated for each value of z(i) ∈ DoEUQ and the minimum is selected in this set of points. Figure 10

presents the probability mass function of Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ on the 1-D toy example.

On this figure one can note that the point added by the EI criterion z(new) ≈ −3.5 is the one with highest
probability of being the minimum of Ŷobj(z)|z ∈ DoEUQ. This probability density mass function reveals the
points where the minimum of the deterministic function might be located. As our objective is to localize
this minimum with a high probability, we would like this probability mass function to count a single point
z? with a significant Pmin(z?) value and more important such that the coefficient of variation of Ŷ (z?) is
low i.e the random variable Ŷ (z?) follows a Dirac probability distribution. To do so, the following algorithm

is proposed (see Algo. 1). In Algo. 1 we define the set Zcan =
{
z(i), Pmin(z(i)) ≥ 1

nUQ
, i = 1, · · · , nUQ

}

initialization: Compute PCE approximations, Ŷobj(z
(i), Ξ), ∀z(i) ∈ DoEUQ

Compute Pmin(z(i)), ∀z(i) ∈ DoEUQ
while ∃ z(i) ∈ DoEUQ such that Pmin(z(i)) ≥ 1

nUQ
and cv(Ŷobj(z

(i))) ≥ εcv do

Create the set Zcan =
{
z(i), Pmin(z(i)) ≥ 1

nUQ
, i = 1, · · · , nUQ

}
Sort Zcan in decreasing order with respect to Pmin(z(i))
Set k = 0, convergence = False
while k < card(Zcan) and pts added == False do

if cv(Ŷobj(Zcan[k])) ≤ εcv then
k = k + 1
else

Add Zcan[k] to the disciplinary GPs (see next section)
Update the disciplinary GPs
Compute PCE approximations, Ŷobj(z

(i), Ξ),∀z(i) ∈ DoEUQ
Compute Pmin(z(i)), ∀z(i) ∈ DoEUQ
pts added = True

end

end

end

end

Algorithm 1: Proposed algorithm to reduce the uncertainty on the minimum position of the discrete
problem, Ŷobj(z)|z ∈ DoEUQ

and cv(Ŷobj(Zcan[k])) =

√
Var[Ŷobj(Zcan[k])]

E[Ŷobj(Zcan[k])]
stands for the coefficient of variation of Ŷobj(Zcan[k]) and εcv is

a parameter that controls the maximum value of the coefficients of variation of the interesting points i.e.
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Fig. 11 1-D toy problem. Probability mass function of Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ. Uncertainty reduction after 5 iterations of

Algo. 1 (comparison with the initial probability mass function Fig. 10).

the ones such that Pmin(z(i)) ≥ 1
nUQ

. Note that in the particular case where E[Ŷobj(Zcan[k])] = 0, then the

coefficient of variation cv(Ŷobj(Zcan[k])) is not defined and it is replaced by the direct use of the standard

deviation
√
Var[Ŷobj(Zcan[k])].

The heuristic proposed in Algo. 1 tends to reduce the uncertainty with respect to the Ξ random variable

until the random variable modeling the minimum position of the discrete problem i.e. Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ,

reaches a Dirac distribution. It should be noted that the proposed approach is controlled by a single
parameter εcv. In practice this parameter is set to εcv = 0.01. Figure 11 presents the probability mass

function of Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ on the 1-D toy example after convergence of the Algo. 1.

Figure 11 illustrates the uncertainty reduction on the position of the minimum of the discrete problem.

Indeed, one can note that Ŷ
(obj)
min (Ξ)|z ∈ DoEUQ is almost a Dirac random variable located at z = −2.5. In

this example, Algo. 1 converges after 5 iterations, next section details how the disciplinary GPs are enriched
during these 5 iterations.

3.4.3 How to enrich the disciplinary GPs?

One can note that to enrich a given disciplinary GP, let’s say Ỹi, it is necessary to provide a point in the
space Z × C(i) where the disciplinary solver fi(z, yc(i)) must be evaluated. However the method described

so far only provides a point z(new) ∈ Z. In order to define the corresponding point y
(new)

c(i)
it is proposed

to solve the MDA using the mean values of the disciplinary GPs at point z(new), the obtained solution is

thus used as y
(new)

c(i)
. It is interesting to note that, a large error on the MDA solution can be observed using

this approach (as commented on Fig. 3) leading to a large error on the enrichment point y
(new)

c(i)
, however

the uncertainty reduction algorithm depicted in Algo. 1 is designed to iteratively decrease this error until
a relevant MDA solution is obtained. As an example, over the 5 iterations of Algo. 1 used on the 1-D toy
example, 2 iterations have been performed at z = −3.5, 2 iterations at z = −2.5 and 1 iteration at z = 3.7.

Figure 12 illustrates on the 1-D toy example how the disciplinary GPs enrichment leads to a reduction
of the uncertainty of the random MDA solution. Illustration is provided for the first two iterations of Algo. 1
at z(new) ≈ −3.5.

3.5 Proposed algorithm and exploitation of the results

The proposed algorithm for Efficient Global Multidisciplinary Optimization is now presented. It consists in
coupling the two-step of enrichment previously introduced in an iterative process. Algorithm 2 summarizes
the proposed approach.

