Rodrigue Aimé

Djeumen Djatcha
email: djeumenr@yahoo.fr

Bruce Watson

Eric Badouel

Eds. Oumar Niang

A role-based collaborative process design on crowdsourcing systems

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A role-based collaborative process design on crowdsourcing systems

ABSTRACT. Crowdsourcing is a collaborative business process model, in which tasks are carried out by a crowd. In crowdsourcing systems, there are two types of stakeholders namely, requesters who outsources tasks, and the crowd or contributors, performing those tasks. We consider a stakeholder as an actor or a standalone software component, evolving on a platform and having both mechanisms of interaction with its environment and business skills. A set of stakeholders interacting in a dynamic context for solving a problem, is a distributed collaborative system, and we term it crowsourcing system. In such a system, the role concept is central, because each stakeholder must have a specific framework within which he collaborate. Traditionally, collaborative systems lose flexibility if their design is role-based, because only static role description mechanisms based on intuitive concepts are available. We propose in this paper, an improvement consisting of four things: [START_REF] Caetano | Business Process Decomposition -An Approach Based on the Principle of Separation of Concerns[END_REF]defining clearly what an outsourceable task or crowd task is, (2)specifying roles clearly and rigorously, while ensuring flexibility for collaboration, [START_REF] Brabham | Using Crowdsourcing In governement[END_REF]providing role switching mechanisms and, (4) providing an abstract basis, for crowdsourcing system design and workflow monitoring and checking mechanisms, for potential activities, dynamically carried out by a system.

RÉSUMÉ.

Le crowdsourcing est un modèle de processus métier collaboratif, dans lequel les tâches sont externalisées. Dans ces systèmes, on distingue deux types d'intervenants: les demandeurs qui externalisent des tâches et la foule ou contributeurs qui effectuent ces tâches. Nous considérons un intervenant à la fois comme un acteur et un composant logiciel autonome, évoluant sur une plateforme, disposant de mécanismes d'interaction avec son environnement et de compétences métiers. Un ensemble d'intervenants interagissant dans un contexte dynamique pour résoudre un problème, est un système collaboratif distribué,désigné par système de crowdsourcing. Dans un tel système, le concept de rôle est central, car chaque intervenant doit disposer d'un cadre spécifique dans lequel il collabore. Traditionnellement, les systèmes collaboratifs perdent en flexibilité si leur conception est rôle-centrée, car seuls les mécanismes statiques de description de rôles, basés sur des concepts intuitifs sont disponibles. Nous proposons dans cet article, une amélioration consistant en quatre choses:

(1)définir clairement ce qu'est une tâche externalisable, (2)spécifier les rôles clairement et rigoureusement, tout en assurant la flexibilité de la collaboration, (3) fournir des mécanismes de changement de rôle et, (4) fournir une base abstraite, pour la conception de systèmes de crowdsourcing et les mécanismes de monitoring et de vérification de workflows, pour les activités menées dynamiquement par un système.

KEYWORDS :

Role-based approach, Dynamic workflow, Separation of concerns, SOD, Interface of role, Crowdsourcing Systems, Distributed collaborative systems, Guarded attribute grammar.

MOTS-CLÉS :

Approche rôle-centrée, workflows dynamiques, séparation de préoccupations, SOD, interface de rôle, systèmes de crowdsourcing, systèmes collaboratifs distribués, GAG.

