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Appendix S1: MRI acquisition parameters

UKB samples

MRI images were collected using a 3T Siemens Skyra machine (software platform
VD13) and a 32-channel head coil (1). The T1 weighted (T1w) images were acquired over
4:54 minutes, voxel size 1.0x1.0x1.0mm, matrix of 208x256x256mm, using a 3D MPRAGE
sequence (2), sagittal orientation of slice acquisition, R=2 (in plane acceleration factor),
TI/TR=880/2000 ms (1). The T2 FLAIR acquisition lasted 5:52 minutes, voxel size
1.05x1.0x1.0 mm, matrix of 192x256x256 voxels, 3D SPACE sequence (3), sagittal
orientation, R=2, partial Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical (1).

HCP sample

T1w and T2 weighted (T2w) images were collected at the Washington University (St
Louis, Missouri) on a 3T Siemens Skyra scanner using a standard 32-channel head coil (4, 5).
Two T1w images were acquired, each over 7 minutes and 40 seconds with a voxel size of
0.7x0.7x0.7mm, matrix/FOV of 224x224x224mm using a 3D MPRAGE sequence (2),
TR/TE/TI1=2400/2.14/1000ms, flip angle 8degrees, R=2, sagittal orientation of slice
acquisition (6). Similarly, two T2w images were acquired over 8:24 min each, voxel size
0.7x0.7x0.7mm, matrix of 224x224x224mm, 3DSPACE sequence (3), sagittal orientation,
R=2, TR/TE=3200/565, no fat suppression pulse.



Appendix S2: Summary of image processing and QC

Exclusion due to MRI processing in the UKB
At the time of download (July 2017), T1w images were available for 10,102

participants of the UK Biobank (UKB) project. None of the participants had withdrawn
consent after the data was collected. We excluded 175 participants with T1w images labelled
as unusable by the UKB, leaving 9,928 MRI scans to process. T2 FLAIR images were
available for 9,755 of those. The FreeSurfer processing failed or did not complete within 48
hours for a handful of participants: 37 for cortical processing, 19 for subcortical, including 17
for whom both processing failed. For simplicity, we chose not to re-run image processing on
these participants as their exclusion should have a minimal impact on the results obtained
from the full sample. Excluded individuals are described in Dataset S1. Our final sample
comprised 9,890 participants with usable cortical data, 9,908 with subcortical data and 9,888
with both cortical and subcortical data. This sample consisted of 9,888 adults aged 62.5 on
average (SD=7.5, range 44.6-79.6) and comprised 52.4% of female participants. We further
excluded 391 participants with extreme brains (outliers) or likely to have a large effect on the
analyses (see below for details about QC).

Replication data set was downloaded in May 2018 and consisted in an additional
4,942 participants with a T1w image. Image processing and phenotype selection were
identical to that of the discovery sample. This led to the exclusion of 381 participants whose
processing failed and 238 excluded from QC (details below). See Dataset S1 for a full
description of replication participants (final, QCed and failed processing) in addition to a
comparison of the discovery and replication samples.

Automated guality control based on the BRM
The standards in imaging are to perform a visual QC of the processed images

following a (mostly) automated pipeline. For example, the ENIGMA protocol recommends
checking participants with outlying measurements but also requires a visual QC of each scan
to control the cortical and subcortical parcellation
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). This may prove extremely time
consuming, especially on large samples such as the UKB that were not available when the
ENIGMA pipeline was created.

Here, we propose to utilise the information contained in the BRMs to perform QC.
We excluded participants showing extreme values on the diagonals of the BRMs
(diagonal>2.5, we did not observe any heavy left, see Appendix S4). In addition, we
excluded individuals with outlying off-diagonal elements as they could confound our
variance component analyses. We took the average of the BRM elements (in absolute value)
for each individual (i.e. average of ith row of the BRM for the ith individual) and excluded
participants with a statistic more that 4SD away from the mean. We reported the histograms
of BRM diagonals and off-diagonals before and after QC (Appendix S4). The arbitrary cut-
off for the BRM diagonal (>2.5) was determined from the HCP sample on which we had
performed visual QC as per ENIGMA protocols
(http://enigma.ini.usc.edu/protocols/imaging-protocols/).



http://enigma.ini.usc.edu/protocols/imaging-protocols/)
http://enigma.ini.usc.edu/protocols/imaging-protocols/

We applied the same level of QC in the UKB sample but could not compare our approach to
visual QC exclusion due to the size of the dataset. Instead, we describe the participants
excluded due to failed processing or QC, to check if their exclusion may impact the results
presented (Dataset S1).

Comparison of visual vs. BRM-based QC approaches in the HCP sample
A total of twenty-four participants were excluded in our QC step based on the diagonal

values (>2.5) or outlying off-diagonal elements in the BRM. Twenty-two participants were
flagged using each of the BRM QC criteria. More importantly, 20 outlying individuals were
flagged by both BRM criteria. Thus, participants with outlying brains, as indicated by large
BRM diagonal values tended to exhibit outlying off-diagonal values (i.e. brain structure
similarities) with other individuals, potentially causing unstable estimates in variance
component analyses.

Out of the 24 individuals excluded in our data driven QC, 14 had also been flagged using the
ENIGMA visual QC protocol: 3 were fully excluded for incorrect cortical reconstruction, 7
had an incorrectly segmented hippocampus and 7 others failed visual QC for 3+ cortical
regions. Finally, our data driven QC did not identify some individuals flagged using the
ENIGMA visual QC: 4 with incorrect hippocampal reconstruction and 108 with incorrect
parcellation of the cingulate cortex. The case of the cingulate parcellation is highlighted in
the ENIGMA QC protocols as its boundary with regions in the frontal cortex are often
misplaced in FreeSurfer. However, this should not be a problem when working at a vertex
level as the cortical ribbon remains well segmented, and this may be why these individuals
are not identified by our QC approach.

