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Appendix S1: MRI acquisition parameters  

 

UKB samples 

MRI images were collected using a 3T Siemens Skyra machine (software platform 

VD13) and a 32-channel head coil (1). The T1 weighted (T1w) images were acquired over 

4:54 minutes, voxel size 1.0x1.0x1.0mm, matrix of 208x256x256mm, using a 3D MPRAGE 

sequence (2), sagittal orientation of slice acquisition, R=2 (in plane acceleration factor), 

TI/TR=880/2000 ms (1). The T2 FLAIR acquisition lasted 5:52 minutes, voxel size 

1.05x1.0x1.0 mm, matrix of 192x256x256 voxels, 3D SPACE sequence (3), sagittal 

orientation, R=2, partial Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical (1).  

 

HCP sample 

T1w and T2 weighted (T2w) images were collected at the Washington University (St 

Louis, Missouri) on a 3T Siemens Skyra scanner using a standard 32-channel head coil (4, 5). 

Two T1w images were acquired, each over 7 minutes and 40 seconds with a voxel size of 

0.7x0.7x0.7mm, matrix/FOV of 224x224x224mm using a 3D MPRAGE sequence (2), 

TR/TE/TI=2400/2.14/1000ms, flip angle 8degrees, R=2, sagittal orientation of slice 

acquisition (6). Similarly, two T2w images were acquired over 8:24 min each, voxel size 

0.7x0.7x0.7mm, matrix of 224x224x224mm, 3DSPACE sequence (3), sagittal orientation, 

R=2, TR/TE=3200/565, no fat suppression pulse.  
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Appendix S2: Summary of image processing and QC 

 

Exclusion due to MRI processing in the UKB 

At the time of download (July 2017), T1w images were available for 10,102 

participants of the UK Biobank (UKB) project. None of the participants had withdrawn 

consent after the data was collected. We excluded 175 participants with T1w images labelled 

as unusable by the UKB, leaving 9,928 MRI scans to process. T2 FLAIR images were 

available for 9,755 of those. The FreeSurfer processing failed or did not complete within 48 

hours for a handful of participants: 37 for cortical processing, 19 for subcortical, including 17 

for whom both processing failed. For simplicity, we chose not to re-run image processing on 

these participants as their exclusion should have a minimal impact on the results obtained 

from the full sample. Excluded individuals are described in Dataset S1. Our final sample 

comprised 9,890 participants with usable cortical data, 9,908 with subcortical data and 9,888 

with both cortical and subcortical data. This sample consisted of 9,888 adults aged 62.5 on 

average (SD=7.5, range 44.6–79.6) and comprised 52.4% of female participants. We further 

excluded 391 participants with extreme brains (outliers) or likely to have a large effect on the 

analyses (see below for details about QC). 

Replication data set was downloaded in May 2018 and consisted in an additional 

4,942 participants with a T1w image. Image processing and phenotype selection were 

identical to that of the discovery sample. This led to the exclusion of 381 participants whose 

processing failed and 238 excluded from QC (details below). See Dataset S1 for a full 

description of replication participants (final, QCed and failed processing) in addition to a 

comparison of the discovery and replication samples. 

 

Automated quality control based on the BRM 

The standards in imaging are to perform a visual QC of the processed images 

following a (mostly) automated pipeline. For example, the ENIGMA protocol recommends 

checking participants with outlying measurements but also requires a visual QC of each scan 

to control the cortical and subcortical parcellation 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). This may prove extremely time 

consuming, especially on large samples such as the UKB that were not available when the 

ENIGMA pipeline was created.  

Here, we propose to utilise the information contained in the BRMs to perform QC. 

We excluded participants showing extreme values on the diagonals of the BRMs 

(diagonal>2.5, we did not observe any heavy left, see Appendix S4). In addition, we 

excluded individuals with outlying off-diagonal elements as they could confound our 

variance component analyses. We took the average of the BRM elements (in absolute value) 

for each individual (i.e. average of ith row of the BRM for the ith individual) and excluded 

participants with a statistic more that 4SD away from the mean. We reported the histograms 

of BRM diagonals and off-diagonals before and after QC (Appendix S4). The arbitrary cut-

off for the BRM diagonal (>2.5) was determined from the HCP sample on which we had 

performed visual QC as per ENIGMA protocols 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/).  

http://enigma.ini.usc.edu/protocols/imaging-protocols/)
http://enigma.ini.usc.edu/protocols/imaging-protocols/
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We applied the same level of QC in the UKB sample but could not compare our approach to 

visual QC exclusion due to the size of the dataset. Instead, we describe the participants 

excluded due to failed processing or QC, to check if their exclusion may impact the results 

presented (Dataset S1).  

 

Comparison of visual vs. BRM-based QC approaches in the HCP sample 

A total of twenty-four participants were excluded in our QC step based on the diagonal 

values (>2.5) or outlying off-diagonal elements in the BRM. Twenty-two participants were 

flagged using each of the BRM QC criteria. More importantly, 20 outlying individuals were 

flagged by both BRM criteria. Thus, participants with outlying brains, as indicated by large 

BRM diagonal values tended to exhibit outlying off-diagonal values (i.e. brain structure 

similarities) with other individuals, potentially causing unstable estimates in variance 

component analyses.  

Out of the 24 individuals excluded in our data driven QC, 14 had also been flagged using the 

ENIGMA visual QC protocol: 3 were fully excluded for incorrect cortical reconstruction, 7 

had an incorrectly segmented hippocampus and 7 others failed visual QC for 3+ cortical 

regions. Finally, our data driven QC did not identify some individuals flagged using the 

ENIGMA visual QC: 4 with incorrect hippocampal reconstruction and 108 with incorrect 

parcellation of the cingulate cortex. The case of the cingulate parcellation is highlighted in 

the ENIGMA QC protocols as its boundary with regions in the frontal cortex are often 

misplaced in FreeSurfer. However, this should not be a problem when working at a vertex 

level as the cortical ribbon remains well segmented, and this may be why these individuals 

are not identified by our QC approach.  

 

Description of excluded participants in the UKB 

We report the mean (SD) or % of each answer (for qualitative variables) for all the 

phenotypes considered from the UKB (Dataset S1) and compare the mean and variances 

between included and excluded participants. We used a conservative Bonferroni significance 

threshold of 1e-4 to account for the number of tests.  

The participants we excluded (either for unusable T1, or QC) were on average more 

than 2.7 years older than the individuals used in the analysis (p-value<3.3e-7) and men were 

over-represented (62% of excluded were men vs. 47%, p-value<1.8e-5). In addition, 

excluded individuals were more variable in term of digit matching reaction time, dried fruit 

intake and exposure to passive smoking. They were less variable than included participants in 

regard to their basophil percentages (Dataset S1).  

Individuals with unusable T1 reported a smaller amount of passive smoking at home 

(0.001 days a week vs. 0.2, p-value=4.7e-9). They were also less variable than individuals 

included in the analysis in term of their depression scores.   

 On the other hand, individuals excluded from QC were 10% less performant as the 

digit matching task than included participants (smaller number of correct matches or 

attempted matches, greater reaction time, p-value<4.8e-7). They also were more likely to be 

diabetics (10% in QCed participants vs. 5%, p-value=1.e-5) and had a reduced acceleration 

force (-2.4m/s-1, p-value=3.5e-5) as well as greater waist circumference (+3.1cm, p-

value=7.0e-7). In addition, the individuals QCed out of the analyses had a greater ICV, 
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smaller grey matter volume, hippocampus volumes or cortical thickness. More importantly 

excluded individuals exhibited much greater variances in all brain measurements which 

suggests imperfect/failed processing.  

