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Abstract: Since the first approval of a protein kinase inhibitor (PKI) by the Food and Drug 13 

Administration (FDA) in 2001, 55 new PKIs have reached the market and many inhibitors are 14 
currently being evaluated in clinical trials. This is a clear indication that protein kinases still 15 
represent major drug targets for the pharmaceutical industry. In a previous work, we have 16 
introduced PKIDB, a publicly-available database gathering PKIs already approved (Phase 4) as 17 
well as those currently in clinical trials (Phases 0 to 3). This database is updated frequently, and an 18 
analysis of the new data is presented here. In addition, we compared the set of PKIs present in 19 
PKIDB with the PKIs in early preclinical studies found in ChEMBL, the largest publicly available 20 
chemical database. For each dataset, the distribution of physicochemical descriptors related to 21 
drug-likeness is presented. From these results, updated guidelines to prioritize compounds for 22 
targeting protein kinases are proposed. Results of a Principal Component Analysis (PCA) show 23 
that the PKIDB dataset is fully encompassed within all PKIs found in the public database. This 24 
observation is reinforced by a Principal Moments of Inertia (PMI) analysis of all molecules. 25 
Interestingly, we notice that PKIs in clinical trials tend to explore new 3D chemical space. While a 26 
great majority of PKIs is located on the area of “f       ”  w  f    f w co po   s exploring the 3D 27 
structural space. Finally, a scaffold diversity analysis of the two datasets, based on frequency 28 
counts was performed. The results give insight into the chemical space of PKIs and can guide 29 
researchers to reach out new unexplored areas. PKIDB is freely accessible from the following 30 
website: http://www.icoa.fr/pkidb. 31 
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analysis; kinome; molecular scaffolds; rings system. 33 
 34 

1. Introduction  35 

The reversible phosphorylation of proteins plays a preeminent role in cell cycle regulation. This 36 
process, which consists in the transfer of a phosphoryl group PO32- to the target substrate, is 37 
catalyzed by enzymes pertaining to the protein kinase family. Protein kinases constitute one of the 38 
largest protein families encoded by the human genome and counts 518 members (or 538 members 39 
when atypical kinases are included) [1–3]. Numerous studies have shown that deregulation or 40 
mutation of kinases is responsible for a variety of cancers [4] as well as for other diseases in the 41 
immune or neurological area [5,6]. A majority of protein kinases, however, have not been fully 42 
explored yet [7] and there is still a high potential of innovation for targeting the protein kinome for 43 
the treatment of cancer. The Food and Drug Administration (FDA) has approved 55 small-molecule 44 
protein kinase inhibitors (PKIs) to date, whereas Chinese and European regulatory authorities have 45 
granted market access to five more compounds, namely anlotinib, apatinib, icotinib, fasudil and 46 
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tivozanib respectively (Figure 1). It is worth mentioning that higher molecular weight inhibitors like 47 
macrocyclic lactones such as sirolimus and temsirolimus or kinase-targeted antibodies such as 48 
cetuximab and trastuzumab have been approved against colorectal, head/neck and breast cancers 49 
respectively [8–10]. These large molecules were excluded from this study which focuses on 50 
small-molecule PKIs targeting the kinase domain. The first PKI approved by the FDA was imatinib 51 
in 2001. Imatinib is a small-molecule type-II inhibitor containing a phenylamino-pyrimidine 52 
scaffold. It targets the inactive conformation of ABL1 kinase and is used against chronic 53 
myelogenous leukemia (CML) [11]. Since then, at least one new PKI reaches the market every year, 54 
with a significant acceleration since 2011. 2002, 2008, 2010 and 2016 are exceptions to this rule with 55 
no compound approved these years. 56 

 57 
In addition to approved PKIs, many novel compounds are currently being evaluated in clinical 58 

trials throughout the pharmaceutical industry. Taken collectively, these compounds show new 59 
trends in terms of structures, physicochemical properties and biological activities that foreshadows 60 
changes in the PKI landscape. To collect and organize this data as well as keep up-to-date with their 61 
evolution, we developed PKIDB [16], a curated, annotated and updated database of PKIs in clinical 62 
trials. In order to enter PKIDB, compounds should be currently in one development phase (from 63 
Phase 0 to Phase 4), have a disclosed chemical structure as well as an International Nonproprietary 64 
Name (INN) [12]. Each compound is provided with comprehensive descriptive data as well as with 65 
links to external databases such as ChEMBL [13], PDB [14], PubChem [15] and others. The type of 66 
binding mode specified in PKIDB has been manually entered and comply with  o ko k    67 
classification [16]. The database is freely accessible on a dedicated website 68 
(http://www.icoa.fr/pkidb). As of 11th of December 2019, it contains 218 inhibitors, 60 approved and 69 
158 in various stages of clinical trials (from Phase 0 to Phase 3). 70 

