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2. Abstract 59 
The recent availability of large-scale neuroimaging cohorts facilitates deeper 60 

characterisation of the relationship between phenotypic and brain architecture variation in 61 

humans. Here, we investigate the association (previously coined morphometricity) of a 62 

phenotype with all 652,283 vertex-wise measures of cortical and subcortical morphology in 63 

a large data set from the UK Biobank (UKB; N=9,497 for discovery, N=4,323 for replication) 64 

and the Human Connectome Project (N=1,110). We used a linear mixed model with the 65 

brain measures of individuals fitted as random effects with covariance relationships 66 

estimated from the imaging data. We tested 167 behavioural, cognitive, psychiatric or 67 

lifestyle phenotypes and found significant morphometricity for 58 phenotypes (spanning 68 

substance use, blood assay results, education or income level, diet, depression, and 69 

cognition domains), 23 of which replicated in the UKB replication set or the HCP. We then 70 

extended the model for a bivariate analysis to estimate grey-matter correlation between 71 
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phenotypes, which revealed that body size (i.e., height, weight, BMI, waist and hip 72 

circumference, body fat percentage) could account for a substantial proportion of the 73 

morphometricity (confirmed using a conditional analysis), providing possible insight into 74 

previous MRI case-control results for psychiatric disorders where case status is associated 75 

with body mass index. Our LMM framework also allowed to predict some of the associated 76 

phenotypes from the vertex-wise measures, in two independent samples. Finally, we 77 

demonstrated additional new applications of our approach (i) Region Of Interest (ROI) 78 

analysis that retain the vertex-wise complexity; (ii) comparison of the information retained 79 

by different MRI processings.  80 

 81 

3. Keywords 82 

Brain MRI, Morphometricity, mixed models, association, prediction, grey-matter correlation   83 

 84 

4. Introduction 85 

The field of MRI studies is at a turning point owing to the recent availability of large data 86 

sets to researchers, including the UKB (Miller et al., 2016) and HCP (Van Essen et al., 2013; 87 

Van Essen, Ugurbil, et al., 2012) samples. These datasets promote the replication of 88 

previous findings, but also the identification of small(er) associations and the expansion of 89 

the range of phenotypes available for study (e.g. psychiatric symptoms and lifestyle factors). 90 

Furthermore, the boost in statistical power may allow the simultaneous use of all the brain 91 

complexity data of current MRI acquisitions rather than relying on data reduction 92 

techniques (e.g. the region-of-interest [ROI] approach).  In addition, these community 93 

samples can complement the typical case-control paradigm by identifying confounders of 94 

MRI analyses or by studying related traits (e.g. cognition domains relevant in Alzheimer’s 95 

disease). However, “big-data” neuroimaging offers a number of statistical challenges (on top 96 
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of the obvious computing ones)(Smith & Nichols, 2018): i) the curse of dimensionality (the 97 

number of tests may increase faster than the sample size) which requires efficient methods 98 

and appropriate control of multiple testing; ii) the possibility that (small) associations result 99 

from confounding (via another variable, or acquisition noise); iii) the difficulty to generate 100 

prediction from complex datasets.    101 

Here, we propose a linear mixed model (LMM), efficiently implemented to tackle several 102 

of these big-data neuroimaging challenges. Our approach allows performing association and 103 

prediction analyses on tens of thousands of participants with more than 650,000 vertex-104 

wise morphological measurements of grey-matter structure per individual. Specifically, we 105 

overcame the curse of dimensionality by estimating the total correlation of all cortical and 106 

subcortical measurement at vertices with a phenotype of interest (previously coined 107 

morphometricity (Sabuncu et al., 2016), here we prefer the more specific brain-108 

morphometricity). Using the same framework, we also estimate the total association of a 109 

trait with differently processed MRI images as well with subset of the vertex-wise data 110 

corresponding to specific brain features, hemispheres or regions of interest (ROIs). We 111 

further introduce multi-trait LMMs that can quantify shared morphometricity between 112 

traits (grey-matter correlation). Grey-matter correlation can help generate hypotheses 113 

about putative confounders (that may be regressed out in a conditional analysis) or about 114 

the origin of brain-morphometricity. Finally, we show how the same LMMs can be used to 115 

construct grey-matter scores that achieve brain MRI-based prediction in independent 116 

samples. As such, our approach unifies association and prediction analyses, in order to 117 

unravel the brain-phenome relationships (Rosenberg, Casey, & Holmes, 2018) in big-data 118 

neuroimaging.  119 
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To demonstrate the applicability and usefulness of our methods, we analysed two of the 120 

largest MRI datasets available (UKB [split into discovery N=9,888 and replication N=4,561] 121 

and HCP [N=1,110]) and considered a wide range of phenotypes spanning demographics, 122 

blood cell composition, diet, psychiatric and traumatic history, physical capacities, and 123 

substance use. We discuss our results in the context of the recent commentary article of 124 