Introduction

Crowdsourcing concept, introduced by Jeff Howe [START_REF] Howe | The Rise of Crowdsourcing[END_REF], is a collaborative business process model, in which tasks are carried out by a crowd. Simply, an organization can request an online community for a voluntary accomplishment of a task, according to what both parties have a mutual benefit. In a crowdsourcing system, organizational objectives are top-down, while creative activity is bottom-up organized; we therefore say crowdsourcing is a mixed mode organized process [START_REF] Brabham | Using Crowdsourcing In governement[END_REF]. Crowdsourcing processes are based on three pillars, namely: requester, crowd and crowd task [START_REF] Hosseini | The four pillars of crowdsourcing: A reference model[END_REF]. Requester is a natural or legal person, who requests the power and wisdom of the crowd, for the performance of a given service. The requester, among other things, can encourage contributors by gratification or social motivation (public recognition), outsource tasks, check the compliance of results with predefined standards and finally ensure confidentiality on contributors data. Crowd is a community of contributors, taking part in a crowdsourcing activity, whose characteristics are: diversity (variety of skills,spatiality,...), anonymity, importance, completeness or adequacy. Crowd task is an activity in which the crowd participates. It can be a large-scale data collection, a co-creation task, or an innovation task. Characteristics of a crowd task are: modularity, complexity, solvability, automaticity, contributor-centric. Crowd skills orchestration, consists of distributing tasks to contributors, aggregating results and continuing the process based on the partial results obtained. According to task complexity, acceptance of the result and gratification granted criteria, there are mainly 3 strategies for orchestrating crowd services [START_REF] Tranquillini | Modeling, Enacting, and Integrating Custom Crowdsourcing Processes[END_REF][START_REF] Kucherbaev | Crowdsourcing Processes: A Survey of Approaches and Opportunities[END_REF]: market or strategy for large scale micro-tasking; contest or strategy for co-creativity, auction or strategy for innovation.

A crowdsourcing system is an environment, where a crowdsourcing process is deployed; it integrates practices of business process modeling, inspired by service-oriented architecture (SOA) moreover, service calls may not be hierarchically organized; it establishes connection between crowd, individual actors and machines. It allows services composition by assembling a suite of small specialized independent services, offering respectively modular decomposition basis for services, an architecture organized around business skills, focusing on product but not the project. Communication here is either Restful, SOAP like or by messages through channels; governance and data management are decentralized. Defining properly a stakeholder requires specifying two things: (i) its functional goal or business skills, i.e interface (services he requires and services he provides) and business rules (functionalities targeted by the stakeholder); (ii) its infrastructure mechanisms or intrinsic skills i.e storage for persistence, communication mechanisms, sensing tools, etc [START_REF] Edwards | Policies and Roles in Collaborative Applications[END_REF]. In this work our interest is crowdsourcing processes design for large scale micro-tasking. We consider a crowdsourcing system, as a set of independent stakeholders providing precise services. Stakeholder infrastructure is thus perceived as an actor, while its functional goal is a role. In fact, in such a system, each actor can be assigned several roles and several actors could play one instance of role. Actors may not have same intrinsic skills, and several occurrences of a role could exist at the same time in the system. Considering all role in a given context of a system, we get a formal reasoning basis for business goals of the whole system. As crowdsourcing system use case, consider a city participatory management case [START_REF] Benouaret | CrowdSC: Building Smart Cities with Large-Scale Citizen Participation[END_REF], with processes depict on figure 2, where citizens (BOB, JANE, ALICE,etc.) via the urban information system (URBANIS), provide information on the state of city roads and determine which ones to maintain as a priority. Cleaning is done (by CLEANING_CO) on the targeted roads, while municipal executive (MUNICIPALEXECUTIVE) contracts with a company (ROAD_CO) in order to carry out the work. Figure 1 -A crowdsourced road maintenance activity Role concept is central in any collaborative system, as each actor must have a clear framework within which he collaborate. A role specifies both what the system expects from actors, but also what actors expects from the system; thus avoiding that an actor be overwhelmed by information (or tasks) not necessary. Traditionally, collaborative systems lose flexibility as soon as their design is role-based, because only static role description mechanisms, based on intuitive concepts, are available [START_REF] Zhu | Role mechanisms in collaborative systems[END_REF], and certainly, a dynamic context of collaboration, further complicates a design of such systems, since entities involved, evolve over time in number and in skills. An improvement could be to provide four things: [START_REF] Caetano | Business Process Decomposition -An Approach Based on the Principle of Separation of Concerns[END_REF]define clearly what an outsourceable task or crowd task is, (2)specify roles clearly and rigorously, while ensuring flexibility for collaboration, (3)provide role switching mechanisms and, (4) provide an abstract basis, for crowdsourcing system design and workflow monitoring and checking mechanisms. This design approach implies a rigorous definition in advance, of the set of roles and the relationships between them, necessary to describe the functioning of a target domain. Role being a particular concern in the system. In fact, a role-based design approach is similar to a separation of concern technique [START_REF] Caetano | Business Process Decomposition -An Approach Based on the Principle of Separation of Concerns[END_REF][START_REF] Czarnecki | Generative programming -methods, tools and applications[END_REF], applied to business process design. It is implemented by specifying activities defining process's steps, as well as flows describing coordination of these activities, as it may be done with BPMN orchestration or UML collaboration or activities diagrams.