Description of excluded participants in the UKB
We report the mean (SD) or % of each answer (for qualitative variables) for all the

phenotypes considered from the UKB (Dataset S1) and compare the mean and variances
between included and excluded participants. We used a conservative Bonferroni significance
threshold of 1e-4 to account for the number of tests.

The participants we excluded (either for unusable T1, or QC) were on average more
than 2.7 years older than the individuals used in the analysis (p-value<3.3e-7) and men were
over-represented (62% of excluded were men vs. 47%, p-value<1.8e-5). In addition,
excluded individuals were more variable in term of digit matching reaction time, dried fruit
intake and exposure to passive smoking. They were less variable than included participants in
regard to their basophil percentages (Dataset S1).

Individuals with unusable T1 reported a smaller amount of passive smoking at home
(0.001 days a week vs. 0.2, p-value=4.7e-9). They were also less variable than individuals
included in the analysis in term of their depression scores.

On the other hand, individuals excluded from QC were 10% less performant as the
digit matching task than included participants (smaller number of correct matches or
attempted matches, greater reaction time, p-value<4.8e-7). They also were more likely to be
diabetics (10% in QCed participants vs. 5%, p-value=1.e-5) and had a reduced acceleration
force (-2.4m/s-1, p-value=3.5e-5) as well as greater waist circumference (+3.1cm, p-
value=7.0e-7). In addition, the individuals QCed out of the analyses had a greater ICV,




smaller grey matter volume, hippocampus volumes or cortical thickness. More importantly
excluded individuals exhibited much greater variances in all brain measurements which
suggests imperfect/failed processing.

Sample description HCP
Similar to the results in the UKB, HCP participants excluded by QC showed a

significantly greater variance in brain measurements than included participants (Dataset S2).
This further validates our QC approach, suggesting that the participants QCed out exhibit
outlying brains, some due to failure of the MRI processing pipeline.

In addition, excluded participants differed (p-value<le-4) on some aspects of
cognition: delay discounting $200 at 5 years (smaller mean and variance), spatial orientation
(total positions; greater variance) and sustained attention (longest run non-response; smaller
variance), depression scores (smaller mean and variance).

The similarities between excluded participants in the UKB and HCP (e.g. depression
scores or cognition) are intriguing. We hypothesise that these phenotypes may be associated
with greater level of movement in the scanner leading to lower image quality and failed
processing. Us and others previously showed that inattention and hyperactivity are associated
with greater movement in resting-state fMRI(7, 8), and a subsequent study in the HCP found
multiple factors also associated with motion during rs-fMRI (for example: some cognition
domains, antisocial or somatic scores, weight and BMI as well as tobacco use)(9).

Note that when the variance in excluded and included participants differs, the sample
participants may not capture the full phenotypic variance and the results of variance
component analyses should be interpreted with caution. In other words, we are estimating the
proportion of in sample variance accounted for by brain features which may differ from the
proportion of total phenotypic variance accounted for in the population.

QC when comparing the different cortical processing (mesh coarseness and smoothing)
In this section, we performed a slightly different QC which consisted of excluding

individuals with extreme off-diagonal BRM elements (+-5SD from mean, option previously
not available in OSCA). We note that this QC is slightly more stringent but did not change
the morphometricity estimates reported in the main text (Dataset S3, S12).

It is important to have a QC that adapts to the distribution of the BRM off-diagonals,
which may differ depending on the processing options. To note, most of the excluded
participants were the same across the different processing scenarios.




Appendix S3: HCP image processing

The HCP team (6, 10, 11) pre-processed the structural scans to facilitate scan
comparison across individuals, removing spatial artefacts and improving T1w and T2w
alignment using FSL (12, 13) and FreeSurfer (14). When both passed HCP quality control
(QC), T1w and T2w images they processed them together in FreeSurfer 6.0 (14), otherwise
data extraction relied on a single scan (6). Participants with poor quality T1w and T2w scans
were re-imaged (6). Cortical processing (recon-all procedure in FreeSurfer) was also
performed by the HCP team and included down sampling to 1mm size voxels and
256x256x256 matrix, aided registration using customised brain mask, and two manual steps
performed outside of the recon-all procedure to enhance white matter and pial reconstruction

(6).



Appendix S4: BRM interpretation

Diagonals of the BRM consist of the mean square of the participants’ vertex-wise
measurements. Since the vertex-wise data are centred, larger diagonal elements reflect a
greater proportion of extreme phenotypes, may they be small or large vertex measurements.
Thus, we can interpret large diagonal values as “outstanding brains” in term of size/shape or
due to failure in processing (e.g. incorrect cortical or subcortical parcellation). On the other
hand, small diagonal values indicate small absolute values across the brain measurements
(mean centred), hence brains close to the average brain. Across all the samples and BRMs,
we observed that the diagonal elements were centred around 1, and skewed to the right
(Appendix S4 Figure 1-2).

Off-diagonal elements of the BRM are the covariances between two individuals’
measurements, thus greater values indicate greater similarities between the pair of
participants. Off-diagonal elements are normally distributed with a mean of 0. Their
dispersion varies upon the brain modality considered and the degree of correlation between
the vertices (Appendix S4 Figure 1-2).