 

Sample description HCP 

Similar to the results in the UKB, HCP participants excluded by QC showed a 

significantly greater variance in brain measurements than included participants (Dataset S2). 

This further validates our QC approach, suggesting that the participants QCed out exhibit 

outlying brains, some due to failure of the MRI processing pipeline.    

In addition, excluded participants differed (p-value<1e-4) on some aspects of 

cognition: delay discounting $200 at 5 years (smaller mean and variance), spatial orientation 

(total positions; greater variance) and sustained attention (longest run non-response; smaller 

variance), depression scores (smaller mean and variance).  

The similarities between excluded participants in the UKB and HCP (e.g. depression 

scores or cognition) are intriguing. We hypothesise that these phenotypes may be associated 

with greater level of movement in the scanner leading to lower image quality and failed 

processing. Us and others previously showed that inattention and hyperactivity are associated 

with greater movement in resting-state fMRI(7, 8), and a subsequent study in the HCP found 

multiple factors also associated with motion during rs-fMRI (for example: some cognition 

domains, antisocial or somatic scores, weight and BMI as well as tobacco use)(9).  

Note that when the variance in excluded and included participants differs, the sample 

participants may not capture the full phenotypic variance and the results of variance 

component analyses should be interpreted with caution. In other words, we are estimating the 

proportion of in sample variance accounted for by brain features which may differ from the 

proportion of total phenotypic variance accounted for in the population.   

 

QC when comparing the different cortical processing (mesh coarseness and smoothing) 

In this section, we performed a slightly different QC which consisted of excluding 

individuals with extreme off-diagonal BRM elements (+-5SD from mean, option previously 

not available in OSCA). We note that this QC is slightly more stringent but did not change 

the morphometricity estimates reported in the main text (Dataset S3, S12).  

It is important to have a QC that adapts to the distribution of the BRM off-diagonals, 

which may differ depending on the processing options. To note, most of the excluded 

participants were the same across the different processing scenarios.  
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Appendix S3: HCP image processing  

 

The HCP team (6, 10, 11) pre-processed the structural scans to facilitate scan 

comparison across individuals, removing spatial artefacts and improving T1w and T2w 

alignment using FSL (12, 13) and FreeSurfer (14). When both passed HCP quality control 

(QC), T1w and T2w images they processed them together in FreeSurfer 6.0 (14), otherwise 

data extraction relied on a single scan (6). Participants with poor quality T1w and T2w scans 

were re-imaged (6). Cortical processing (recon-all procedure in FreeSurfer) was also 

performed by the HCP team and included down sampling to 1mm size voxels and 

256x256x256 matrix, aided registration using customised brain mask, and two manual steps 

performed outside of the recon-all procedure to enhance white matter and pial reconstruction 

(6).   
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Appendix S4: BRM interpretation 

 

Diagonals of the BRM consist of the mean square of the participants’ vertex-wise 

measurements. Since the vertex-wise data are centred, larger diagonal elements reflect a 

greater proportion of extreme phenotypes, may they be small or large vertex measurements. 

Thus, we can interpret large diagonal values as “outstanding brains” in term of size/shape or 

due to failure in processing (e.g. incorrect cortical or subcortical parcellation). On the other 

hand, small diagonal values indicate small absolute values across the brain measurements 

(mean centred), hence brains close to the average brain. Across all the samples and BRMs, 

we observed that the diagonal elements were centred around 1, and skewed to the right 

(Appendix S4 Figure 1-2).  

Off-diagonal elements of the BRM are the covariances between two individuals’ 

measurements, thus greater values indicate greater similarities between the pair of 

participants. Off-diagonal elements are normally distributed with a mean of 0. Their 

dispersion varies upon the brain modality considered and the degree of correlation between 

the vertices (Appendix S4 Figure 1-2).  

Participant’s brain similarities are thought to reflect (some of) the participants’ 

similarities in genetics and environment, in other words we expect part of the variance 

accounted for by the BRM to be genetic. Indeed, we observed a positive correlation between 

elements of the BRM and of the Genetic Relatedness Matrix (GRM) in the UKB or the 

pedigree matrix in the HCP, which suggests that participants more alike genetically also 

exhibit more similar brains (Appendix S4 Figure 3-4). The GRM was calculated in 

GCTA(15) from the hap-map 3 variants further filtered for MAF>0.01, pHWE<10-6 and 

missingness<0.05 for a total of 1,123,943 variants. The GRM calculation was restricted to 

participants of European ancestry (N=456,426) defined by a >0.9 posterior probability of 

belonging to the 1000G reference ancestry cluster. Overall, the pairs of twins and especially 

monozygotic twins did not exhibit outlying BRM values compared to the unrelated pairs 

(Appendix S4 Figure 4), suggesting that they should not confound the results of a variance 

component analysis. Quite the opposite, they increase the variance of the off-diagonal BRM 

elements which results in an increased power Appendix S6).  
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Appendix S4 Figure 1: Histograms of diagonal and off-diagonal elements of the UKB brain relatedness 

matrix.  

Plots are presented before (left panels) and after participants’ QC exclusion (right panels). Colors correspond to 

the different brain modalities: dark red – left cortical thickness, light red – right cortical thickness, dark purple – 

left cortical area, light purple – left cortical area, dark yellow – left subcortical curvature, light yellow – right 

subcortical curvature, dark green – left subcortical thickness, light green – right subcortical thickness.  
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Appendix S4 Figure 2: Histograms of diagonal and off-diagonal elements of the HCP brain relatedness 

matrix.  

Plots are presented before and after participants’ QC exclusion. Colors correspond to the different brain 

modalities: dark red – left cortical thickness, light red – right cortical thickness, dark purple – left cortical area, 

light purple – left cortical area, dark yellow – left subcortical curvature, light yellow – right subcortical 

curvature, dark green – left subcortical thickness, light green – right subcortical thickness.  
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Appendix S4 Figure 3: Scatterplot showing the correlation between GRM and BRM pairwise elements in 

the UKB sample.  

 Correlations and p-values are shown. Colors correspond to the different brain modalities: dark red – left cortical 

thickness, light red – right cortical thickness, dark purple – left cortical area, light purple – left cortical area, 

dark yellow – left subcortical curvature, light yellow – right subcortical curvature, dark green – left subcortical 

thickness, light green – right subcortical thickness. Grey corresponds to all brain vertices.  
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Appendix S4 Figure 4: Boxplot showing the BRM pairwise elements per zygosity group in the HCP.   

Tests of mean differences are shown. Colors correspond to the different brain modalities: dark red – left cortical 

thickness, light red – right cortical thickness, dark purple – left cortical area, light purple – left cortical area, 

dark yellow – left subcortical curvature, light yellow – right subcortical curvature, dark green – left subcortical 

thickness, light green – right subcortical thickness. Grey corresponds to all brain vertices.  
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Appendix S5: assumption testing in linear mixed models 

 

We tested whether the variance accounted for by the brain similarities was 

significantly different from 0 using a likelihood ratio test on nested models (with and without 

the random effect). The test statistic follows a chi-square distribution with x degree of 

freedom (x being the number of variance components tested) for a   
  value inside the 

parameter space. However, when testing       
             

    , the p-value should be 

interpreted with caution as the estimator may not be asymptotically normally distributed 

because 0 is a boundary of the parameter space (16, 17). Some have suggested that the p-

value could be better approximated using a mixture of chi-square distributions in the test of 

significance (16, 17). However, a 50:50 mixture has been shown to be sometimes 

inappropriate (18, 19) as the test relies on assumptions often not met in LMM (such as i.i.d. 

observations) (19). Thus, we preferred using a 2 (x df.), the only consequence being a less 

powerful hence conservative test (18-20). Such test is implemented in OSCA (21), as well as 

in GCTA (15). 

