N
N

N

HAL

open science

Colored props for large scale graphical reasoning

Titouan Carette, Simon Perdrix

» To cite this version:

Titouan Carette, Simon Perdrix. Colored props for large scale graphical reasoning. 2020.

02904695

HAL Id: hal-02904695
https://hal.science/hal-02904695

Preprint submitted on 10 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-

https://hal.science/hal-02904695
https://hal.archives-ouvertes.fr

Colored props for large scale graphical reasoning

Titouan Carette
CNRS, LORIA, Inria Mocqua, Université de Lorraine, F 54000 Nancy, France
titouan.carette@loria.fr

Simon Perdrix
CNRS, LORIA, Inria Mocqua, Université de Lorraine, F 54000 Nancy, France
simon.perdrix@loria.fr

July 7, 2020

Abstract

The prop formalism allows representation of processes with string diagrams and has been successfully
applied in various areas such as quantum computing, electric circuits and control flow graphs. However,
these graphical approaches suffer from scalability problems when it comes to writing large diagrams.
A proposal to tackle this issue has been investigated for ZX-calculus using colored props. This paper
extends the approach to any prop, making it a general tool for graphical languages manipulation.

There is a long list of graphical representations of various processes: Petri nets [4], control flow graphs
[5], boolean circuits [18], quantum circuits [21], proof nets [I3], etc. Most of them are unified into the prop
formalism. A prop is a monoidal category with a free monoid of objects. Props were first introduced by
Mac Lane in [I19]. They are now used as a foundation for graphical reasoning through string diagrams. Each
diagram is seen as a morphism in a prop. Props admit presentations by generators and equations [2].

Compared to usual symbolic manipulations, diagrams have the advantage of capturing some fondamental
properties in a simple and intuitive way. In practice, most axioms are encoded into the topology making
the notation lighter and easier to read. In the specific case of quantum computation, another advantage is
the sometime radical compression allowing to represent matrices scaling exponentially with the number of
qubits, by diagrams with a polynomial number of nodes. However, very large diagrams are difficult to draw,
read and manipulate. Uniform diagrammatical proofs often use a lot of dots to suggest a repeating pattern
or arbitrary large structures. The recent applications of these graphical methods and the need for verified
proofs which cannot tolerate ellipsis lead to the development of new notations, allowing graphical languages
to scale up.

Contributions. For every graphical language we provide a way to construct a colored graphical language
where each wire is indexed by a size (its color), and can be interpreted as several wires side by side. We
call this the scalable construction. We show that the scalable construction enjoys a universal property which
gives us a natural way to extend the semantics of any (monochromatic) prop into semantics for the scalable
version. We then describe how other props corresponding to substructures can be embedded into a scalable
prop by introducing a boz construction. This can be viewed as an abstraction of specific large graphical
structures. Finally, we use previously known completeness results for graphical structures like monoids,
bialgebras and Interacting Hopf Algebras, to provide a compressed way to deal with those structures in
other graphical languages.

Related works. Our approach has been initiated in the special case of the ZX-calculus in [7], we
extend this construction to any graphical language. The scalability problems for graphical languages has
also motivated the introduction of -boxes in [16]. Unlike our work, !-boxes do not provide a new graphical

language but a way to represent families of diagrams and to reason uniformly with them. In practice, scalable
props provide a compact representation of large diagrams while !-boxes give a graphical description of how
to construct a family of diagrams. Divider and gatherer generators similar to ours have been used in [20] to
graphically define various matrix products. We share with this work our definition of direct sum of matrix
arrows. The definition of our scaled generators matches what has been called monoidal multiplexing in [10],
another work on the scalability problem. In fact this is the natural way to define the action of a diagram on
many wires.

Structure of the paper. The first section sets up the prop framework to describe colored graphical
languages. It provides the necessary definitions and results needed for the different scalable constructions.
In the second section, the scalable constructions are described together with their main properties. The last
section provides examples of large scale graphical structures that can benefit from our construction. We
also give examples of concrete models for those structures, mainly taken from the ZX-, ZH- and ZW-calculi,
introduced respectively in [I1], [I] and [I5].

1 Colored graphical languages

This section lays out the mathematical foundation for colored graphical reasoning. Nothing here is new, we
just restate for graphical languages well known results of categorical universal alegebra.

1.1 Colored props

We work in the setting of colored props.

definition 1 (Colored prop). A colored prop is a small symmetric strict monoidal category P together
with a set of colors C, such that the set of objects of P is freely spanned by the elements of C.

We use the term morphism to denote an arrow of a colored prop as a category. From now on, we will
use the term prop for a colored prop. A prop is C-colored when the set of colors is C' and monochromatic
when C is a singleton. The set of objects of a C-colored prop is C*, the set of finite lists of elements of C.
A list of n colors is denoted (¢;)7 ;. We will write 0 for the empty list and K for the concatenation. This
coincides with the monoidal structure in a C-colored prop. We have 0 Ka = aX 0 = a for all a € C*.
Given a color map ¢ : C — C’ we denote ¢* : C* — C'" its extension to lists defined by ¢*(0) = 0,
&*(a B b) = ¢* (a) ¥ ¢* (b) and ¢*((¢)) = (6(c))-

A prop morphism is a symmetric strict monoidal functor mapping colors to colors. Formally, a prop
morphism is a color map ¢ : C — C’ and a symmetric strict monoidal functor F' : P — P’ such that
F(a) = ¢*(a). Prop is the category of props and prop morphisms. This category is complete and co-
complete. See [I4] for a study of the category of props.