One can note that the convergence of the proposed algorithm is not led by an accuracy criterion but by
a budget limitation. However, after a given number of iterations, the value of the EI defined by Eq. (16) is
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Fig. 12 1-D toy problem. Enrichment of the disciplinary GPs and uncertainty reduction on the random MDA solution
(Ỹ ?1 , Ỹ

?
2 ) during the first iterations of Algo. 1.

initialization: ∀i ∈ nd, create DoEfi by sampling the disciplinary solver fi over Z × C(i)

∀i ∈ nd, create the disciplinary GPs, Ỹi (see Eq. (5) )
Create the DoEUQ by sampling over Z
∀z(j) ∈ DoEUQ compute the PCE approximation Ŷobj(z

(j), Ξ) (see Eq. (12))
while niter ≤ nmax do

niter = niter + 1
Compute the mean vector and the eigenvector of the KL decomposition of the objective function random

vector Ŷobj (see Eq. (13))
Compute the continuous approximation of the random objective function by KL-GP interpolation of the mean

vector and of the eigenvectors previously computed (see Eq. (14))

Optimize the EI from Eq. (17) to find z(new)

Add z(new) to DoEUQ
Execute Algo. 1 to enrich the disciplinary GP if needed

end

Algorithm 2: Proposed Efficient Global MultiDisicplinary Optimization algorithm (EGMDO).

expected to be very low, which means that the possible improvement on the random variable Ŷ
(obj)
min (Ξ) by

adding a new discretization point is negligible. This translates the fact that the random field representation
Ỹobj(z,Ξ, η), given by Eq. (14), reaches an acceptable accuracy in the areas of Z where the minimum is
likely to be and consequently that in these areas the dispersion of the random field due to both disciplinary
GP interpolation uncertainty (modeled by the Ξ random variable) and the KL-GP interpolation uncertainty
(modeled by the η random variable) is negligible. Hence, we propose to use the mean value of the KL-GP
interpolation in the random field representation given by Eq. (14) leading to

Ŷobj(z,Ξ) ≈ Ỹobj(z, Ξ) = µµ̃Ŷobj
(z) +

nUQ∑
k=1

(
P∑
i=2

atiϕ̂kφi(Ξ)

)
µϕ̃k(z) (19)

where µµ̃Ŷobj
(z) and µϕ̃k(z) are respectively the mean value of the KL-GP interpolation of the mean vector

µŶobj
and of the eigenvectors ϕ̂k.
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Fig. 13 1-D toy problem. 100 random samples of the model given by Eq. (19) and corresponding histograms of Ẑ? given
by Eq. (21) before and after the first iteration of Algo. 2 to illustrate the random position of the minimum.

Then, Eq. (19) can be seen as a metamodel of the random field modelling the objective function
optimized to be accurate in the areas of Z where the minimum is likely to be. As a consequence it will
be used in the following to estimate the probability distribution of the random variables modeling the
minimum value of the objective function and its position such as,

Ŷ
(obj)
min (Ξ) = min

z∈Z

(
Ŷobj(z, Ξ)

)
≈ min
z∈Z

(
Ỹobj(z,Ξ)

)
(20)

and

Ẑ?(Ξ) = arg min
z∈Z

(
Ŷobj(z,Ξ)

)
≈ arg min

z∈Z

(
Ỹobj(z, Ξ)

)
(21)

Moreover, it should be noted that the random field representation given by Eq. (19) only involves polynomial

functions and thus makes the estimation of Ŷ
(obj)
min (Ξ) and Ẑ?(Ξ) easily accessible by the MC method i.e.

solving the minimization problem of Eq. (20) for a large number of samples Ξ(j), j = 1, · · · , nsim. As
an illustration Fig. 13 presents on the 1-D toy example some realizations of the model given by Eq. (19)
before and after the first iteration of Algo. 2. Figure 13 also reports the corresponding histograms of the
minimum value position of the objective function i.e. Ẑ?(Ξ), obtained by 100 MC simulations. Finally

Fig. 14 presents the histograms of the minimum value of the objective function i.e Ŷ
(obj)
min (Ξ) before and

after the first iteration of Algo. 2.
One can note that, after a single iteration of the proposed Algo. 2, the uncertainties around the area

of the global deterministic minimum position and values are drastically reduced as shown by Fig. 13 and
Fig. 14. We recall that the point z ≈ −3.5 is added to DoEUQ and that 5 points are added to the disciplinary
GPs by Algo. 1 (2 at z ≈ −3.5, 2 at z = −2.5 and 1 at z = 3.7). On this simple 1-D toy example, one
can see that after this single iteration of Algo. 2 the location of the minimum is almost perfectly identified,
however a significant error still remains on the value of the minimum. The following 4 iterations of Algo. 2
only performed uncertainty quantification at points z ≈ −2.95, z = 5, z ≈ 1.89, z = −5 but without
enrichment of the disciplinary GPs (and thus no call to the disciplinary solvers) and leads to the results
presented in Fig. 15 showing that convergence to the global minimum is reached. Figure 16 presents the
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Fig. 14 1-D toy problem. Histograms of Ŷ
(obj)
min given by Eq. (20) before and after the first iteration of Algo. 2 to illustrate

the random value of the minimum.

corresponding histogram of Ŷ
(obj)
min (Ξ) that shows the convergence towards the deterministic minimum value.

