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We discuss criteria for experimental identification of the nuclear high-
rank symmetries, tetrahedral and octahedral ones, based on the mean-field
and group representation theories. We examine possibly largest search
zones on the (Z,N)-plane: in addition to traditionally discussed areas of
even-even nuclei with proton and neutron numbers surrounding the tetra-
hedral magic ones (Zt

0, N
t
0 = 32, 40, 56, 64, 70, 90, 112, 136), we discuss

also the odd-even and even-odd nuclei for which the identification criteria
non-trivially differ from those for the even-even ones. We also propose the
appropriately chosen particle-hole excited states, to profit from the defor-
mation driving mechanism contributed by combinations of certain orbitals.
The discussion is summarised in the form of a series of ‘user’ instructions.

PACS numbers: 21.60.-n, 21.10.-k

1. Introduction

In this article we give a short account of the methods of identification
of tetrahedral and octahedral symmetry shapes in atomic nuclei with the

∗ Presented at XXV International Nuclear Physics Workshop, Kazimierz Dolny,
Poland, September 25-30, 2018
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help of the nuclear mean-field theory and the point-group representation-
theories. We apply these concepts not only to the lowest-energy configura-
tions in the even-even nuclei (most often addressed in the literature), but
also to the odd-A nuclei, and certain excited configurations which involve
tetrahedral-deformation driving orbitals.

Since due to the short range of the nuclear interactions the shape of the
nucleonic distributions in nuclei follows that of the equipotential surfaces
of the mean-field potential, it follows that the shape symmetries are closely
related to those of the associated mean-field Hamiltonian.

It has been suggested over 20 years back, Ref. [1], that in some atomic
nuclei, well pronounced potential energy minima may exist corresponding
to the tetrahedral symmetry shapes. The authors examined the nuclear
stability effects due to the spinor (so-called double) tetrahedral (TD

d ) point-
group of symmetry of the mean-field Hamiltonian and pointed out to the
physical consequences of the presence of three irreducible representations
of the group in question, two non-equivalent 2-dimensional ones, and one
4-dimensional one.

The presence of the three irreducible representations implies that the
single-nucleon levels generated by the Hamiltonian with such a symmetry
form three independent families, as opposed to the two families of posi-
tive and negative parity orbitals in the ‘usual’ case. The four-dimensional
irreducible representation implies the presence of the four-fold degenerate
levels. This four-fold degeneracy has never been observed so far but it has
fascinating quantum consequences in addition to the presence per se, such
as an existence of 16-fold degenerate particle-hole excited states in the nu-
clear spectra. Moreover, the existence of four-fold degeneracies implies a
systematic increase of the average level spacing in the single-nucleon spec-
tra and facilitates creating relatively big shell-gaps usually referred to as
tetrahedral magic gaps, see Fig. 1 below.

It has been shown in Ref. [1] that the tetrahedral symmetry implies the
presence of the new magic numbers at Zt

0, N
t
0 = 56, 64, 70, 90, 100, 112, 136.

It has also been indicated that the three irreducible representations, denoted
E, E∗ and G, can easily be identified and used for the level-labelling, an
interesting alternative to the Nilsson labelling in this case, cf. Figs. 3 and 4
of Ref. [1].

The first case of experimental evidence for the tetrahedral symmetry,
in 152Sm, has been announced in Ref. [2]. The mean-field single-nucleon
spectra for this nucleus are illustrated in Fig. 1 showing the tetrahedral
shell gaps and low level-density areas opening when deformation increases.

The extension of the above considerations predicting the presence of
the tetrahedral symmetry islands all-over the (Z,N)-plane has been pre-
sented in Ref. [3] whereas a possible coexistence between the tetrahedral
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Fig. 1. Single nucleon levels as functions of tetrahedral deformation, t3 ≡ α32,

calculated using the Woods-Saxon Universal phenomenological mean field, Ref. [4].