We will mainly work in subcategories of Prop where the set of colors is fixed. A C-colored prop
morphism is a prop morphism between two C-colored props where ¢ = idcz. For any set C of colors,
C-Prop is the category of C-colored props and C-colored prop morphisms. C-Prop is a subcategory of
Prop which is not full. By setting C' to be a singleton we recover the category of monochromatic props and
monochromatic prop morphisms that is often simply called Prop in the literature.

We will use the term functor when using functors in SymCat (the category of small symmetric monoidal
category and symmetric monoidal functors), which in general are not prop morphisms.

We now mention some remarkable props. 1¢ is the codiscrete category over C*, it is a terminal object in
C-Prop. The terminal object for monochromatic props is denoted N. P¢ is the category of permutations
over finite lists of colors in C. It is an initial object in C-Prop. The initial object for monochromatic props
is denoted P.

1.2 String diagrams

Colored props admit a nice graphical representation with colored string diagrams. Let P be a C-colored
prop. The idea is that each color ¢ € C' corresponds to a color of wire. In this sub-section, we will actually

use various colors (C' = {e, e e}) to represent the wires: the identity map ¢ — ¢ is represented as a wire

of color ¢, e.g.— . Each morphism (c;)i".; — (¢j)72; is represented as a diagram with n input wires

J
colored according to the ¢;s and m output wires colored according to the c;-s. Here is an example for a map:

fi(e,0) = (o 0): . The empty object 0 and its identity map idy : 0 — O correspond to the empty
diagran{ !. Diagrams of type 0 — 0 have no inputs nor outputs, we call them scalars.
In this representation the tensor product of two morphisms is represented by juxtaposition: X

:@: = . Thus the identity of the list (e, e), ide oy = id(s) K id(s), is represented as: —

The composition of two morphisms is done by plugging the corresponding colored wires: oﬁ =

lsEl=
The symmetry maps are represented by crossing the corresponding colored wires, for example o,) :
(o,0) — (o, @) is represented as : > . Its inverse is 04 o) : (@, ®) — (e,), graphically: > =
In this representation, the axioms of symmetric monoidal categories correspond to topological properties.

The naturality of the symmetry corresponds to equations of the form: = . If two

diagrams with colored wires are isomorphic then the corresponding morphisms are equal according to the
axioms of C-colored props. See [23] for an overview of the different ways to draw categories.

1.3 Graphical languages

We describe props with their presentations by generators and equations. We call such an equational theory
a graphical language. We start by defining colored signatures.

definition 2 (Signature). A colored signature ¥ is a set of colors C together with a family of sets X[a, b]
indezed by a,b € C*. The elements of X[a,b] are called generators of type a — b. We write |3| for
) X[a, b], the set of all generators.
ab

A signature is a way to present a collection of morphisms of a colored prop that will be used later as
building blocks, hence the name generators. We use the same terminology as props, in particular signature
stands for colored signature and we say that a signature is monochromatic when the set of colors is a
singleton. A way to present a signature is as a functor C* x C* — Set, where C* x C* is a discrete category.
Thus, there is a category of C-colored signatures C-Sig which is just another name for the functor category
Set® X", The C-colored signature morphisms are natural transformations between signatures. In
other words « : ¥ — ¥/ is a familly of functions aap : X[a, b] — ¥'[a, b].

The interest of this definition comes from the following result presented in [2].

theorem 1. [2] Let Ux : C-Prop — C-Sig be the forgetful functor sending a C-colored prop P to the
C'-colored signature Uc(P) such that for each a,b € C* X[a,b] = Pla,b]. U has a left adjoint F : C-Sig —

C-Prop and C-Prop is equivalent to the Filenberg-Moore category of the monad T def UoF. We denote
n:1=T the unit, ¢ : F o U = 1 the counit and p: T? = T the multiplication.

The main interest of the theorem is to provide us with the free functor F' sending a C-colored signature
¥ to the free C-colored prop F(X) spanned by this signature. Intuitively, a morphism in the free prop F(X)
is a string diagram built from generators in ¥ linked by wires and swaps. From now on, by diagram we
mean a morphism in F'(X). Such diagrams are identified up to the topological moves corresponding to the
symmetric monoidal axioms. F' can be used to define equational theories for props.

definition 3 (equation). An equation of type a — b with respect to a signature ¥ is a pair (f,g) where
f,9 € F(X)[a,b].

A set of equations over a signature 3 can be presented as a pair of signature morphisms I, 7 : E — UF(X).
A graphical calculus is then formed by a signature and a set of equations over this signature.

definition 4 (C-colored graphical language). A C-colored graphical language is a tuple L def Xz, Er,le,rr)
where X and Er are C-colored signatures and Iy and vz are C-colored signature morphisms of type Ep —
UF(Zz).

To any graphical language £ def (X¢, Er,le,rz) corresponds an underlying prop L, defined as the

ers,. o Flg T
FZ[) — L.

coequalizer: FE,

erx, o Frg

Tt is defined only uap to prop isomorphism. Given f,g € F(X.)[n,m] wewrite L+ f = giff m2(f) = 72(9)
in L, this means that using the equations as local rewriting rules we can transform the diagram f into g.

We say that two graphical languages £ and) are equipotent iff L ~ Y.

We define a translation between two graphical calculi as a signature morphism 6 : ¥, — UF(Zy)
satisfying the soundness condition: 7y o (epyx,, 0 F'0) o (epx, o F'ry) = my o (epx,, 0 Fl) o (epx, o Flz).
This asserts that equivalent diagrams in £ are sent to equivalent diagrams in). The coequalizer property of
Y gives a unique prop morphism Bold(f) such that Bold(f) o, = my o (erx,, o F0). In fact, the soundness
condition is equivalent to the existence of Bold(f).

lemma 1. There is a category GL of graphical languages and translations and an essentially surjective full
functor Bold : GL — Prop.

