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Abstract. We consider the stochastic dynamics of a system of diffusing clusters of

particles on a finite periodic chain. A given cluster of particles can diffuse to the

right or left as a whole and merge with other clusters; this process continues until all

the clusters coalesce. We examine the distribution of the cluster numbers evolving in

time, by means of a general time-dependent master equation based on a Smoluchowski

equation for local coagulation and diffusion processes. Further, the limit distribution

of the coalescence times is evaluated when only one cluster survives.
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1. Introduction

Statistical properties of coalescence and fragmentation processes have been studied in

various fields of physics and chemistry [1, 2], where, for example, chemical constituents

react to form new molecules or fragment into elementary components. Both reactions,

aggregation and fragmentation, are governed by stochastic processes. The kinetics of

such processes are described by a Smoluchowski equation [3], which is a balance equation

for determining the particle distribution in size or mass in the equilibrium state [4, 5],

and can be used for example to determine the size of interstellar dust grains [6, 7].

The dynamical model studied here concerns the properties of aggregating clusters

of particles on a one-dimensional chain, where the hard-core condition imposes that

only one particle per site is allowed. Only aggregation or coagulation in the absence

of fragmentation is studied. These clusters of particles diffuse, collide and merge with

other clusters. The merging occurs with probability unity when the distance between

two clusters vanishes, according to the rule A∅B → ∅AB or AB∅, where A and B

are two clusters of particles merging into a new cluster AB = C with the size given

by the sum of the individual sizes of A and B. Also, since the chain is periodic and

the process symmetric, there is no internal current. We assume that the merging rate
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between clusters is independent of the cluster size. Obviously, clusters that are far

away from each other will not merge before a characteristic time which depends on

their distance and diffusive length. In most of the models described by Smoluchowski

equations, such coagulation rates or kernels depend intrinsically on the masses or sizes

of the merging components. General descriptions of the physical properties such as

mass or size distributions depend indeed on the microscopic details of these kernels

[4, 8, 1, 9]. For instance, in the case of a gravitational system, the aggregation rate is

proportional to the sum of the masses of the two constituents, eventually with some

exponents, whereas in the case of branched polymerization, they are proportional to the

product of the molecular weights. Many models can be solved exactly with the help of a

generating function [4, 10, 11], which contains the information on distribution moments.

The process of coalescence we consider here is irreversible and produces a single giant

cluster within a finite time, which is comparable with gelation phenomena [12, 13].

This phenomena has application in the dynamics of random cellular structures such as

coarsening of soap froth or bubbles in two dimensions, or evolution of magnetic domains

associated with boundaries [14, 15]. In this paper, we focus on the universal properties

of the coalescence times, in terms of extreme value statistics and scaling behavior in the

large-size limit.

The paper is organized as follows: In section 2, we study the local distributions

of cluster sizes, the time evolution of which is governed by a stochastic master

equation. The generating function for this equation allows us to compute the decreasing

concentration of clusters as a function of time, and we compare the results with those

obtained via numerical analysis of the stochastic process. In section 3, we consider

the distribution of coalescence times in a finite-size system. We show numerically that

the limit distribution described by a scaling function of the time divided by the total

empty intervals length squared. A diagrammatic time expansion is also proposed in the

approximation of independent intervals, and a general formula for the time distribution

of an n-interval system is given. A comparison is made with the numerical results of the

previous section, as well as modeling with a stochastic system of site diffusing heights

in the presence of absorbing conditions.

2. Master equation for the cluster size distribution

In this section, we introduce the dynamics of clusters defined as a succession of hard-

core particles surrounded by at least two empty sites on a periodic chain with N sites

of elementary unit length. In particular, we define the probability characterizing the

size and position of the cluster on the lattice. Specifically, we write the probability for

a cluster of n (≥ 1) particles at time t symbolically in the form

Pn(r, t) = Prob(× ◦ r• · · · r+n−1• ◦×), (1)

where r is the site location of the first particle of the cluster. Filled and empty circles

denote the sites filled with particles and empty sites, respectively while cross symbols
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(×) represent the site configuration either empty or filled with particles. The system is

periodic: Pn(r+N, t) = Pn(r, t). The number of particles and the number of clusters at

time t are given by

Np =
∑

n

∑

r

nPn(r, t) and Nc =
∑

n

∑

r

Pn(r, t), (2)

respectively. The particle concentration c ≡ Np/N as well as the number Np of

particles is conserved. These numbers can be estimated qualitatively via simple

arguments. Assuming the simple uncorrelated process for independent particles, we

have Pn = N(1 − c)2cn and therefore Np =
∑

n≥1 nPn = Nc. Accordingly, the (mean)

number of clusters is equal to Nc =
∑

n≥1 Pn = Nc(1− c), which thus satisfies a simple

semi-circle law, with the maximum cluster number at half filling (c = 1/2).