Participant’s brain similarities are thought to reflect (some of) the participants’
similarities in genetics and environment, in other words we expect part of the variance
accounted for by the BRM to be genetic. Indeed, we observed a positive correlation between
elements of the BRM and of the Genetic Relatedness Matrix (GRM) in the UKB or the
pedigree matrix in the HCP, which suggests that participants more alike genetically also
exhibit more similar brains (Appendix S4 Figure 3-4). The GRM was calculated in
GCTA(15) from the hap-map 3 variants further filtered for MAF>0.01, pHWE<10-6 and
missingness<0.05 for a total of 1,123,943 variants. The GRM calculation was restricted to
participants of European ancestry (N=456,426) defined by a >0.9 posterior probability of
belonging to the 1000G reference ancestry cluster. Overall, the pairs of twins and especially
monozygotic twins did not exhibit outlying BRM values compared to the unrelated pairs
(Appendix S4 Figure 4), suggesting that they should not confound the results of a variance
component analysis. Quite the opposite, they increase the variance of the off-diagonal BRM
elements which results in an increased power Appendix S6).
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Plots are presented before (left panels) and after participants’ QC exclusion (right panels). Colors correspond to
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Appendix S5: assumption testing in linear mixed models

We tested whether the variance accounted for by the brain similarities was
significantly different from O using a likelihood ratio test on nested models (with and without
the random effect). The test statistic follows a chi-square distribution with x degree of
freedom (x being the number of variance components tested) for a o2 value inside the
parameter space. However, when testing HO: 62 = 0 vs. H1: 6 > 0, the p-value should be
interpreted with caution as the estimator may not be asymptotically normally distributed
because 0 is a boundary of the parameter space (16, 17). Some have suggested that the p-
value could be better approximated using a mixture of chi-square distributions in the test of
significance (16, 17). However, a 50:50 mixture has been shown to be sometimes
inappropriate (18, 19) as the test relies on assumptions often not met in LMM (such as i.i.d.
observations) (19). Thus, we preferred using a 2 (x df.), the only consequence being a less
powerful hence conservative test (18-20). Such test is implemented in OSCA (21), as well as
in GCTA (15).
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Appendix S6: SE of the residual correlation

Residual correlation (rg) offers insight into factors, shared between the traits, but that do not
relate to grey-matter structure (e.g. other brain modalities, non-brain contribution). A
weighted sum of rgy and re make up the phenotypic correlation. Thus, we calculated rE from
the phenotypic and grey-matter correlation using:

r —rgm * vRY * R
JA-R) «(1-R3)
with R3and R% the brain-morphometricity of the two traits included in the bivariate model.
To derive the SE, we use the fact that the residual correlation between random
variables X and Y can be expressed as a function of the residual covariance between X and Y
(6xy), and the residual association with X or Y (625 and 62y).

I'g

Oxy a

rE = =
J62yx 62, bxc

We can derive a first order tri-variate Taylor series approximation around the
expected values of Gyy, 62y and 62y (denoted ug, u, and u, for convenience). Doing
so, we implicitly assume these numbers are estimated with a reasonable confidence so that
the Taylor series approximation around the mean holds. Thus,

(@a—pa)  0.5%pg*(b—pp) 0.5 pg* (c—c)

VHb * He Hp Hb* Uc HeHc* Hp

rE = pg

Taking the variance:

V(a) N 0.25 * ug? * V(b) N 0.25 * ug? * V(c)

V(rE) ~ 3 3
Hp * Hc Hp~ * Hc He™ * Up
Ug * cov(a,b) u, * cov(a,c) N 0.5 * ug,? * cov(b,c)
Hp® * U He? ¥ He? ¥ pp?

To conclude, approximating the variance of rE using the formula above, requires the
variance components estimates (6yy, 6%y and 62y) from the bivariate model as well as their
matrix of sampling variance-covariance for the values

V(6xy), V(62x),V(6?%,), cov(Bxy, 8%x), cov(bx,6%,) and cov(6%,62,) .

Such values are estimated in OSCA/GCTA and may be found in the log files
outputted during the model fitting. Note that SE of the grey-matter correlation is derived
using the same approach. The interested readers may refer to (22-24).

For significance testing, we used a one-sided test based on the test statistic:

(SEr(iE))Z ~x(1)
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Appendix S7: Power of linear mixed models

Power of the current analyses:
In the UKB discovery sample (assuming N=9,500), we had 80% power to detect an

effect >2.2% of variance accounted for by the random effect, while taking into account
multiple testing (pvalue significance threshold p<0.05/175). In the HCP sample (assuming
N=1,000), considering the number of tests performed (p<0.05/160), we would need an
association effect size of 20% of variance to yield the same power (25). For brain
correlations, the calculation of statistical power depends on the sample size (set to 9,500), the
variance accounted for in each phenotype (we chose 5%), the phenotypic correlation (set to
r=0.2), the significance threshold (p<4.2e-5, based on our number of tests) as well as the
variance of off-diagonal elements of the BRM var(B;;) (0.00096, for the BRM of all brain
features) (25). In this example, we had 80% power to detect a brain correlation greater than
0.35, but only a 7% power for a brain correlation of 0.2. Using a sample of N=1,000, as per
the HCP, and selecting phenotypes with >20% variance accounted for (everything else being
equal), we have a 1% power to detect a brain correlation of 0.35, and we would need a brain
correlation greater than 0.99 to achieve 80% power.