Role & role interface modeling and basic mechanisms

Common definitions and terminologies -a role type is the perception one actor has of another actor [START_REF] Riehle | Role Model Based Framework Design and Integration[END_REF]. A role type is specified uniquely, and an actor plays at a given time a role specified by a role type. A role is therefore defined as one of the instances of a given role type, played by an actor. It may not always be easy to differentiate between a role and an actor. For instance, consider the MAYOR and CSOFFICER entities, as parts of collaboration within a process of civil status certificate issuing at appendix A1. Being able to distinguish between these entities, which is role type (or simply role) and which is actor, can be rather complex.The sharp distinction between an actor and a role type is based on both concepts of foundation and semantic rigidity [START_REF] Guarino | Concepts, attributes and arbitrary relations: Some linguistic and ontological criteria for structuring knowledge bases[END_REF]. An entity is considered to be founded, if its specification implies a dependency or relationship with another entity. Rather it is semantically rigid, if its identity depends on certain characteristics, and can not exist without them. Thus, it will be said that MAYOR is unfounded and semantically rigid (and therefore MAYOR is an actor), whereas CSOFFICER is founded and semantically non-rigid (CSOFFICER is a role); in other words, a MAYOR plays the CSOFFICER role. Hence an actor is unfounded and semantically rigid, while a role is founded and semantically non-rigid.

Role and crowdsourcing grammatical tasking model -In this work we will consider, role type and role as equivalents, simply called role. A role specifies the set of actions a given actor can take in the system. Definition 2.1 A role r is given by a couple (G, R) where G is a guarded attribute grammar (GAG) 1 [10] specifying role r business skills, and R it's associated interface of role.

Business skills are expressed as grammar production rules (or business rules), describing job decomposition, in the form

s 0 → T 0 • • •T m s 1 • • • s n s 0 • • • s p (1)
where s 0 is a defined service, s

i → T 0 • • •T m (0 ≤ i ≤ p) i.
e they are type of services requiring only actors intrinsic skills, to be carried out and so, they are autonomous services. Consider a business rule s 0 → T 0 • • •T m one may ask the difference between services s 0 and s 0 . In fact s 0 is a potentially outsourceable task, it can be defined and used in the same role (or used by another role); rather s 0 is an outsourced task, so it is only defined in an autonomous role, term crowd role, and only used by a requester role. By convention, a crowd role only define outsourced tasks, and we say a crowd role supply only crowd services. For instance, if we reconsider the crowdsourcing system described on figure 2, Any SENSOR, can snap an object, in a predefined context (state of the object) and (geographic) location (clSnap) on the one hand or quite simply according to the circumstances of the moment (snap), following business skills expressed by business rules in [START_REF] Zhu | Role mechanisms in collaborative systems[END_REF].

clSnap → CON T EXT LOCAT ION SN AP snap → SN AP (2)
A CITIZEN according to business skills in rule (3), can tag a picture and assess object, in both cases by inputting some data.

tagP icture → IN P U T assessObject → IN P U T (3)
Lastly according to rule (4), an IS i.e information system is responsible of data collection, selecting targeted road for maintenance, and sending some alerts (rules are not yet defined).

selectRoad → clSnap snap tagP icture alert → ε (4)
Interface of role -an interface of role [START_REF] Badouel | Interfaces of Roles in Distributed Collaborative Systems[END_REF][START_REF] Badouel | A Calculus of Interfaces for Guarded Attribute Grammars[END_REF] is some abstraction of GAG G associated to a role, specifying what services are provided, which external services are required to carry them out and an over-approximation of dependencies between required and provided services termed potential dependencies. Interface disregards internal tasks. See [START_REF] Badouel | A Calculus of Interfaces for Guarded Attribute Grammars[END_REF] for interfaces derivation from a GAG.