2.1. Stochastic dynamics and the generating function

Let us first consider the general case of fragmentation and coagulation processes.

Clusters fragment or diffuse according to the following rules: At every time step ∆t,

a fragment of size m (≤ n) can break out of the cluster from its left boundary with

probability ln,m, satisfying
∑n

m=1 ln,m = 1. Then it diffuses by one elementary step to

the left at rate 1/τ and fuses eventually with another cluster. The same process also

occurs on the right side with a fragment of size m and probability rn,m. In order to

obtain the Smoluchowski equation, we consider different processes which contribute to

the change of probability Pn(r, t) after a small time interval ∆t and note that ∂Pn/∂t

expresses the rate of change of the probability in the limit ∆t → 0. The first process

(a) is the decay or destruction of the cluster by fragmentation and diffusion:
(

∂Pn

∂t

)

a

= −Prob(×
x

◦[r• · · · •]m • · · · r+n−1• ◦×)− Prob(× ◦ r• · · · • [• · · ·
y

r+n−1

•]m ◦ ×), (3)

where the notation [• · · · •]m represents a fragment of size m breaking out from a cluster

of larger size n with probability ln,m or rn,m. The right-hand side describes the rate-out

process due to such decay of the cluster. The first term can thus be explicitly written

as

Prob(×
x

◦[r• · · · •]m • · · · r+n−1• ◦×) =
1

τ

∑

m

ln,mPn(r) =
1

τ
Pn(r) (4)

and similarly the second term. Another rate-out contribution is provided by process

(b), in which a fragment close to the original cluster aggregates from the left or right:
(

∂Pn

∂t

)

b

= −Prob(×[• · · ·
y

•]m◦
r• · · · r+n−1• ◦×)− Prob(× ◦ r• · · · r+n−1• ◦

x

[ • · · · •]m×).(5)

On the other hand, positive (rate-in) contributions come from three different processes.

The first one is the aggregation of clusters, labeled process (c):
(

∂Pn

∂t

)

c

= Prob(×
y

r−1

[•]1◦ • · · · r+n−1• ◦×) + · · ·+ Prob(×[
r−1• · · ·

y

•]n−1 ◦
r+n−1• ◦×)

+Prob(× ◦ r• · · · r+n−2• ◦
x

[ •]1×) + · · ·+ Prob(× ◦ r•◦
x

[ • · · · •]n−1×). (6)
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The next process (d) is breaking of a fragment of size n off from a larger cluster on the

right or left, provided that at least two consecutive empty sites are present:
(

∂Pn

∂t

)

d

= Prob(×[
r−1• · · ·

y

•]n
r+n−1◦ ◦ ×) + Prob(× ◦ r◦

x

[ • · · · •]n×). (7)

Finally, the cluster can also originate from the fragmentation of a bigger cluster, which

we call process (e):
(

∂Pn

∂t

)

e

= Prob(×◦
x

[
r−m• · · · •]m · · · r+n−1• ◦×) + · · ·

+Prob(× ◦ r• · · · r+n−1• [• · · · r+n−1+m•
y

] m ◦×). (8)

Summation of all the contributions leads the master equation to take the form

τ
∂Pn(r)

∂t
= −2Pn(r)− Pn(r)

∑

m≥1

Pm(r−m−1)− Pn(r)
∑

m≥1

Pm(r+n+1)

+
n−1
∑

k=1

Pn−k(r+k)
∑

m≥k

Pm(r−m+k−1)rm,k +
n−1
∑

k=1

Pn−k(r)
∑

m≥k

Pm(r+n−k+1)lm,k

+
∑

m≥0

Pm+n(r−1−m)rm+n,n

[

1−
∑

k≥1

Pk(r+n)

]

+
∑

m≥0

Pm+n(r+1)lm+n,n

[

1−
∑

k≥1

Pk(r−k)

]

+
∑

m≥1

Pm+n(r)rm+n,m +
∑

m≥1

Pm+n(r−m)lm+n,m, (9)

which includes terms linear or quadratic in Pn. We first notice that for an asymmetric

process with the transition probability ln,m = δm,1 and rn,m = δm,n, the dynamics

produces clusters of various sizes, the distribution of which is critical for some values

of the concentration [16, 17, 18]. We next consider the symmetric case, where only

aggregation of clusters occurs with rn,m = ln,m = δm,n. In this case, the master equation

reduces to

τ
∂Pn(r)