Top – neutrons, bottom – protons. We use Cartesian labels, coefficients in round

parentheses give the probability amplitude related to each given label.

and octahedral symmetries has been presented in Ref. [5] focussing on the
Rare-Earth nuclei. The latter coexistence is of particular interest from the
group theory point of view given the fact that the tetrahedral group is a
subgroup of the octahedral one, Td ⊂ Oh.
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2. The Link Between the Microscopic Mean-Field
with High-Rank Symmetries and Collective Rotation

In the more recent articles, Refs. [6, 7, 8], the authors employed the
newly written for the purpose numerical code solving the Hartree-Fock-
Bogolyubov problem with the Gogny interaction Hamiltonian allowing to
break all geometrical symmetries. The algorithm employed the angular
momentum and particle number projection techniques. Below we focus on
the mean field and the collective rotor properties separately.

2.1. The Mean Field within Hartree-Fock-Bogolyubov Approach

The standard two-body Hamiltonian written down in a certain one-body
basis whose states are enumerated with `i = 1, 2, . . . M , and i = 1, 2, 3, 4,
has the usual form:

Ĥ =
∑
`1`2

t`1`2 ĉ
+
`1
ĉ`2 + 1

2

∑
`1`2

∑
`3`4

v`1`2`3`4 ĉ
+
`1
ĉ+`2 ĉ`4 ĉ`3 . (1)

With the help of the Bogolyubov transformation leading from the particle
state representation, {ĉ+, ĉ}, to the quasi-particle representation {β̂+, β̂},

β̂+k ≡
∑
`

[
U`k ĉ

+
` + V`k ĉ`

]
, (2)

the quasiparticle vacuum |Φ〉 can be expressed using Thouless theorem:

|Φ〉 = N eẐ |0〉, Ẑ ≡ 1
2

∑
`′`

Z`′`ĉ
+
`′ ĉ

+
` , N ≡ 〈0|Φ〉, Z`′` = (V U−1)∗`′`. (3)

After obtaining the constrained HFB state |Φ〉, the quantum number pro-
jection is performed to obtain the projected wave functions of both parities

|ΨINZ(±)
M ;α 〉 =

∑
K

g
INZ(±)
K,α P̂ IMK P̂±P̂

N P̂Z |Φ〉, (4)

where the amplitude g
INZ(±)
K,α and the energy eigenvalue E

INZ(±)
α are ob-

tained employing the Hill-Wheeler relation∑
K′

HINZ(±)K,K g
INZ(±)
K′,α = EINZ(±)α

∑
K′

N INZ(±)
K,K′ g

INZ(±)
K′,α , (5)

with the kernels defined as follows HINZ(±)K,K′

N INZ(±)
K,K′

 = 〈Φ|

{
Ĥ

1

}
P̂ IKK′P̂

N P̂Z P̂±|Φ〉. (6)
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Interested reader is referred to Ref. [6] for mathematical details whereas ap-
plications to examining the rotational properties of the nuclei in tetrahedral
symmetry states can be found in Refs. [6, 8], see also Refs. [2] and [9].

2.2. Quantum Rotors with Tetrahedral Symmetry

Before discussing the consequences of the tetrahedral symmetry on the
structure of rotational bands resulting from the application of the angular-
momentum projection in the framework of the Gogny mean-field Hamilto-
nian it will be instructive to recall the spectral properties of a structureless
quantum rotor with tetrahedral symmetry. This problem has been pre-
sented in Ref. [10] with the help of the spherical-tensor operator-basis in
the form

T̂ λµ (n) =

(((
Î ⊗ Î

)2 ⊗ . . .⊗ Î)λ−1 ⊗ Î︸ ︷︷ ︸
n times

)λ
µ

, (7)

where Î = {Î−1, Î0, Î+1} are the collective angular momentum operators
and “⊗” refers to the Clebsch-Gordan coupling. Employing Eq. (7), the so-
called generalised quantum rotor Hamiltonian (cf. Ref. [10] and references
therein) can be constructed

Ĥrotor =
∞∑
n=0

∑
λ

{
hλ0T̂

λ
0 (n) +

λ∑
µ=1

[
hλµT̂

λ
µ (n) + (−1)µh?λ−µT̂

λ
−µ(n)

]}
, (8)

where hλµ are adjustable constants. This expression reduces to the lowest
order tetrahedral symmetry rotor by adjusting the indices λ and µ as follows:

ĤTD

rotor = h00 T
0
0 (2)︸ ︷︷ ︸

Ĥsph.(2)