  



 

 

 

 

14 

Appendix S6: SE of the residual correlation 

 

Residual correlation (rE) offers insight into factors, shared between the traits, but that do not 

relate to grey-matter structure (e.g. other brain modalities, non-brain contribution). A 

weighted sum of rGM and rE make up the phenotypic correlation. Thus, we calculated rE from 

the phenotypic and grey-matter correlation using:  

   
         

    
 

      
        

   
 

with   
 and   

  the brain-morphometricity of the two traits included in the bivariate model. 

To derive the SE, we use the fact that the residual correlation between random 

variables X and Y can be expressed as a function of the residual covariance between X and Y 

(    ), and the residual association with X or Y (           
 
 ). 

 

   
    

           
 

 

    
 

 

We can derive a first order tri-variate Taylor series approximation around the 

expected values of         
 
        

 
                                        . Doing 

so, we implicitly assume these numbers are estimated with a reasonable confidence so that 

the Taylor series approximation around the mean holds. Thus,  

 

           
      

        
 

                 

           
  

                

           
 

 

Taking the variance: 

 

       
    

      
  

       
       

       
  

       
       

       

 
            

       
  
            

       
 
        

          

        
 

  

To conclude, approximating the variance of    using the formula above, requires the 

variance components estimates (       
 
        

 
 ) from the bivariate model as well as their 

matrix of sampling variance-covariance for the values 

            
 
       

 
              

 
              

 
             

 
    

 
   . 

  

Such values are estimated in OSCA/GCTA and may be found in the log files 

outputted during the model fitting. Note that SE of the grey-matter correlation is derived 

using the same approach. The interested readers may refer to (22-24). 

For significance testing, we used a one-sided test based on the test statistic: 
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Appendix S7: Power of linear mixed models 

 

Power of the current analyses:  

In the UKB discovery sample (assuming N=9,500), we had 80% power to detect an 

effect >2.2% of variance accounted for by the random effect, while taking into account 

multiple testing (pvalue significance threshold p<0.05/175). In the HCP sample (assuming 

N=1,000), considering the number of tests performed (p<0.05/160), we would need an 

association effect size of 20% of variance to yield the same power (25). For brain 

correlations, the calculation of statistical power depends on the sample size (set to 9,500), the 

variance accounted for in each phenotype (we chose 5%), the phenotypic correlation (set to 

r=0.2), the significance threshold (p<4.2e-5, based on our number of tests) as well as the 

variance of off-diagonal elements of the BRM          (0.00096, for the BRM of all brain 

features) (25). In this example, we had 80% power to detect a brain correlation greater than 

0.35, but only a 7% power for a brain correlation of 0.2. Using a sample of N=1,000, as per 

the HCP, and selecting phenotypes with >20% variance accounted for (everything else being 

equal), we have a 1% power to detect a brain correlation of 0.35, and we would need a brain 

correlation greater than 0.99 to achieve 80% power.   

 

Power derivations for LMMs 

Power calculation of variance component analysis may be derived from the sampling 

variance of the estimate:        
 
), which is the square of the standard error (SE) of the 

estimate. In REML analyses (e.g. GCTA or OSCA) the SE is estimated from diagonal 

elements of the inverse of the information matrix, and it has not been derived analytically. 

Visscher et al.,(25) showed that the SE could be approximated using a simpler model 

formulation known as Haseman Elston (HE) regression(26), which is the ordinal least square 

equivalent of the REML approach. As such, HE regression should be slightly less powerful 

that the REML approach, resulting in a marginal underestimation of the power.   

Briefly, HE regression(26) performs a linear regression of the phenotype pairwise product 

zij=yiyj on the off-diagonal elements of the BRM:    . For a pair of individual i and j:  

                  

This model includes n=N(N-1)/2 pairwise observations and we can easily show that     
  

(25, 26). In this simple linear regression framework, assuming that the     are i.i.d. we can 

calculate the        
           

        

          
.  

For centred and standardised phenotypes Y,            and therefore             Thus, 

       
   

 

               
. As a consequence, the power of variance component analysis may 

be approximated from the sample size N and the variance of the off-diagonal elements of the 

BRM. The same formula holds for discrete outcome variables (e.g. sex or disease status) and 

a similar derivations may be performed for a the bivariate case and the power of brain 

correlation(25). In our UKB and HCP data, we calculated the variance of the off-diagonal 

BRM in order to get an approximation of the SE of our variance component estimates. The 

         were consistent across sample and across the left and right modalities (Appendix 

S7 Table 1). Such stability of the variance of off-diagonal elements has also been observed 
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for GRM(25, 27). Thus, in our UKB imaging sample, the variance of the off-diagonal GRM 

was 2.0e-5 (after removing related individuals with GRM elements>0.05), consistent with 

previous report and analytic derivations from our group(25, 27).  

We tried to validate the derivations presented above using simulation. Thus, we simulated 

100 normally distributed phenotypes (mean 0, variance 1) and estimated the SE of the 

variance components using OSCA, varying the sample size (from N=500 to 9,000). We used 

random subsets of the BRM calculated from the UKB data for the variance-covariance of the 

random effect. We conducted such analysis for the 8 brain modalities as well as for the global 

BRM. Results of simulation and approximation theory are presented in Appendix S7 Table 

1, Appendix S7 Figure 1 and 2, and suggest that the approximation yields realistic, though 

slightly underestimated, values for the SE of the variance component estimates. Note that HE 

regression is known to produce underestimated SE at high power as the i.i.d. assumption of 

errors does not hold anymore(28). Despite being small, the underestimation of SE may lead 

to overestimate the statistical power using the approximation theory. To circumvent this 

problem, we provide values for         , derived from our simulation analysis, that result in 

realistic power calculation using the approximation theory (Appendix S7 Table 1). The 

statistical power may be calculated (for a hypothesised variance accounted for:   
  and a 

selected risk ) from the non-centrality parameter of the chi-square statistic     

 
  
 

  
 
 

  using the R formula 1-pchisq(qchisq(1-, df), df, ncp) or the GCTA-GREML online 

power calculator (http://cnsgenomics.com/shiny/gctaPower/). 

Results presented below also highlight the greater power of the brain variance component 

analyses compared to estimation of SNP heritability, as indicated by the smaller SE of the 

estimates. For example, in a sample of N=1000, we would have >60% power to detect an 

effect    
      (with =0.05), but only a 5.5% power to detect a SNP heritability greater 

than 0.1 (Appendix S7 Figure 1 and 2). 

http://cnsgenomics.com/shiny/gctaPower/)
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  Var(Bij) UKB Var(Bij) HCP Var(Bij) to use in power 

calculation (corrected 

based on our simulations) 

cortical area Left 0.0012 0.0015 0.00047 

 right 0.0012 0.0016 0.00046 

Cortical thickness Left 0.0049 0.0021 0.0017 

 Right 0.0057 0.0024 0.0017 

Subcortical curvature Left 0.057 0.057 0.017 

 Right 0.058 0.059 0.017 

Subcortical thickness Left 0.035 0.036 0.018 

 right 0.034 0.035 0.020 

All modalities  0.0017 0.0014 0.00096 

Appendix S7 Table 1: Variance of off-diagonal elements in the UKB and HCP.  