Definition 2.2

Let Ω a fixed set of services. An interface

(• R, R, R •) consist of a fi- nite binary relation R ⊆ Ω × Ω of disjoint sub-sets • R and R • from Ω, such that • R = R -1 (Ω) = {A ∈ Ω | ∃B ∈ Ω (A, B) ∈ R} and R • ⊇ R(Ω) = {B ∈ Ω | A ∈ Ω (A, B) ∈ R}.
Set R • represents services provided (or defined) by the interface and • R is the set of required (or used) services. Relation (A, B) ∈ R indicates that service B potentially depends upon service A. Thus A ∈ R • \ R(Ω) is a service provided by the interface that requires no external services. An interface is closed (or autonomous) if relation R (and therefore also • R) is empty. Thus, a closed interface is given by all services it (autonomously) provides.

• IS = clSnap, snap, tagP icture IS = (clSnap, selectRoad), (snap, selectRoad), (tagP icture, selectRoad), (_, alert)

IS • = {selectRoad, alert} (5)
An interface provide several basic operations [START_REF] Badouel | Interfaces of Roles in Distributed Collaborative Systems[END_REF][START_REF] Badouel | A Calculus of Interfaces for Guarded Attribute Grammars[END_REF] as:

Restriction (): Let O ⊆ Ω a subset of services. A restriction of interface R to O denoted R O is given by R O = {(A, B) ∈ R | B ∈ O} With (R O) • = O ∩ R • and • (R O) = R -1 (O ∩ R •) respectively.
Considering a role r interfaced by R, and a subset of services O, the restriction operation reconfigures role r so that, only its provided services elements of O are enabled; useful when just some skills of a multi-skilled role are needed.

Cascade composition test (): Let two roles R 1 and R 2 ; cascade composition of those roles holds iff R

• 1 ∩ • R 2 = ∅ ∧ • R 1 ∩ R • 2 = ∅. We denote R 1 R 2 their cascade product test (or R 2
R 1 since this operation is commutative). When cascade composition holds, the resulting role required services set is

(• R 1 \ R • 2) ∪ • R 2 , and provided services set is R • 1 ∪ R • 2 . Direct Product(×) Let R 1 and R 2 two composable role interfaces. If R • 1 ∩ • R 2 = ∅ and R • 2 ∩ • R 1 = ∅ , the composition is the product (direct) of R 1 and R 2 , denoted by R 1 × R 2 . Note that R 1 × R 2 = R 1 ∪ R 1 and so • (R 1 × R 2) = • R 1 ∪ • R 2 and (R 1 × R 2) • = R • 1 ∪ R • 2 .

Collaborations and collaboration schemes

In a targeted domain, a context of collaboration is the set of roles available instantly for the realization of some activities. A context of collaboration is dynamic, i.e roles involved vary over time. For instance, we will consider the context on Figure 3 Appendix A4, as a running collaborative context, for the next parts of this work. We talk of collaboration between two roles, when there is a service dependency between them. This dependency can be direct, in which case it is a direct collaboration; likewise, it can be indirect being an indirect collaboration.

Definition 3.1 Two roles r 1 = (G 1 , R 1) and r 2 = (G 2 , R 2) are in a direct collaboration iff R 1 R 2 holds. We denote (• R 1 ∩ R • 2 , r 2 , r 1) that collaboration, labeled by • R 1 ∩ R • 2
, the set of services for which r 1 and r 2 collaborate; r 1 being the services requester, while r 2 is the provider of those services. Thus r 1 and r 2 will be in an indirect collaboration iff

∃r k = (G k , R k) such that R 1 R k R 2 holds.
Potential direct collaborations of a role -a potential direct collaborations of a role, is a graph showing all potential services providers for that role in a collaborative context. Let r 0 be a given role; algorithm 1 (Appendix A2), determines potential direct collaborations (or potential dependencies) of r 0 , in a context R, in which r 0 is member and such that ∀r i ∈ R, r i = (G i , R i). Applying algorithm 1 on context (figure 3), will result to graph C = {({x}, r 0 , r 3) , ({x}, r 4 , r 3) , ({t}, r 2 , r 3) , ({w}, r 1 , r 3)}.