It is important to note on Fig. 15 that the surrogate model of the objective function is only accurate in
the vicinity of the global optimum since this was our stated goal. It is also important to recall, that unlike
in classical EGO-type algorithms, the accuracy of the surrogate of the objective function in the vicinity of
the global optimum was not only obtained by enrichment of this surrogate in the design variables space
but also through enrichment of the disciplinary surrogate models.

A flowchart summarizing the proposed EGMDO approach is provided in Fig. 17 as well as a XDSM
diagram in Appendix (see Fig. 26).

Next section provides a numerical study of the proposed approach on a classical benchmark MDO
problem and on an engineering example.

4 Applications

4.1 A mathematical example

4.1.1 Presentation of the test case

The proposed EGMDO method is now applied on a test case derived from the one proposed in [28].
Compared to the original test case which is a constrained MDO problem counting one local and one global
minima, the proposed test case is unconstrained but still counts one local and one global minima. It it
defined by the following set of equations,

fobj(z, y
?
c(obj)) = z1 + z23 + y?1 + exp(−y?2) + 10 cos(z2)

where z = {z1, z2, z3}, c(obj) = {1, 2} and y? = {y?1 , y?2} is solution of the following MDA, ∀z ∈ Z,

y1 = f1(z, y2) = z1 + z22 + z3 − 0.2y2
y2 = f2(z, y1) =

√
y1 + z1 + z2

Design space is defined by Z = [0, 10]× [−10, 10]× [0, 10].
Reference solution is obtained by using MDF approach with SLSQP optimization algorithm and leads

to z? ≈ {0, 2.634, 0}, fobj(z?) ≈ −2.808. Figure 18 presents the variation of fobj in the plan (z2, z3)
with z1 = 0. It should be noted that the local minimum is located at zlm ≈ {0,−2.595, 0} and leads to
fobj(z

lm) ≈ −0.809.

4.1.2 Running EGMDO algorithm

In order to set up the proposed approach the following initial guess for the coupling variables spaces is
proposed, C(1) = [−5, 24] and C(2) = [1, 50]. It should be noted that choosing the initial guess for the
coupling variables spaces is one of the drawback of the proposed approach. However, in a realistic case one
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Fig. 15 1-D toy problem. 100 random samples of the model given by Eq. (19) and corresponding histograms of Ẑ? given
by Eq. (21) after 5 iterations of Algo. 2 to illustrate the random position of the minimum.
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Fig. 17 Flowchart of the EGMDO algorithm.
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Fig. 19 Application example. i) Histograms of the minimum value position Ẑ? ii) Histogram of the minimum value Ŷ
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at initialization of Algo. 2.

can rely on expert judgment to get a first approximation and, more importantly, Algo. 1 is designed to
enrich these coupling spaces in promising areas without any limitation. As a consequence the boundaries
of the coupling variables spaces might evolve during the iterations of Algo. 2 and thus a poor initial choice
for these boundaries might lead to some extra iterations but should not be detrimental to the global
convergence.

The initial disciplinary DoEs, DoEf1 and DoEf2 , count 5 points, respectively sampled by Latin Hyper-

cube Sampling (LHS) over Z×C(1) and Z×C(2). Initial disciplinary GPs are then constructed using these
DoEs and constant mean function and Gaussian covariance function are used. According to the proposed
method the objective function is represented by a random field over Z. The initial DoEUQ, used to dis-
cretized this random field, counts 20 points sampled by LHS over Z. Hence, uncertainty propagation by
PCE is carried out at 20 points, PCE of degree 3 is retained and computation of the PCE coefficients is
obtained by regression over 100 points. It should be noted that thanks to the approximation exposed in Sec-
tion 3.2, the stochastic dimension of these uncertainty quantification problems is only 2 (i.e. Ξ = {ξ1, ξ2}),
thus 100 regression points are large enough to compute the 10 unknown PCE coefficients by ordinary least
square. We also recall that the regression sample of size 100 is obtained by solving non linear systems given
by Eq. (9) only involving disciplinary GPs and thus having a negligible numerical cost.

At this initial stage, the approximation given by Eq. (19) is used to computed the approximation
of the random variable modeling the position of the minimum (Ẑ? given by Eq. (21)) and the random

variable modeling the value of the minimum (Ŷ
(obj)
min given by Eq. (20)). Figure 19 presents the results

where histograms are obtained by 100 MC simulations using the model defined by Eq. (19).

Figure 19 shows that at initialization the position of the global minimum (Fig. 19 i)) as well as its value
(Fig. 19 ii)) are poorly predicted by the model given by Eq. (19). Indeed the mean value of the random
position of the minimum Ẑ? is far from the reference one and its variance is quite large and consequently
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Fig. 20 Application example. Evolution of the maximum value of the EI defined by Eq. (16) with respect to the number
of iterations of the proposed EGMDO algorithm.
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Fig. 21 Application example. i) Histograms of the minimum value position Ẑ? ii) Histogram of the minimum value Ŷ
(obj)
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after 10 iterations of Algo. 2.

the random minimum value of the objective function Ŷ
(obj)
min presents a large variation. Objective of the

proposed approach is to increase the accuracy of the model given by Eq. (19) by improving the disciplinary
GPs only where the minimum is likely to be.