 71 
In this study, we compared PKIDB to a large dataset of 76,504 PKIs retrieved from ChEMBL 72 

(referred herein as “PKI_ChEMBL”, see Material and Method section). The objective is to be able to 73 
better select PKIs from public databases based on structural and physicochemical property 74 
information of PKIs already in clinical trials. Firstly, we performed a Principal Component Analysis 75 
(PCA) and compared the projection of both datasets in a common factorial space. We also assessed 76 
the structural shape diversity of PKIs using a Principal Moments of Inertia (PMI) analysis. Secondly, 77 
in addition to comparisons at the global molecular structure level, we performed a substructure 78 
analysis based on PKI scaffolds. In medicinal chemistry, scaffolds are mostly used to represent core 79 
structures of bioactive compounds. They are relevant for the medicinal and/or computational 80 
chemists and have proved to be useful in           f c   o  of “p            b    c     ” [17] in 81 
“ c ffo    opp   ” [18] or in Structure–Activity Relationships (SAR) analyses [19]. The concept of 82 
scaffold was first defined by Bemis and Murcko as frameworks consisting in rings and linkers from 83 
which substituents are removed [20]. From these scaffolds, two levels of abstraction were derived: 84 
the heteroatom framework and the graph representation. The heteroatom framework only takes into 85 
account the atom type without considering bond types or aromaticity, whereas the graph 86 
representation (also known as cyclic skeleton) turns every atom type to carbon and every bond type 87 
to single bond, reducing the initial molecule to a simple graph [21]. Finally, the rings are obtained by 88 
removing bonds between rings. 89 

 90 
The balance between the molecular diversity of scaffolds and their frequency is an important 91 

parameter in a chemical database. A high frequency associated to a small number of scaffolds 92 
corresponds to a focused library composed of structurally-similar molecules bearing varying 93 
substituents. On the opposite, a low frequency associated to a large number of scaffolds reflects a 94 
high molecular diversity [16]. Thus, this criterion needs to be addressed when designing or selecting 95 
a chemical library depending on its forecasted usage. We assessed scaffold diversity for the PKIDB 96 
and PKI_ChEMBL datasets using the molecular Bemis and Murcko scaffolds and cyclic skeleton. 97 
The most represented scaffolds (frequency) and the distribution difference (distribution de quoi, à 98 
lire plus loin) between the two studied datasets are presented. Finally, an analysis of the rings of all 99 
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molecules was performed. We first considered all the rings devoid of substituent (first attached 100 
atoms were replaced by hydrogen atoms). Then, we encoded the rings while retaining the position 101 
and atom type of their original substituents. This scaffold diversity analysis reflects the chemical 102 
space of PKIs and can be useful for the medicinal chemistry community to reach out new 103 
unexplored areas. 104 

 105 

Figure 1. Progression of FDA-approved protein kinase inhibitors (2001-2019) and their type of 106 
inhibition. As of 11th December 2019, 55 kinase inhibitors were approved by the FDA. Not shown 107 
here: tivozanib approved by EMA (European Medicines Agency) in 2017, anlotinib, apatinib and 108 
icotinib approved by CFDA (China Food and Drug Administration) in 2018, 2014 and 2011 109 
respectively and fasudil approved in China and in Japan in 1995. 110 

 111 

2. Results 112 

2.1. Update on PKIDB  113 

The description and analysis of PKIDB have been reported in a previous study by Carles et al. 114 
[22]. Referencing 218 molecules the 11th December 2019, PKIDB contains 38 more inhibitors (from 115 
phase 0 to phase 4) than the first release (abivertinib, adavosertib, alvocidib, asciminib, avapritinib, 116 
bemcentinib, berzosertib, bimiralisib, capivasertib, ceralasertib, derazantinib, dezapelisib, 117 
enzastaurin, fasudil, lazertinib, leniolisib, mavelertinib, midostaurin, nazartinib, neflamapimod, 118 
nemiralisib, netarsudil, ningetinib, parsaclisib, pralsetinib, ravoxertinib, ripasudil, ripretinib, 119 
rivoceranib, rogaratinib, ruboxistaurin, samotolisib, sotrastaurin, tomivosertib, umbralisib, 120 
vactosertib, verosudil, zanubrutinib). 121 

Among these 38 compounds 9 were FDA-approved in 2017, 8 in 2018 and 7 in 2019. Fasudil, a 122 
ROCK inhibitor, approved in China and in Japan in 1995 was therefore the first kinase inhibitor that 123 
reached the market but it is not FDA approved. Those compounds were automatically added to 124 
PKIDB database thanks to their name stem. Indeed, since the first release of PKIDB, the INN made 125 
an update on the stems that assign the molecules with the "aurin" and "udil" suffixes to the kinase 126 
inhibitor class. Moreover, t        ‘c   b  w      o  p              b    replaced by ‘c c  b  (see 127 
cumulative USAM stem list from AMA [23] . How      w     o k p           ‘c   b  to retrieve 128 
information on alvocidib, not yet referenced as alvociclib. 129 