Collaboration schemes -from any context R, a collaboration scheme or induced potential dependencies graph is obtained by grouping step by step, all the potential dependencies of the various roles in the context, as implemented by the algorithm 2. Applying that algorithm on the previous context R, may leads to collaboration scheme C = {({a}, r 5 , r 0) , ({m}, r 6 , r 4) , ({y}, r 0 , r 2) , ({z}, r 1 , r 2) , ({w}, r 1 , r 3) , ({x}, r 4 , r 3) , ({x}, r 0 , r 3) , ({t}, r 2 , r 3)}.

Potential workflow of a service -the induced workflow of a service s 0 , describes how this service will be issued; it is implemented as a dependency subgraph, derived from the induced potential dependencies graph (iP DG) of the role providing service s 0 . Consider a predicate depend(l, s 0) with l, s 0 ∈ Ω, which returns true if service s 0 depends on the service l and f alse otherwise. We define function dependOn(s 0 , R) = {(L, r) | L ⊂ Ω * , r ∈ R and ∀l ∈ L depend(l, s 0)} which seeks in context R, all the roles involved in the process of providing service s 0 , as well as associated required services, and returns a list of couples made up of a required services set L and the role r requesting these services. We also let iP DG(R, ∅) L k = {(l 0 , r i , r j) | ∀(L k , r k) ∈ dependOn(s 0 , R), l 0 ∈ L k and r j = r k } be a filtering made on the induced potential dependencies graph, concerning collaborations (l 0 , r i , r j) such as for any couple (L k , r k) ∈ dependOn(s 0 , R), r k being requester of service l 0 with (l 0 ∈ L k et r j = r k). Algorithm 3 (Appendix A2), generates the potential workflow of a given service s 0 , from a context R, having an associated induced potential dependencies graph (iP DG(R, ∅)). For instance, the potential workflow of the service u, obtained from that algorithm in the context of previous figure 3, is given by workf low({u}, R) = { (x, r 4 , r 3), (x, r 0 , r 3), (t, r 2 , r 3), (m, r 6 , r 4), (a, r 5 , r 0), (y, r 0 , r 2), (z, r 1 , r 2)} Factorizing a workflow -a collaboration scheme may include several alternatives in supplying the same service, as the one of figure 4(a)-Appendix A3, where service x is provided by roles r 0 and r 4 respectively. In a given context factorizing, is to be able to transform cases such as for a role r 3 , requesting service x, so that we have service x potential suppliers list; as it is shown on figure 4(b)-Appendix A3.

Definition 3.2 An F -collaboration is a triplet (• R 0 ∩ R • i , {r i , • • • r k } , r 0), where r 1 , • • • r k are potential providers of services elements of set • R 0 ∩ R •
i and r 0 is the requester for those services (with

• R 0 ∩ R • i = • • • = • R 0 ∩ R • k)
, for some i and j. A factorized collaboration scheme is then a potential dependency graph, possibly consisting of collaborations (i.e

(• R 0 ∩ R • 1 , r 1 , r 0)), and F -collaboration ((• R 0 ∩ R • i , {r i , • • • r k } , r 0)) if necessary. Let P (C) ⊆ P(C)
a subset of parts of set C, where elements are grouped subsets of all identically labeled collaborations. Algorithm 4 transforms a C collaborations scheme to a C factorized collaborations schemes.

Activity in collaborative context

Definition 4.1 An activity for a given service s 0 , in a context R, is a couple denoted activity s0 = (s 0 , workf low({s 0 }, R)), and is the process of supplying service s 0 , described by workf low({s 0 }, R).