A proof is given in[AT]]

This functor allows us to define props and prop morphism using graphical languages and translations.
Furthermore any prop and prop morphism admit such a description, but it is not unique.

C-Prop is a cocomplete category thus it has sums and coequalizers. These can be described with
graphical languages:

definition 5 (Sum of graphical languages). The sum of two C-colored graphical languages L and Y is

defined as L+ = Ee+Xy,Ec+ Ey,leiy,rety), where leyy = [UF(ts,) ole, UF(ts,) o ly] and

revy = [UF(ts,)ore, UF(ts,) ory].

The sum of two graphical languages has the generators and equations of both languages.

lemma 2. Bold(L+Y) is a coproduct L+ Y in C-Prop.
A proof is given in

Usually when we build new graphical languages we take the sum of other graphical languages and then

add more equations.

definition 6 (Quotient of a graphical language by equations). Given a C-colored graphical languages L and

a set of equations (E,1,r) over ¥z, the quotient of L by E is defined as £ /g def (X, Ec+ E iz,], [re, 7).

lemma 3. Bold(£ /E) is a coequalizer of 71 o ers, o Fl and 7z o epy, o Fr in C-Prop.
A proof is given in
The semantics of a graphical language is given by interpretation functors.

definition 7. An interpretation of a graphical language L is a functor [] : L — C. A language is
said complete, respectively universal, for the category C if there exists an interpretation which is full,
respectively faithful.

A natural question, given a graphical language, is to find an interpretaion for which the language is
universal and complete. Such examples will be given in section 3. We are now ready to introduce the
scalable construction.

2 The scalable construction

From now on, our set of colors will always be Ny := N\ {0}. In this setting we will say size instead of color.
We will use string diagrams to represent morphisms. A wire of size 1 is said simple and a wire of size n > 1
is said big. To simplify the notations, a thin wire will always be simple when a bold one without label can
be of any size. We will only use size labels when absolutely necessary.

The objects of an Ny-colored prop are lists of positive integers. The list with k times the integer n: <n)f:1
is denoted k- n. We have 0-n =%k-0 =0 but k-n # n -k and in particular k-1 # 1-k. In fact k-1
corresponds to k simple wires and 1 - k to one big wire of size k. Given a family of wires of arbitrary size,
which corresponds to an arbitrary object in an Ny-colored prop, we define a notion of global size.

definition 8. Given an Ny-colored prop P, the global size functor [] : P — N is the unique functor
satisfying: [0] =0 and [1-n] =n.

Intuitively big wires of size k are ribbon cables, representing k£ simple wires together, the global size
functor just counts the overall number of simple wires. This intuition is made precise by the wire calculus.

2.1 The wire calculus

definition 9 (D and G). The graphical languages D and G (for dividers and gatherers) are respectively freely
def def

generated by the signatures Lp[l-(n+1),(1- 1)K (1-n)] = {d,} and Bg[(1-)X (1-n),1-(n+1)] = {v}
for all m € Ng. The generator §,, is called the divider of size n and is depicted: —< . The generator ~,
is called the gatherer of size n and is depicted: >— . We take the conventions: &g def idy and o def idy.

We have G ~ D°. We then define how those props interact in the spirit of [I7]. The expansion
equation of size n, exp, is the equation v, o 6, = id;.(n41), pictorially: i . The
set of all expansion equations for each n € Ny is denoted Exp. The elimination equation of size n, elim,,
is the equation d,, o v, = id;.;1 X idy.,,, pictorially: >—< = . The set of all elimination
equations for each n € Ny is denoted FElim.

The convention for dg and 9 makes expy and elimg trivially true.

definition 10 (The wire calculus W). The Ny-colored graphical language W is defined as W = (D+G) /(Elim, Exp) -

In W, the role of dividers and gatherers is perfectly symmetric, thus we have W ~ W, W is a groupoid,
in fact the [elimination| and [expansion| rules exactly state that the generators are invertible. We also note
that the generators preserve the global size so there is no morphism of type a — b when [a] # [b]. In fact
we can go further: when [a] = [b], the morphisms of type a — b are the permutations of [a].

theorem 2 (Rewiring theorem). W is a full subcategory of the permutation category Pn,, satisfying [a] #
[b] = Wi[a,b] = 0.

A proof is given in[A2]

This gives us a clear understanding of what W looks like as a category. The rewiring theorem works as a
coherence result in the sense that any equation is true up to permutations as soon as the types match. This
gives us total freedom to rewire the way we want.

The way the dividers and gatherers are defined, taking the wires one by one, is useful to come up with
a normal form but is still quite restrictive. The rewiring theorem allows us to unambiguously generalize
dividers and gatherers to any wire size. Furthermore we can define a divider with an arbitrary number of
outputs since the associativity equation holds: _é = ‘Q We define inductively A, : 1-n —n-1
by Ag = idg, and A,11 = (id; ® Ay,) 0 d,. The diagram A, is a sequence of n dividers of decreasing size.

For any object a = (n;)*_, we define A, def ®,; An,. Dually, we define I';;, : m -1 — 1-m by I'y = idp, and

Tnt1 = Ym o (idy ® Ty,), which is a sequence of m gatherers of increasing size. For any object b = (miﬁ:l
d
we define T'y ef X T,
We now proceed to making a monochromatic prop interacting with dividers and gatherers through the
scalable construction.

2.2 The scalable construction

Intuitively, the scalable construction is the free embedding of a monochromatic graphical language into the
simple wires of W.

definition 11 (SL£). Given a monochromatic graphical language L, we define an No-colored graphical lan-
quage LYo by:
def {E[/[’ﬂ,m] Zf (avb):(nlvml)

5 o 0, b] def | Ec[n,m] if (a,b)=(n-1,m-1)
o |, = .
=) otherwise

E b =
co[a,b] 0 otherwise

The scalable graphical calculus SL is defined as: SL e No + W. The underlying prop Bold(SL) is
denoted SL.