Power derivations for LMMs
Power calculation of variance component analysis may be derived from the sampling
variance of the estimate: var(35), which is the square of the standard error (SE) of the
estimate. In REML analyses (e.g. GCTA or OSCA) the SE is estimated from diagonal
elements of the inverse of the information matrix, and it has not been derived analytically.
Visscher et al.,(25) showed that the SE could be approximated using a simpler model
formulation known as Haseman Elston (HE) regression(26), which is the ordinal least square
equivalent of the REML approach. As such, HE regression should be slightly less powerful
that the REML approach, resulting in a marginal underestimation of the power.
Briefly, HE regression(26) performs a linear regression of the phenotype pairwise product
zii=yiy; on the off-diagonal elements of the BRM: B;;. For a pair of individual i and j:

zij = p+b B+ ¢
This model includes n=N(N-1)/2 pairwise observations and we can easily show that b = o
(25, 26). In this simple linear regression framework, assuming that the ¢;; are i.i.d. we can

calculate the var (&%) = var(b) = var(si))

nwvar(B;;)’

For centred and standardised phenotypes Y, var(zi j) = 1 and therefore var(si j) < 1. Thus,
2

o As a consequence, the power of variance component analysis may
D

var(’o\'ﬁ,) < N-D

be approximated from the sample size N and the variance of the off-diagonal elements of the
BRM. The same formula holds for discrete outcome variables (e.g. sex or disease status) and
a similar derivations may be performed for a the bivariate case and the power of brain
correlation(25). In our UKB and HCP data, we calculated the variance of the off-diagonal
BRM in order to get an approximation of the SE of our variance component estimates. The
var(B;;) were consistent across sample and across the left and right modalities (Appendix

S7 Table 1). Such stability of the variance of off-diagonal elements has also been observed
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for GRM(25, 27). Thus, in our UKB imaging sample, the variance of the off-diagonal GRM
was 2.0e-5 (after removing related individuals with GRM elements>0.05), consistent with
previous report and analytic derivations from our group(25, 27).
We tried to validate the derivations presented above using simulation. Thus, we simulated
100 normally distributed phenotypes (mean 0, variance 1) and estimated the SE of the
variance components using OSCA, varying the sample size (from N=500 to 9,000). We used
random subsets of the BRM calculated from the UKB data for the variance-covariance of the
random effect. We conducted such analysis for the 8 brain modalities as well as for the global
BRM. Results of simulation and approximation theory are presented in Appendix S7 Table
1, Appendix S7 Figure 1 and 2, and suggest that the approximation yields realistic, though
slightly underestimated, values for the SE of the variance component estimates. Note that HE
regression is known to produce underestimated SE at high power as the i.i.d. assumption of
errors does not hold anymore(28). Despite being small, the underestimation of SE may lead
to overestimate the statistical power using the approximation theory. To circumvent this
problem, we provide values for var(B;;), derived from our simulation analysis, that result in
realistic power calculation using the approximation theory (Appendix S7 Table 1). The
statistical power may be calculated (for a hypothesised variance accounted for: 2 and a
selected risk o) from the non-centrality parameter of the chi-square statistic ncp =

2
(‘S’—é) , using the R formula 1-pchisq(qgchisq(1-a., df), df, ncp) or the GCTA-GREML online
power calculator (http://cnsgenomics.com/shiny/gctaPower/).
Results presented below also highlight the greater power of the brain variance component
analyses compared to estimation of SNP heritability, as indicated by the smaller SE of the
estimates. For example, in a sample of N=1000, we would have >60% power to detect an
effect o2 > 0.1 (with a=0.05), but only a 5.5% power to detect a SNP heritability greater
than 0.1 (Appendix S7 Figure 1 and 2).
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http://cnsgenomics.com/shiny/gctaPower/)

Var(Bij) UKB

Var(Bij) HCP

Var(Bij) to use in power
calculation (corrected
based on our simulations)

cortical area Left 0.0012 0.0015 0.00047
right 0.0012 0.0016 0.00046
Cortical thickness Left 0.0049 0.0021 0.0017
Right 0.0057 0.0024 0.0017
Subcortical curvature Left 0.057 0.057 0.017
Right 0.058 0.059 0.017
Subcortical thickness Left 0.035 0.036 0.018
right 0.034 0.035 0.020
All modalities 0.0017 0.0014 0.00096

Appendix S7 Table 1: Variance of off-diagonal elements in the UKB and HCP.
Following our simulation results and to avoid overestimating the statistical power of brain variance-component analysis, we recommend using the values in the
right-hand side column in the approximation theory formula (see main test for the formula, or http://cnsgenomics.com/shiny/gctaPower/ for online power

calculator).
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Appendix S7 Figure 1: Empirical and approximated SE of the variance component estimates using BRM and GRM
The right panel is a close up of the left one, restricted to sample sizes above 2000 participants. We did not calculate the empirical power for the genetic case has

it has already been shown to match the approximated power (25).
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Appendix S7 Figure 2: Statistical power of detecting an association R>>5%, with a risk alpha=0.05.
Power derived from simulation and from the approximation theory are compared. We did not calculate the empirical power for the genetic case has it has already

been shown to match the approximated power (25).
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Appendix S8: Including (or not) twins when estimating morphometricity

The HCP comprises many twin pairs (thus, non-independent observations), and we
evaluated the impact of their exclusion on the morphometricity estimates. We found a good
agreement of the results with and without including related individuals, with no evidence of
systematic bias, though the limited power (N=444) results in wide SE (~0.20) (Appendix
S8 Figurel).

The reason why LMM are robust to the presence of related individuals may be that
they explicitly model the grey-matter relatedness in all analyses, which should account for
the grey-matter resemblances arising from shared genetics or environment. For another
confirmation, our results on the full HCP sample yielded always similar (e.g. Fluid 1Q) or
lower (e.g. attention) brain-morphometricity estimates than reported by Sabuncu et al., who
selected 1 subject per family (29). To note, grey-matter similarities of twin pairs is not as
outlying as their genetic relatedness factor (compared to the general population) (Appendix
4).
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Appendix S8 Figurel: Morphometricity estimates in the HCP sample obtained using the full sample or
a reduced set of unrelated individuals.