Let us consider the process of delivering service u, given by previous workf low({u}, R). An activity can have several occurrences of the same role (indifferently supplier or requester). If two roles r 0 and r 1 respectively, provide the same service s 0 within an activity, then they do not necessarily use the same required services i.e. rP DG(r 0 , R) = rP DG(r 1 , R). Proposition 4.1 Two activities activity s0 and activity s1 are equivalent, and we denote by activity s0 ≡ activity s1 , iff s 0 = s 1 and workf low({s 0 }, R) ≡ workf low({s 1 }, R) i.e they deliver the same service in context R, with s 0 , s 1 ∈ Ω.

Proof 1 Consider R 1 . . . R m as pairwise composable role interfaces involved in a given workf low({s 0 }, R) and R 1 . . . R n those of workf low({s 1 }, R) respectively, with m = n. Let R = m i=1 R i and R = n i=1 R i their respective cascade compositions. By proposition 4.5 in [START_REF] Badouel | Interfaces of Roles in Distributed Collaborative Systems[END_REF][START_REF] Badouel | A Calculus of Interfaces for Guarded Attribute Grammars[END_REF], those compositions are associative. As by hypothesis those workflows render same services, we have s 0 = s 1 and s 0 ∈ R • ∩ R • , two cases can be distinguished: whether m > n and then R ⊆ R, we say R realizes service s 0 with less business rules than R; or m < n so R ⊆ R and as R , R realizes service s 0 with less business rules.

Atomicity of activities -an activity for a given service s 0 , is said to be atomic [START_REF] Caetano | Business Process Decomposition -An Approach Based on the Principle of Separation of Concerns[END_REF], if it has only one occurrence of role supplier for each required service in that activity. For example, the atomic forms of previous activity activity u are respectively: activity u0 = (u, [(x, r 0 , r 3), (t, r 2 , r 3), (a, r 5 , r 0), (y, r 0 , r 2), (z, r 1 , r 2)]), activity u1 = (u, [(x, r 4 , r 3), (t, r 2 , r 3), (m, r 6 , r 4), (y, r 0 , r 2), (z, r 1 , r 2)]) Definition 4.2 An activity activity s0 = (s 0 , workf low(s 0 , R)) is atomic, iff for all (s 0 , r i , r j) and (s 0 , r k , r j) in workf low(s 0 , R), r i = r k .

Activity decomposition -An activity can be progressively fragmented into a set of atomic activities. The principle of decomposition, is based on roles (concern), and states that, as long as there are several occurrences of the same role r in an activity, this activity is broken down into new activities containing a single role occurrence r. This principle is repeated until all activities obtained are atomic [START_REF] Caetano | Business Process Decomposition -An Approach Based on the Principle of Separation of Concerns[END_REF]. For this, associated workflow must be factorized; if at the end of this, F -collaborations exist, then activity is decomposable, according to principles of algorithm 5 (Appendix A2), and figure 5 (Appendix A4). Proposition 4.2 Consider activity s0 = (s 0 , workf low 0 (s 0 , R)) and activity s0 = (s 0 , workf low 1 (s 0 , R)) two activities, where activity s0 ≡ activity s0 . activity s0 is decomposable to activity s0 if and only if workf low 0 (s 0 , R) = workf low 1 (s 0 , R) and f actorize(workf low 0 (s 0 , R)) = workf low 1 (s 0 , R) Proof 2 As the two activities are equivalents by hypothesis, the demonstration is equivalent to show that a in a workflow, several collaborations for given service, is equivalent to an F-collaboration on the same service; and this is done by definition 3.2.

Activity Realizability -refers to the possibility of carrying out an activity, in a finite number of stages, and rendering provided service. This assumes that all necessary roles are available instantly; we say it is a favorable context. Termination of an activity, is conditioned by the fact that its workflow must contain autonomous roles as triggers. Algorithm 6 (Appendix A2), describes feasibility principles for a workflow, by applying a pattern matching mechanism. A workflow is realizable if that algorithm returns T rue and its required services queue(Serv) is empty. In case that F alse is returned, required service queue contains a list of services still to be provided, for completing activity.