On this example the maximum number of iterations of Algo. 2 is set to nmax = 10 and the parameter
εcv defined in Algo. 1 is set εcv = 0.01. During these 10 iterations, 6 points are added to the disciplinary
GPs by Algo. 1 which leads to a number of disciplinary solver evaluations equal to 5 + 6 = 11. At final
iteration the number of modes kept in the KL decomposition is M = 6.

Figure 20 presents the evolution of the maximum value of the EI defined by Eq. (16) with respect to
the iterations of Algo. 2. As expected the maximum value of the EI is globally decreasing during iterations.
Hence the uncertainty about the minimum value and position of the minimum of fobj is reduced during
iterations of the proposed optimization algorithm Algo. 2.

Figure 21 illustrates this uncertainty reduction and presents the histograms of Ẑ? and Ŷ
(obj)
min obtained

after 10 iterations of Algo. 2. Histograms are still obtained by 100 MC simulations using the model defined
by Eq. (19).

Compare to Fig. 19 one can note on Fig. 21 that the proposed algorithm reaches its objective after 10
iterations as the random minimum position Ẑ? is almost multi-Dirac distributed and the three modes are

in perfect agreement with the reference values. Concerning the random minimum value Ŷ
(obj)
min the obtained

probability distribution is also very close to a Dirac in perfect agreement with the reference value. In order
to quantify the quality of the approximation provided by Algo. 2, Table 1 presents the mean values, the
coefficients of variation and the relative errors (denoted by εrel) between the mean values and the reference

ones for Ẑ? and Ŷ
(obj)
min . The results presented by Table 1 confirm that the mean values of Ẑ? and Y

(obj)
min
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variables Ẑ?1 Ẑ?2 Ẑ?3 Ŷ
(obj)
min

E 6 10−12 2.634 6 10−12 -2.798
cv 1.35 2.97× 10−3 3.52 1.11× 10−2

εrel 6 0.01% 0.36%

Table 1 Application example. Mean values, coefficients of variation and relative errors between the mean values and the

reference values for Ẑ? and Ŷ
(obj)
min obtained with the model given by Eq. (19) after 10 iterations of Algo. 2.

variables Ẑ?1 Ẑ?2 Ẑ?3 Ŷ
(obj)
min

E 6 10−12 2.631 5.38× 10−4 -2.822
cv 1.122× 101 6.063× 10−3 2.223× 101 2.153× 10−2

εrel 0.11% 0.49%

Table 2 Application example, robustness study. Mean values, coefficients of variation and relative errors between the

mean values and the reference values for Ẑ? and Ŷ
(obj)
min obtained with the model given by Eq. (19) after 10 iterations of

Algo. 2 over 7 initial DoEs.
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Fig. 22 Application example, robustness study. Evolution of the maximum value of the EI defined by Eq. (16) with respect
to the number of iteration of the proposed EGMDO algorithm for 10 different initial DoEs.

are in perfect agreement with the reference ones. Moreover the coefficients of variation for Ẑ?2 and Y
(obj)
min

are very low which confirms that the obtained probability distributions are almost Dirac. Concerning the
large coefficient of variation for Ẑ?1 and Ẑ?3 , it should be noted that this is due to the quasi null mean values
and that the random variables Ẑ?1 and Ẑ?3 have however, in absolute, a very low dispersion.

4.1.3 Robustness study

Effect of randomness on the proposed approach is first assessed by running the previously introduced
example on 10 different initial DoEs (DoEf1 , DoEf2 , DoEUQ). The proposed EGMDO approach converged
towards the global optimum 7 times. The mean number of points added to the disciplinary GP is 7 (minimum
is 5 and maximum 11) leading to a mean number of disciplinary solver evaluations equal to 5 + 7 = 12.
The mean number of KL modes at last iteration is M = 5 (minimum is 5 and maximum is 6). For the 7
converged runs the mean values and coefficients of variation are estimated using 100 MC simulations and
Table 2 presents the associated mean values over the 7 runs.

Results presented by Table 2 allow to conclude that the 7 runs of Algo. 2 that converge towards the
global optimum achieve it with an excellent accuracy with respect to the reference value. It is now proposed
to focus on the 3 runs that does not converge. First of all, Fig. 22 presents the evolution of the EI for the
10 runs and highlights the 3 runs that do not converged.

One can note on Fig. 22 that the 3 unconverged runs are the ones with the highest EI values at the
last iteration of Algo. 2. This confirms the capability of the EI criterion to give valuable information on
the accuracy of the approximation given by Eq. (14). It should be noted that this interpretation is also
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variables Ẑ?1 Ẑ?2 Ẑ?3 Ŷ
(obj)
min

E 0.626 -0.432 0.381 -34.306
cv 2.524 6.258 4.683 2.831

Table 3 Application example, robustness study. Mean values and coefficients of variation for Ẑ? and Ŷ
(obj)
min obtained with

the model given by Eq. (19) after 10 iterations of Algo. 2 over the 3 runs that does not converged.