+h32
[
T 3
+2 − T 3

−2
]︸ ︷︷ ︸

ĤTd

= Ĥsph.(2) + ĤTd
. (9)

Here, Ĥsph.(2) ∝ Î2, is by definition a spherically-symmetric second or-

der operator and ĤTd
(3) is a third order tetrahedral symmetry operator

constructed out of components of Î. The parameters h00 and h32 can be
adjusted to simulate the desired rotational properties of the corresponding
spectra. The spectra of the rotor Hamiltonians with tetrahedral symme-
try are composed of what we refer to as tetrahedral bands which will be
discussed next.
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3. Group-Theory Induced Structure of Tetrahedral Bands:
Implied Users Instructions for Experimental Search

In contrast to properties of the rotational bands produced e.g. by axially-
symmetric nuclei, tetrahedral symmetry bands are composed of states of
both parities and in the exact symmetry limit they contain degenerate mul-
tiplets (see below). These properties are unique and allow to identify the
corresponding symmetry; the only common feature with the bands known
from the literature is the quadratic energy-spin dependence: EI ∝ I(I + 1).

3.1. Tetrahedral Bands in Even-Even Nuclei: Td-Group

It can be demonstrated using the exact methods of the point group
representation theory that the rotational bands of the tetrahedral symmetry
quantum rotors of even-even nuclei like the one in Eq. (9) can be classified
according to the 5 irreducible representations of the Td-group, here denoted
A1, A2, E, F1 and F2, cf. Ref. [7, 8] and references therein. For instance,
the bands corresponding to irreducible representation A1 form a common
parabola composed of the following sequence:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

(10)
whereas the other representations induce the following band structures

A2 : 0−, 3+, 4−, (6+, 6−)︸ ︷︷ ︸
doublet

, 7+, 8−, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11+, 12+, 2× 12−︸ ︷︷ ︸
triplet

, · · ·

(11)
E : (2+, 2−)︸ ︷︷ ︸

doublet

, (4+, 4−)︸ ︷︷ ︸
doublet

, (5+, 5−)︸ ︷︷ ︸
doublet

, (6+, 6−)︸ ︷︷ ︸
doublet

, (7+, 7−)︸ ︷︷ ︸
doublet

, (2× 8+, 2× 8−)︸ ︷︷ ︸
quadruplet

, (9−, 9+)︸ ︷︷ ︸
doublet

, · · ·

(12)
F1 : 1+, 2−, (3+, 3−)︸ ︷︷ ︸

doublet

, (4+, 4−)︸ ︷︷ ︸
doublet

, (2× 5+, 5−)︸ ︷︷ ︸
triplet

, (6+, 2× 6−)︸ ︷︷ ︸
triplet

, (2× 7+, 2× 7−)︸ ︷︷ ︸
quadruplet

, · · ·

(13)
F2 : 1−, 2+, (3+, 3−)︸ ︷︷ ︸

doublet

, (4+, 4−)︸ ︷︷ ︸
doublet

, (5+, 2× 5−)︸ ︷︷ ︸
triplet

, (2× 6+, 6−)︸ ︷︷ ︸
triplet

, (2× 7+, 2× 7−)︸ ︷︷ ︸
quadruplet

, · · ·

(14)

It is worth emphasising that the lowest tetrahedral bands have a unique
Iπ = 0+ ground-state, so that the irreducible representation A1, cf. Eq. (10),
plays a distinguished role.

3.2. Tetrahedral Bands in Odd-A Nuclei: TD
d -Group

As it is well known from the group representation theory, the spinor
(so-called double) point groups differ from the classical point groups both in
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terms of the numbers of the symmetry elements in the group as well as in
terms of numbers and structures of their irreducible representations. The
double point group of interest, TD

d , possesses three irreducible representa-
tions introduced already in sect. 1, denoted E, E∗ and G.