REMARK. -An activity activity s0 = (s 0 , workf low(s 0 , R)) is said to be quasi realizable, if at least one of its atomic forms obtained by decomposition, ends; i.e there is a C ∈ decomp(workf low(s 0 , R), ∅) such that realisable({s 0 } , C) = (T rue, ∅). Similarly the activity activity s0 is said realizable, if all atomic forms end; i.e. whatever C ∈ decomp(workf low(s 0 , R), ∅), realisable({s 0 } , C) = (T rue, ∅).

Actor of a distributed collaborative system

Definition 5.1 An actor a τ is given by a couple (R τ , C τ), where R τ is the set of potential roles that actor can play, and C τ is the set of constraints on those potential roles.

Let a τ = (R τ , C τ) an actor, r i and r j two roles; association between actor a τ and roles r i and r j is materialized by r i , r j ∈R τ . We will say for instance that r i ,r j are actor's a τ potential roles. Four constraint values can be defined on actor's potential roles [START_REF] Riehle | Role Model Based Framework Design and Integration[END_REF], namely: Dcr or nothing for no constraint; Imp (r i , r j) indicating that if actor a τ plays role r i , then he must also play role r j ; Eqv (r i , r j) in case both Imp (r i , r j) and Imp (r j , r i) holds; P hb (r i , r j) and so, actor a τ playing role r i , cannot play role r j .

An actor can play one or more roles, within an activity, or in several parallel activities; then three cases of "play" relationship can be distinguished: Playing several roles in an activity an actor can play more than one role within an activity; provided that those roles do not provide same services. An actor a τ playing several roles r 0 and r 1 respectively, in 6(a), is multi-skilled in that activity. Therefore, the different roles of a τ can be pooled into a single macro-role r 0 whose interface is R 0 × R 1 . So activity activity s0 can undergo a transformation to become activity s0 = (s 0 , [• • • , (B, r 0 , r 2), (C, r 2 , r 0), • • •]), as illustrated in the figure 6(b). Competing activities an actor can contribute in several activities at the same time, either by playing the same role each time (see figure 6 (c)), or by having different roles. In all these cases, each of these activities is implemented individually as in case 1 above. Crowd role played by several actors within an activity, several instances of actors with same intrinsic skills, can play the same occurrence of a role; in a workflow, if role r is played by several actors instances (figure 6 (d)), then any collaboration with r will be on a crowd task, and r is a crowd role. A pattern matching implementation of play relation between an actor and his potential roles, is given by equation 9 on Appendix A3.

activity s0 = (s 0 , [• • • , (B, r 1 , r 2), (C, r 2 , r 0), • • •]), see figure

Conclusion

csDelivrance → SIGN U P normAscr | SIGN U P spAscr check → ε (8)

A2. Related algorithms

Algorithm 1: Role potential dependencies graph (rPDG) calculus ing that a τ potentially can play roles {r i } 1≤i≤|Rτ | in activity activity s0 , with constraints {cstr k } 1≤k≤N ; play (a τ , r i , activity s0) cstr k to express that a τ potentially can play the roles r i in activity activity s0 , according to the constraint cstr k , with play a τ , {r i } 1≤i≤|Rτ | , activity s0

1 input: r0 = (G0, R0) , R 2 output: C //set of potential collaborations of role r 0 . 3 C ← ∅ 4 rPDG(r0, R) = 5 forall ri in R 6 if R0 Ri then C ∪ {(• R0 ∩ R • i , ri, r0)}
{cstr k } 1≤k≤N = 1≤i≤|Rτ |
play (a τ , r i , activity s0) cstr k and finally play (a τ , R i , activity s0) expressing that a τ actually plays the role r i whose interface is R i , in activity activity s0 . Possible implementations of the "play" relationship while taking account of constraints on roles, are described by equations 9 given below: play (a τ , r i , activity s0) Dcr = play (a τ , R i , activity s0) play (a τ , r i , activity s0) Imp(ri,rj) = play (a τ , R i × R j , activity s0) play (a τ , r i , activity s0) Eqv(ri,rj) = play (a τ , R i × R j , activity s0)

or play (a τ , R j × R i , activity s0) play (a τ , r i , activity s0) P hb(ri,rj) = play (a τ , R i , activity s0)

and not play (a τ , R j , activity s0)