Smith & Nichols (Smith & Nichols, 2018).  We have released our image processing and 125 

analysis software/scripts as well as all summary statistics to facilitate replication and re-use 126 

of the results. 127 

 128 

5. Materials and Methods 129 

5.1.UK Biobank (UKB) sample(s) 130 

The UKB participants were unselected volunteers from the United Kingdom (Sudlow 131 

et al., 2015) living near the imaging centres (Manchester for 96.5% of our sample, Newcastle 132 

for the remaining 3.5%). Exclusion criteria included: presence of metal implant, recent 133 

surgery and health conditions problematic for MRI imaging (e.g. hearing, breathing 134 

problems or extreme claustrophobia) (Miller et al., 2016). MRI acquisition parameters have 135 

been reported previously (Miller et al., 2016) and are summarised in Appendix S1. 136 

We split the available UKB data into a discovery and replication sample based on 137 

their imaging date. The discovery sample consisted of 9,497 adults aged 62.5 on average 138 

(SD=7.5, range 44.6–79.6) and comprised 52.4% of female participants (see Appendix S2 for 139 

details of processing and QC; Dataset S1 for description of excluded participants). The UKB 140 

replication sample (N=4,323) was on average 63.1 years old (SD=7.46, range 46.1-80.3) with 141 

52.1% of females (see Dataset S1, Appendix S2). 142 

We included 168 variables grouped in several categories: demographics, cognition, 143 

physical test, psychiatry, recent feelings, stress and traumas, substance use, miscellaneous, 144 
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brain measurements, blood assay and diet (see Dataset S2 for details). When longitudinal 145 

observations were available for a participant, we used the one collected as part of the 146 

imaging assessment or the closest in time to that. 147 

 148 

5.2. UKB image processing 149 

We processed the T1w and T2w images using FreeSurfer 6.0 (Fischl, 2012) to extract 150 

cortical surface area and thickness, and we used the ENIGMA-shape protocols to measure 151 

the structure of 7 subcortical volumes (hippocampus, putamen, amygdala, thalamus, 152 

caudate, pallidum and accumbens) (Boris A. Gutman, Madsen, Toga, & Thompson, 2013; B. 153 

A. Gutman, Wang, Rajagopalan, Toga, & Thompson, 2012). In FreeSurfer, we processed T1w 154 

and T2w together to enhance the tissue segmentation, hence a more precise skull stripping 155 

and pial surfaces definition. When the T2w was not acquired or not usable, we processed 156 

the T1w image by itself.  157 

We retained the full cortical information by using the (“fsaverage”) cortical mesh for 158 

cortical thickness and surface area. This corresponded to about ~149,900 cortical vertices 159 

for each hemisphere and modality. In addition, we extracted subcortical radial thickness and 160 

log Jacobian determinant (surface deformation, somewhat analogous to a relative surface 161 

area (Roshchupkin et al., 2016)) for 13,560 vertices across the 7 subcortical volumes (Boris 162 

A. Gutman et al., 2013). Overall, the imaging data used in the analyses comprised 652,283 163 

vertex measurements per individual: 299,009 for cortical thickness, 299,034 for cortical 164 

surface area, 27,120 for subcortical thickness and 27,120 for subcortical curvature.  165 

For comparison with ROI based processing, we extracted cortical thickness and 166 

surface area of 34 cortical regions (Desikan et al., 2006; Fischl et al., 2004) and volumes of 167 

the subcortical structures (ENIGMA processing). To further the comparison of processing 168 
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options, we extracted cortical measurements from smoothed fsaverage meshes (fwhm 5, 169 

10, 15, 20 and 25mm) as well as (unsmoothed) coarser meshes provided by FreeSurfer: 170 

fsaverage6 (149,091 vertices across all hemispheres and modalities), fsaverage5 (37,455 171 

vertices), fsaverage4 (9,457 vertices) and fsaverage3 (2,414 vertices).  172 

 173 

5.3. Human Connectome Project (HCP) sample 174 
HCP participants were recruited from ongoing longitudinal studies of the Missouri 175 

Family Study and had to be between 22 and 35 years of age. Inclusion and exclusion criteria 176 

have been described previously (Van Essen, Ugurbil, et al., 2012) (see Appendix S1 for the 177 