0 2 4 6 8 10 12 14 16
10−25

10−18

10−11

10−4

103

iteration

m
a
x
E
I

maxEI

Fig. 23 Application example, robustness study. Evolution of the maximum value of the EI for the 3 previously unconverged
runs after 15 iterations of Algo. 2.

run EI E(Ẑ?1 ) cv(Ẑ?1 ) E(Ẑ?2 ) cv(Ẑ?2 ) E(Ẑ?3 ) cv(Ẑ?3 ) E(Ŷ
(obj)
min ) cv(Ŷ

(obj)
min )

#1 6 10−12 6 10−12 2.95 2.636 2.80× 10−3 6 10−12 3.33 −2.809 9.37× 10−4

#2 6 10−12 6 10−12 2.20 2.636 1.48× 10−3 6 10−12 3.19 −2.808 9.22× 10−4

#3 5.05× 10−3 6.601× 10−1 9.91× 10−3 −3.767 3.20× 10−2 4.671× 10−1 7.09× 10−2 −10.751 1.49× 10−1

Table 4 Application example, robustness study. Final value of the EI, mean values and coefficients of variation of Ẑ? and

Ŷ
(obj)
min obtained on the 3 previously unconverged runs after 15 iterations of Algo. 2.

confirmed by estimating the standard deviation values of Ẑ?2 and Ŷ
(obj)
min which are very high compared to

the one obtained on the converged runs. Table 3 reports these values.

In order to improve the accuracy of the 3 unconverged runs, the maximum number of iterations of
Algo. 2 is set to 15. Note that 5 iterations are added to the previous runs. Figure 23 presents the maximum
value of the EI during the 15 iterations of Algo. 2 for the 3 previously unconverged runs. One can note that
this time, at last iteration, the values reached by EI are very low (especially true for 2 runs, the third one
equals 5× 10−3). These results seem to show that adding 5 iterations allows Algo. 2 to converge for these
3 previously unconverged runs. Table 4 details the results for the 3 runs. First it is notable that, for the 3

runs, the probability distributions of Ẑ? and Ŷ
(obj)
min almost converged to Dirac distributions according to

the low coefficients of variation. However only runs #1 and #2 converge towards the global optimum with
a high accuracy compared to the reference results. It should be added that the number of points added to
the disciplinary DoEs during the 15 iterations of Algo. 2 for these 2 runs is respectively equal to 7 and 6.

The run #3 converges towards a fake minimum as the minimum value obtained (-10.751) is lower than
the reference one. This behavior shows that the approximation of the objective function given by Eq. (19) is
of poor quality. Our explanation is that, for this particular DoEUQ, the approximation obtained by Eq. (19)
is probably highly oscillating which is a well known problem in Gaussian process interpolation. Moreover,
it should be added that for sake of simplicity only squared exponential correlation function has been used
and it is also well known that this correlation function can lead to numerical instability. Improving the
result by testing others correlation function should be seen as a perspective of this work.

Based on these results a robustness study over 100 runs is now performed still using initial disciplinary
DoE of size 5, DoEUQ of size 20 and 15 iterations of Algo. 2. After 15 iterations, 88 runs converged towards
the global optimum. It should be noted that a run is considered as convergent if the relative error between
the estimated mean value of E(Ẑ?) and the reference value is less than 5%. The mean number of points
added to the disciplinary DoE during the 15 iterations of Algo. 2 is equal to 8, which leads to a mean
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variables Ẑ?1 Ẑ?2 Ẑ?3 Ŷ
(obj)
min

E 1.710× 10−3 2.625 1.338× 10−13 -2.788
cv 0.448 5.083× 10−3 2.987 3.895× 10−3

εrel 0.34% 0.71%

Table 5 Application example, robustness study. Mean values, coefficients of variation and relative errors between the

mean values and the reference values for Ẑ? and Ŷ
(obj)
min obtained with the model given by Eq. (19) after 15 iterations of

Algo. 2 over 88 initial DoE.

number of disciplinary solver evaluations equal to 5 + 8 = 13. Table 5 summarizes the obtained results.
As for Table 2 for each run the mean values and coefficients of variation are estimated using 100 MC
simulations. The Table 5 presents the mean values over the 88 runs of these mean values and coefficients
of variation.

Some comparisons with classical MDO formulations are now provided. More precisely the MDF and
IDF formulations are used in conjunction with the following optimization algorithm:

– A gradient based algorithm namely SLSQP Sequential Least SQuares Programming [16] where gradient
is estimated by finite differences,

– A gradient free algorithm namely COBYLA Constrained Optimization BY Linear Approximation [23],
– A surrogate based algorithm namely EGO Efficient Global Optimization [14] using either the Expected

Improvement criterion (EI) or an alternative criterion denoted by WB2s (see [3] for the definition of
WB2s criterion).

Resolution with SLSQP and COBYLA has been implemented using the python package scipy [15], resolution
with EGO used an in house python implementation [3].

For each of these formulations 100 runs are performed with different starting point for SLSQP and
COBYLA and different initial DoE for EGO (initial DoE of size 12 for the MDF-EGO and of size 20 for the
IDF-EGO). Table 6 presents the number of runs that converged towards the global optimum (line ncon)
and the mean number number of disciplinary solver evaluations over the ncon runs that converged (line
neval).