Only phenotypes with significant morphometricity are included here. Overall correlation between estimates is
0.8 with no evidence of systematic bias when including all family members. The largest differences were
found for variables with little variation (opiates) or non-normally distributed (times used tobacco, ASR score,
fluid intelligence — total skipped).
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Appendix S9: In depth results and discussion of the ROI-traits associations using the
vertex-wise resolution

In the UKB, the largest associations were observed between age of the participants
and subcortical volumes (R? ranging between 0.22 and 0.35 for subcortical thickness, 0.20
0.38 for subcortical area), but most cortical regions were also significantly associated with
age, albeit to a lesser extent (R? in the 0.0083-0.15 range for cortical thickness, 0.0048-0.15
range for cortical surface area). Next, significant ROl associations included sex, associated
with all subcortical volumes (R? in the 0.0049-0.024 range for thickness, 0.0058-0.027 for
area) and with many cortical regions (R? in the 0.0011-0.0076 range for cortical thickness,
0.0019-0.014 for cortical surface area) (Figure S8 and Dataset S7). Maternal smoking
around birth was further associated with 28 ROI, mostly located in the occipital and
temporal lobes (R? in the 0.013-0.026 range with cortical thickness, R? in 0.014-0.071 with
cortical surface and R? in the 0.010-0.039 range with subcortical structure). In addition, we
found significant associations between cognition domains and structure of thalamus,
putamen, pallidum and hippocampus (R? in the 0.0043-0.024 range). Notably, fluid
intelligence was associated with all aspects of thalamus anatomy (left and right, thickness
and surface area) while the other cognition domains considered were associated with some
aspects of thalamus structure. No association between cognition and cortical structure
survived multiple testing correction.

Diabetes diagnosis correlated with (left) superior frontal surface area (R*=0.054), as
well as with thalamus, putamen, and pallidum thickness (R® ranging between 0.0067 and
0.015), or thalamus and hippocampus surface (R? in the 0.0061-0.014 range). Alcohol
intake was associated with left thalamus thickness (R=0.018) while smoking status and
past tobacco use were associated with thalamus, caudate, putamen and pallidum thickness,
as well as with thalamus surface area (R? in the 0.007-0.020 range). Finally, we also
observed small associations between cortical or subcortical regions and overall health
rating, time spend watching TV, body fat percentage and physiological measurements
(Figure S8).

Using the replication UKB sample, we replicated 633 out of the 975 significant
ROI-trait associations (p<0.05/975). Most associations were found with age, sex and body
size variables, though we also replicated associations between subcortical volumes and
hand grip strength or time spent watching TV (Dataset S9). In addition, the magnitude of
the associations with age, and body size were greatly similar between discovery and
replication analyses (Appendix S9 Figurel). For sex, we observed larger ROI associations
in the UKB replication sample (Appendix S9 Figure 1), consistent with the larger brain-
morphometricity observed in this sample (Figure S6).

In the HCP sample, age was associated with thickness (R? in the 0.020-0.049 range)
and surface area (R? ranging between 0.067-0.10) throughout the cortex, as well as with
subcortical structure (R? in the 0.016-0.087 range). Sex was associated with cortical
thickness of the lateral orbitofrontal cortex (R?in the 0.059-0.073 range), as well as with
subcortical structure (R? in the 0.042-0.19 range). In addition, we found large associations
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between cocaine, opiate or hallucinogens use and surface area of several cortical regions
located in the temporal lobe (fusiform, superior temporal, insula), frontal (pars-triangularis,
pars-opercularis, caudal-middle frontal), parietal (supramarginal, superior and inferior-
parietal, precuneus) or in the cingulate (R®in the 0.25-1.00 range for cocaine test, R? in the
0.43-0.46 range for opiates, R? in 0.25-0.56 for number of times used hallucinogens).
However, the small numbers and possible outliers in the vertex-wise measurements make
such associations prone to false positives. Alcohol consumption was also associated with
surface are of the frontal cortex (right rostral middle frontal, paracentral and precentral gyri,
R? in the 0.28-0.36 range). No other association survived multiple testing correction
(Appendix S9 Figure2 and Dataset S10).

Body size variables were strongly associated with subcortical structure under the
baseline model (R? ranging between 0.010-0.059 for height, R? between 0.048-0.30 for the
others) and to a lesser extent with cortical surface area (R* between 0.0078-0.026 for
height, R? between 0.0061-0.060 for the others) and cortical thickness (R? in 0.0039 0.016
for height, R? in 0.0017 0.045 for the others). The associations between grey-matter
structure and body size were pervasive (72/164 significant ROIs associations with height,
109 with waist circumference, 105 with BMI) (Figure S9, Dataset S8), suggesting that
when acting as confounders height, weight or BMI could lead to false positives in many
brain regions.

Discussion

Our results for sex are consistent with results from the UKB first release (N=5,216,
using ROI average (30)), while several studies have previously reported associations
between BMI and several grey-matter measurements (31-36).

In the UKB, smoking status was associated with thickness and surface of the
thalamus (left and right), although we also found associations with the caudate and
pallidum. Previous studies have reported association between tobacco usage and volume of
left thalamus (37-39), which might be due to faster age related volume loss in smokers (40).
We did not replicate other cortical or subcortical associations previously reported (37, 38,
41). Alcohol intake was also associated with left thalamus thickness in the UKB, consistent
with the significant grey-matter correlation (Figure 3) between the two traits. The thalamus
has been implicated in alcohol-related neurological complications (e.g. Korsakoff’s
syndrome)(42) but may also be associated with regular alcohol usage (42, 43) or alcohol
use disorder (44). Maternal smoking around birth was further associated with the thalamus,
putamen, hippocampus and pallidum, as well as temporal and occipital ROIs. In addition,
diagnosis of diabetes was associated with area of the left superior-frontal cortex (Dataset
S7, Figure S8). Nervous system complications of diabetes (sometimes labelled diabetic
encephalopathy) are widely accepted (45) but little is known about the specific brain
regions associated with the condition (46).
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Appendix S9 Figure 1: ROI based associations between UKB discovery and replication samples
for selected phenotypes.