MRI acquisition parameters, Appendix S2 for QC). As per the HCP “1200 Subjects data 178 

release” (1st of March 2017), 1,113 participants were scanned on the 3T MRI and underwent 179 

extensive behavioural testing. Participants were mostly (54.4%) females and were 28.8 180 

years old on average (SD=3.7, range 22–37). The sample comprised 286 monozygotic twins 181 

(138 complete pairs) and 169 dizygotic twins (78 complete pairs).  In addition, siblings and 182 

half siblings of twins were also recruited which resulted in 445 distinct families in the 183 

sample.   184 

For the HCP sample, we included 161 variables, some of which were also available in 185 

the UKB (e.g. demographics, cognition, physical assessment, blood assay or psychiatry). We 186 

also included: personality, emotion, mental health assessment (Semi-Structured Assessment 187 

for the Genetics of Alcoholism (SSAGA) and Adult Self Report (ASR) (Thomas M Achenbach, 188 

2009; T. M.  Achenbach, Dumenci, & Rescorla, 2003)), detailed cognition, Pittsburgh sleep 189 

index (PSQI) (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989), or results from the urine 190 

drug tests (see Dataset S2).  191 

 192 

5.4. Image processing in the HCP 193 
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The FreeSurfer processing was performed by the HCP team (Glasser et al., 2013; 194 

Marcus et al., 2013; Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012) using an optimal 195 

combination of automated and manual steps (Appendix S3).  We downloaded the 196 

segmented images (Marcus et al., 2011) and performed the ENIGMA-shape analysis (Boris 197 

A. Gutman et al., 2013; B. A. Gutman et al., 2012) to extract vertex-wise measurements of 198 

the subcortical volumes. As with the UKB sample, a total of 652,283 vertex measurements 199 

were extracted for each individual.  200 

 201 

5.5. Covariates used  202 
Our baseline model included commonly used covariates in MRI analyses: acquisition 203 

variables (UKB imaging wave, processing with T1w or with combined T1w+T2w), age, sex, 204 

and head size (intra-cranial volume (ICV) as well as left and right total cortical surface area 205 

and cortical thickness that correspond to the measurements used here). In a follow-up 206 

analysis, we included other covariates such as height, weight and BMI to evaluate their 207 

confounding effect on the reported associations. As some of the covariates are correlated 208 

we report the adjusted R2 (from linear regression in R3.3.3 (R Development Core Team, 209 

2012)) calculated by adding progressively the covariates (same order as above). The 210 

associations with covariates was highly concordant between the two UKB samples (Figure 211 

S1).  212 

 213 

5.6. Linear mixed models for association and prediction 214 

We aimed to estimate the proportion of variance of a trait captured by brain 215 

features, which Sabuncu et al., called “morphometricity” (Sabuncu et al., 2016). To do so we 216 

consider the following linear mixed model (Figure 1) that allows estimating the association 217 

between a phenotype and M vertices even when M is greater than the sample size (N):  218 
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               ( 1) 219 

where      is the phenotype considered with N the number of observations,      is a matrix 220 

of c covariates (as such does not include any vertex variable),  c,1 is a vector of fixed effects, 221 

  is a vector of random effects with          
   and   is a vector of error terms with 222 

         
  . In this formulation      is the identity matrix as we assume the error terms to 223 

be independent and identically distributed.      is a matrix of variance-covariance between 224 

individuals calculated from all vertex measurements, which we will refer to as the brain 225 

relatedness matrix (BRM, Figure 1). Off-diagonal elements of the BRM reflect the grey-226 

matter similarity between two individuals (see Appendix S4). Finally,   
  and   

  are the 227 

variance components for the random effects   and  . For context, this model is analogous 228 

to that used in complex trait genetics to estimate SNP-based heritability, where a Genetic 229 

Relatedness Matrix (GRM) replaces the BRM (Yang et al., 2010; Yang, Lee, Goddard, & 230 

Visscher, 2011), or that used to estimate the proportion variance in a phenotype captured 231 

by all DNA methylation or gene expression measures of the genome (Zhang et al., 2019). 232 

The element i,j of the BRM can be calculated as the inner product of brain measurements of 233 

individuals i and j:      
           

 
 

 
. Here,      represents the value of vertex m for 234 

individual i centred and standardised over all individuals,      represents the value of vertex 235 

m for individual j centred and standardised over all individuals, M is the total number of 236 

vertices or brain features included. In matrix notation,   
   

 
 with       being a matrix of 237 

the centred and standardised brain observations. We estimated the proportion of the trait 238 

variance captured by the grey-matter measurements as:    
  
  

  
     