∂t
= −2Pn(r)− Pn(r)

∑

m≥1

Pm(r−m−1)− Pn(r)
∑

m≥1

Pm(r+n+1)

+
n−1
∑

m=1

Pn−m(r+m)Pm(r−1) +
n−1
∑

m=1

Pn−m(r)Pm(r+n−m+1)

+Pn(r−1)

[

1−
∑

m≥1

Pm(r+n)

]

+ Pn(r+1)

[

1−
∑

m≥1

Pm(r−m)

]

, (10)

and the corresponding out-of-equilibrium dynamics leads in a finite time to an absorbing

state consisting of a unique cluster.

To study how the cluster concentration decreases with time, it is convenient to

introduce the generating function in the Fourier space:

Ĝ(x, k) =
∑

r

e−ikr
∑

n≥1

xnPn(r) =
∑

n≥1

xnP̂n(k), (11)
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where P̂n(k) ≡
∑

r e
−ikrPn(r) is the Fourier transform, with the momentum taking the

values k = 2πm/N (m = 0, · · · , N − 1). It is obvious from this definition that

Nc = Ĝ(1, 0) and Np = ∂xĜ(x, 0)|x=1. (12)

The generating function satisfies a master equation which incorporates all the above

processes as well as the one-particle dynamics. Specifically, equation (10) is transformed

into

τ
∂

∂t
Ĝ(x, k) = −2 (1− cos k) Ĝ(x, k)− (1 + e−ik)

1

N

∑

k′

eik
′

Ĝ(x, k′)Ĝ(e−i(k−k′), k−k′)

+(1 + eik)
1

N

∑

k′

e−ik′Ĝ(xei(k−k′), k′)
[

Ĝ(x, k−k′)− Ĝ(1, k−k′)
]

. (13)

The conservation of the number of particles can be checked directly by computing

∂tNp = ∂t∂xĜ(x, 0)|x=1 = 0. On the other hand, the number of clusters, Nc = Ĝ(1, 0),

decreases according to

τ
∂

∂t
Ĝ(1, 0) = − 2

N

∑

k′

eik
′

Ĝ(1, k′)Ĝ(eik
′

,−k′), (14)

which depends on the contributions of momentum k ( 6= 0). In the long-time limit,

we can consider the solutions for small momenta with x = 1, and assume that

Ĝ(e−i(k−k′), k−k′) ≃ Ĝ(1, k−k′). This simplifies equation (13) and yields a closed set of

equations:

τ
∂

∂t
Ĝ(1, k) ≃ −k2Ĝ(1, k)− 2

N

∑

k′

eik
′

Ĝ(1, k′)Ĝ(1, k − k′), (15)

which contains a diffusive term proportional to k2 and a nonlinear term corresponding

to the coalescence process.

A mean-field analysis of equation (15), employing the ansatz Ĝ(1, k) = Nδk,0g(t),

gives simply g(t) = [g(0)−1 + 2t/τ ]−1, where g(t) = Nc/N is the cluster density. A

direct numerical evaluation of equation (15) also leads to the same behavior. Under this

approximation, the cluster density decreases, after a long time, as t−ν with ν = 1. For

comparison, we solve equation (10) numerically, discretizing the time with increment

∆t = 0.02, to obtain the exponent ν = 0.82 for N = 200 (see figure 1). Numerical

analysis of equation (14) also gives the same scaling with an exponent close to unity.

These results are compared with those obtained via a stochastic method using the

following rules: Starting from an initial random configuration of particles, we choose a

site randomly. If the site is occupied by a particle, the whole cluster to which the particle

belongs moves by one step on the right or left with equal probability. This cluster can

merge with a neighboring cluster if they are separated by only one empty site. The

time evolution of the cluster density obtained from such stochastic dynamics for 104

initial random configurations is displayed in the inset of figure 1. For size N = 500, the

decay exponent is estimated as ν = 0.96 in the power-law or long-time regime, which is

in agreement with the approximate result discussed above. We also notice that in the

case of pure particle coagulation, AA → A∅ or AA → ∅A, where particles coalesce on
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Figure 1. Time evolution of the cluster density Nc obtained from the discrete time

version of equation (10) with time increment ∆t = 0.02, for systems of size N with

concentration c = 0.5. The decay exponent, corresponding to the slope of a dashed

line, is found to be ν = 0.82 for N = 200. Inset: Time evolution of the cluster density

computed from the stochastic process in the system of size N = 500 with the same

particle concentration. Averages over 104 random initial configurations are taken, with

the time step ∆t = 1/N . The decay exponent (given by the slope of the dashed line)

is found to be ν = 0.96.

a single site, the exponent is given by ν = 1/2 instead [19]. In this case the particle

concentration decreases and is not constant.