Besides those compounds, Table 1 gathers the 8 and 7 PKIs that reached phase 4 and were 130 
FDA-approved in 2018 and 2019, respectively. Among those 15 PKIs, all were previously in a phase 131 
lower than 4 in our database except zanubrutinib that was not in the first release. One should note 132 
that FDA recently approved avapritinib, a selective inhibitor of KIT and PDGFR, after the updated 133 
version of PKIDB and so not considered in this study.  134 



This brings to 60 the total number of approved drugs on the market referenced in our database. 135 
As described in PKIDB, most of the PKIs are targeting more than one protein kinases and since the 136 
first version of PKIDB, new targets emerged such as the Wee1-like protein kinase inhibited by 137 
adavosertib. 138 

 139 
Table 1. PKIs approved in 2018 and 2019 with their respective targets extracted from DrugBank (Uniprot ID 140 
extracted from https://www.uniprot.org/.) 141 

PKI Unitprot ID Gene name 

Alpelisib 

Binimetinib 

P42336 

Q02750 

PI3KCA 

MAP2K1 

Dacomitinib P00533 EGFR 

Duvelisib O00329 

P48736 

PI3KCD 

PI3KCG 

Encorafenib P15056 BRAF 

Entrectinib P04629 

Q16620 

Q16288 

P08922 

Q9UM73 

NTRK1 

NTRK2 

NTRK3 

ROS1 

ALK 

Erdafitinib P11362 FGFR1 

Fedratinib O60674 

P36888 

O60885 

JAK2 

FLT3 

BRD4 

Fostamatinib P43405 SYK 

Gilteritinib P36888 

P30530 

Q9UM73 

FLT3 

AXL 

ALK 

Larotractinib P04629 

Q16620 

Q16288 

NTRK1 

NTRK2 

NTRK3 

Lorlatinib Q9UM73 

P08922 

ALK 

ROS1 

Pexidartinib P36888 

P10721 

P07333 

FLT3 

KIT 

CSF1R 

Upadacitinib P23458 JAK1 

Zanubrutini

b 

Q06187 BTK 

 142 

2.2. Physicochemical analysis of PKI datasets 143 

2.2.1. Distribution of physicochemical properties of PKIs  144 

To describe a molecule, it is common to compute its physicochemical properties to obtain 145 
information on the size, the lipophilicity, the atomic composition, etc. Some descriptors, as described 146 
by Lipinski or Veber, are still widely used to evaluate the potential oral bioavailability of a 147 
compound [24,25]. During the search of a lead compound in a virtual screening campaign, such 148 
descriptors may serve as a filter to discard molecules and therefore decrease the size of the chemical 149 
library since virtual library can be large. The distribution of these descriptors calculated from 150 
inhibitors extracted from PKIDB is shown in Figure 2. 151 



 152 

Figure 2. Distribution of physicochemical properties of PKIs: (a) Number of hydrogen bond 153 
acceptors (HBA); (b) Number of hydrogen bond donors (HBD); (c) ClogP (RDKit); (d) Molecular 154 
weight (MW); (e) Number of heavy atoms (NHA); (f) Number of rotatable bonds (NRB); (g) 155 
Topological polar surface area (TPSA); (h) Number of aromatic rings (NAR); (i) Number of chiral 156 
atoms (NCA). Pink areas represent values outside two standard deviation from the mean (95.4% 157 
confidence interval). 158 

In a previous study [22], we analyzed the ‘     of f     descriptors detailed by Lipinski [24] for 159 
inhibitors in clinical trials and approved. Here, we updated the statistical analysis with new PKIs 160 
included in PKIDB and we compared them to the ChEMBL dataset (Table 2). 161 

Table 2. Comparison of Lipinski's rules violation between PKIs approved, in clinical trials and in 162 
ChEMBL. 163 

1
 0 Ro5 violation 1 Ro5 violation 2 Ro5 violations > 2 Ro5 violations 

PKIs approved 33/60 (55.0%) 20/60 (33.0%) 7/60 (12.0%) 0/53 (0%) 

PKIs in clinical trials 101/158 (64.0%) 41/158 (26.0%) 16/158 (10.0%) 0/156 (0%) 

All PKIs 134/218 (61.5%) 61/218 (28.0%) 23/218 (10.5%) 0/209 (0%) 

PKIs ChEMBL 
51,858/76,504 

(67.8%) 

18,601/76,504 

(24.3%) 

5,876/76,504 

(7.7%) 
169/76,504 (0.2%) 