The first two of them can be recognised as parity-conjugate partners as
it can be seen from the following two sequences:

E :
1

2

+

,
5

2

−
,

{
7

2

+

,
7

2

−}
︸ ︷︷ ︸

doublet

,
9

2

+

,

{
11

2

+

,
11

2

−}
︸ ︷︷ ︸

doublet

,

{
13

2

+

, 2× 13

2

−}
︸ ︷︷ ︸

triplet

,

{
15

2

+

,
15

2

−}
︸ ︷︷ ︸

doublet

, · · ·

(15)

E∗ :
1

2

−
,

5

2

+

,

{
7

2

−
,

7

2

+}
︸ ︷︷ ︸

doublet

,
9

2

−
,

{
11

2

−
,

11

2

+}
︸ ︷︷ ︸

doublet

,

{
2× 13

2

+

,
13

2

−}
︸ ︷︷ ︸

triplet

,

{
15

2

−
,

15

2

+}
︸ ︷︷ ︸

doublet

, · · ·

(16)
whereas the third one, G is composed of parity-multiplets: doublets, triplets,
quadruplets, quintuplets, etc.:

G :

{
3

2

+

,
3

2

−}
︸ ︷︷ ︸

doublet

,

{
5

2

+

,
5

2

−}
︸ ︷︷ ︸

doublet

,

{
7

2

+

,
7

2

−}
︸ ︷︷ ︸

doublet

, 2×
{

9

2

+

,
9

2

−}
︸ ︷︷ ︸

quadruplet

, 2×
{

11

2

+

,
11

2

−}
︸ ︷︷ ︸

quadruplet

,

2×
{

13

2

+

,
13

2

−}
︸ ︷︷ ︸

quadruplet

, 3×
{

15

2

+

,
15

2

−}
︸ ︷︷ ︸

sixtuplet

, . . . 4×
{

21

2

+

,
21

2

−}
︸ ︷︷ ︸

octuplet

, · · · (17)

As it can be seen from the above relations, again the band structures are unique
and characteristic of various combinations of opposite-parity states and multiplets.

3.3. Tetrahedral Band Identification: User Instructions

The rotational band structures presented in Sects. 3.1 and 3.2 define the new
branch of nuclear spectroscopy in statu nascendi: This is by trying to determine
the presence of approximate parabolic structures in these very characteristic forms,
which contain doublets, triplets, quadruplets ... of states in the very specific order,
that we will be able to determine the presence of the underlying symmetry in
subatomic physics. Below we list in the form of the short phrases which we refer
to as ‘user instructions’ the main strategic lines to follow.
• Even-even nuclei: Tetrahedral Group Td. The tetrahedral ground-state band

with its Iπ = 0+ band-head is given by the irreducible representation A1, with
the spin-parity sequence defined by Eq. (10). It is characterised by the absence of
states with I = 1 or 2 and by the presence of parity doublets at Iπ = 6±, 9±, 10±,
etc. Other tetrahedral symmetry bands, possibly lying higher in the energy scale,
have the spin-parity structures given by Eqs. (11-14).

• Even-even nuclei: Octahedral Group Oh. One can profit from the above infor-
mation in order to conclude about the possible presences of octahedral symmetry.
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The latter is expected to influence the structure of Eq. (10) in that the states
of positive and negative parities form separate parabolic sequences, cf. Fig. 5 of
Ref. [2] as an example. This double-band structure can be employed as a direct
complementary test for the presence of Oh-symmetry.
• Odd-A Nuclei: Tetrahedral Double Group TD

d . The main strategical lines
to follow are analogous to the ones just listed: Identify the spin-parity sequences
predefined by the group theory. However, the group-structure of TD

d is different
from the group structure of Td, and it follows that the detailed structure of the
spin-parity sequences for odd-A nuclei differs, as given by Eqs. (15-17). A com-
plementary strategy in the research of odd-A nuclei, advocated in Ref. [9], is to
combine the first-order Coriolis coupling with the group theory considerations fol-
lowed in this article. Interested reader is referred to the above article for details.
• Vanishing Dipole and Quadrupole Moments – Mass Spectrometry Alternative.

An important difficulty established long ago is related to the fact that the tetra-
hedral and/or octahedral symmetry configurations generate neither collective E1-,
nor E2-transitions, the first allowed being E3 – and thus even the most powerful
γ-detection systems cannot provide any direct help (see however remarks below).
Since the usually dominating electro-magnetic signals are expected to be absent,
the most natural alternative is to employ the mass-spectrometry techniques and
the isomer search, cf. e.g. sect. 3 of Ref. [2].
• Vanishing Dipole and Quadrupole Moments – Population Difficulties. An-

other difficulty is related to the fact that tetrahedral symmetry states not only
generate no electromagnetic transitions of multipolarity lower than λ = 3 which
would enable the detection of their presence, but equally importantly, cannot be
populated via such transitions. The corresponding ‘user instruction’ is to find
appropriate nuclear reactions, which allow for populating the sought states at rel-
atively high excitations energies at not too high (not exceeding the values of the
order of a dozen ~) angular momenta.
• Particle-Hole Excited States with Tetrahedral Deformation-Driving Orbitals.