2.2. Continuum limit analysis

In this section, we examine the continuum limit in which the lattice constant a → 0 and

N → ∞ with the length L0 = Na finite, by introducing the space coordinate x = ra and

cluster size l = na. All possible continuum limit should be compatible with equation

(2). Distributions are rescaled according to the rule Pn(r)/a
2 → Pl(x), and the sums

are replaced by integrals. In particular, the conserved number of particles becomes a

conservation relation for the total length of the clusters

aNp =
∑

r

a
∑

n

a(an)
Pn(r)

a2
→ Lc =

∫ L0

0

dx

∫ Lc

0

dl Pl(x)l, (16)

where Lc ≡ lima→0 aNp is the total length. This continuum limit transforms the problem

of discrete clusters into a problem of dynamical intervals of size l with probability Pl(x)



Distribution of coalescence times in one dimension 7

at location x. The dimensionless ratio c = Lc/L0 (≤ 1) is the fraction of the lattice

which is occupied by the intervals (or clusters). In accord, the number of clusters is

transformed into

Nc =
∑

r

a
∑

n

a
Pn(r)

a2
→ Nc =

∫ L0

0

dx

∫ Lc

0

dl Pl(x). (17)

For convenience, we also define the characteristic speed v ≡ a/τ and the diffusion

constant D ≡ a2/τ , and separate equation (10) into two parts, one with all the linear

diffusive terms and the other containing the quadratic terms:

1

a2
∂Pn(r)

∂t
=

1

τ

[

Pn(r+1)

a2
− 2

Pn(r)

a2
+

Pn(r−1)

a2

]

+v

[

−Pn(r)

a2

Np−n
∑

m=1

a
Pm(r−m−1)

a2
− Pn(r)

a2

Np−n
∑

m=1

a
Pm(r+n+1)

a2

+
n−1
∑

m=1

a
Pn−m(r+m)

a2
Pm(r−1)

a2
+

n−1
∑

m=1

a
Pn−m(r)

a2
Pm(r+n−m+1)

a2

−Pn(r−1)

a2

Np−n
∑

m=1

a
Pm(r+n)

a2
− a

Pn(r+1)

a2

Np−n
∑

m=1

a
Pm(r−m)

a2

]

. (18)

In the continuum limit, the sum of the linear terms contributes in the second order in

a since it corresponds to a diffusive process and is therefore proportional to D . In fact,

if v (∝ a) is finite, we have D/v ∝ a → 0 and the sum of the linear terms should be

negligible compared with the sum of nonlinear terms. Nevertheless, for generality, we

keep the diffusive term and obtain

∂Pl(x)

∂t
= D

∂2Pl(x)

∂x2
+ 2v

[

−Pl(x)

∫ Lc−l

0

dl′Pl′(x−l′)

−Pl(x)

∫ Lc−l

0

dl′Pl′(x+l) +

∫ l

0

dl′Pl−l′(x+l′)Pl′(x)

]

. (19)

This equation includes the diffusive linear term, a term corresponding to negative

contributions from clusters aggregating with the original cluster of size l on the right or

left, and a positive contribution coming from the aggregation of clusters of size l′ and

l − l′.

3. Distribution of coalescence times

In this section, we study the distribution of the coalescence times at which all the

particle clusters coalesce, starting from a random initial configuration. If we consider

the coalescence of n clusters, there is a finite probability that one of the n intervals

between two consecutive clusters vanishes at a given time, and this process continues

sequentially until only one cluster or interval of size L = (1 − c)N survives. This

coalescence time is uniquely defined for a finite system, and we expect that it scales like

L2 which is given by the diffusion length formula for a random walk process.
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Figure 2. Coalescence time distribution for various values of the particle concentration

c in the system of size N = 500. Averages over 106 initial configurations have been

taken for each concentration value. Observed is the scaling collapse with the asymptotic

decay exponent found to be 4.95 (as described by the dashed line).