1 RDKit was used to calculate all descriptors including ClogP. 164 



 165 
We found that 62% and 68% of PKIs in PKIDB and in ChEMBL respectively do not violate any 166 

L p  k        . One single violation occurs in 28% and 24% of the PKIs for PKIDB and ChEMBL 167 
respectively and two violations occur for about 10% of the PKIs in the two datasets. Finally, few PKIs 168 
in ChEMBL dataset violates more than two rules (0.2%) and none for the PKIs in PKIDB. These 169 
results may vary depending on how the LogP is calculated. Here, we used Wildman-Crippen 170 
approach [26]. Compared to the initial study, we removed the counter ion during the 171 
standardisation of the molecules such as the bromide ion in tarloxotinib. Despite the large different 172 
number of compounds in both datasets (76,504 molecules in ChEMBL and 218 in PKIDB) we reveal 173 
that the two datasets exhibit similar rule of five violation profiles. 174 

The ratio of PKIs having    c  p o   o   of     L p   k    o  V b          are given in Table 3. 175 
Here again, we found that there is no significant difference between the two kinase subsets over all 176 
the descriptors. Molecular weight (MW) and CLogP are the most discriminant descriptors. 177 
                          % of      K           c  p o   o   of V b     boundaries. 178 

Table 3.    b   of  K     o                o   L p   k    o  V b         . 179 

1
 MW > 500 Da ClogP > 5 HBA > 10 HBD > 5 TPSA > 140 Å

2
 NRB > 10 

PKIs approved 20/60 (33.3%) 12/60 (20.0%) 2/60 (3.3%) 0/60 (0%) 2/60 (3.3%) 2/60 (3.3%) 

PKIs in clinical 

trials 
46/158 (29.1%) 

26/158 

(16.5%) 

1/158 

(0.6%) 
0/158 (0%) 4/158 (2.5%) 6/158 (3.8%) 

All PKIs 66/218 (30.3%) 
38/218 

(17.4%) 

3/218 

(1.4%) 
0/218 (0%) 6/218 (2.8%) 8/218 (3.7%) 

PKIs ChEMBL 
18,892/76,504 

(24.7%) 

10,897/76,504 

(14.2%) 

924/76,504 

(1.2%) 

208/76,504 

(0.2%) 

3695/76,504 

(4.8%) 

2,051/76,504 

(2.7%) 

1 RDKit was used to calculate all descriptors including ClogP. 180 

 181 
 From these calculations, we propose a range of descriptors to guide the design of kinase 182 
inhibitors. The proposed ranges do not consider the property values beyond two standard 183 
deviations from the mean (95.4% confidence interval). Thus, the upper and lower limits of molecular 184 
descriptors better represent the current chemical space of kinase inhibitors, either approved or in 185 
clinical trials. 186 
One can notice that despite new PKIs in PKIDB, these guidelines have not changed much compared 187 
to the ones presented in our first study. This shows that the define PKI chemical space seems well 188 
defined. 189 
 190 
Considering all PKIs from PKIDB, the guidelines for prioritization are: 191 

 192 
 A molecular weight (MW) between 314 and 613 Da (average of 463.4 Da) 193 
 A ClogP (calculated with RDKit) between 0.7 and 6.3 (average of 3.5) 194 
 Between 0 and 4 hydrogen bond donors (HBD) (average of 2.2) 195 
 Between 3 and 10 hydrogen bond acceptors (HBA) (average of 6.4) 196 
 A topological polar surface area (TPSA) comprised between 55 and 138 Å2 (average of 96.6 Å2) 197 
 Between 1 and 11 rotatable bonds (NRB) (average of 6.0) 198 
 Number of aromatic rings (NAR) between 1 and 5 (average of 3.4) 199 
 Number of chiral atoms (NCA) between 0 and 2 (average of 0.5)  200 

2.2.2. Statistical analysis of protein kinase inhibitors 201 

To compare the chemical space of the kinase inhibitors from PKIDB and from ChEMBL 202 
(PKI_ChEMBL), we performed a Principal Component Analysis (PCA). Each molecule was 203 



described using 11 classical physicochemical descriptors (See Materials and Methods) well suited to 204 
characterize chemical structures. The goal here is to compare PKI_ChEMBL to PKIDB.  205 

The PCA plot (Figure 3) illustrates the chemical space of PKIs in a 2D reference frame 206 
represented by the two first principal components (PC1 and PC2). 207 

 208 

 209 

Figure 3. (a) PCA of PKIs from ChEMBL and PKIDB containing 76,504 and 209 compounds 210 
respectively. Black, yellow and red ellipses encompass 95% of the individuals from class 211 
“ K _  E  L”  “     c  _ K ”     “ pp o   _ K ”    p c    ly; (b) Correlation circle. 212 

The two first principal components explain 35.6% and 20.0 % of the total variance respectively. 213 
PC3, not shown here, encompasses 13.2%. Thus, the 2D scatterplot of the factorial space illustrated 214 
here represents around 56% of the total variance (Figure 3). 215 