MDF-SLSQP MDF-COBYLA MDF-EGO-EI MDF-EGO-WB2s EGMDO
ncon(%) 57 66 96 100 88
neval 197 638 296 212 13

IDF-SLSQP IDF-COBYLA IDF-EGO-EI IDF-EGO-WB2s
ncon(%) 56 70 99 100
neval 68 206 63 44

Table 6 Application example, comparative study. Results obtained with MDF and IDF formulations with 3 different
optimizers (SLSQP, COBYLA, EGO with two criteria EI and WB2s). Number of converged runs and mean number of
disciplinary solver evaluations are reported for each formulation over 100 runs. Results obtained by the proposed EGMDO
approach are recalled in last column

Results provided by Table 6 allow to draw several conclusions:

– As expected, the number of evaluations of the disciplinary solvers is lower using the IDF approach than
the MDF approach.

– Classical local optimization algorithms (gradient based SLSQP or gradient free COBYLA) have a poor
convergence rate (between 56% and 70%) using either the MDF or the IDF formulation.

– Global surrogate based optimizer EGO reaches the best results in terms of convergence rate (between
96% and 100%). It is notable that both MDF and IDF formulations in conjunction with the WB2s
criterion converge to the global optimum for every run.

– The best result is obtained using IDF formulation with EGO-WB2s as optimizer. This approach con-
verges to the global optimum for every case with a mean number of disciplinary solver evaluations equals
to 44 which is the lowest value on this comparison.

– Concerning the result obtained with the proposed EGMDO approach, one can note that the convergence
rate of 88% is better than the one obtained using local optimizers but lower than the one obtained by
EGO. However the mean number of disciplinary solver evaluations is only 13 for the EGMDO approach,
compared to 44 for the IDF-EGO-WB2s. As a conclusion these results should be seen as promising for
the new EGMDO approach as, even if it does not reach a 100% convergence rate, the benefit in terms
of disciplinary solver evaluations is important.
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4.2 A compound cylinder

4.2.1 Presentation of the test case

This test case is inspired by the one used in [12] and [7] and deals with a compound cylinder. Figure 24
presents the compound cylinder as well as the the two sub systems, the inner and outer cylinder respectively.
Figure 24 also introduces the notations for the radii of the two cylinders (a, b, c) and the pressure inside the
inner cylinder (P0). It should be noted that this example does not involve two disciplines but rather two

a

b

P0

b

c

i) ii) iii)

Fig. 24 Compound cylinder test case. i) Compound cylinder ii) Inner cylinder iii) Outer cylinder

components coupled together. However the formalism of the problem is exactly the one of a multidisciplinary
system as presented by Eq. (4). Indeed the two cylinders are coupled through the radial deformation of the
inner cylinder δ1 and the contact stress at the interface p. The MDA can thus be defined by the following
system of two equations,

f1(p) = δ1 = pb
E

(
a2+b2

b2−a2 − ρ
)

f2(δ1) = p = (δ−δ1)E
b /

(
b2+c2

c2−b2 + ρ
) (22)

where E is the elasticity modulus of the material of the two cylinders, ρ is the Poisson’s ratio and δ is the
allowable total shrinkage. Once the equilibrium is reached (i.e. the values δ?1 and p? solving Eq. (22) have
been determined) the distribution of tangential stress in the two cylinders can be computed by:

σθ(r) =

{
A1(p?) + B1(p

?)
r , r ∈ [a, b]

A2(p?) + B2(p
?)

r , r ∈ [b, c]
(23)

where we have
B1(p?) = (σaθ (p?)− σb−θ (p?)) a2b2

a2+b2

A1(p?) = σaθ (p?)− B1(p
?)

a2

B2(p?) = (σb+θ (p?)− σcθ(p?)) b2c2

b2+c2

A2(p?) = σb+θ (p?)− B2(p
?)

22

and
σaθ (p?) = −2p?b2

b2−a2 + (a2+c2)P0

c2−a2

σb−θ (p?) = −p?(b2+a2)
b2−a2) + a2P0(b

2+c2)
(b2∗(c2−a2))

σb+θ (p?) = p? b
2+c2

c2−b2 + a2P0(b
2+c2)

b2(c2−a2)

σcθ(p
?) = 2b2p?

c2−b2 + 2a2P0

c2−a2
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Fig. 25 Compound cylinder example, distribution of the tangential stress in the two cylinders with the initial configuration.

Figure 25 provides the plot of the tangential stress with respect to the radius using the following numerical
values, E = 3× 107 psi, ρ = 0.3, p0 = 40000 psi, a = 6 in, b = 10 in, c = 13 in and δ = 8× 10−3 in.

One can note on Fig. 25 that the tangential stress distribution in the two cylinders presents large varia-
tions in the first cylinder and between the two cylinders (discontinuity of the stresses). In the following an
optimization problem whose objective is to reduce these variations is proposed. Consequently the following
objective function is considered:

fobj(z, y
?
c(obj)) =

√
Varr(σθ(r, z, y?c(obj)))

Er(σθ(r, z, y?c(obj)))
(24)

where Er and Varr respectively stand for the mean and variance with respect to the radius r. The design
variables are z = {a, b, c, δ} ∈ Z = [5, 7]× [9, 11]× [12, 15]× [6× 10−3, 10−2], and y?c(obj) = p? is solution of
the MDA of Eq. (22).