Following our simulation results and to avoid overestimating the statistical power of brain variance-component analysis, we recommend using the values in the 

right-hand side column in the approximation theory formula (see main test for the formula, or http://cnsgenomics.com/shiny/gctaPower/ for online power 

calculator).   

  

http://cnsgenomics.com/shiny/gctaPower/
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Appendix S7 Figure 1: Empirical and approximated SE of the variance component estimates using BRM and GRM 

The right panel is a close up of the left one, restricted to sample sizes above 2000 participants. We did not calculate the empirical power for the genetic case has 

it has already been shown to match the approximated power (25). 
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Appendix S7 Figure 2: Statistical power of detecting an association R

2
>5%, with a risk alpha=0.05.  

Power derived from simulation and from the approximation theory are compared. We did not calculate the empirical power for the genetic case has it has already 

been shown to match the approximated power (25).
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Appendix S8: Including (or not) twins when estimating morphometricity 

 

The HCP comprises many twin pairs (thus, non-independent observations), and we 

evaluated the impact of their exclusion on the morphometricity estimates. We found a good 

agreement of the results with and without including related individuals, with no evidence of 

systematic bias, though the limited power (N=444) results in wide SE (~0.20) (Appendix 

S8 Figure1).  

The reason why LMM are robust to the presence of related individuals may be that 

they explicitly model the grey-matter relatedness in all analyses, which should account for 

the grey-matter resemblances arising from shared genetics or environment. For another 

confirmation, our results on the full HCP sample yielded always similar (e.g. Fluid IQ) or 

lower (e.g. attention) brain-morphometricity estimates than reported by Sabuncu et al., who 

selected 1 subject per family (29). To note, grey-matter similarities of twin pairs is not as 

outlying as their genetic relatedness factor (compared to the general population) (Appendix 

4). 

  
Appendix S8 Figure1: Morphometricity estimates in the HCP sample obtained using the full sample or 

a reduced set of unrelated individuals. 

Only phenotypes with significant morphometricity are included here. Overall correlation between estimates is 

0.8 with no evidence of systematic bias when including all family members. The largest differences were 

found for variables with little variation (opiates) or non-normally distributed (times used tobacco, ASR score, 

fluid intelligence – total skipped). 
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Appendix S9: In depth results and discussion of the ROI-traits associations using the 

vertex-wise resolution 

 

In the UKB, the largest associations were observed between age of the participants 

and subcortical volumes (R
2
 ranging between 0.22 and 0.35 for subcortical thickness, 0.20 

0.38 for subcortical area), but most cortical regions were also significantly associated with 

age, albeit to a lesser extent (R
2
 in the 0.0083-0.15 range for cortical thickness, 0.0048-0.15 

range for cortical surface area). Next, significant ROI associations included sex, associated 

with all subcortical volumes (R
2
 in the 0.0049-0.024 range for thickness, 0.0058-0.027 for 

area) and with many cortical regions (R
2
 in the 0.0011-0.0076 range for cortical thickness, 

0.0019-0.014 for cortical surface area) (Figure S8 and Dataset S7). Maternal smoking 

around birth was further associated with 28 ROI, mostly located in the occipital and 

temporal lobes (R
2
 in the 0.013-0.026 range with cortical thickness, R

2
 in 0.014-0.071 with 

cortical surface and R
2
 in the 0.010-0.039 range with subcortical structure). In addition, we 

found significant associations between cognition domains and structure of thalamus, 

putamen, pallidum and hippocampus (R
2
 in the 0.0043-0.024 range).  Notably, fluid 

intelligence was associated with all aspects of thalamus anatomy (left and right, thickness 

and surface area) while the other cognition domains considered were associated with some 

aspects of thalamus structure. No association between cognition and cortical structure 

survived multiple testing correction.  

Diabetes diagnosis correlated with (left) superior frontal surface area (R
2
=0.054), as 

well as with thalamus, putamen, and pallidum thickness (R
2
 ranging between 0.0067 and 

0.015), or thalamus and hippocampus surface (R
2
 in the 0.0061-0.014 range). Alcohol 

intake was associated with left thalamus thickness (R
2
=0.018) while smoking status and 

past tobacco use were associated with thalamus, caudate, putamen and pallidum thickness, 

as well as with thalamus surface area (R
2
 in the 0.007-0.020 range). Finally, we also 

observed small associations between cortical or subcortical regions and overall health 

rating, time spend watching TV, body fat percentage and physiological measurements 

(Figure S8).  

Using the replication UKB sample, we replicated 633 out of the 975 significant 

ROI-trait associations (p<0.05/975). Most associations were found with age, sex and body 

size variables, though we also replicated associations between subcortical volumes and 

hand grip strength or time spent watching TV (Dataset S9). In addition, the magnitude of 

the associations with age, and body size were greatly similar between discovery and 

replication analyses (Appendix S9 Figure1). For sex, we observed larger ROI associations 

in the UKB replication sample (Appendix S9 Figure 1), consistent with the larger brain-

morphometricity observed in this sample (Figure S6).  

 In the HCP sample, age was associated with thickness (R
2
 in the 0.020-0.049 range) 

and surface area (R
2
 ranging between 0.067-0.10) throughout the cortex, as well as with 

subcortical structure (R
2
 in the 0.016-0.087 range). Sex was associated with cortical 

thickness of the lateral orbitofrontal cortex (R
2 

in the 0.059-0.073 range), as well as with 

subcortical structure (R
2
 in the 0.042-0.19 range). In addition, we found large associations 
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between cocaine, opiate or hallucinogens use and surface area of several cortical regions 

located in the temporal lobe (fusiform, superior temporal, insula), frontal (pars-triangularis, 

pars-opercularis, caudal-middle frontal), parietal (supramarginal, superior and inferior-

parietal, precuneus) or in the cingulate (R
2 

in the 0.25-1.00 range for cocaine test, R
2
 in the 

0.43-0.46 range for opiates, R
2
 in 0.25-0.56 for number of times used hallucinogens). 

However, the small numbers and possible outliers in the vertex-wise measurements make 

such associations prone to false positives. Alcohol consumption was also associated with 

surface are of the frontal cortex (right rostral middle frontal, paracentral and precentral gyri, 

R
2
 in the 0.28-0.36 range). No other association survived multiple testing correction 

(Appendix S9 Figure2 and Dataset S10).  

 Body size variables were strongly associated with subcortical structure under the 

baseline model (R
2
 ranging between 0.010-0.059 for height, R

2
 between 0.048-0.30 for the 

others) and to a lesser extent with cortical surface area (R
2
 between 0.0078-0.026 for 

height, R
2
 between 0.0061-0.060 for the others) and cortical thickness (R

2
 in 0.0039 0.016 

for height, R
2
 in 0.0017 0.045 for the others).  The associations between grey-matter 

structure and body size were pervasive (72/164 significant ROIs associations with height, 

109 with waist circumference, 105 with BMI) (Figure S9, Dataset S8), suggesting that 

when acting as confounders height, weight or BMI could lead to false positives in many 

brain regions. 