Each dot on the graph (Figure 3a) represents a molecule. Few compounds from PKI_ChEMBL 216 
are projected in the upper right quadrant but none belongs to PKIDB. Most of the PKIDB 217 
compounds are centered in the PCA plot. Approved (red dots) and in clinical trials (yellow dots) 218 
PKIs are projected in the same chemical space. The graphical representation of normalized variables 219 
is shown in the correlation circle (Figure 3b). The angle between two vectors indicates the correlation 220 
between the two corresponding variables. A value close to 0° or 180° indicates positively or 221 
negatively correlated variables respectively. A value close near 90° indicate that the variables are not 222 
correlated. On the correlation circle (Figure 3b), one can see that the first factorial axis (PC1) is highly 223 
correlated with TPSA, NRB and MW. These three variables contribute to PC1 at 20.6%, 17.1% and 224 
16.1%. The variables CLogP and NAR do not contribute to this axis and are negatively correlated 225 
with the second factorial axis (PC2). Their contribution to PC2 are 32.6% and 34.0% respectively. To a 226 
lesser extent, this axis is also positively correlated with FCSP3 and HBD (contributions of 11.8% and 227 
5.8% respectively). A weak angle between NAR and CLogP vectors is consistent with the fact that 228 
CLogP increases with the number of aromatic rings.  229 

In view of these results, PCA confirms our preliminary observations that there are few outliers 230 
in PKI_ChEMBL dataset (dots on the upper right quadrant). It appears that these compounds 231 
correspond to either small-modified peptides or macrocyclic lactones with high TPSA values. These 232 
molecules, such as everolimus, were removed from PKIDB since they do not inhibit protein kinases 233 
directly, however the macrocycles in PKI_ChEMBL are active on protein kinases and thus were not 234 
removed from the dataset. Regarding compounds in PKIDB, semaxanib, has the lowest MW (yellow 235 
dot bottom-left). The two dots outside the circle and on the middle right of the quadrant corresponds 236 
to barasertib (Clinical_PKI in yellow) and fostamatinib (Approved_PKI in red). Both of these 237 
molecules contain phosphate group, increasing their TPSA and so explaining their position on the 238 
PCA map. 239 

2.2.3. Principal Moments of Inertia 240 



Until now, we only analyzed the molecules using 2D descriptors; therefore, to evaluate the 241 
shape diversity, we represented the molecules on a Principal Moments of Inertia (PMI) plot [27]. In a 242 
triangular PMI map, the three corners represent distinctive shapes: rod (represented by diacetylene), 243 
disk (benzene) and sphere (adamantane). Note that such a plot only describes molecular shapes, 244 
without any consideration of other properties. In order to escape from the flatland, compounds 245 
should get closer to the sphere [28]. 246 

The PMI plot (Figure 4) reveals a vast majority of kinase inhibitors are located along the 247 
rod-disc axis, indicating a preponderance of flat molecules explained by the fact that all these 248 
molecules target a similar ATP active site. Indeed, most of the compounds in PKIDB are targeting 249 
the ATP site thus present a similar shape. Some of the MEK inhibitors are targeting an allosteric site 250 
adjacent to the ATP site. The three molecules from PKIDB closest to the extreme vertices are 251 
mubritinib near the rod, mavelertinib near the disc and galunisertib near the sphere. They are all in 252 
clinical trials, in phase 1, 0 and 2 respectively. Unlike approved PKI, a few compounds in 253 
development tend to adopt a disc shape that explores a new molecular space in PKIs. We also 254 
observe some compounds from PKI_ChEMBL dataset getting closer to the sphere vertex, showing 255 
that some spherical molecules could also inhibit protein kinases. These ones could open the way to 256 
the exploration of a potential novel chemical space. 257 

Here again, there is a great resemblance between the two datasets, PKIDB being well 258 
encompassed in PKI_ChEMBL regarding shape diversity. 259 

 260 

Figure 4. Principal Moments of Inertia (PMI) plot of PKIs in clinical trials (yellow), approved (red) 261 
and from ChEMBL database (light blue). 262 

 263 

2.3. Scaffold diversity assessment 264 

2.3.1. Analysis of molecular scaffolds 265 

To get a deeper insight on the molecular diversity of PKIs, we focused on scaffolds and ring 266 
systems of these compounds. The results of scaffold analysis are summarized in Table 4. First, we 267 
looked for the presence of macrocyclic molecules (rings > 12 atoms). In PKIDB, there are four 268 
macrocycles. Two of them are approved drugs: icotinib, approved by CFDA and lorlatinib, and two 269 
are in phase 3: pacritinib and ruboxistaurin. This class of molecules might not be fully explored since 270 



the percentage of macrocycles found in PKI_ChEMBL is very weak (< 1%). As mentioned above, it is 271 
important to note that we excluded from PKIDB macrocycles co                  ‘     . However, 272 
these compounds do not directly target a kinase binding site but rather an upstream protein, causing 273 
a complex formation that inhibits the kinase [29]. 274 