The reference solution is obtained by an MDF approach using the SLSQP optimization algorithm.
The following results are obtained z? ≈

{
7.00, 9.00, 12.00, 6.37× 10−3

}
and fobj(z, y

?
c(obj)) ≈ 2.33×10−2. It

should be noted that using the initial configuration (the one used for Fig. 25, i.e z0 =
{

6.00, 8.00, 11.00, 8.00× 10−3
}

)

leads to fobj(z
0, y?c(obj)) ≈ 7.00× 10−2.

4.2.2 Application of EGMDO algorithm

In the following it is proposed to use this test case to study the influence of the initial disciplinary DoE size
on the convergence of the EGMDO algorithm. Input of the first disciplinary analysis Eq. (22) is a vector
of dimension d1 = 3 containing the variables a, b, p, whereas input of the second disciplinary analysis is a
vector of dimension d2 = 4 containing the variables b, c, δ, δ1. The performance of the EGMDO algorithm
is evaluated using initial disciplinary DoE of size di + 1, 2di, 3di or 4di, i = [1, 2]. The initial guess for
the coupling variable space is set to C(p) = [1000, 9000] and C(δ1) = [0, 6 × 10−3]. As for the first example
the initial DoEUQ used to discretize the random field modeling the objective function, counts 20 points
sampled by LHS over Z. Hence, uncertainty propagation by PCE is carried out at 20 points, PCE of degree
3 is retained and computation of the PCE coefficients is obtained by regression over 100 points. The total
number of iterations of the EGMDO algorithm is set to 20. Parameter εcv of Algo. 1 is still set to εcv = 0.01.
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For each disciplinary DoE size the mean and coefficient of variation of the minimum random position Ẑ?

and its value Ŷ
(obj)
min are estimated with a sample of size 100 using the final objective function approximation

given by Eq. (19). This operation is repeated 10 times for each disciplinary DoE size. Table 7 presents the
number of converged runs for each size of disciplinary DoE over the 10 repetitions as well as the maximum,
minimum, and mean number of points added to the disciplinary DoE, respectively denoted by n+

add, n−add
and nadd for the converged runs. So that the mean total number of disciplinary solver evaluations is the
size of the initial disciplinary DoE plus nadd (line (n(f1,f2) in Table 7). As for the first example a run is

considered as converged if the relative error between the estimated mean value of E(Ẑ?) and the reference
value is less than 5%.

DoEfi size di + 1 2di 3di 4di

ncon 6 8 8 9

n+
add 10 9 5 4

n−add 5 5 2 2
nadd 8 7 4 3

n(f1,f2) (12,13) (13,15) (13,16) (15,19)

Table 7 Compound cylinder example. Number of converged runs ncon over 10 runs for different initial disciplinary DoE
size.

It could be noted from the results of Table 7 that the initial DoE size of di + 1 affects the performance
of the proposed method. This shows that if the initial disciplinary GPs are not accurate enough, the
exploratory phase of the algorithm will fail in finding the global minimum which is a classical problem in
surrogate based optimization. However starting from the disciplinary size 2di the proposed approach reaches
an acceptable level of converged runs on this example. Then, for DoE size 2di, 3di or 4di it is interesting to
note that the number of added points decreases with respect to the initial DoE size. This is not surprising
as with a large initial DoE size the exploratory phase is shorten to directly focus on the interesting areas of
the design space. Nevertheless it should be noted that even with a large initial disciplinary DoE the points
added by the proposed method allows to get an accurate approximation of the objective function in the
neighborhood of the minimum. To confirm this hypothesis, disciplinary surrogate models are constructed
using 4di+n

+
add points (i.e GP of the first discipline is constructed from a DoE of size 16 drawn by LHS and

the GP of the second discipline is constructed from a DoE of size 20 drawn by LHS). These two disciplinary
GPs are then used to solve the problem with a MDF approach using SLSQP as optimizer. As for the
proposed strategy 10 different disciplinary DoE are used. Over these 10 runs only 2 converged towards the
correct minimum. This result clearly shows, on this example, the benefit and the relevance of the proposed
adaptive enrichment strategy compared to a direct surrogate model based strategy.