The scalable construction was first introduced in [9] to allow a compact representation of large diagrams
with an identifiable large scale structure. In fact, starting from SL£ we can add syntactic sugar to handle
large scale graphical rewriting.

Given a diagram g € L[n,m], its scaled version of size k is a diagram g; € SLI[k - n, k - m| inductively

de

defined by: ¢1] g and gk P This transformation has been called monoidal

multiplexing in [I0]. Notice that these structures require a way to cross wires, here we have a symmetry but
a braiding would also work.

lemma 4. For every k, there is a functor Sy : L — SL, such that Sx(1) =1-k and Sk(72(9)) = 7sc(gk)-
A proof is given in

These functors ensure that any equation between diagrams still holds at large scale where one application
of the scaled rule is in fact hiding k& parallel applications of the original rule.
We can go further, if (g(a) : @ = b)aeca is a family of diagrams indexed by some parameter o € A then

we can index the scaled version by an element o € A*. This is defined inductively by g; ({)) = g(a) and:

k41 ()| E , with a = (a) X B and 3 € A*.

Notice that this is how scale spiders are defined in the scalable ZX-calculus [7]. We see here that this
general construction applies without difficulties to the other kinds of indexed spiders one can find in ZW or
ZH calculi, and to the boxes indexed by numbers in [6]. The associated scaled rule, if any, should be a priori
defined inthe same way. For example, in the ZX-calculus, the phases a and [of two spiders add up when
they fuse, so the lists of phases @ and 8 add up pointwisely when scaled spiders fuse.

This construction applies naturally to generators but can be applied to any diagrams that we want to
see acting at a large scale.

We can refine the global size functor into a functor from SL to L which forgets dividers and gatherers.

definition 12 (Wire stripper). Given a monochromatic graphical language L, the wire stripper functor
{-} : SL — L is defined on colors by {a} = [a] and on morphisms by {msz(0x)} = idk, {msc ()} = idi and
{msc(x)} = me(x) for all generators x € .

lemma 5. For every morphism w € Lin, m], we have {S1(w)} = w.

A proof is given in

All the properties of SL follow from a structure theorem which can be seen as an extension to SL of the
rewiring theorem.

theorem 3 (Structure of SL). For every w € SL[a,b] we have SLF w =Ty 0 51({w}) o Aa.
A proof is given in

Starting with a graphical language for permutations P we have SP = W and then we recover the rewiring
theorem. From this result it follows that the scalable construction enjoys a universal property:

lemma 6 (Universal property of SL). The following diagram is a pullback square:

{}

SL ——

L
! ‘ ‘ !
0 N
[
A proof is given in

The universal property allows to lift interpretation functors.

lemma 7 (Scaled interpretation). Given a monochromatic prop C and an interpretation [] : L — C, let
C, the be the symmetric strict monoidal category whose objects are pairs (n,p,) where p,, is a partition of
n, and such that Cy[(n,py), (M, pm)] = Cin,m]. C, is an No-colored prop and there is a unique No-colored
prop morphism [.], : SL — Cy, such that [Jo -], =[-] o {-}. We call it the scaled interpretation and it
is faithful iff []) is faithful.

A proof is given in

These results together point out that the scalable construction is just a tool allowing diagrammatical
manipulation and is completely orthogonal to the original language. In fact, we even have an equivalence of
categories.

lemma 8. In SymMonCat we have L ~ SL.
A proof is given in

We expect most of the properties of L to be reflected in SL. Here are some specific examples. If L is

a dagger category then SL inherits this structure by setting 8t def v&. Then we have vt = 6, and the

expansion and elimination equations state that dividers and gatherers are unitary maps.
If L is a compact closed category then so is SL. Using the scaled version of the cups and caps, we

have Q def 6 and then 7' = 0. However, note that some intuitive topological moves do not hold:

:—<O<7é—<.

Remark: Another possibility is to take = (Then we recover the topology but we loose the

correspondance between equations on simple wires and their scaled version.

3 The box construction

In this section, we focus on some fundamental graphical languages. We use the associated completeness
results to compress the corresponding diagrams with a box construction. We consider a way to construct an
Np-colored graphical language from a monochromatic one: the box construction. The idea is to blackbox
a monochromatic prop into a large scale graphical language.

definition 13 (Boxp). Given a monochromatic prop P, let P be the Ny-colored graphical language defined

d UP|n,m| when (a,b)=(1-n,1-m .)
as X pv, [a, b]] [, m] (b) = (), and no equation. For every morphism f:n —m
) otherwise

of P the corresponding generator in P s denoted Oy
The box graphical language is defined as Boxp def (PNO + W) /(Swap, Comp, Tens), where swap,

Comp, Tens are the following equations:

e The Swap equation swap is: Uy, | = ¥2 0 01,1 © 02, pictorially: sp —<©O>—
e The composition equation compy g, associated to two morphisms f :n — k and g : k — m of P, is

Ogos = Ugoldy, pictorially: — ﬂn T — TP — — E: ——. The set of all composition

equations for every f and g is denoted Comp.
o The tensor equation tensys,, associated to two morphisms f:n — m and g : k = | of P, is Oygy =

|
Ym+1 © (O ®Oy) 0 py, pictorially: — @ — = ‘< } The set of all tensor

The Ny-colored prop associated to the box graphical language Bozp is denoted BoxP. Notice that
the box graphical language has one generator for each morphism in P.