Each panel correspond to a single phenotype, and displays the association R2 of this phenotype with
each ROI of interest considered. The results found in the replication sample (Y-axis) are plotted as a
function of the discovery results (X-axis). The labels indicate which ROI corresponds to which point in
the figure. Panel a) Age; b) sex; c) height; d) body fat %; e) BMI; f) weight; g) hip circumference; h)
waist circumference
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Fig. S1. Replication R2 (or correlations) are presented as a function of the discovery
R2 (or correlation).

The R2 or correlations correspond to the fixed effect association between a covariate and all other
phenotypes (labelled in plots). For example, panel a) shows the association R2 between age and all
phenotypes, in the discovery and replication UKB samples. Panel b) shows the same results but using
correlations and not R2 to appreciate the sign. Panels, c) and d) show the R2 and correlations between
sex and all other variables. Panel €) presents the R2 between phenotypes and head size (ICV, left and
right total thickness and area). Panel f) presents the R2 between phenotypes and body size (height,
weight and BMI). As head size or body size are composed of several variables, only the R2 is
presented. The correlation between discovery and replication results in shown in each panel as r.
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Fig. S2. Morphometricity of brain phenotypes — positive controls

As a positive control, we estimated the association between all grey-matter vertices and
global measures of brain size, controlling for acquisition age and sex. Results are shown
for the UKB discovery sample (top panel) and the HCP sample (bottom).
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Fig. S3: Morphometricity in the UKB replication sample under baseline covariates.

Panel a) presents the summary of the replication analysis in the UKB. Only the 58 significant phenotypes from the UKB discovery
sample were included in the analysis and are shown here. Black bars correspond to 95% confidence intervals. Phenotypes showing
significant morphometricity in the replication sample (p<0.05/58) are labelled in black. To note, the replication sample was only half
the size of the discovery one, with a clear incidence on power (and 95%CIs). Blood assay variables and being part of multiple birth
suffered from a small number of observations (N~300), which explains the even larger confidence intervals. Panel b) compares the
replication morphometricity estimates (X axis) to the discovery ones (Y-axis). We excluded blood assay variables, for which the small

N led to unstable parameter estimation. We found a great concordance of results between the 2 independent UKB samples as indicated
by a correlation of 0.95 between the 2 sets of results (panel b).
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Panel (a) shows the results for the UKB sample, panel (b) shows the results for the HCP sample. Note that fitting multiple variance
components comes at an increased computational cost and a slightly increased standard error of the estimate of the overall variance
explained(47). In addition, when modelling 5 variance components, the AI-REML algorithm failed to converge for 58 UKB phenotypes and
71 HCP phenotypes (in particular for phenotypes with low morphometricity) because of the increased uncertainty in the estimate of variance
explained by each component due to smaller number of brain measurements in an individual component in comparison with the total. The
correlation between the association R? from the two approaches appears on the plot.
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Figure S10: Effect of cortical mesh smoothing and mesh choice on the brain-
morphometricity estimates (UKB replication samples).

Blood assay Variables (with n<500 observations) were excluded from the analysis due to unstable

estimates and large SE.
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All the points are above the diagonal indicate a greater amount of information retained
using the vertex-wise processing compared to the ROI based dimension reduction
approach For example: R? age_ Vertex_o 64 vs. R? age R01=0.24;
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R AmountDrunkTyplcaIDay_Vertex—0 13 R AmountDrunkTyplcaIDay_ROI—0 011 and also R BMI Vertex—0 56
vs. R? emi_roi=0.10. Results are compared using baseline covariates.
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intervals (95%) are shown around the point estimates.
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Table S1. Replication of grey-matter correlations identified in the UKB discovery

sample
Variable 1 Variable 2 Discovery | Replication
rGM rGM | SE pvalue

Fluid intelligence Max digits attempted 0.71 1.0 7.3 0.29469
Number correct symbol

Fluid intelligence matches 0.72 1.0 25.1 |0.31246
Number correct symbol

Max digits attempted matches 1.0 1.0 25.1 | 0.31246

Fluid intelligence Cheese intake 1.0 082 0.2 0.0015689

Time spent outdoors Time spent outdoors

summer winter 1.0 1.0 0.2 0.1928

Time spent watching

television Body fat percentage 0.73 081 0.2 4.42E-05

Frequency vigorous activity | Acceleration force 1.0 062 |04 0.13604

Overall health rating Pulse rate 1 1.0 1.0 0.5 0.01224

Overall health rating Pulse rate 2 1.0 1.0 0.5 0.012028

Pulse rate 1 Pulse rate 2 0.99 1.0 0.01 | 0.00049312

Overall health rating Waist circumference 1.0 039 |04 0.19506

Body fat percentage Waist circumference 0.52 045 0.2 0.02677

Pulse rate 1 Waist circumference 0.67 031 |03 0.1675

Pulse rate 2 Waist circumference 0.73 056 |03 0.047662

Hand grip strength left Hand grip strength right | 0.92 0.84 0.06 | 1.76E-07

Body fat percentage Forced vital capacity -0.66 -045 |0.2 0.026155

Hand grip strength right Forced vital capacity 0.69 0.70 |0.2 0.0015424
Forced expiratory

Fluid intelligence volume 1.0 048 |03 0.062686
Forced expiratory

Hand grip strength right volume 1.0 079 0.2 0.00044463

Body fat percentage Basal metabolic rate -0.69 -0.75 | 0.1 3.89E-06

Pulse rate 1 Basal metabolic rate -0.55 -0.46 | 0.2 0.038444

Waist circumference Basal metabolic rate -0.75 -0.55 0.2 0.0055741

Smoking Status Past tobacco use -0.98 -0.93 | 0.03 |0.0011549
Amount alcohol drunk