At this point let us emphasise that, in addition to examining the low lying energy
sequences of excited states in even-even and odd-A nuclei in the vicinities of the
tetrahedral doubly-magic nuclei with proton and neutron numbers (Z0, N0 = 32,
40, 56, 64, 70, 90, 112, 136) one may focus on the specific particle-hole excited
configurations in which the hole-level is strongly up-sloping and the particle level
is strongly down-sloping. Examples of the corresponding structures are given in
Fig. 1. Indeed consider any one of the two 4-fold degenerate up-sloping orbitals
(full lines just below the N = 82 gap in Fig. 1, top) and the down-sloping 4-fold
degenerate orbital below N = 94 gap. The particle-hole excitations involving these
orbitals, more precisely 1p-1h and 2p-2h, are illustrated in Fig. 2. Let us notice
that whereas 1p-1h excited state gains in energy with tetrahedral deformation in-
creasing more than 5 MeV (within the scale of the figure) the 2p-2h configuration
gains nearly 11 MeV under the same conditions.

Two extra properties deserve noticing.

• Large Tetrahedral Deformations Far From the Magic Configurations. Since
the single-particle orbitals change very slowly with the proton and neutron num-
bers, the behaviour of the two curves selected in this example can be seen as
‘universal’ in a given mass range. It then follows that it will be sufficient to select
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a way that the hole orbitals are up-sloping (4-fold degenerate orbital closed to

the N = 82 gap in Fig. 1, top) and the particle orbitals are down-sloping (4-fold

degenerate orbital below N = 94 gap, the same figure) as function of increasing

tetrahedral deformation, t3 ≡ α32. Emphasise degeneracy mechanism: the 1p-1h

excitation appears 16-fold degenerate, the 2p-2h one is 36-fold degenerate.

the proton and neutron numbers of the discussed nucleus sufficiently far from the
magic numbers in such a way that the energy corresponding 0p-0h configuration
is flat in terms of t3, in which case the excited np-nh states superposed with the
0p-0h state will likely have a strong t3-deformation.
• Extremely High Degeneracies of the Excited np-nh States. An important

element of consideration are unprecedented degeneracies of the considered states.
In the considered example of 2p-2h configuration the degeneracy is equal to 36.
Without performing any detailed calculations one may expect that the presence of
those high degeneracies should favour (increase the probability of) populating those
particular states in the case of tetrahedral (and / or octahedral) deformations.
• Using γ-Multi-detector Systems in the Search for High-Rank Symmetries.

From the fact that in the exact symmetry limits the first non-vanishing electro-
magnetic radiation is expected to be of the E3-character (thus orders of magni-
tude weaker than the one of lower multipolarities) one could conclude, perhaps too
rapidly, that the γ-detection systems are not very useful. Just to the contrary:
One has to remember that most of the predicted tetrahedral-symmetry nuclei are
not exactly doubly magic and moreover, that the symmetries are partially (even if
weakly) broken by the Coriolis alignment effects on top of which one has to account
for the quadrupole zero-point oscillations. All these mechanisms imply dynamical
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symmetry breaking effects resulting in weak, possibly both E1 and E2 electromag-
netic radiation and the importance of the powerful γ-multi-detector systems should
not be under-estimated.

4. Summary and Conclusions

In this article we briefly summarise the recent evolution of the ideas about the
identification of the tetrahedral and octahedral symmetries in atomic nuclei. The
central arguments are based on the application of the microscopic mean-field theory
in the realisation of the spin-parity and particle number projected Hartree-Fock-
Bogolyubov approach with Gogny interactions together with the group theory re-
sults. We provide a compact formulation of the suggestions about the experimental
choices in the form of the ‘user instructions’ which are expected to help optimising
the future experiments.
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