  
 (Figure 1) using the 239 

REstricted Maximum Likelihood (REML)(Patterson & Thompson, 1971) implemented in 240 

OSCA (OmicS-data-based Complex trait Analysis) (Zhang et al., 2019). We tested whether 241 
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the morphometricity was different from 0 using a likelihood ratio test (see Appendix S5 for 242 

details). 243 

We extended the LMM above to jointly estimate the variance accounted for by the 244 

different modalities (cortical thickness, cortical area, subcortical thickness, subcortical area).  245 

                                                                               246 

with             
            , and all other parameters left unchanged. Each    is 247 

constructed from the vertex-wise measurements of a single modality, with    
  the 248 

corresponding association and 
   
     

     
      

 

   
     

     
      

     
  

 the brain-morphometricity.  249 

Next, we sought to estimate the correlation between two traits that is attributable 250 

to the same grey-matter variation, which we call grey-matter correlation rGM (Figure 1). This 251 

can be achieved by fitting a bivariate LMM, a direct extension of the models presented 252 

above (Thompson, 1973). We restricted our bivariate analysis to variables that were 253 

significantly associated with grey-matter structure. We derived the residual correlations (    254 

from the phenotypic ( ) and grey-matter correlations estimated by GCTA (Genome-wide 255 

Complex Trait Analysis) (Yang et al., 2011) (option not yet included in OSCA).  We calculated 256 

its SE using the delta method (Appendix S6 and (Bijma & Bastiaansen, 2014; Lee, Yang, 257 

Goddard, Visscher, & Wray, 2012; Visscher, 1998)).  258 

We detailed power calculations for the LMMs (Appendix S7, (Visscher et al., 2014)), 259 

which showed that in the UKB discovery sample we had good power to detect a small 260 

morphometricity (R2>2.2%) but only a moderate grey-matter correlation (rGM>0.35). 261 

Statistical power was a lot reduced in the HCP due to the smaller sample size.  262 

 We demonstrated two further utilities of LMMs for neuroimaging data analyses. 263 

First, we conducted post-hoc analyses to test the associations with each modality and each 264 
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cortical (Desikan et al., 2006) or subcortical structure. We used BRMs specific to each region 265 

and brain measurement (Figure 1), which bridges the gap between ROI and vertex-wise 266 

analyses. Second, we define as “best” processing the MRI cortical processing that maximises 267 

the association with a trait of interest, from the minimal number of features (vertices). 268 

Thus, we evaluated which of our FreeSurfer processing (fsaverage – no smoothing; 269 

fsaverage – smoothing fwhm5, 10, 15, 20, 25; fsaverage6, 5, 4, 3 – no smoothing; ENIGMA 270 

ROI processing) maximised the brain-morphometricity for all the UKB traits (See Appendix 271 

S2 for details about QC).  As the ENIGMA processing only consists of 150 measurements, we 272 

used linear models (multiple regression and adjusted R2) to estimate the brain-273 

morphomometricity.  274 

Finally, we derived brain prediction scores using the Best Linear Unbiased Predictors 275 

(BLUP, Figure 1) (Henderson, 1950, 1975; G. K. Robinson, 1991) and evaluated them in the 276 

UKB discovery sample using a 10-fold cross-validation design. In addition, we derived BLUP 277 

brain prediction scores constructed from the UKB discovery sample, and applied them to 278 

the UKB replication and HCP participants to evaluate the “out of sample” predictive 279 

performance. BLUP estimates the predicted values of the random effects (b or Zu, see (1) 280 

and Figure 1) (Goddard, Wray, Verbyla, & Visscher, 2009; G. K. Robinson, 1991). In short, 281 

BLUP scores integrate the correlations between vertices to derive weights that correspond 282 

to the joint effects of all the vertices (Figure 1). BLUP have desirable statistical properties: 283 

they are unbiased and are best predictors in the sense that they minimise the mean square 284 

error in the class of linear unbiased predictors (Henderson, 1975; G. K. Robinson, 1991), 285 

leading to more accurate prediction than other linear predictors (M. R. Robinson et al., 286 

2017; Vilhjalmsson et al., 2015).  287 

 288 
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5.7. Prediction accuracy of BLUP versus LASSO  289 
We compared prediction accuracy achieved by BLUP scores to that of LASSO (least 290 

absolute shrinkage and selection operator) (Tibshirani, 1996) for phenotypes with significant 291 

brain-morphometricity (baseline covariates). LASSO penalises vertices coefficients of the 292 

linear regression, leading to select a subset of vertices (and their weights) that maximise 293 

prediction accuracy. We used the LASSO function implemented in the bigstatsr R package 294 