Alcohol intake typical day -0.89 -1.0 0.1 0.00042018
Amount alcohol drunk

Smoking Status typical day 0.71 1.0 0.2 0.0044935
Amount alcohol drunk

Past tobacco use typical day -0.64 -1.0 0.8 0.091905
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Table S2: Summary of the prediction accuracy (R?) of the BLUP grey-matter scores.
We constructed BLUP scores for the 39 UKB variables showing significant morphometricity and evaluated their predictive power in the UKB (10 fold-

cross validation) and HCP sample. When the phenotype corresponding to the grey-matter score was not available in the HCP, we chose the closest

available (e.g. waist circumference grey-matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM controlling for height,
weight and BMI as well as for the baseline covariates (acquisition, age, sex and head size); except for (#) denoting associations not controlling for height,
weight and BMI. Rows in bold indicate significant association after correcting for multiple testing (p<0.05/39=1.3e-3) both in and out of sample.

In sample prediction (UKB)

Prediction into UKB replication

Out of sample prediction (HCP)
2

r pvalue R’ AUC (SE) r pvalue R’ AUC (SE) HCP variable r pvalue R AUC (SE)

predicted

Haemoglobin

concentration 0.05 1.6e-05 0.0025 0.035 5.5e-01 0.0013 Hemoglobin A1C 0.015 6.8e-01 | <0.001

Haematocrit % 0.077 1.4e-10 0.006 0.037 5.7e-01 0.0013 Hematocrit level 1 | 0.061 2.1e-02 | 0.0037

White blood cell -

count 0.042 2.2e-03 0.0018 0.016 3.4e-01 <0.001 Hematocrit level 1 | 0.00051 | 9.8e-01 | <0.001

Mean time

correct matches 0.046 2.0e-06 0.0021 0.053 2.9e-04 0.0028 Crystallised 1Q -0.046 9.7e-02 | 0.0021

Number correct

symbol matches 0.09 1.1e-13 0.0081 0.069 2.5e-04 0.0048 Crystallised 1Q 0.064 2.2e-02 | 0.0041

Max digits

attempted 0.091 2.9e-14 0.0083 0.083 1.1e-05 0.0069 Crystallised 1Q 0.069 1.3e-02 | 0.0048

Fluid intelligence | 0.077 4.1e-14 0.0059 0.11 7.2e-12 0.011 Fluid 1Q 0.027 3.5e-01 | <0.001

Age 0.64 0.0e+00 0.41 0.68 0.0e+00 0.46 Age 0.15 3.1e-08 | 0.024

Heel bone

mineral density

bmd 0.065 2.1e-06 0.0042 0.058 2.8e-03 0.0034 Age -0.015 5.8e-01 | <0.001

Heel bone

mineral density

tscore 0.065 1.8e-06 0.0043 0.056 3.9e-03 0.0031 Age -0.015 5.9e-01 | <0.001

Sex 0.26 0.0e+00 0.067 0.58 (0.0059) 0.33 9.8e-305 0.11 0.8 (0.0064) | Sex -0.25 8.0e-42 | 0.061 0.68 (0.016)
SSAGA Education

Cheese intake 0.061 2.0e-09 0.0037 0.076 1.9e-07 0.0058 level 0.029 3.2e-01 | <0.001

Part of multiple

birth 0.078 4.1e-14 0.0061 0.66 (0.022) 0.13 1.5e-03 0.016 0.72 (0.065) | Being a twin 0.31 1.1e-28 | 0.098 0.69 (0.016)

Body fat

percentage 0.29 0.0e+00 0.085 0.31 7.7e-190 0.095 BMI 0.21 5.6e-13 | 0.045

Waist

circumference 0.39 0.0e+00 0.16 0.38 2.0e-205 0.14 BMI 0.21 3.5e-13 | 0.046
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Frequency

vigourous activity | 0.044 9.4e-06 0.002 0.033 1.6e-02 0.0011 BMI -0.0015 6.7e-01 | <0.001

BMI 0.45 0.0e+00 0.2 0.45 7.4e-235 0.20 BMI 0.21 2.4e-12 | 0.042

Diabetes

diagnosis 0.062 4.7e-10 0.0038 | 0.6(0.014) 0.085 2.5e-09 0.0073 0.63 (0.019) | BMI 0.0055 1.0e-01 | <0.001

Overall health

rating 0.052 8.2e-08 0.0027 0.062 7.8e-06 0.0039 BMI -0.002 5.5e-01 | <0.001

Time spent

watching

television 0.083 3.0e-17 0.0068 0.12 1.8e-17 0.014 BMI -0.0025 | 4.5e-01 | <0.001

Basal metabolic

rate 0.029 1.0e-24 0.00082 0.031 3.7e-14 <0.001 BMI 0.0046 1.7e-01 | <0.001

Hip

circumference 0.38 0.0e+00 0.15 0.36 7.3e-143 0.13 BMI 0.21 5.2e-13 | 0.045

Time spent

outdoors

summer 0.047 2.1e-06 0.0022 0.033 1.3e-02 0.0011 BMI -0.006 7.4e-02 | <0.001

Time spent

outdoors winter 0.028 3.8e-03 0.00077 0.036 7.9e-03 0.0013 BMI -0.0073 | 3.0e-02 | <0.001

Pulse rate 1 0.1 2.5e-23 0.01 0.13 4.0e-13 0.017 BMI 0.00012 | 9.7e-01 | <0.001

Pulse rate 2 0.091 2.5e-19 0.0083 0.1 9.0e-09 0.0099 BMI 0.00057 | 8.7e-01 | <0.001