5 Conclusions

This article presents the basis of a new adaptive surrogate based methodology to solve MDO problems.
The main idea is to replace the numerically costly disciplinary solvers by GP surrogate models. As these
GPs are constructed independently this approach allows to uncouple the MDA non linear problem, which
can be advantageous in an industrial context. Moreover, in order to focus the computational budget on the
optimization task, the disciplinary GPs are constructed adaptively, increasing their accuracy only where
the minimum of the objective function is likely to be. Although this adaptive construction is classical when
the objective function is modeled by a GP since the work by Jones [14], it represents a challenge in the
proposed GP based MDO context. To solve this challenge, the present article proposed three developments.
First a simplified disciplinary GP model is introduced in Section 3.2 which allows to efficiently estimate the
uncertainty in the coupling variables by sampling. Second, it is proposed to model the objective function
by a non Gaussian random field approximated by a hybrid PCE-KL-GP model defined in Section 3.3 by
Eq. (14). Finally a two-step uncertainty reduction stage is proposed in Section 3.4. Objective of these
uncertainty reduction steps is to enrich the disciplinary GPs until the uncertainty on the minimum of the
objective function is negligible. The first step is designed to find the best point (with respect to the adapted
Expected Improvement criterion) in the design space where the uncertainty quantification by PCE must
be performed. Then, the second step uses the discretization of the random objective function by PCE
to determine where in the design space the disciplinary GPs should be enriched. An iterative procedure
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coupling these two steps is presented by Algo. 2. Finally, Section 4 presents numerical applications that
confirm the interest of the proposed methodology in terms of number of disciplinary solver evaluations for
the resolution of the global MDO problem. This Section also shows the potential ways of improvement
of the proposed methodology. First, all the GPs used in the proposed approach use constant trend and
squared exponential correlation function. According to our experiments (not shown in the article) a wise
choice for these parameters can significantly improve the EGMDO approach. Second, Table 6 showed that
the best convergence rate for the analytical application problem is obtained using a global optimizer and
the WB2s criterion. As this criterion is a slight modification of the EI it could be interesting to investigate
its behaviour on EGMDO. The optimization of the EI is also a difficult point. Indeed, optimization of this
noisy function (expectation estimation by MC) is challenging and a dedicated algorithm such as stochastic
gradient combined with multiple starting points can probably improve the approach or at least its numerical
efficiency. These three improvements can be seen as short term perspectives. A more long term objective
will be to study the sensitivity of the objective minimum with respect to the uncertainty introduced by the
disciplinary GPs. Such a sensitivity analysis will benefit the enrichment step as it will allow to enrich only
the disciplinary GP responsible for most of the variation of the objective minimum as in the current EGMDO
approach all the disciplinary GPs are enriched during the iterative procedure. It should be noted that this
idea has been developed by [12] in the context of reliability analysis. Finally, constraints handling should
also be considered in the future. The simplest answer to this challenge is to construct surrogate models
for the constraints and to optimize the EI with respect to these constraints. This strategy is adopted in
Bayesian optimization with convincing results as in [3], [27].
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6 Replication of results

This section gives numerical details on the implementation of Algo.1 and Algo. 2. All the numerical results
have been obtained using python 2.7.15 and the packages openTURNS 1.12 and numpy 1.15.4. In the
following the default values of the algorithm provided by these packages are used expect if mentionned
otherwise.

– The initial disciplinary DoE, denoted by DoEfi and the initial DoE for uncertainty quantification,
denoted by DoEUQ are sampled by Latin Hypercube Sampling (LHS) using the class LHSExperiment

of openTURNS assuming uniform probability distributions between the lower and upper bounds.
– For the creation of the Gaussian processes (disciplinary GPs and KL-GP), all the input samples are

centered and reduced. The GPs are constructed using the class KrigingAlgorithm of openTURNS, with
constant trend (ConstantBasisFactory in openTURNS) and squared exponential correlation function
(SquaredExponential in openTURNS). Optimization of the hyperparameters is performed by maximum
likelihood. Range for the optimization is set to [0.3, 100] for each hyperparameter (this choice avoids
highly oscillating GP).

– The PCE are computed using the class FunctionalChaosAlgorithm of openTURNS. The polynomial
basis is obtained by tenzorisation of the 1-D hermite polynomial basis. Coefficients of the PCE are
computed by ordinary least square (LeastSquaresStrategy) in openTURNS, using a sample of size
100, sampled from an independent multinormal probability distribution of dimension nd (as detailed in
Section 4).

– Mean and covariance matrix of the PCE vector are obtained using the FunctionalChaosRandomVector

of openTURNS. Eigenvalues and eigenvectors of the covariance matrix are computed with the command
eig from the python toolbox numpy.linalg. The number of modes kept in the KL decomposition is
defined such as the cumulative sum of the M highest eigenvalues is strictly higher than 1− 10−6.

– As detailed in [9], the optimization of the EI (Eq. (17)) is performed using openTURNS class OptimizationProblem,
with the COBYLA method with the parameter RhoBeg set to 0.5. It should be noted that all the inputs
are normalized with a linear transformation from their respective range to [0, 1] for the resolution of the
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optimization problem. Finally 20 multiple starting points sampled uniformly are used to increase the
chance of finding the global optimum of the EI.

– Resolution of the MDA for a given realization of the disciplinary GP (see Section 3.2) is performed by
the non linear Jacobi method. The convergence condition is reached when the mean relative change in
the coupling variables between two successive iterations is less than 10−6. Note that the same algorithm
and the same convergence condition are applied when the MDA is solved on the mean value of the
disciplinary surrogate for enrichment purpose (see Section 3.4.2).
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,Ỹ

c(
i)

(Ξ
=

0)

7,
21
,3

7
:Ỹ
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:Ỹ
i(

Ξ
=

0)

2,
6,

20
,2

8,
32

,3
6:

D
is

ci
pl

in
ar

y
G

P
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Fig. 26 XDSM (eXtended Design Structure Matrix [17]) of the EGMDO process.
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