From this definition follows directly the existence of a functor B : P — BoxP defined on each morphism
f:n—=mby B(f) = Ap 0 Tpogp (Odf) o T'y. The equations of Boxp state exactly that B is a symmetric
strict monoidal functor. We also have a functor O : BoxP — P defined on generators by O(7gozp (Of)) = f.
We have O o B = idp.

As with scalable construction, we also have a structure theorem:

theorem 4 (Structure of BoxP). For each w € Box(P)[a,b] we have Box(P) F w =Ty 0 B(O(w)) o A,.
A proof is given in

From this given a monochromatic graphical language £ we can define a functor Unboz : BoxLi — SL by
Unboz(w) =T'p 0 51(O(w)) o A,.
lemma 9. Unbozx is an equivalence of categories.
A proof is given in

So BoxL ~ SL, as a consequence, the two constructions are essentially the same.

We will mostly use the box construction on substructures of £ to obtain box generators inside of £. Of
course they are expressible using the usual generators, but they are very useful for compressing diagrams
and speed up graphical computations. We now give several examples of various kinds of boxes and some of
their interactions with scaled generators.

equations for every f and g is denoted Tens.

3.1 Symmetries and permutations

We work in the setting of props so the graphical language of permutation is the free graphical language with
no signature nor equations. Making an exception, we describe here the language in the setting of pros in
order to start with a familiar example.

definition 14 (permutations). The monochromatic graphical language P has signature: >< and equations:

lemma 10. The interpretation [[X]] = (1,2)(2,1) makes P complete for the prop of permutations P where
each morphism f :n — n is a permutation of {1,...,n}. Composition is the composition of permutations
and the tensor product is the disjoint union.

Given any monochromatic prop P there is a unique prop morphism ! : P — P from the prop of permu-
tations. Thus in any scalable prop we can use permutation boxes from BoxP without ambiguity.
3.2 Monoid and functions

definition 15 (Commutative monoid). The monochromatic graphical language M has signature: {)3—, %}

P, :9% p—=— X p—="r—

lemma 11. Fun is the prop of functions where each morphism f : n — m is a function from {1,...,n}
to {1,...,m}. Composition is the composition of functions and the tensor product is the disjoint union.

The interpretation where [[)3—]] is the unique function {1,2} — {1} and [O0—] is the unique function
0 — {1}, makes M complete for Fun.

. . . d
From now on, we will depict boxes as arrows to fit the notation of [7]: —>—] . Every

f ! f
function arrow satisfies: })—D— = :b— and O—=>— = O—.

3.3 Bialgebras and matrices

definition 16 (Commutative bialgebra). The monochromatic graphical language B is defined as M + M°P
quotiented by the equations:

= = = O—@ = |
e - 9L re- o o -0
where the generators of M are in white and those of M°P in black.

lemma 12. [27] M(N) is the prop of integer matrices where each morphism f : n — m is a matriz in
Mxn(N). Composition is the matriz product and the tensor product is the direct sum. The interpretation

[[)3*]] =(1 1), [o—] = (0 € Mixo(N), [[—(]] = (}) and [—@] = () € Mox1(N) makes B complete

for M(N).

A matrix arrow indexed by A : n — m corresponds to a bipartite multigraph between n black vertices
and m white vertices. A is nothing but the biadjacency matrix of this multigraph. Thus, in the presence
of bialgebra, the box construction allows to compress a bipartite sub-diagram into a single matrix arrow.
The properties of matrix arrows generalize the ones of function boxes. The following equations hold for any
matrix A:

A A
—g—c——@: —g—o:—o :’g)-—)—g— o—g—:o—

A + B
Furthermore: —@)—

If we add to B the generator —m— and the equation —O— = —@ O— we obtain the graphical
A —A
language #H of Hopf algebras. # is complete for matrices over Z with —8—>— = —>—.

3.4 Interacting Hopf algebras and linear relations

definition 17 (Interacting Hopf algebras). The monochromatic graphical language TH is defined as B+ B°P
quotiented by the equations:

el a@»? %9@{ o=
i k k

oo O~ 0-0=]
HF:{. AF:} wwzp. —OOf=<

The generators of B are depicted as before and those of B°? are depicted by exchanging black and white.
The number k of parallel wires must be at least 2.

lemma 13. [6] LinRel is the prop of linear relation where each morphism f :n — m is a linear subspace
of Q¥t™. Composition is composition of relation and the tensor product is direct sum. The interpretation:

[o] = {@w a4y =23 lo—1= {0} x {0}, [—] = {(@.y.2) e = y+2}, [0 = {0} x {0},

H)—H ={(z,z,2),z € Q}, [—@] = {0} xQ, [[—(]] ={(z,z,x),z € Q} and [—@] = Q x {0} makes
IH complete for LinRel.

We can interpret matrices in ZH and thus have matrix arrows. Moreover we have a compact structure

A A
on simple wires given by .—< and)—0 We define backward matrix as —@&— =

Backward matrix arrows have the same properties as matrix arrows but in the reverse direction. We also
have:

A is injective & :22>>>_)—D— 54 —Z>—O —0
A is surjective & —ng —Z>—CC & .—D— o—

In practice we will not use linear relation boxes but only matrix arrows since any linear relation factorizes
into matrix arrows. In fact, all the equations and properties given in this section so far can be summed up
in the powerful formula from [24]:

A B C D C
——E— = —ED— & Im(D>=Ker(A —B)

10

4 Examples in graphical languages

In practice, when we identify a substructure in a graphical language we can use the scalable technics to
manipulate boxes. However, in general those are not free and we can have extra equations between boxes.
Moreover, sometimes the structures are a little different than expected and thus some adjustments need to
be made on the properties of boxes. We illustrate this by considering three concrete examples of bialgebras
from categorical quantum mechanics. They appear respectively in the ZH, ZW and ZX-calculus. Notice that
we use the definitions of these bialgebras given in [8] which are essentially equivalent, but may slightly differ
from the original ones. Each of the three graphical languages has an interpretation which make it complete
for the prop of qubits where each morphism f : n — m is a matrix in Mgm on (C). The composition is the
matrix product and the tensor is the tensor product of matrices. A basis of C2" is denoted by the |2) where
x is a binary word of size n. e; is the binary word with 0 everywhere except in the ith coordinate where it
is 1.