Figure 2 represents the plot of the coalescence time distribution rescaled with the

quantity L2; it shows clearly that all the curves collapse, regardless of the particle

concentration c. The universal curve is found to be non-symmetric with an exponential

tail whose decay exponent is approximately 4.95, close to the value π2/2 as we will

demonstrate below. The problem is, in a set of initially empty intervals with different

sizes that increase or decrease by diffusion, to compute the first passage time when

only one interval has non-zero size. This problem can be mapped onto a q-state Potts

model or a voter model, where particle clusters are represented by domain walls or

kinks A in the dual lattice between empty intervals made of holes and labeled by letters

(a, b, c, · · ·) [20, 21], as illustrated in figure 3. Just before two domain walls merge,

AA → A∅ or AA → ∅A, the remaining empty hole changes its value according to the

state of one of the two neighboring intervals with equal probability. This corresponds

to the limit q → ∞ in the Potts model since there is no annihilation process involved in

the dynamics [22, 23]. Indeed, in these theories, the probability of collision of domain

walls with annihilation is equal to 1/(q − 1) whereas the collisions with coalescence is

equal to (q−2)/(q−1), yielding q = ∞ in our model. Moreover, the coalescence process

stops when all the empty sites have the same state value.

Let us consider the case with only two intervals of sizes h1 and h2, which corresponds
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Figure 3. Representation of cluster coalescence in terms of moving domain walls

(labeled A) in a q-state Potts model, where all the empty site intervals take different

state values (a, b, c, · · ·). When two clusters merge (AA → A), the hole (labeled c)

changes its value according to the state of its nearest neighbors c → a or c → b (in the

present case).

to two clusters of particles under the periodic conditions imposed for the lattice. When

one cluster moves, h1 and h2 change by one unit in such a way that h1 → h1 ± 1 and

h2 → h2 ∓ 1, subject to the constraint h1 + h2 = L; this reduces the problem to that

with a single variable h (≡ h1). A representation in terms of height dynamics is shown

in figure 4(a), where the height values (lengths of the intervals or distances between

clusters) decrease or increase by one unit transferred to the right or left nearest sites

which have non-zero height values. The sites reaching a zero value are removed from

the dynamics until one site survives with height L. We now consider the probability

Pt(h|h0) that the first interval has size h at time t, starting with a given initial condition

h0 (0 < h0 < L) at t = 0. This probability, abbreviated as Pt(h) for simplicity, satisfies

a differential equation of diffusion

τ
∂Pt(h)

∂t
=

1

2
[Pt(h+1) + Pt(h−1)− 2Pt(h)] (20)

with absorbing conditions Pt(0) = Pt(L) = 0. This means that some of the flow of Pt(h)

is absorbed at the extremities h = 0 or L and therefore the distribution is not normalized.

The discrepancy accounts for the probability of the first passage. A spectral basis for

this distribution in the Fourier space is given by the set of sine functions, sin(kπh/L)

with k = 1, · · · , L− 1, and a simple analysis of the above differential equation leads to

the expression

Pt(h|h0) =
2

L

L−1
∑

k=1

sin

(

kπh

L

)

sin

(

kπh0

L

)

exp

{

−
[

1− cos

(

kπ

L

)]

t

}

. (21)

The probability Pt|h0
of the first passage when h reaches zero or L relates to the time

variation of the integrated distribution [24, 25]. The integrated value is unity until the

first passage time, when it begins to decrease. By the help of the summation formula
∑

h sin(kπh/L) = 1
2 [1 − (−1)k] sin(kπ/L)[1 − cos(kπ/L)]−1, this probability is finally

expressed as a discrete sum (with t in units of τ) [26, 27]:

Pt|h0
= −∂t

∑

h

Pt(h|h0)
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=
1

L

L−1
∑

k=1

[1− (−1)k] sin

(

kπ

L

)

sin

(

kπh0

L

)

exp

{

−
[

1− cos

(

kπ

L

)]

t

}

. (22)

In case that L ≫ 1 with h0/L = α finite, this distribution has the scaling limit tL2 → t

and Pt|h0
/L2 → Pt|α is given by

Pt|α = 2π
∞
∑

k=0

(2k + 1) sin [(2k+1)πα] exp

[

−(2k+1)2

2
π2t

]

. (23)

This expression is normalized and invariant under the transformation α → 1 − α as

expected, since we can replace h1 by h2 = L − h1 by symmetry. The asymptotic

value is obtained for k = 0 where Pt|α decreases exponentially like e−π2t/2. The decay

coefficient π2/2 is very close to the one obtained from the numerical results in figure 2.

Nevertheless, equation (23) does not account for the numerical data of figure 2, where

many interacting interval configurations are involved. We would thus like to extend this

result to a system of n intervals or equivalently, n coalescing clusters of particles (for

large n).

The next case is a system composed of three intervals h1, h2, and h3 = L−h1−h2.