(Privé et al., 2018) and estimated the hyper-parameter using cross-model selection and 295 

averaging on 5 folds within the UKB discovery sample. For each grey-matter score, we 296 

reported the prediction R2 on the UKB replication sample and tested the difference in 297 

prediction using a Wilcoxon test on the absolute errors of the BLUP and LASSO predictors.  298 

 299 

5.8. Data and code availability statement 300 

Data used in this manuscript are held and distributed by the HCP and UKB teams. We 301 

have released the scripts used in image processing and LMM analyses to facilitate 302 

replication and dissemination of the results (see URLs). We have also released BLUP weights 303 

to allow meta-analyses or application of the grey-matter scores in independent cohorts.  304 

 305 

6. Results  306 

6.1.Associations between phenotypes and all grey-matter structure vertices  307 

For the phenotypes of interest, we summarised in circular barplots (Figure 2) the 308 

proportion of phenotypic variance associated with all 652,283 vertex-wise grey-matter 309 

measures (brain-morphometricity, R2) as well as with baseline covariates (see Methods). 310 

Figure 2 shows only the results that were significant after Bonferroni correction 311 

(pUKB_discovery<2.8e-4 and pHCP<2.9e-4). The full results are available in Dataset S3, S4 (see 312 

Figure S2 for positive control associations with global measures of the brain). 313 
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Grey-matter structure was strongly associated (R2>0.40) with age, sex, as well as 314 

weight, BMI waist and hip circumference but also with maternal smoking around birth 315 

(R2=0.39) and number of cigarettes previously smoked (R2=0.27) (Figure 2). We identified 316 

many other phenotypes significantly associated with grey-matter structure (Figure 2, 317 

Dataset S3) including other measures of build (e.g. height, body fat percentage, basal 318 

metabolic rate), substance use (e.g. amount of alcohol drank each day), household income 319 

level and education level, strength (e.g. hand grip, acceleration), cognition (e.g. fluid IQ), 320 

blood assay (e.g. white blood cell count), diet (cheese intake), but also perhaps more 321 

surprisingly with being a twin or overall health rating. We also found associations with 322 

clinical phenotypes such as diabetes, depression score and depression symptoms. We 323 

replicated 23 of the 58 associations listed above in the UKB replication sample (p<0.05/58; 324 

Figure S3, Dataset S4). We did not detect any significant association between grey-matter 325 

structure and other psychiatric variables (diagnoses and symptoms), self-reported stresses 326 

and traumas, or neuroticism (Dataset S3). The interested readers may also find the 327 

morphometricity estimates for the full UKB sample (inverse-variance weighted meta-328 

analysis) in Dataset S3. 329 

In the UKB (discovery), results and conclusions did not change regardless of fitting a 330 

single random effect or several random effects each corresponding to one of the grey-331 

matter modalities (Figure S4).  In the HCP, we observed 3 extra significant associations 332 

between grey-matter structure and cocaine (urine test), self-reported number of times used 333 

cocaine or hallucinogens. Similar to the association found with opiate (urine test), these 334 

results warrant replication due to the small number of positive participants. Finally, the HCP 335 

results did not change when excluding related individuals (Appendix S8).  336 

 337 
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6.2. Adjustment for possible confounders 338 

The large associations between grey-matter structure and height, weight, BMI, waist 339 

and hip circumference (Figure 2) led us to perform a sensitivity analysis to evaluate their 340 

contribution to the brain-morphometricity of the traits studied. We repeated the analysis 341 

further controlling for height, weight and BMI, which yielded lower R2 estimates (Figure S5) 342 

and fewer significant associations with grey-matter structure. Thus, when correcting for 343 

height in the UKB, 4 of the 58 associations with grey-matter structure did not remain 344 

significant: household income, monocyte percentage, beef intake, and time spent using 345 

computer, Dataset S3). Such finding is consistent with the reported association between 346 

body size and income or socio-economic status in the UKB (Tyrrell et al., 2016). When 347 

further correcting for weight and BMI another 14 associations did not remain significant 348 

including educational attainment, frequency drinking alcohol, most diet items (cereal, dried 349 

fruits, poultry, processed meat), time spent driving, red blood cell count, frequency of walks 350 

and small exercise. Notably, the brain-morphometricity of the depression score could be 351 

completely explained by differences in weight and BMI (R2
baseline=0.050, SE=0.018; 352 

R2
baseline+height=0.048, SE=0.017, R2

baseline+height+BMI+weight<0.001, SE=0.007), and none of the 353 

associations between grey-matter structure and depression symptoms remained significant 354 

conditioning on weight and BMI (Tiredness, Anhedonia, Poor appetite- overeating, 355 