We recall that a bialgebra corresponds to matrices over the semiring (N, -+, x). The three bialgebras

10
. 0 0
share the same comonoid defined by [[—(]] =10 o and [—e] = (1 1)
0 1
The ZH bialgebra is defined by: [[)%]] (PO d o = (¢
8 v o001 —\o)
We have %()F = —, which essentially means “2=1". As a consequence, we are working with

matrices over the semiring (N, +, x) /(2 =1)- This is exactly the boolean semiring (V, A). There is no more

quotienting since Ale;) = |A;) where A; is the jth column of A. All {0, 1}-matrix arrows are different.

The ZW bialgebra is defined by [[)37]] = (é (1) (1) 8) and Jo—] = ((1))

We have = %()k Thus, we are working with matrices over the semiring (N, +, x) /(2 =

However, not all {0, 1,2}-matrices have a distinct interpretation. If A is a {0, 1}-matrix then Ale;) = |A;),
but if A has a 2 in the jth column then for all « such that 2; = 1 we have Alz) = 0. We cannot distinguish
the coefficients in a column with a 2. So the arrows corresponds to matrices with only {0, 1}-coefficients
except in some columns which are full of 2s.

The ZX bialgebra is defined by [[)%]] - <(1) (1) (1) (1)) and [o—] = <(1))

We have %)CF = —0 @—. We are working with matrices over the semiring (N, +, %) /(2 =0)-

This is the field Fo. There is no more quotienting since Ale;) = |A4;). All {0, 1}-matrices have a distinct
interpretation. As the presence of a field suggests we can extend ZX into a scaled interacting Hopf algebras.
This means the equational theory of ZH holds up to some scalars. We can still work with linear relations
over Fy but the main equations needs to be renormalized as follow:

(%)*
A B C D C
— = = —E>— & Im <D> =Ker (A B)

Where k < dim (K er (g)) and [*] = % This equation subsumes most of the properties of the
SZX-calculus of [1].

11

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum computations
involving classical non-linearity. In Peter Selinger and Giulio Chiribella, editors, Proceedings of the 15th
International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, volume 287
of Electronic Proceedings in Theoretical Computer Science, pages 23—42. Open Publishing Association,
2019. doi:10.4204/EPTCS.287.2.

John C Baez, Brandon Coya, and Franciscus Rebro. Props in network theory. Theory and Applications
of Categories, 33(25):727-783, 2018.

Michael Barr and Charles Wells. Toposes, theories, and triples. Reprints in Theory and Applications of
Categories, 12:1-287, 2005.

Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Diagrammatic
algebra: from linear to concurrent systems. Proceedings of the ACM on Programming Languages,
3(POPL):1-28, 2019.

Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstraction for signal flow graphs. ACM
SIGPLAN Notices, 50(1):515-526, 2015.

Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Interacting hopf algebras. Journal of Pure and
Applied Algebra, 221(1):144-184, 2017.

Titouan Carette, Dominic Horsman, and Simon Perdrix. Szx-calculus: Scalable graphical quantum
reasoning. In /4th International Symposium on Mathematical Foundations of Computer Science (MFCS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Titouan Carette and Emmanuel Jeandel. A recipe for quantum graphical languages. 47th International
Colloquium on Automata, Languages and Programming, 2020.

Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Horsman. Graphical
structures for design and verification of quantum error correction. arXiv preprint arXiv:1611.08012,
2016.

Apiwat Chantawibul and Pawel Sobociriski. Monoidal multiplexing. In International Colloquium on
Theoretical Aspects of Computing, pages 116-131. Springer, 2018.

Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and diagrammatics.
New Journal of Physics, 13(4):043016, 2011.

Pierre-Louis Curien. The joy of string diagrams. In International Workshop on Computer Science Logic,
pages 15—22. Springer, 2008.

Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Logic and Algebra, pages 97-124.
Routledge, 2017.

Philip Hackney and Marcy Robertson. On the category of props. Applied Categorical Structures,
23(4):543-573, 2015.

Amar Hadzihasanovic. Zw calculi: diagrammatic languages for pure-state quantum computing. Logic
and Applications LAP 2018, page 13, 2018.

Aleks Kissinger and David Quick. Tensors,!-graphs, and non-commutative quantum structures. New
Generation Computing, 34(1-2):87-123, 2016.

Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147-163, 2004.

12

http://dx.doi.org/10.4204/EPTCS.287.2

[18] Yves Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra,
184(2-3):257-310, 2003.

[19] Saunders MacLane. Categorical algebra. Bulletin of the American Mathematical Society, 71(1):40-106,
1965.

[20] Filippo M Miatto. Graphical calculus for products and convolutions. arXiv preprint arXiv:1903.01366,
2019.

[21] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[22] Teimuraz Pirashvili. On the prop corresponding to bialgebras. Cahiers de topologie et géométrie
différentielle catégoriques, 43(3):221-239, 2002.

[23] Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for physics,
pages 289-355. Springer, 2010.

[24] Fabio Zanasi. Interacting hopf algebras: the theory of linear systems. PhD thesis, arXiv preprint
arXiv:1805.03032, 2018.