 

Discussion 

 Our results for sex are consistent with results from the UKB first release (N=5,216, 

using ROI average (30)), while several studies have previously reported associations 

between BMI and several grey-matter measurements (31-36). 

In the UKB, smoking status was associated with thickness and surface of the 

thalamus (left and right), although we also found associations with the caudate and 

pallidum. Previous studies have reported association between tobacco usage and volume of 

left thalamus (37-39), which might be due to faster age related volume loss in smokers (40). 

We did not replicate other cortical or subcortical associations previously reported (37, 38, 

41). Alcohol intake was also associated with left thalamus thickness in the UKB, consistent 

with the significant grey-matter correlation (Figure 3) between the two traits. The thalamus 

has been implicated in alcohol-related neurological complications (e.g. Korsakoff’s 

syndrome)(42) but may also be associated with regular alcohol usage (42, 43) or alcohol 

use disorder (44). Maternal smoking around birth was further associated with the thalamus, 

putamen, hippocampus and pallidum, as well as temporal and occipital ROIs. In addition, 

diagnosis of diabetes was associated with area of the left superior-frontal cortex (Dataset 

S7, Figure S8). Nervous system complications of diabetes (sometimes labelled diabetic 

encephalopathy) are widely accepted (45) but little is known about the specific brain 

regions associated with the condition (46). 
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Appendix S9 Figure 1: ROI based associations between UKB discovery and replication samples 

for selected phenotypes. 

Each panel correspond to a single phenotype, and displays the association R2 of this phenotype with 

each ROI of interest considered. The results found in the replication sample (Y-axis) are plotted as a 

function of the discovery results (X-axis). The labels indicate which ROI corresponds to which point in 

the figure. Panel a) Age; b) sex; c) height; d) body fat %; e) BMI; f) weight; g) hip circumference; h) 

waist circumference
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Appendix S9 Figure 2: Region Of Interest (ROI) based LMMs in the HCP.  

Significant association R
2
 between each UKB phenotype associated with grey-matter shape in Figure 1b and the grey-matter vertices from each of 

the Desikan atlas ROI. 
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Fig. S1. Replication R2 (or correlations) are presented as a function of the discovery 

R2 (or correlation).  

The R2 or correlations correspond to the fixed effect association between a covariate and all other 

phenotypes (labelled in plots). For example, panel a) shows the association R2 between age and all 

phenotypes, in the discovery and replication UKB samples. Panel b) shows the same results but using 

correlations and not R2 to appreciate the sign. Panels, c) and d) show the R2 and correlations between 

sex and all other variables. Panel e) presents the R2 between phenotypes and head size (ICV, left and 

right total thickness and area). Panel f) presents the R2 between phenotypes and body size (height, 

weight and BMI). As head size or body size are composed of several variables, only the R2 is 

presented. The correlation between discovery and replication results in shown in each panel as r.  
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Fig. S2. Morphometricity of brain phenotypes – positive controls 

As a positive control, we estimated the association between all grey-matter vertices and 

global measures of brain size, controlling for acquisition age and sex. Results are shown 

for the UKB discovery sample (top panel) and the HCP sample (bottom). 
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Fig. S3:  Morphometricity in the UKB replication sample under baseline covariates. 

Panel a) presents the summary of the replication analysis in the UKB. Only the 58 significant phenotypes from the UKB discovery 

sample were included in the analysis and are shown here. Black bars correspond to 95% confidence intervals. Phenotypes showing 

significant morphometricity in the replication sample (p<0.05/58) are labelled in black. To note, the replication sample was only half 

the size of the discovery one, with a clear incidence on power (and 95%CIs).  Blood assay variables and being part of multiple birth 

suffered from a small number of observations (N~300), which explains the even larger confidence intervals.  Panel b) compares the 

replication morphometricity estimates (X axis) to the discovery ones (Y-axis). We excluded blood assay variables, for which the small 

N led to unstable parameter estimation. We found a great concordance of results between the 2 independent UKB samples as indicated 

by a correlation of 0.95 between the 2 sets of results (panel b).
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Fig. S4: Scatterplots of association R
2
 from LMMs, comparing results when fitting a single BRM versus 4 BRMs corresponding to 

all different brain modalities (cortical thickness, cortical surface area, subcortical thickness and subcortical curvature).  

Panel (a) shows the results for the UKB sample, panel (b) shows the results for the HCP sample. Note that fitting multiple variance 

components comes at an increased computational cost and a slightly increased standard error of the estimate of the overall variance 

explained(47). In addition, when modelling 5 variance components, the AI-REML algorithm failed to converge for 58 UKB phenotypes and 

71 HCP phenotypes (in particular for phenotypes with low morphometricity) because of the increased uncertainty in the estimate of variance 

explained by each component due to smaller number of brain measurements in an individual component in comparison with the total. The 

correlation between the association R
2
 from the two approaches appears on the plot.
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Fig. S5: Effect of correcting for body size on morphometricity estimates. Scatterplots of association R
2 
for all the phenotypes before 

and after correcting for body-size variables.  

 

Results are shown for the UKB discovery sample (panel (a)) and the HCP (panel (b)). Bars represent the 95% confidence intervals. 

 



 

 

 

 

30 

 

 

Fig. S6: Morphometricity estimates correcting for height, weight and BMI in addition 

to baseline covariates, in the UKB replication sample (X-axis) and the UKB discovery 

sample (Y-axis). 

 

Only phenotypes displaying significant morphometricity in the UKB discovery set are 

included. Bars correspond to the 95% confidence intervals. 
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Fig. S7: Grey-matter and residual correlations under the baseline model (i.e. not correcting for body size).  

 

Estimates are shown for the UKB (panel a) and HCP (b). Grey-matter correlation is shown above the diagonal, and residual correlation 

below the diagonal. Stars indicate significant correlations after multiple testing correction (Bonferroni). 
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Fig. S8: Region Of Interest (ROI) based LMMs in the UKB.  

 

Plot displays the significant association R2 between each UKB phenotype associated with grey-matter shape in Figure 1a and the grey-

matter vertices from each of the Desikan (48) atlas ROI. Results include baseline covariates as well as height, weight and BMI. 

 

 

Fig. S9: Region Of Interest (ROI) based LMMs in the UKB for body size variables 

Baseline covariates were used. 
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Figure S10: Effect of cortical mesh smoothing and mesh choice on the brain-

morphometricity estimates (UKB replication samples). 

 

Blood assay Variables (with n<500 observations) were excluded from the analysis due to unstable 

estimates and large SE.  
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Fig. S11: Scatter plot comparing, for each UKB phenotype, our association R2 from 

vertex-wise processing and that obtained from standard ENIGMA ROI based 

processing. 

 

All the points are above the diagonal indicate a greater amount of information retained 

using the vertex-wise processing compared to the ROI based dimension reduction 

approach. For example: R
2

age_Vertex=0.64 vs. R
2

age_ROI=0.24; 

R
2

CigarettesPreviouslySmoked_Vertex=0.22, R
2

CigarettesPreviouslySmoked_ROI=0.011, 

R
2

AmountDrunkTypicalDay_Vertex=0.13, R
2

AmountDrunkTypicalDay_ROI=0.011, and also R
2

BMI_Vertex=0.56 

vs. R
2
BMI_ROI=0.10. Results are compared using baseline covariates. 
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Figure S12: In sample and out of sample prediction accuracy as a function of the total 

association R
2
 (baseline covariates) 

 

Labels highlight some of the significant prediction.  
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Figure S13: Prediction accuracy of BLUP and LASSO brain scores.  