The different types of molecular scaffolds are shown in Figure 5. For this study we used two 275 
types of scaffolds: Bemis and Murcko (BM) and graph framework issued from BM. As a reminder, 276 
Bemis and Murcko scaffold corresponds to the core of a molecule after removing side chains [20]. 277 
The graph framework corresponds to BM scaffold where each heteroatom was substituted by a 278 
carbon and each multiple bond by a single one. Therefore, such frameworks cover topologically 279 
equivalent BM scaffolds differentiated by heteroatom substitutions and bond types. 280 

In PKIDB dataset, among 218 molecules, 207 present a unique BM scaffold and 195 a unique 281 
graph framework (GF). Whereas for the 76,504 PKIs present in ChEMBL, only 28,732 and 13,331 BM 282 
scaffolds and GF respectively are found (Table 4). In other words, in PKIDB almost each compound 283 
has a unique scaffold (218/207). The pairwise molecular similarity mean between PKIDB and 284 
PKI_ChEMBL, calculated with MACCS keys indicates that both datasets are diverse with mean of 285 
Tanimoto similarity of about 0.5 (Table 4). However, in the PKI_ChEMBL dataset, the scaffold 286 
diversity corresponding to the total number of molecules over the total number of BM scaffolds, is 287 
much lower with about a BM scaffold for about 2.7 molecules in average. Regarding the graph 288 
frameworks, their number tends to decrease compared to BM scaffolds i.e. one GF for 1.1 and 5.7 289 
molecules in PKIDB and PKI_ChEMBL respectively. 290 

The most represented BM scaffold in PKIDB, the indolinone derivative (Figure 6), is retrieved in 291 
3 inhibitors and differs from the one in PKI_ChEMBL, which is found 644 times. This scaffold is 292 
prominent compared to others in PKI_ChEMBL: the second most retrieved scaffold, the quinazoline 293 
derivative, is only found 239 times. It shows the importance of that scaffold in PKIs which is found 294 
only in erlotinib in PKIDB. The search for molecules containing  K D    highest occurrence of BM 295 
scaffold in PKI_ ChEMBL only returns 10 compounds, revealing a major difference between the two 296 
datasets. 297 

Then, for each unique BM scaffold in PKIDB, we checked how many PKIs are obtained in 298 
PKI_ChEMBL. From the 207 unique BM scaffolds available in PKIDB, only 107 are present in 299 
PKI_ChEMBL which represent 2,423 molecules out of a total of 76,504 (3.2%). This result is 300 
surprising. Firstly, we might expect that many analogues would be systematically provided for each 301 
PKI and thus would be available in a public database. Secondly, because PKIDB covers similar 302 
chemical space to PKI_ChEMBL according to PCA and PMI comparisons. Finally, using all unique 303 
graph frameworks from PKIDB, we were able to match 7,686 compounds (10.0%) in PKI_ChEMBL. 304 

Table 4. Data obtained for the Bemis and Murcko scaffolds for the two datasets. 305 

 No. 
abbréviation 

molecules 
No. 

macrocycles 
No. BM 

scaffolds 
No. graph 

frameworks 
Molecular Similarity 
Mean

a
 (SD) 

PKIDB 218 4 (1.8%) 207 (95.0%) 195 (89.5%) 0.51 (0.11) 
PKI_ChEMBL 76,504 487 (0.64%) 28,732 (37.6%) 13,331 (17.4%) 0.49 (0.11) 

a Calculated with MACCS keys (166 bits) and the Tanimoto coefficient. 306 

 307 



 308 

Figure 5. Representation of a molecular decomposition into scaffolds according to Bemis and 309 
Murcko (BM) and in graph framework. 310 

 311 

 312 

Figure 6. Most retrieved Bemis and Murcko scaffolds in PKIDB dataset (a): 313 
(3Z)-3-(1H-pyrrol-2-ylmethylene)indolin-2-one and in PKI_ChEMBL dataset (b): 314 
N-phenylquinazolin-4-amine. 315 

2.3.2. Ring analysis 316 

In PKIs, rings are making hydrogen bonds, van der Waals o  π-stacking interactions with 317 
residues of the active site. As example, an heterocycle may form hydrogen bonds as does adenine in 318 
ATP with protein kinase [30]. We applied a molecular decomposition method using RDKit to 319 
fragment molecules and retain only rings (Figure 7). After collecting all rings for both datasets, we 320 
searched for the most represented ones by gathering them using their smiles representation. We 321 
focused on fused heteroaromatic rings since such fragments are present as a main scaffold in most 322 
kinase inhibitors. Moreover, fused rings offer favorable interactions (van der Waals and hydrogen 323 
bonds) into the ATP binding site compared to non-fused rings [31]. 324 