A Proofs

A.1 Proofs for section 1

Proof of Lemma[l. We will use the string diagrams notation for natural transformations. See [12]. A
U F Xy

translation is pictured: \C% . The soundness condition states that there is a prop morphism Bold(0)

Y
Y
N Y
Bold(0) .. .
such that: 9 = - . The composition between to translations 6 : L — Y and v: Y — K
L
)
Fe F X

is defined as ~# def s, © Ty o8, pictorially:

F U Xk
U F X
% def d
by
‘ i
X

We need to check the soundness condition for the composition. We have:

13

Bold(~y Bold(~y
Bold(0

F X, F 3.

So the soundness condition is satisfied with Bold(~6) = Bold(~y) o Bold(#).
Given three translations 0 : L —)Y, v:)Y — K and w : K — M we have:

F UXpm

F UXm

w(vl) = w = w = (wy)f

Xc Xe
So the composition is associative.

The unit is defined as idy def 7xy,, pictorially:
U F Xy U F Xy

/
R

Ey Ny
The soundness condition is satisfied: @ Aﬂ' ¥ and we have Bold(idy) = idy.
F X

We have:

14

F UXy

U F Xy
iy 0 = :% o
X
0
Xr
and
F U Xk
U F X¢
s idy = :\% -
Xy
Yy

So GL is a category and setting Bold(L) = L, we have a functor Bold : GL — C-Prop.
Since C-Prop is equivalent to the Eilenberg-Moore category of T then each prop P is a coequalizer of
free props [3]. An explicit coequalizer is:

FUEP €p
FUFUP__ (FUP—— P
€FUP

P P
In fact graphically: /? \ = %\ .
M M

FUFUP FUVFUP

Let’s take ¥p < UP, Ep Y UuruP, rp “ idpurup and Ip % Fnye.. We have: eppp o lp =
FUP

F
erup © Fye, = Q// \ // \ = FUep. Thus we can define p (Zp,Ep,lp,rp)
M N

and we have Bold(P) ~ P So Bold is essentlally surJectlve
Let s be a sectlon of my. Given a prop morphism f : Bold(L) — Bold(Y) we define a translation
Y

™y

0f: L —) by 0 aef Usfrzons,. We check the soundness condition: 7y o (eps,, o Ffy) = 0y =

F X

15

Ty
Y
. f
f = _— fome. This gives us Bold(fy) = f. So Bold is full. O
Uy £
F X,
F X
Proof of Lemma[3 Since coproducts commute with coequalizers we have the following coequalizer:
(erz, 0 Flg) + (epn, o Fly) T+ Ty
F(E¢ + Ey) F(S, +%y) L+Y

(eps, o Fre) + (epx, o Fry)

Furthermore: Fiy,. oeps, o Flp = €rs, .y 0 FUFLy, oFl,.
And so: EFE£+3; OFl£+y = GFZLer OF[UF(LEL)OZL;,UF(LEL)Oly] = [5F25+y OFUF(LEE)Olg,EFZE+y e}
FUF(LEC) Oly] = [FLEL OCEFy, OFlg,FLEy OEFEy OFly} = (6F2£ OFZ/;) + (GFEy OFly).
O

Proof of Lemma[3 We use the following diagram:

€rs, o Fl
FE FX,
erpx, o Fr
FLE
erx, o Fllg, 1] "L p
F(E; +E) Fy, —*— Bold(L/E)
GFEEOF[TL,T] " N
Fug, ™ \\\g
CFZLOFZL', Tr : f h
FE[; FE[;—> L — K
GFELOFTZZ

First we have 7T£/E oepy, o Flp = 7T£/E oepy, o Frp and thus there is a unique 7 : L — Bold(E/E)
such that Tom, = WL/E. Then: mromgoepy, o Fl=momgoeps, o Fr.

It remains to show the universal property. Let f : L — K be a prop morphism such that: fomsoeps, o
Fl=fonrpoepxy, o Fr.

We also have forsoepy, o Fly = fomsoeps, o Frp and then the universal property of the coproduct
gives us formgoepy, o Flig,l] = fomgoeps, o Flre,r).

So there is a unique g : Bold(£ /F) — K such that: for, =g OWﬁ/E =gomoms. And since m, is an
epimorphism: f=gom. O

A.2 Proofs for section 2

Proof of Lemma[3 We will show that for any diagram w : @ — b we have W+ w = I'y 0o 0 0 A, where o
is a permutation. To do so we define, for each wire in the diagram, its situation as a couple of elements
of {i,0,d,g}. The situation of a wire describes what the wire is linked to what: i stands for input, o for
output, d for non identity divider, and g for non identity gatherer. For example, a wire which links an input

16

to an output has situation (¢,0) and a wire linking a gatherer to a divider has situation (g,d). The possible
situations for a simple wire are: (i,0), (4, 9), (d,0), and (d, g). The possible situations for a big wire are the
same plus (i,d), (d,d), (g,0), (9,9) and (g,d).

We say that a diagram is expanded if it contains no big wire in one of the bad situations which are
(9.d) and (d, g).

The expanded conditions enforce a unique structure. In fact the only expanded diagrams are exactly the
T'y o0 0A,. Thus it only remains to show that any diagram can be rewritten into an expanded one.

We proceed by induction on the size of the biggest big wire in a bad situation.

If there are no such wire then we are already in expanded form. Else, we consider the biggest wires in
a bad situations. If a wire is in situation (g,d) then the elimination rule can be applied and decreases
strictly the size of the big wires in bad situations. If a wire is in situation (g, d) then the expantion rule
can be applied and decreases strictly the size of the big wires in bad situations. Thus all the wire in bad
situations can be removed and replace by wire with strictly smaller size. Then by induction all diagrams
can be rewritten into expanded form.