 

Models were trained and evaluated by controlling for baseline covariates on the UKB 

discovery sample. We evaluated prediction R
2
 in the UKB replication sample. Confidence 

intervals (95%) are shown around the point estimates.  
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Table S1. Replication of grey-matter correlations identified in the UKB discovery 

sample   

Variable 1 Variable 2 Discovery Replication 

  rGM  rGM  SE pvalue 

Fluid intelligence Max digits attempted 0.71 1.0 7.3 0.29469 

Fluid intelligence 

Number correct symbol 

matches 0.72 1.0 25.1 0.31246 

Max digits attempted 

Number correct symbol 

matches 1.0 1.0 25.1 0.31246 

Fluid intelligence Cheese intake 1.0 0.82 0.2 0.0015689 

Time spent outdoors 

summer 

Time spent outdoors 

winter 1.0 1.0 0.2 0.1928 

Time spent watching 

television Body fat percentage 0.73 0.81 0.2 4.42E-05 

Frequency vigorous activity Acceleration force 1.0 0.62 0.4 0.13604 

Overall health rating Pulse rate 1 1.0 1.0 0.5 0.01224 

Overall health rating Pulse rate 2 1.0 1.0 0.5 0.012028 

Pulse rate 1 Pulse rate 2 0.99 1.0 0.01 0.00049312 

Overall health rating Waist circumference 1.0 0.39 0.4 0.19506 

Body fat percentage Waist circumference 0.52 0.45 0.2 0.02677 

Pulse rate 1 Waist circumference 0.67 0.31 0.3 0.1675 

Pulse rate 2 Waist circumference 0.73 0.56 0.3 0.047662 

Hand grip strength left Hand grip strength right 0.92 0.84 0.06 1.76E-07 

Body fat percentage Forced vital capacity -0.66 -0.45 0.2 0.026155 

Hand grip strength right Forced vital capacity 0.69 0.70 0.2 0.0015424 

Fluid intelligence 

Forced expiratory 

volume 1.0 0.48 0.3 0.062686 

Hand grip strength right 

Forced expiratory 

volume 1.0 0.79 0.2 0.00044463 

Body fat percentage Basal metabolic rate -0.69 -0.75 0.1 3.89E-06 

Pulse rate 1 Basal metabolic rate -0.55 -0.46 0.2 0.038444 

Waist circumference Basal metabolic rate -0.75 -0.55 0.2 0.0055741 

Smoking Status Past tobacco use -0.98 -0.93 0.03 0.0011549 

Alcohol intake 

Amount alcohol drunk 

typical day -0.89 -1.0 0.1 0.00042018 

Smoking Status 

Amount alcohol drunk 

typical day 0.71 1.0 0.2 0.0044935 

Past tobacco use 

Amount alcohol drunk 

typical day -0.64 -1.0 0.8 0.091905 
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Table S2: Summary of the prediction accuracy (R
2
) of the BLUP grey-matter scores.  

We constructed BLUP scores for the 39 UKB variables showing significant morphometricity and evaluated their predictive power in the UKB (10 fold-

cross validation) and HCP sample. When the phenotype corresponding to the grey-matter score was not available in the HCP, we chose the closest 

available (e.g. waist circumference grey-matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM controlling for height, 

weight and BMI as well as for the baseline covariates (acquisition, age, sex and head size); except for (#) denoting associations not controlling for height, 

weight and BMI. Rows in bold indicate significant association after correcting for multiple testing (p<0.05/39=1.3e-3) both in and out of sample. 
 In sample prediction (UKB) Prediction into UKB replication Out of sample prediction (HCP) 

 r pvalue R
2
 AUC (SE) r pvalue R

2
 AUC (SE) HCP variable 

predicted 
r pvalue R

2
 AUC (SE) 

Haemoglobin 
concentration 0.05  1.6e-05 0.0025  0.035  5.5e-01 0.0013  Hemoglobin A1C 0.015 6.8e-01 <0.001  

Haematocrit % 0.077  1.4e-10 0.006  0.037  5.7e-01 0.0013  Hematocrit level 1 0.061 2.1e-02 0.0037  

White blood cell 
count 0.042  2.2e-03 0.0018  0.016  3.4e-01 <0.001  Hematocrit level 1 

-
0.00051 9.8e-01 <0.001  

Mean time 
correct matches 0.046  2.0e-06 0.0021  0.053  2.9e-04 0.0028  Crystallised IQ -0.046 9.7e-02 0.0021  

Number correct 
symbol matches 0.09  1.1e-13 0.0081  0.069  2.5e-04 0.0048  Crystallised IQ 0.064 2.2e-02 0.0041  

Max digits 
attempted 0.091  2.9e-14 0.0083  0.083  1.1e-05 0.0069  Crystallised IQ 0.069 1.3e-02 0.0048  

Fluid intelligence 0.077  4.1e-14 0.0059  0.11  7.2e-12 0.011  Fluid IQ 0.027 3.5e-01 <0.001  

Age 0.64  0.0e+00 0.41  0.68  0.0e+00 0.46  Age 0.15 3.1e-08 0.024  

Heel bone 
mineral density 
bmd 0.065  2.1e-06 0.0042  0.058  2.8e-03 0.0034  Age -0.015 5.8e-01 <0.001  

Heel bone 
mineral density 
tscore 0.065  1.8e-06 0.0043  0.056  3.9e-03 0.0031  Age -0.015 5.9e-01 <0.001  

Sex 0.26  0.0e+00 0.067 0.58 (0.0059) 0.33 9.8e-305 0.11 0.8 (0.0064) Sex -0.25 8.0e-42 0.061 0.68 (0.016) 

Cheese intake 0.061  2.0e-09 0.0037  0.076  1.9e-07 0.0058  
SSAGA Education 
level 0.029 3.2e-01 <0.001  

Part of multiple 
birth 0.078  4.1e-14 0.0061 0.66 (0.022) 0.13  1.5e-03 0.016 0.72 (0.065) Being a twin 0.31 1.1e-28 0.098 0.69 (0.016) 

Body fat 
percentage 0.29  0.0e+00 0.085  0.31 7.7e-190 0.095  BMI 0.21 5.6e-13 0.045  

Waist 
circumference 0.39  0.0e+00 0.16  0.38 2.0e-205 0.14  BMI 0.21 3.5e-13 0.046  
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Frequency 
vigourous activity 0.044  9.4e-06 0.002  0.033  1.6e-02 0.0011  BMI -0.0015 6.7e-01 <0.001  

BMI 0.45  0.0e+00 0.2  0.45 7.4e-235 0.20  BMI 0.21 2.4e-12 0.042  

Diabetes 
diagnosis 0.062  4.7e-10 0.0038 0.6 (0.014) 0.085  2.5e-09 0.0073 0.63 (0.019) BMI 0.0055 1.0e-01 <0.001  

Overall health 
rating 0.052  8.2e-08 0.0027  0.062  7.8e-06 0.0039  BMI -0.002 5.5e-01 <0.001  

Time spent 
watching 
television 0.083  3.0e-17 0.0068  0.12  1.8e-17 0.014  BMI -0.0025 4.5e-01 <0.001  

Basal metabolic 
rate 0.029  1.0e-24 0.00082  0.031  3.7e-14 <0.001  BMI 0.0046 1.7e-01 <0.001  