A4. Figures

Algorithm 2 : 2 RAlgorithm 3 :

 223 Context R induced potential dependencies graph (iPDG)1 input: R //roles whose rPDG have already been determined, initially empty.3 output: C 4 R ← ∅ 5 iPDG(R, R) = 6 if (ri in R) and (R = ∅) then 7 rPDG(ri, R ∪ {R ∪ {ri}}) ∪ iPDG(R \ {ri}, R) 8else iPDG(R \ {ri}, R) Determining a potential workflow for a service 1 Inputs: Serv = ∅ ∪ {s0} , R 2 output: C //a set of potential collaborations needed to provide the service s0.

3 workflow(Serv, R) = 4 if

 34 si in Serv then -i ∈ {1, • • • , |Serv|} 5 ns = Serv \ {si} ∪ {s | (s, r) ∈ dependOn(si, R)} 6 {iP DG(R, ∅) L k } ∪ workflow(ns, R, iP DG(R, ∅))7 where (L k , r k) ∈ dependOn(s 0 , R) Proceedings of CARI 2020 A3. Implementation of the "play" relationship Consider three primitives play a τ , {r i } 1≤i≤|Rτ | , activity s0 {cstr k } 1≤k≤N indicat-

Figure 3 -Figure 4 -

 34 Figure 3 -Running collaboration context of a system

Figure 5 -Figure 6 -

 56 Figure 5 -Decomposition of the previous activity on figure 2, into two sub-activities, csDelivrance0 and csDelivrance1

Proceedings of CARI 2020

As the goal is to describe processes, we are not yet interested with attributes in guarded attribute grammars.Proceedings of CARI 2020

This work focused on a role-based design approach, in a micro-tasking crowdsourcing system context i.e those dynamic system where every actor can be assigned several roles, can come in and go out of the system as he pleases and, several instances of actors can play the same role occurrence at a given moment, in the system. In our approach, we made a distinction between actor i.e infrastructure of a stakeholder and role i.e his business skills. Considering all skills in the system at a moment, procure an abstract basis for reasoning about business goals of the whole system. We defined a rigorous specification method for roles some basic operations, namely collaboration and roles reconfiguration. We also provide decomposition mechanisms and workflow monitoring and checking tools, role switching and workflow simplification mechanisms, the play relationships between an actor and his assigned roles, and the constraints between roles. This work is a prelude to a role-based design approach, for distributed collaborative systems. An immediate continuation is to reconsider a more complex system, as co-creative and innovative crowdsourcing systems, i.e a context where there are no pre-established rules, clarify conception of those type of processes, and describe interactions between actors.

According to Cameroonian lawsA role-based collaborative process design on crowdsourcing systems

Appendix A1. E-administration collaboration use case

Consider an E-administration application for issuing civil status certificates, described on figure 2. This scheme shows collaborations between roles DECLARER, SECRETARY, CSOFFICER and JUDICIARY_AUTHORITY; roles played respectively by actors BOB, AGENT, (MAYOR, DIPLOMAT) and PROSECUTOR as stakeholders in an issuance civil status certificate (birth, marriage, death) activity 2 .

Figure 2 -Microservice system civil status certificate issuance

Any DECLARER, can trigger the process of establishing a civil status certificate, by a declaration which can be either normal (dcl) or special (sDcl), following business skills expressed by business rules in [START_REF] Tranquillini | Modeling, Enacting, and Integrating Custom Crowdsourcing Processes[END_REF].

A SECRETARY according to business skills in rule [START_REF] Kucherbaev | Crowdsourcing Processes: A Survey of Approaches and Opportunities[END_REF], is responsible of declarations correction and transcription in related registers, whether these declarations are normal (normAscr) or special (spAscr).

Lastly according to rule (8), a CSOFFICER is responsible of issuing civil status certificates and certain checks. Checks rules are not yet expressed and may be done later.

Algorithm 4: Factorizing a service 3

10 insert (c, C), insert collaboration c, in the different atomic workflows of C, for which c is necessary.

) with r ∈ {r1, • • • , r |c| }, as long as these collaborations are useful, for the realization of the service associated with that workflow.