O

Proof of Lemma[j, By induction. S; is clearly a functor. The expansion equation ensures that Sy (id,) =

Proof of Lemma[j Given a generator z € Xp we have S (7p(x)) = msp(z) = mp. O

Proof of Lemma[3 We use the same method as in the prof of the rewiring theorem. In SL, there are new
situations: s represent a simple generator and S. The new possible situations for a simple wires are (i, s),
(d,s), (s,s), (s,g9) and (s,0). For a big wire the new situations are (i, S), (d,5), (g,95), (S,5), (S, 9), (S,d)
and (S,0).

A diagram of SL is in expanded form if it contains no big wire in one of the bad situations which are
(9,d), (d.9), (1,5), (d,9), (9.9), (5,5), (5,9), (5,d) and (S, 0).

So an expanded diagram contains no big generators and is of the form w = T'yovo A,. Where v contains
no big wire, so S1({v}) = v. Moreover S1({w}) = S1({Tpov o As}) = S1({Ts}) 0 S1({v}) 0 S1({AL}) =
S1({v}) = v. So for an expanded diagram w =T’y 0 S;({w}) 0 A,.

It remains to show that any diagram can be rewritten in expanded form. We proceed by induction on
the size of the biggest big wire in a bad situation.

If there is no such wire then we are already in expanded form. Else, we consider the biggest wires in a
bad situations.

First we apply the expansion rule to remove all the biggest wires in situation (¢,.5), (d,S), (S,S5), (S,g)
and (5,0). If a wire is in situation (g, d) then the elimination rule can be applied and decreases strictly
the size of the big wires in bad situations. If a wire is in situation (g, d) then the expantion rule can be
applied and decreases strictly the size of the big wires in bad situations. If a wire is in situation (g,.5) or
(S,d) we apply the corresponding unfold equation. This decreases strictly the size of the big wires in bad
situations. Thus all the wire in bad situations can be removed and replace by wire with strictly smaller size.
Then by induction all diagrams can be rewritten into expanded form.

O

Proof of Lemma[g The diagram clearly commutes. Now let f : K — 1y, and ¢ : K — L be two functors
such that []o f =log. We define a functor h : K — SL. Given a morphism ¢ € Kla,b] we take h(t) =
Tay0S1(g(t)) o Agpy. This is well defined since [f(a)] = g(a). We have {h(t)} = {T')0 S1(g(t)) o App)} =

17

{S1(9(t))} = g(t) and !(h(t)) =!(Tfa) 0 S1(9(t)) 0 Arwy) ='f(a),s6) = f(t). Now let I : K — SL be another
functor such that {_} ol = g and ! ol = f. we have I(t) € SL[l(a),l(b)] the structure theorem gives us:
I(t) = Tyay 0 S1({U1)}) 0 Dyy = Tg(a) © S1(9(t)) © Afpy. So I = h. The diagram is a pullback square. [

Proof of Lemma[] By construction C, is the pullback of ! : C — N and [] : 1y, — N. Thus [] lift to a
unique functor [], : LL — C, satisfying {_-}o[.], = [-] o {-}. This functor is an No-colored prop morphism.
Furthermore since ! and {-} are jointly monic then -], is faithful iff [] is faithful. O

Proof of Lemma[8 We consider the wire striper functor {_} : SL — L. It is clearly essentially surjective. It
is also full and faithful since it induces a bijection between SL[a, b] and L[a], [b]] by the structure theorem.
So it is an equivalence of category and L ~ SL. O

A.3 Proofs for section 3

Proof of Lemmal[j For a diagram w : a — b we define '’ = AaowoTy. We have I'y 0 B(O(w)) o Ap =
IaoB(O(Taow o Ap))oAp =T50B(O(w')) o Ap. Thus we only need to show that B(O(w')) = w’ for all
Wwin-1—=m-1.

A diagram of BoxP of type n-1 — m -1 is in boxed form if it is of the form A,, o0y o I',.

A diagram in boxed form satisfies B(O(w’)) = ' thus we just have to show that any ' :n-1 — m -1
can be rewrite into boxed form.

First we use the swap rule to transform all swaps into boxes. Then the diagram can be put in a sequence
of the form wgobgo---owp 0by owpt1, where the w;s are in W and the b;s are of the form id. ® O ® idg.
We use the tensor rule on each b; until we obtain a new sequence wgj o Oy, o -+ 0wy, o0y, owy . The
rewiring theorem gives us w’ = A, o Oy, o --- 00y, oI',. Finally setting f = foo--- o fj, the composition
rule gives w’ = A, o 0f oT',, a diagram in boxed form. O

Proof of Lemma[4 Unbox is an Ny-colored prop morphism so it is essentially surjective.

Let a, 8 € BoxL[a, b] be two diagrams such that Unbox(«) = Unbox (). We have S1(0(a)) = S1(O(5)),
then applying the wire stripper functor O(a) = O(f). The structure theorem of BozL finally gives us a = .
Unbox is faithful.

Given w € SL[a, b], the structure theorem gives us w = I'p 0 S1({w}) 0 A,

Then Unbox(T'p 0 B({w}) 0 Ap) =T 051 (O(B({w}))) 0o Ag =T'p 0 S1({w}) 0 Ay = w. Unbox is full. O

18

	Colored graphical languages
	Colored props
	String diagrams
	Graphical languages

	The scalable construction
	The wire calculus
	The scalable construction

	The box construction
	Symmetries and permutations
	Monoid and functions
	Bialgebras and matrices
	Interacting Hopf algebras and linear relations

	Examples in graphical languages
	Proofs
	Proofs for section 1
	Proofs for section 2
	Proofs for section 3