Hip 
circumference 0.38  0.0e+00 0.15  0.36 7.3e-143 0.13  BMI 0.21 5.2e-13 0.045  

Time spent 
outdoors 
summer 0.047  2.1e-06 0.0022  0.033  1.3e-02 0.0011  BMI -0.006 7.4e-02 <0.001  

Time spent 
outdoors winter 0.028  3.8e-03 0.00077  0.036  7.9e-03 0.0013  BMI -0.0073 3.0e-02 <0.001  

Pulse rate 1 0.1  2.5e-23 0.01  0.13  4.0e-13 0.017  BMI 0.00012 9.7e-01 <0.001  

Pulse rate 2 0.091  2.5e-19 0.0083  0.1  9.0e-09 0.0099  BMI 
-
0.00057 8.7e-01 <0.001  

Height 0.25 6.5e-318 0.062  0.23 2.6e-132 0.054  Height 0.17 1.8e-17 0.03  

Acceleration 
force 0.07  7.5e-08 0.0049  0.098  4.1e-06 0.0096  Hand grip strength 0.014 4.5e-01 <0.001  

Hand grip 
strenght right 0.039  1.8e-09 0.0015  0.052  1.4e-08 0.0027  Hand grip strength -0.0051 7.9e-01 <0.001  

Forced vital 
capacity 0.03  7.4e-06 0.00092  0.045  1.1e-05 0.002  Hand grip strength 0.0081 6.7e-01 <0.001  

Forced 
expiratory 
volume 0.027  2.3e-04 0.00072  0.06  7.8e-08 0.0036  Hand grip strength 0.019 3.3e-01 <0.001  

Hand grip 
strength left 0.039  1.6e-09 0.0015  0.064  2.9e-12 0.0041  Hand grip strength -0.019 3.1e-01 <0.001  

Weight 0.39  0.0e+00 0.15  0.39 5.8e-231 0.15  Weight 0.19 1.2e-12 0.036  

Alcohol intake 0.074  1.0e-13 0.0055  0.096  2.9e-11 0.0092  
Frequence alcohol 
use (12mo) 0.06 4.3e-02 0.0036  

Amount alcohol 
drunk typical day 0.063  5.9e-08 0.0039  0.075  6.1e-06 0.0056  

Frequence alcohol 
use (12mo) -0.0055 8.5e-01 <0.001  
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Past tobacco use 0.043  1.7e-05 0.0019  0.076  2.2e-07 0.0057  FTND score 0.024 6.8e-01 <0.001  

Smoking Status 0.06  2.6e-09 0.0036  0.1  2.5e-12 0.01  FTND score -0.013 8.3e-01 <0.001  

Number 
cigarettes 
previously 
smoked 0.066  1.0e-03 0.0043  0.053  4.9e-02 0.0028  FTND score 0.011 8.5e-01 <0.001  

Maternal 
smoking around 
birth 0.26 9.8e-132 0.069 0.66 (0.0067) 0.25  1.7e-08 0.063 0.65 (0.027) FTND score 0.19 8.9e-04 0.037  
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Table S3: Variables with significantly lower brain-morphometricity estimates compared to the fsaverage – no smoothing processing 

We defined significance as non-overlapping confidence intervals of the morphometricity estimates in the UKB discovery sample. To account for multiple 

testing (9 tests for each of the 58 traits for which we observed significant morphometricity), we used 1-0.05/(9*58)=99.990% confidence intervals.   

We acknowledge this is a stringent definition of significance, which likely limited the statistical power of the test. Proper statistical testing was made 

difficult by the fact that the models are not nested, or that we did not know the covariance between the different morphometricity estimates. 
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weight_f21002_2_0 x x        

hip_circumference_f49_2_0  x        

maternal_smoking_around_birth_f1787_2

_0 
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Supplementary Dataset descriptions 

 

Dataset S1: Descriptive table of the UKB variables used in the analysis (for the discovery 

and replication UKB sets). Comparison between final sample participants excluded from 

the analysis due to failed processing and QC. UKB discovery and replication samples used 

in the analyses are further compared. 

 

Dataset S2: Descriptive table of the HCP variables used in the analysis and comparison 

with participants excluded from the analysis due to QC. 

 

Dataset S3: Detailed results of variance components analysis in the UKB (discovery and 

replication samples). Includes results presented in Figure 1a. Results include fixed effect 

associations (associations with covariates) as well as morphometricity. Baseline covariates 

are used in the first part of the table but results after accounting for height, weight and BMI 

are also presented. 

 

Dataset S4: Detailed results of variance components analysis in the HCP. Results of 

Figure 1b. 

 

Dataset S5: Grey-matter and residual correlations in the UKB. Table of the values 

presented in Figure 2a (UKB). The table contains correlations and p-values of the 

phenotypic and brain correlations. Format: r; (SE; p-value). 

 

Dataset S6: Grey-matter and residual correlations in the HCP. Table of the values 

presented in Figure 2b (HCP). The table contains correlations and p-values of the 

phenotypic and brain correlations. Format: r; (SE; p-value). 

  

Dataset S7: Association R
2
 between phenotypes and each ROI in the UKB discovery 

sample. Data is shown under the form of %variance (SE), p-value. This data corresponds to 

the Figure S8. Covariates include baseline + body size (height, weight and BMI). 

 

Dataset S8: Association R
2
 between body size phenotypes and each ROI in the UKB 

discovery sample. Data is shown under the form of %variance (SE), p-value. This data 

corresponds to the Figure S9. Baseline covariates only were used. 

 

Dataset S9: Association R
2
 between phenotypes and each ROI in the UKB replication 

sample. Data is shown under the form of %variance (SE), p-value.  

 

Dataset S10: Association R
2
 between phenotypes and each ROI in the HCP sample. Data is 

shown under the form of %variance (SE), p-value.  

 

Dataset S11: Brain-morphometricity results varying coarseness of cortical meshes in the 

UKB discovery sample. They are plotted in Figure 4. 

 

Dataset S12: Brain-morphometricity results varying smoothing and coarseness of cortical 

meshes in the UKB replication sample. All UKB phenotypes are included. They are 

presented in Figure S10. 
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Dataset S13: Accuracy from BLUP scores achieved using baseline covariates only. Results 

include 10-fold cross validation (UKB discovery), as well as prediction into UKB 

replication and HCP. They also include LASSO prediction into the UKB replication 

sample.  

 
 

 

  



 

 

 

 

44 

References 

 

1. Miller KL, et al. (2016) Multimodal population brain imaging in the UK Biobank 

prospective epidemiological study. Nat Neurosci 19(11):1523-1536. 

2. Mugler JP, 3rd & Brookeman JR (1990) Three-dimensional magnetization-prepared 

rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152-157. 

3. Mugler JP, 3rd, et al. (2000) Optimized single-slab three-dimensional spin-echo 

MR imaging of the brain. Radiology 216(3):891-899. 

4. Van Essen DC, et al. (2013) The WU-Minn Human Connectome Project: an 

overview. NeuroImage 80:62-79. 

5. Van Essen DC, et al. (2012) The Human Connectome Project: a data acquisition 

perspective. NeuroImage 62(4):2222-2231. 

6. Glasser MF, et al. (2013) The minimal preprocessing pipelines for the Human 

Connectome Project. NeuroImage 80:105-124. 

7. Couvy-Duchesne B, et al. (2016) Head Motion and Inattention/Hyperactivity Share 

Common Genetic Influences: Implications for fMRI Studies of ADHD. Plos One 

11(1). 