Only two variables are independent and the equation of diffusion reads

∂Pt(h1, h2)

∂t
=

1

6
[Pt(h1±1, h2∓1) + Pt(h1±1, h2) + Pt(h1, h2±1)− 6Pt(h1, h2)] , (24)

where factor six takes into account the diffusion of each of the three clusters in the two

possible directions, left or right. This equation is valid for h1 and h2 strictly inside the

domain of existence limited by the triangular perimeter which excludes the values of h1

and h2 equal to zero or L as well as the case h1 + h2 = L. When the system reaches a

partial absorbing configuration where one of the three interval has a zero length (namely,

h1 = 0 or h2 = 0 or h3 = 0) and only two clusters survive, we should then apply equation

(20) for the remaining variable. Accordingly, there is a hierarchy of diffusion equations

which have been studied for an open system in the problem of coalescing walkers [28],

with statistical independence of successive interval lengths and partial correlations. In

their study the coalescence probability of two walkers is p which corresponds here to

p = 1. The general version of equation (24) in the case of n intervals with the constraint

h1 + · · ·+ hn = L can be written as

∂P
(n)
t ({hi}1≤i≤n−1)

∂t
=

n−1
∑

i=1

P
(n+1)
t (h1, · · · , hi, ↓, hi+1, · · · , hn−1)

+
1

n

(

∆2
h1h1

−∆2
h1h2

+∆2
h2h2

+ · · · −∆2
hn−2hn−1

+∆2
hn−1hn−1

)

P
(n−1)
t ({hi}), (25)

where P
(n)
t ({hi}) is the interval distribution for n clusters. We have also defined

the discrete Laplacian operators ∆hhfh ≡ fh+1 + fh−1 − 2fh and mixed derivatives

2∆hh′fh,h′ ≡ ∆hhfh,h′ + ∆h′h′fh,h′ − fh+1,h′−1 − fh−1,h′+1 + 2fh,h′ . The down arrow in

the term on the first line symbolizes the discrete derivative operator at h = 0 at the

corresponding position and the sum represents the multiple collision rates of two clusters

coming from configurations with n + 1 intervals [28]. The mixed derivatives account
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Figure 4. (a) Modelling of the interval dynamics in terms of heights. A site decreases

its height value by one unit (here h4 → h4−1) which is transferred on the nearest site,

right or left with equal probability, providing it has a non zero value. As example, site

4 can transfer some of its height (in blue color) to sites 2 or 5, as site 3 which has zero

height is non active in the dynamics. (b) Schematic time representation diagram for the

coalescence of three particles or intervals under implicit periodic boundary conditions.

At time τ2 the first two clusters coalesce and the red interval vanishes. Subsequently,

at final time τ1 = t the remaining two clusters coalesce, reaching the absorbing state

in which the blue interval vanishes.

for the particular diffusion of the intervals, which are not locally independent, as the

increase of a given interval leads to the decrease of the neighboring interval on the left

or right by the same amount. Instead of solving directly equation (25), we consider the

diagrammatic expansion illustrated in figure 4(b) for three clusters as an example. Given

an n-cluster or interval configuration, we first evaluate the probability that one of the n

intervals collapses at time τn−1 (> 0), leading to an (n−1)-interval state. The process is

repeated until only one cluster survives at time t = τn−1+τn−2+· · ·+τ1. The distribution

of times t then gives the probability of coalescence. We also assume that the intervals

are independent but satisfy statistically the global constraint h1 + · · ·+ hn = L, leaving

n− 1 independent variables. We finally average over all the interval size configurations

to obtain the approximate distribution in the form:

P
(n)
tot (t) =

[
∫ t

0

Pτn−1|h1
dτn−1

∫ t−τn−1

0

Pτn−2|h2
dτn−2 · · ·

∫ t−τn−1−···τ3

0

Pτ2|hn−2
Pτ1|hn−1

dτ2

]

{hi}

,(26)

where [· · ·]{hi} stands for the average over all the interval configurations. Taking the

Laplace transform leads to

P̄
(n)
tot (s) ≡ L

(

P
(n)
t , s

)

=
n
∏

m=2

P̄
(m)
s/(m−1). (27)

The coefficients 1/(m−1) take into account the fact that there is a probability 1/(m−1)

to choose an interval among m − 1 independent intervals. It relates to the factor 1/n

in the diffusion constant in equation (25), which rescales the time for each n-cluster

configuration. There is a symmetry coefficient n! included in the normalization factor

as we have n possible choices in choosing each coalescent pair of clusters in an n-cluster
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configuration. The Laplace transform P̄
(n)
s can be written explicitly as