In both datasets, we found bicycles in around 65% of the molecules, demonstrating their 325 
importance as a core during hit to lead or lead optimization steps. In PKIDB, we found 56 unique 326 
bicyclic scaffolds among the total of 172. More surprising, 31 out of these 53 bicycles are singletons, 327 
i.e. the bicyclic scaffold is found only once in the dataset. For the PKI_ChEMBL dataset, there are 918 328 
unique bicycles for a total of 57,438. However, among those 918 unique bicycles, only 26 are 329 
singletons. Since the PKI_ChEMBL dataset contains more analogues of chemical series compared to 330 
PKIDB, this could explain the lowest ratio of unique fused rings. 331 

The number and the frequency of the top 10 most retrieved bicycles are illustrated in Figure 8. 332 
In both datasets, the quinazoline scaffold is the most represented bicycle, it remains an important 333 
core and its substituted analogues such as the 4-anilinoquinazoline have been extensively studied 334 
[32]. Example of PKIs containing quinazoline scaffold are gefitinib, lapatinib, erlotinib, afatinib and 335 
more recently canertinib. Kinase inhibitors bearing this scaffold have mainly been designed to target 336 
EGFR. The second most represented bicyclic scaffold is the quinolone, another fused six-membered 337 
aromatic ring. It is worth noting that depending on the choice of the tautomeric form or the attached 338 
substituents, RDKit may have some issues in finding the aromaticity in the bicyclic scaffold and 339 
could return the indoline scaffold instead of the indole, as shown in Figure 8. Most of the bicycles 340 
contain at least one heteroatom such as the nitrogen. This heteroatom allows H-bond interaction 341 



(acceptor or donor), with the hinge region of the kinase. Interestingly, the PKIDB and the 342 
PKI_ChEMBL datasets contain almost the same top ten bicyclic scaffolds. Curiously, unlike BM 343 
scaffolds where more than half scaffolds from PKIDB were not retrieved in PKI_ChEMBL, here only 344 
three bicycles (not shown) are not found in PKI_ChEMBL dataset. We also performed an analysis of 345 
the bicyclic scaffolds by considering the attached atom position and atom type ( 346 

Figure 9). Atoms involved in a double bond linked to the scaffold were not modified. However, 347 
all atoms were replaced by a dummy atom labelled differently according to the atom type ( 348 

Figure 9). In this case, the 3-substituted (4,6,7) quinazoline is the most retrieved core in both 349 

datasets. Such a scaffold is found in twelve inhibitors in PKIDB, and an ether group (often a 350 
methoxy) is always attached on the 7 position. The second most retrieved bicycle is the 351 
4,6,7-tris-quinoline in PKIDB and this is the third most represented scaffold in PKI_ChEMBL. Here 352 
again, the substituent in 7 position is always an ether. Interestingly, the second most retrieved 353 
substituted bicycle in PKI_ChEMBL is not found in top tenth of PKIDB. As shown in  354 

Figure 9, the great majority of bicycles are polysubstituted confirming their use as core scaffolds 355 
to link substituents. By considering the substituents during the analysis, the frequency of the 356 
bicycles shows a different distribution in both datasets and the top ten bicyclic scaffolds are 357 
different.  358 

 359 

Figure 7. Application of the ring-system ensemble classification. Ring-system ensembles are obtained 360 
by removing substituents on acyclic bonds and by keeping attachment point (R1). The ring system 361 
unpositioned ensembles do not keep information on the attachment point. Rings are shown in bold. 362 



 363 

Figure 8. Top ten bicycles retrieved in PKIDB dataset (a) and in PKI_ChEMBL (b) with their 364 
occurrence and their frequency in brackets. In PKIDB there are 172 bicycles (56 unique) and in 365 
PKI_ChEMBL, there are 57,439 bicycles (697 unique). 366 



 367 

 368 

 369 

 370 

Figure 9. Top ten most retrieved bicycles with their substituents in PKIDB dataset (a) and in 371 
PKI_ChEMBL (b) with their occurrence and their frequency in brackets. In PKIDB there are 172 372 
bicycles (129 unique) and in PKI_ChEMBL, there are 57,439 bicycles (4,480 unique). 373 

 374 

3. Conclusion 375 

PKIDB is a freely available database containing all kinase inhibitors on the market or in clinical 376 
trials gathered using their international nonproprietary name (INN). This database, regularly 377 
updated, contains information on the structure of the kinase inhibitors, their physicochemical 378 
properties, their protein kinase targets as well as their therapeutic indications. It also contains links 379 
to various external databases. We analyzed this dataset and compared it to active PKIs found in the 380 
ChEMBL database. Classical physicochemical descriptors such as Lipinski   or Veber   showed that 381 
a significant part of protein kinase inhibitors, either approved or in clinical trials, does not follow the 382 
recommended drug-like thresholds, especially regarding molecular weight and calculated LogP. 383 
 o            K  p           K D    o               of o     wo L p   k       . Therefore, for this 384 
typical class of compounds, we propose new boundaries to better characterize the chemical space of 385 

1* = connected to an atom not double bonded, not aromatic, not in a cycle and not halogen 
2* = connected to non aromatic ring 
3* = connected to aromatic atom 
4* = connected to an halogen 



kinase inhibitors. Moreover, all PKIS in PKIDB have a maximum of two chiral centers and five 386 
aromatic rings. 387 