8. Kong XZ, et al. (2014) Individual differences in impulsivity predict head motion 

during magnetic resonance imaging. PLoS One 9(8):e104989. 

9. Siegel JS, et al. (2017) Data Quality Influences Observed Links Between Functional 

Connectivity and Behavior. Cerebral Cortex 27(9):4492-4502. 

10. Van Essen DC, Glasser MF, Dierker DL, Harwell J, & Coalson T (2012) 

Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on 

surface-based atlases. Cereb Cortex 22(10):2241-2262. 

11. Marcus DS, et al. (2013) Human Connectome Project informatics: quality control, 

database services, and data visualization. NeuroImage 80:202-219. 

12. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, & Smith SM (2012) 

FSL. NeuroImage 62(2):782-790. 

13. Jenkinson M, Bannister P, Brady M, & Smith S (2002) Improved optimization for 

the robust and accurate linear registration and motion correction of brain images. 

NeuroImage 17(2):825-841. 

14. Fischl B (2012) FreeSurfer. NeuroImage 62(2):774-781. 

15. Yang J, Lee SH, Goddard ME, & Visscher PM (2011) GCTA: a tool for genome-

wide complex trait analysis. Am J Hum Genet 88(1):76-82. 

16. Self SG & Liang KY (1987) Asymptotic Properties of Maximum-Likelihood 

Estimators and Likelihood Ratio Tests under Nonstandard Conditions. J Am Stat 

Assoc 82(398):605-610. 

17. Stram DO & Lee JW (1994) Variance components testing in the longitudinal mixed 

effects model. Biometrics 50(4):1171-1177. 

18. Pinheiro J & Bates D (2000) Mixed-Effects Models in S and S-PLUS (Springer New 

York). 

19. Crainiceanu CM & Ruppert D (2004) Likelihood ratio tests in linear mixed models 

with one variance component. J Roy Stat Soc B 66:165-185. 

20. Bates D, Machler M, Bolker B, & Walker S (2015) Fitting Linear Mixed-Effects 

Models Using lme4. Journal of Statistical Software 67:1-48. 

21. Zhang F, et al. (2019) OSCA: a tool for omic-data-based complex trait analysis. 

Genome Biol 20(1):107. 



 

 

 

 

45 

22. Bijma P & Bastiaansen JW (2014) Standard error of the genetic correlation: how 

much data do we need to estimate a purebred-crossbred genetic correlation? 

Genetics Selection Evolution 46(1):79. 

23. Visscher PM (1998) On the sampling variance of intraclass correlations and genetic 

correlations. Genetics 149(3):1605-1614. 

24. Lee SH, Yang J, Goddard ME, Visscher PM, & Wray NR (2012) Estimation of 

pleiotropy between complex diseases using single-nucleotide polymorphism-

derived genomic relationships and restricted maximum likelihood. Bioinformatics 

28(19):2540-2542. 

25. Visscher PM, et al. (2014) Statistical Power to Detect Genetic (Co)Variance of 

Complex Traits Using SNP Data in Unrelated Samples. Plos Genetics 10(4). 

26. Elston RC, Buxbaum S, Jacobs KB, & Olson JM (2000) Haseman and Elston 

revisited. Genet Epidemiol 19(1):1-17. 

27. Vinkhuyzen AAE, Wray NR, Yang J, Goddard ME, & Visscher PM (2013) 

Estimation and Partitioning of Heritability in Human Populations using Whole 

Genome Analysis Methods. Annual review of genetics 47:75-95. 

28. Yang J, Zeng J, Goddard ME, Wray NR, & Visscher PM (2017) Concepts, 

estimation and interpretation of SNP-based heritability. Nat Genet 49(9):1304-1310. 

29. Sabuncu MR, et al. (2016) Morphometricity as a measure of the neuroanatomical 

signature of a trait. P Natl Acad Sci USA 113(39):E5749-E5756. 

30. Ritchie SJ, et al. (2018) Sex Differences in the Adult Human Brain: Evidence from 

5216 UK Biobank Participants. Cereb Cortex 28(8):2959-2975. 

31. Cole JH, et al. (2013) Body mass index, but not FTO genotype or major depressive 

disorder, influences brain structure. Neuroscience 252:109-117. 

32. Gupta A, et al. (2015) Patterns of brain structural connectivity differentiate normal 

weight from overweight subjects. Neuroimage-Clin 7:506-517. 

33. Kurth F, et al. (2013) Relationships between gray matter, body mass index, and 

waist circumference in healthy adults. Human Brain Mapping 34(7):1737-1746. 

34. Masouleh SK, et al. (2016) Higher body mass index in older adults is associated 

with lower gray matter volume: implications for memory performance. 

Neurobiology of Aging 40:1-10. 

35. Medic N, et al. (2016) Increased body mass index is associated with specific 

regional alterations in brain structure. Int J Obesity 40(7):1177-1182. 

36. Opel N, et al. (2017) Prefrontal gray matter volume mediates genetic risks for 

obesity. Mol Psychiatr 22(5):703-710. 

37. Hanlon CA, et al. (2016) Lower subcortical gray matter volume in both younger 

smokers and established smokers relative to non-smokers. Addict Biol 21(1):185-

195. 

38. Gallinat J, et al. (2006) Smoking and structural brain deficits: a volumetric MR 

investigation. Eur J Neurosci 24(6):1744-1750. 

39. Gillespie NA, et al. (2018) Testing associations between cannabis use and 

subcortical volumes in two large population‐based samples. Addiction 0(ja). 

40. Durazzo TC, Meyerhoff DJ, Yoder KK, & Murray DE (2017) Cigarette smoking is 

associated with amplified age-related volume loss in subcortical brain regions. Drug 

Alcohol Depen 177:228-236. 

41. Prom-Wormley E, et al. (2015) Genetic and Environmental Contributions to the 

Relationships Between Brain Structure and Average Lifetime Cigarette Use. 

Behavior Genetics 45(2):157-170. 



 

 

 

 

46 

42. Pitel AL, Segobin SH, Ritz L, Eustache F, & Beaunieux H (2015) Thalamic 

abnormalities are a cardinal feature of alcohol-related brain dysfunction. Neurosci 

Biobehav Rev 54:38-45. 

43. Cardenas VA, Studholme C, Gazdzinski S, Durazzo TC, & Meyerhoff DJ (2007) 

Deformation-based morphometry of brain changes in alcohol dependence and 

abstinence. NeuroImage 34(3):879-887. 

44. van Holst RJ, de Ruiter MB, van den Brink W, Veltman DJ, & Goudriaan AE 

(2012) A voxel-based morphometry study comparing problem gamblers, alcohol 

abusers, and healthy controls. Drug Alcohol Depen 124(1-2):142-148. 

45. Mijnhout GS, et al. (2006) Diabetic encephalopathy: A concept in need of a 

definition. Diabetologia 49(6):1447-1448. 

46. Moheet A, Mangia S, & Seaquist ER (2015) Impact of diabetes on cognitive 

function and brain structure. Ann N Y Acad Sci 1353:60-71. 

47. Yang J, et al. (2015) Genetic variance estimation with imputed variants finds 

negligible missing heritability for human height and body mass index. Nat Genet 

47(10):1114-1120. 

48. Desikan RS, et al. (2006) An automated labeling system for subdividing the human 

cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 

31(3):968-980. 

 