P̄
(n)
s =

1

L

L−1
∑

k=1

[1− (−1)k]
sin (kπ/L)

s+ 1− cos (kπ/L)
gn(k), (28)

where gn(k) is the interval size average of the term sin(kπh0/L) in equation (22) for an

n-interval configuration and is defined by

gn(k) =

∑

{hi≥1} δL, h1+···+hn
sin (kπh1/L)

∑

{hi≥1} δL, h1+···+hn

. (29)

The summation can be performed through the use of the integral representation of the

Kronecker delta function. The number of configurations is thus evaluated as

∑

{hi≥1}

δL,h1+···+hn
=
∑

{hi≥1}

∫ π

−π

dθ

2π
eiθ(L−h1−···−hn) =

∫ π

−π

dθ

2π
eiθL

(

∑

h≥1

e−iθh

)n

=

∮

C1+ǫ

dz

2iπ

zL−1

(z − 1)n
=

(

L−1

n−1

)

, (30)

where the path of the complex integral follows any circle of radius strictly larger than

unity. Applying the same technique to the sine function, we obtain
(

L−1

n−1

)

gn(k) =

{

n−2
∑

l=0

(

L−1

n−2−l

)

(−1)l

2l+1

sin
[

(1−l)kπ
2L

+ (l+1)π
2

]

sin (kπ/2L)l+1

+ (−1)k+1 sin
[

(n−1)kπ
2L

+ (n−1)π
2

]

2n−1 sin (kπ/2L)n−1

}

, (31)

which, as L grows large, approaches a finite limit independent of L:

gn(k) =
n−2
∑

l=0

(n− 1)!

(n− 2− l)!

(−1)l

(kπ)l+1
sin

(

l+1

2
π

)

+ (n− 1)!
(−1)k+1

(kπ)n−1
sin

(

n−1

2
π

)

. (32)

In figure 5, the inverse Laplace transform of equation (27) is plotted for n = 8 and

n = 12. The agreement with the scaling curve of figure 2 (we have taken c = 0.5 for

reference) is indeed manifested for large t.

We also compare the obtained analytical and numerical results with a model based

on the stochastic process of equations (24) and (25). Specifically, we consider the

diffusion of n sites with non-zero random heights, where n corresponds to the number of

intervals, see figure 4(a). A site, say i, is randomly chosen (i = 1, . . . , n) and its height

value hi is decreased by one unit, while one of the two randomly chosen nearest neighbor

sites with non-zero height has its value increased by the same amount. The sites whose

height reaches zero value become inactive and are removed, and the number of active

sites decreases. The dynamics of local height diffusion stops when the coalescence time

is reached, at which all the sites are empty except one, when only a site with the

maximum height remains. For n = 10 and n = 20 sites, the resulting distribution

of times converges rapidly to the scaling curve of figure 2, with the chosen constraint
∑n

i=1 hi = 100. The average number of clusters in a finite system of concentration c is
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Figure 5. Coalescence time distribution. The curves with plus symbols are results

from the inverse Laplace transform, equation (27). The curves with star and cross

symbols are obtained from stochastic numerical analysis of diffusive heights located on

each site, with n = 10 and n = 20 sites. Averages are performed with 2 × 105 initial

samples, and the sum of the heights is 100, which corresponds to (1− c)N . The curve

of figure 2 with c = 0.5 is given for comparison, and the dashed line is the fit of this

curve in the asymptotic region t ≥ 1. Inset: Plot of the coefficient c0 (filled circles),

see equation (35), versus the number of intervals. The red curve is an interpolation

with an exponential function (see text), giving an asymptotic estimate c0 ≈ 24.4.

equal to Nc(1−c), with the standard deviation given by
√
Nc(1−c), and we expect that

the universal distribution should be correctly dominated by the configurations of a large

number of clusters around this mean value. For example, when c = 0.5 and N = 500,

this corresponds to n = 125, and for c = 0.1, n = 45. Both cases give the same universal

curve of figure 2 which should be achieved for a relatively large number of intervals. We

can interpret the coalescence time distribution P
(n)
tot (t), using the characteristic function

of the survival time interval τk and writing the definition

P
(n)
tot (t) = 〈δ(t− τ1 − τ2 − · · · − τn−1)〉τ1,···,τn−1

=

∫ ∞

−∞

dλ

2π
eiλt

n−1
∏

k=1

〈e−iλτk〉τk

≃
∫ ∞

−∞

dλ

2π
eiλt

n
∏

m=2

∑

k≥1

a
(m)
k

i λ
m−1

+ ωk
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=

∫ ∞

−∞

dλ

2π
eiλt

∑

k2,···,kn≥1

a
(2)
k2

· · · a(n)kn

(iλ+ ωk2) · · · (i λ
n−1

+ ωkn)
, (33)

where coefficient a
(m)
k and ωk ≡ 1− cos(πk/L) are defined from P̄

(m)
s =

∑

k≥1 a
(m)
k (s+

ωk)
−1 [see equation (28)]. The singularities of the integrand are located at λ = iωkl(l−1)

in the upper complex plane. This allows us to compute the integral by means of the

residue formula, assuming that the singularities are all simple poles:

P
(n)
tot (t) ≃

n
∑

l=2

∑

k2,···,kn≥1

(l − 1)a
(2)
k2

· · · a(n)kn
∏

j 6=l

(

ωkj − ωkl
l−1
j−1

) e−ωkl
(l−1)t. (34)

Asymptotically, the dominant contribution of P
(n)
tot (t) comes from l = 2 and k2 = 1,

which yields an exponential decay: P
(n)
tot (t) ≃ c0(n)e

−(1−cos(π/L))t ≃ c0(n)e
−(π2/2L2)t. The

coefficient c0 can be extracted from equation (34) in the scaling limit t → tL2:

c0(n) = L2a
(2)
1

n
∏

m=3

[

L−1
∑

k=1

a
(m)
k

ωk − ω1(m− 1)−1

]

, (35)

with a
(n)
k = L−1[1− (−1)k] sin(kπ/L)gn(k). In the limit of large L, we have

lim
L→∞

a
(m)
k

ωk − ω1(m− 1)−1
=

2k

π

[1− (−1)k]

k2 − (m− 1)−1
gm(k), (36)

and coefficient c0 reduces to

c0(n) = 4
n
∏

m=3

[

∞
∑

k=1

2k

π

[1− (−1)k]

k2 − (m− 1)−1
gm(k)

]

, (37)

where gm(k) has been evaluated from equation (32). Since gn(k) ≃ (n − 1)/(πk) for k

large, the sums over k in equation (37) converge as each term behaves asymptotically

like k−2. We have computed c0(n) for several values of the interval number n and plot

the result in the inset of figure 5 (black circles). These data points fit well with the

red line in the inset described by an exponential function c0 − c1e
−c2n with c0 ≈ 24.41,

c1 ≈ 26.16, and c2 ≈ 0.147. The dashed line in figure 5 represents the asymptotic fit

for the curve of concentration c = 0.5 of figure 2 with L = 250 in the region t ≥ 1,

and the intersection at the origin gives c0 ≃ 24.9, which is close to the analytical result

in equation (37). It is therefore concluded that the theory describes accurately the

asymptotic regime of coalescent clusters.

4. Conclusion

Stochastic dynamics of coalescent clusters in a finite-size system displays universal

behavior which can be accounted for by a model of statistically independent intervals.

This is in turn mapped onto a system of diffusing intervals or heights in one

dimension, with absorbing conditions. The probability distribution of the interval

size configurations follows a hierarchical descending set of diffusive equations between

configurations involving successively n, n−1,..., and 1 intervals, and whose approximate
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solution can be constructed by considering the time averaged product of successive single

absorbing state probabilities. We have then used a Laplace transform to express the

global distribution of coalescence times as the product of local Laplace distributions,

assuming the independence of intervals but taking into account the finite size constraint

for a given number of intervals. The results are corroborated quantitatively by a model of

positive heights with absorbing conditions on site, where sites reaching zero height value

are removed from the dynamics. In this case the universal curve is recovered numerically

in the limit of large numbers of initial intervals. The asymptotic behavior of the universal

curve, which follows and exponential, is well accounted for by the theory where the

numerical factor and decay coefficient of the exponential can be extracted exactly. The

method is less accurate near the origin where local correlations between intervals should

be taken into consideration. We finally note that this problem is related to other

problems involving the survival time distribution or time to complete coalescence of

reactants on different geometries, such as coalescence of particles on fully-connected

lattices [29, 30] where the limit distribution has a similar asymptotic exponential form

in e−2t, but with a singular behavior in t−7/2e−π2/4t for t small, with t being the rescaled

time proportional to the inverse of the number of sites.

Acknowledgments

This work was supported by the National Research Foundation of Korea through the

Brain Pool Program (NRF-2018H1D3A2065321) and also through the Basic Science

Research Program (Grant No. 2019R1F1A1046285).

References

[1] Wattis J A 2006 Physica D 222 1–20

[2] Kyprianou A E, Pagett S W and Rogers T 2018 Ann. Inst. Henri Poincaré, B 54 1134–1151
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