R2
baseline+height+BMI+weight<0.014). Yet, even after controlling for body size, we still detected a 356 

significant morphometricity for cheese intake as well as time watching TV (Dataset S3), 357 

suggesting that these behaviours are associated with brain structure irrespective of body 358 

size. The morphometricity estimates in the UKB replication sample aligned with those from 359 

the discovery sample (cor=0.90), except for age and sex that showed larger associations 360 

with grey-matter structure in the replication analysis (Figure S6). In the HCP dataset, after 361 
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controlling for body size, four of the 27 associations did not remain significant (Dataset S4) 362 

though we had limited power to detect associations smaller than R2 of 0.2 in this sample 363 

(see Appendix S7).  364 

In light of these results, we chose a conservative approach to control for body size 365 

variables in the main text, though the analyses using baseline covariates can be found in the 366 

supplementary. We acknowledge (see discussion) that this may be overly conservative, by 367 

implicitly making strong assumptions about body size acting as a confounding factor. On the 368 

other hand, it avoids reporting associations that may be fully or in part caused by 369 

differences in body shape.  370 

 371 

6.3. Grey-matter correlations 372 

We estimated grey-matter correlation (rGM) between the phenotypes that showed 373 

significant brain-morphometricity in the univariate analyses (Figure 2). rGM can be 374 

interpreted as the correlation between the grey-matter vertices associations with each trait. 375 

We controlled for height, weight and BMI on top of the baseline covariates, leaving a 376 

conservative set of 35 UKB (18 HCP) phenotypes (Figure 3; Datasets S5 [UKB], S6 [HCP]). In 377 

the UKB, we observed significant positive grey-matter correlations between cognition 378 

domains, substance use phenotypes or between measures of physical activity (Figure 3). In 379 

addition, we found unexpected large grey-matter correlations. For example, cheese intake 380 

and forced expiratory volume were both correlated (rGM=1.0, SE=0.11) with fluid 381 

intelligence, and waist circumference was correlated with overall health rating and pulse 382 

rate (rGM>0.67). Overall, 9 out of the 26 significant correlations replicated in the UKB 383 

replication sample (p<0.05/26 i.e. p<1.9e-3, Table S1). In the HCP, we also observed positive 384 

grey-matter correlations between cognition domains or between the two tobacco related 385 
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phenotypes. Though, unlike in the UKB, we found a significant rGM between IQ dimensions 386 

and education level (Figure 3, Dataset S6).  387 

For completeness, we estimated grey-matter correlations under the baseline model 388 

(Figure S7), which reveals many large grey-matter correlations between measures of body 389 

size and diet, blood assay, activity levels and depression symptoms and score. These results 390 

further highlight that in the phenome, the brain-morphometricity of some traits may be 391 

accounted for by the covariation between these phenotypes and body size measurements. 392 

In particular, depression score was correlated (rGM=1) with weight, BMI waist or hip 393 

circumference, consistent with its brain-morphometricity lowered to 0 when controlling for 394 

body size (Figure S7).  395 

 396 

6.4.Associations with grey-matter structure of specific cortical and subcortical regions 397 
 We investigated the brain-morphometricity of traits by estimating the association 398 

with grey-matter structure of specific cortical (Desikan et al., 2006) and subcortical regions, 399 

correcting for multiple testing (Bonferroni significance threshold of 0.05/(164*39)=7.2e-6 in 400 

the UKB, 1.2e-5 in the HCP). We found many significant ROIs associations with UKB 401 

phenotypes, including age, sex, maternal smoking around birth, fluid intelligence, diabetes 402 

or substance use (Figure S8 and Dataset S7). In particular, the associations between grey-403 

matter structure and body size were pervasive (72/164 significant ROIs associations with 404 

height, 109 with waist circumference, 105 with BMI) (Figure S9, Dataset S8), suggesting that 405 

when acting as confounders height, weight or BMI could lead to false positives in many 406 

brain regions. We replicated 633 out of the 975 significant ROI-trait associations 407 

(p<0.05/975, see Dataset S9 for results on UKB replication sample). Most replicated 408 

associations were found with age, sex and body size variables, though we also replicated 409 
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associations between subcortical volumes and hand grip strength or time spent watching TV 410 