Height 0.25 6.5e-318 0.062 0.23 2.6e-132 0.054 Height 0.17 1.8e-17 | 0.03

Acceleration

force 0.07 7.5e-08 0.0049 0.098 4.1e-06 0.0096 Hand grip strength | 0.014 4.5e-01 | <0.001

Hand grip

strenght right 0.039 1.8e-09 0.0015 0.052 1.4e-08 0.0027 Hand grip strength | -0.0051 | 7.9e-01 | <0.001

Forced vital

capacity 0.03 7.4e-06 0.00092 0.045 1.1e-05 0.002 Hand grip strength | 0.0081 6.7e-01 | <0.001

Forced

expiratory

volume 0.027 2.3e-04 0.00072 0.06 7.8e-08 0.0036 Hand grip strength | 0.019 3.3e-01 | <0.001

Hand grip

strength left 0.039 1.6e-09 0.0015 0.064 2.9e-12 0.0041 Hand grip strength | -0.019 3.1e-01 | <0.001

Weight 0.39 0.0e+00 0.15 0.39 5.8e-231 0.15 Weight 0.19 1.2e-12 | 0.036
Frequence alcohol

Alcohol intake 0.074 1.0e-13 0.0055 0.096 2.9e-11 0.0092 use (12mo) 0.06 4.3e-02 | 0.0036

Amount alcohol Frequence alcohol

drunk typical day | 0.063 5.9e-08 0.0039 0.075 6.1e-06 0.0056 use (12mo) -0.0055 | 8.5e-01 | <0.001
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Past tobacco use

0.043

1.7e-05

0.0019

0.076

2.2e-07

0.0057

FTND score

0.024

6.8e-01

<0.001

Smoking Status

0.06

2.6e-09

0.0036

0.1

2.5e-12

0.01

FTND score

-0.013

8.3e-01

<0.001

Number
cigarettes
previously
smoked

0.066

1.0e-03

0.0043

0.053

4.9e-02

0.0028

FTND score

0.011

8.5e-01

<0.001

Maternal
smoking around
birth

0.26

9.8e-132

0.069

0.66 (0.0067)

0.25

1.7e-08

0.063

0.65 (0.027)

FTND score

0.19

8.9e-04

0.037
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Table S3: Variables with significantly lower brain-morphometricity estimates compared to the fsaverage — no smoothing processing
We defined significance as non-overlapping confidence intervals of the morphometricity estimates in the UKB discovery sample. To account for multiple
testing (9 tests for each of the 58 traits for which we observed significant morphometricity), we used 1-0.05/(9*58)=99.990% confidence intervals.

We acknowledge this is a stringent definition of significance, which likely limited the statistical power of the test. Proper statistical testing was made
difficult by the fact that the models are not nested, or that we did not know the covariance between the different morphometricity estimates.

fwhm= | fwhm=1 | fwhm=1 | fwhm=2 | fwhm=2 | Fsaverage | Fsaverage | Fsaverage | Fsaverage
5 0 5 0 5 6 5 4 3

Age_MRI X X X X X X

sex f31 00 X X X X X X X X

body _mass_index_bmi_f21001_2 0 X X

waist_circumference _f48 2 0 X X

weight 21002 2 0 X X

hip_circumference_f49_2_0 X

maternal_smoking_around_birth_f1787 2 X X X X

0
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Supplementary Dataset descriptions

Dataset S1: Descriptive table of the UKB variables used in the analysis (for the discovery
and replication UKB sets). Comparison between final sample participants excluded from
the analysis due to failed processing and QC. UKB discovery and replication samples used
in the analyses are further compared.

Dataset S2: Descriptive table of the HCP variables used in the analysis and comparison
with participants excluded from the analysis due to QC.

Dataset S3: Detailed results of variance components analysis in the UKB (discovery and
replication samples). Includes results presented in Figure 1a. Results include fixed effect
associations (associations with covariates) as well as morphometricity. Baseline covariates
are used in the first part of the table but results after accounting for height, weight and BMI
are also presented.

Dataset S4: Detailed results of variance components analysis in the HCP. Results of
Figure 1b.

Dataset S5: Grey-matter and residual correlations in the UKB. Table of the values
presented in Figure 2a (UKB). The table contains correlations and p-values of the
phenotypic and brain correlations. Format: r; (SE; p-value).

Dataset S6: Grey-matter and residual correlations in the HCP. Table of the values
presented in Figure 2b (HCP). The table contains correlations and p-values of the
phenotypic and brain correlations. Format: r; (SE; p-value).

Dataset S7: Association R? between phenotypes and each ROl in the UKB discovery
sample. Data is shown under the form of %variance (SE), p-value. This data corresponds to
the Figure S8. Covariates include baseline + body size (height, weight and BMI).

Dataset S8: Association R? between body size phenotypes and each ROI in the UKB
discovery sample. Data is shown under the form of %variance (SE), p-value. This data
corresponds to the Figure S9. Baseline covariates only were used.

Dataset S9: Association R? between phenotypes and each ROI in the UKB replication
sample. Data is shown under the form of %variance (SE), p-value.

Dataset S10: Association R? between phenotypes and each ROl in the HCP sample. Data is
shown under the form of %variance (SE), p-value.

Dataset S11: Brain-morphometricity results varying coarseness of cortical meshes in the
UKB discovery sample. They are plotted in Figure 4.

Dataset S12: Brain-morphometricity results varying smoothing and coarseness of cortical
meshes in the UKB replication sample. All UKB phenotypes are included. They are
presented in Figure S10.
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Dataset S13: Accuracy from BLUP scores achieved using baseline covariates only. Results
include 10-fold cross validation (UKB discovery), as well as prediction into UKB
replication and HCP. They also include LASSO prediction into the UKB replication

sample.
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