The projection of the chemical space resulting from a principal component analysis shows that 388 
most of the inhibitors shared the same chemical space. However, the PKIs available in ChEMBL fill a 389 
larger chemical space in the PCA plot compared to PKIs in PKIDB. The distribution of the 390 
physicochemical descriptors for both datasets do not present major differences. This suggests that 391 
most active PKIs available in the ChEMBL have drug-like properties.  392 

Concerning the molecular shape of the PKIs, the PMI plot reveals that PKIs from ChEMBL 393 
exhibit a larger shape diversity compared to the ones in PKIDB. However, the majority of PKIs 394 
remain clustered around the rod-disc axis because they target a common ATP binding site in the 395 
kinase domain, which is highly conserved in this protein family. Yet, PKIs under development tend 396 
to explore wider topology, particularly near the disc edge. More frequent macrocyclic structures 397 
could contribute to this specific molecular shape. Moreover, moving to new chemical space will help 398 
medicinal chemists to escape from a crowded intellectual property (IP) space. Regarding PKIs in 399 
ChEMBL, we also found some compounds escaping from this rod-disc axis and get closer to the 400 
spherical form. This information could be used to design new chemically-diverse kinase inhibitors. 401 

Concerning molecular scaffold analysis of the two datasets, it appears that PKIs in PKIDB 402 
exhibit a great molecular scaffold diversity compared to the ones in ChEMBL. More than 100 403 
scaffolds from PKIDB are not present in the ChEMBL. Each molecule present in PKIDB and more 404 
particularly the corresponding scaffold, was patented preventing the design of analogues. Thus, 405 
each molecule present in PKIDB is in fact a representative of a chemical series, but only one new 406 
molecular entity (NME) was selected to continue its development in clinical phases. Most 407 
pharmaceutical companies will not unveil all chemical analogues of the selected NMEs limiting 408 
information on the chemical series. On the opposite, in a public database such as ChEMBL, there are 409 
often lots of available analogues for a specific scaffold. The ring analysis performed on the two 410 
datasets indicates a similar number of bicycle singletons despite the large size difference in the two 411 
datasets, 218 vs 76,504 molecules for PKIDB and PKI_ChEMBL respectively. By considering the 412 
position and the type of the substituents, a significant part of the scaffolds in PKIDB are absent in 413 
ChEMBL because most of the structures of pharmaceutical companies are protected by patents. 414 
 The PKIDB database is regularly updated and is accessible from this website: 415 
http://www.icoa.fr/pkidb. We hope that this resource will assist researchers in their quest for novel 416 
kinase inhibitors. 417 

4. Materials and Methods  418 

 For the creation and maintenance of PKIDB please refer to our previous study [22]. All 419 
experiments and calculations have been performed with Python 3.6. Molecular descriptors used for 420 
PCA (Table 5) and PMI were calculated with RDKit       o  ‘2  8-09-    . Scaffolds analysis and 421 
clustering were performed with RDKIT and with Butina algorithm [33] using Tanimoto similarity 422 
and Morgan Fingerprint with a radius of two (equivalent of FCPF4). The PCA was calculated with 423 
an in house library derived from Prince [34] and Scikit-learn [35] packages. For PMI analysis, 3D 424 
conformations were generated using ETKDG method [36] followed with an energy minimization 425 
using the MMFF94 forcefield [37]. To delimit the dots of the PMI triangle, three compounds 426 
(diacetylene, benzene and adamantane) were considered and added to the dataset. All the figures 427 
are made using matplotlib [38] and seaborn [39] packages. Molecules were drawn with Biovia Draw 428 
2018. 429 

The PKI_ChEMBL dataset results f o    E  L       o  ‘  E  L_2   . To be included in this 430 
dataset a compound must have at least one recorded activity, either IC50, Ki or Kd, on a protein 431 
kinase with a pchembl value > 6 (< 1000 nM). We then removed duplicates, empty SMILES and 432 
molecules from PKIDB. It is composed of 76,504 molecules. Both datasets (PKIDB and 433 
PKI_ChEMBL) have been prepared and standardized with VSPrep [40] and for each compound we 434 
kept the best tautomer as defined in VSPrep.  435 

 436 

http://www.icoa.fr/pkidb


Table 5. Descriptors used for PCA. 437 

Name Variable Descriptor 

MW Molecular weight 

LogP Wildman-Crippen LogP value 

TPSA Topological polar surface area 

HBA Number of Hydrogen Bond Acceptors 

HBD Number of Hydrogen Bond Donors 

NRB Number of Rotatable Bonds 

NAR Number of aromatic rings 

FCSP3 Fraction of C atoms that are SP3 hybridized 

MQN8 Molecular Quantum Numbers 

MQN10 Molecular Quantum Numbers 

 438 
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