(Dataset S7-9). Overall, some of the trait-ROIs associations were partially redundant as 411 

indicated by a sum of R2 (over ROIs) greater than the morphometricity (see Appendix S9 for 412 

detailed results and discussion, Dataset S10 for results in HCP). 413 

  414 

6.5. Better cortical processing 415 

 We compared the brain-morphometricity estimates obtained by varying the cortical 416 

processing options: smoothing of the cortical meshes and applying coarser FreeSurfer 417 

meshes. We found that applying smoothing (5-25mm) or reducing the cortical mesh 418 

complexity always led to a lower point estimate of brain morphometricity in the UKB 419 

discovery (Figure 5) and replication (Figure S10, Datasets S11-12 for full tables) samples. 420 

These differences were significant for a handful of variables (incl. age, sex, maternal 421 

smoking or body size) using a stringent definition of significance based on overlapping 422 

confidence intervals (Table S3). Thus, the fsaverage cortical mesh with no smoothing may 423 

be deemed a better processing approach for at least some of the phenotypes considered. 424 

Similarly, we found that the vertex-wise approach always yielded greater association R2, 425 

thus retained more information than a ROI based dimension reduction (Figure S11).  426 

 427 

6.6.Ten-fold cross-validation in the UKB and prediction into the UKB replication sample 428 

For each UKB participant, we calculated (BLUP) grey-matter scores relative to 429 

phenotypes showing significant brain-morphometricity. As in sections above, for height, 430 

weight and BMI we controlled for baseline covariates and further regressed out body size 431 

for all other phenotypes.  432 
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In the 10-fold cross-validation analysis, most grey-matter scores significantly 433 

correlated (positively) with their corresponding phenotypes (significance threshold of 434 

0.05/39=1.2e-3, Table 1, S3, Figure 4). Albeit significant, prediction accuracy was overall low 435 

(typically r<0.10, including r=0.11 for sex, r<0.09 with cognition, r=0.08 for alcohol intake, 436 

r=0.06 with smoking status) except for age (r=0.60) and maternal smoking around birth 437 

(r=0.26). We found similar prediction results in the UKB replication sample, with 29 438 

associations reaching significance at p<1.2e-3 (Table 1, S3). Prediction accuracy into the UKB 439 

replication sample was on par for most traits, though slightly greater for age and sex 440 

compared to the cross-validation results (Figure 4, Table 1, S3). This is consistent with a 441 

larger training sample being used and larger morphomometricity observed in the replication 442 

set (Figure S6). 443 

When not correcting for body size, 56/58 BLUP scores significantly correlated with 444 

the observed values in the 10-fold cross validation and 42 associations replicated using the 445 

UKB replication sample (p<0.05/58, See FigureS12 and DatasetS13). Predicted age 446 

correlated with chronological age (r=0.72 in the discovery, r=0.70 in the replication), while 447 

predicted sex also strongly associated with the observed value (AUC of 0.90 and 0.89). Grey-448 

matter scores of body shape (under the baseline covariates) were also significantly 449 

correlated with the observed values (r=0.25 for height, r=0.29 for body fat percentage, 450 

r=0.39 for weight and hip or waist circumference, r=0.45 for BMI). Finally, grey-matter 451 

scores of BMI correlated positively with depression symptom count (r=0.10, p-value<1e-14), 452 

as expected from the brain-morphometricity of depression being limited by the covariation 453 

with body size. It even outperformed the grey-matter score built from the depression score 454 

itself (r=0.05, p-value<1e.5). 455 
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BLUP achieved similar to superior prediction accuracy (R2) compared to LASSO brain 456 

scores across the 58 phenotypes (Figure S13, Dataset S13). BLUP significantly outperformed 457 

LASSO (Wilcoxon test on absolute errors, p<0.05/58) in predicting hip circumference, 458 

alcohol intake and number of correct symbol matches (cognition). 459 

 460 

6.7.Out of sample prediction – application in the HCP sample 461 

Out of sample prediction validates that the morphometric associations are 462 

generalizable to independent brain images, beyond population and scanner differences. For 463 

traits only available in the UKB (e.g. waist circumference) we used a proxy in the HCP (e.g. 464 

BMI). Grey matter scores for age, sex, and being a twin significantly correlated with the 465 

observed values (rage=0.15, rsex=0.25, rtwin-status=0.31, Table 1, Table S3 and Figure 4). Grey-466 

matter score for maternal smoking around birth correlated with smoking status (r=0.19). 467 

None of the other grey-matter scores significantly correlated with a similar HCP variable. 468 

Without correcting for body size, 19 BLUP scores correlated to corresponding 469 

variables (Dataset S13, Figure S12). For example, scores for BMI, body fat percentage, hip or 470 

waist circumference also correlated positively with BMI (r=0.21, p-value<1.2e-3), while 471 

scores for height and weight also correlated with the observed phenotypes (rHeight=0.17, 472 

rWeight=0.19). Finally, scores build from diet items or quantifying activity levels significantly 473 

predicted BMI in the HCP. 474 

 475 

7. Discussion 476 

We have introduced a set of analyses, that rely on linear mixed models (LMMs, Figure 1) to 477 

perform association and prediction, while being suited to tackle the challenges of big-data in 478 

neuroimaging (Smith & Nichols, 2018). We have demonstrated their applications in two of 479 

the largest MRI cohorts available for research (UKB (Miller et al., 2016) and HCP (Van Essen 480 
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et al., 2013)) using a fine-grained processing of anatomical MRI that consisted in >650,000 481 

grey-matter measurements per individual. In LMMs, the overall effect of the high 482 

dimensional vertex-wise measures is modelled by a single random effect, with a variance-483 

covariance structure calculated from the vertex-wise data: the brain relatedness matrix 484 

(BRM, Figure 1). BRM off-diagonal elements represent the relative global similarity between 485 

grey-matter structure of two people. The model is equivalent to fitting all vertices as a set of 486 

random effects, constraining the association effect sizes to be normally distributed (Figure 487 

1), which can be seen as an extension of multiple regression when the number of variables 488 

exceeds the number of participants. This framework allows estimating new sample 489 

characteristics such as the total association (morphometricity (Sabuncu et al., 2016)) 490 

between a phenotype and vertex-wise brain data or grey-matter correlations that quantify 491 

how much phenotypes may be similarly associated with grey-matter. In addition, it offers to 492 

build performant brain-based predictors that do not require hyper-parameter estimation.  493 

Our analyses replicated and extended previous morphometricity reports (Sabuncu et 494 

al., 2016) (Figure 2, Dataset S3, S4). We have demonstrated that our methods produce 495 

robust, replicable results (Figure S3, S6, S10, Table S1, S3) that were partly transferrable on 496 

a completely independent sample (the HCP) despite large differences between the samples 497 

(Table S2, Dataset S13). We have shown additional utilities of this LMM framework such as 498 

the ROI based association test that retained the vertex-wise complexity of a brain region 499 

(Fig S8-S8, Appendix S9, Dataset S7-S10), rather than summarising them by a single average 500 

measure, effectively bridging the gap between ROI/atlas based and vertex-wise analyses. 501 

Our results aligned with previously published associations with sex (Ritchie et al., 2018), BMI 502 

(Cole et al., 2013; Gupta et al., 2015; Kurth et al., 2013; Masouleh et al., 2016; Medic et al., 503 

2016; Opel et al., 2017) or substance use (Cardenas, Studholme, Gazdzinski, Durazzo, & 504 
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Meyerhoff, 2007; Gallinat et al., 2006; Gillespie et al., 2018; Hanlon et al., 2016; Pitel, 505 

Segobin, Ritz, Eustache, & Beaunieux, 2015) (see details in Appendix S9). We showed 506 

another application of LMMs for big-data neuroimaging: to compare the amount of 507 

information retained by different MRI image processing. We found that using the most 508 

complex cortical mesh (“fsaverage”) with no smoothing maximised the brain-509 

morphometricity across all phenotypes studied, though further statistical testing of the 510 

difference is required (Table S3). This suggests there is meaningful information in fine 511 

grained grey-matter data that is lost when performing local averages (via smoothing, 512 

coarser mesh or average over a ROI). More work is needed to compare our surface-based 513 

approach (Fischl, 2012) to volume based processing (Flandin & Friston, 2008), or evaluating 514 

the putative added value of including the T2w image (on top of the T1w). To finish on 515 

processing, in the UKB we combined vertex-wise data estimated from T1w and T1w+T2w 516 

which is meant to improve grey-matter segmentation, though few studies quantified it 517 

(Lindroth et al., 2019). Here, we confirmed a difference in cortical thickness between 518 

processing groups (Lindroth et al., 2019)(Figure S2), though our data driven QC (Appendix 519 

S2) excluded 80% of the 400-odd participants processed using T1w only (flagged as outliers). 520 

We corrected for processing type in the analyses and the good replication of the UKB 521 

associations (Figure S3, S6, Table S1) in addition to the out of sample prediction (Figure 4) 522 

suggest that our results are robust. 523 

Beyond the large morphometricity estimates found for age and sex, BMI, weight, 524 

waist and hip circumference, and both passive and active smoking (Figure 2, Dataset S3), we 525 

found many small(er) associations, with a wide array of phenotypes, including some more 526 

unexpected ones (e.g. self-reported diet, being a twin, happiness with one’s health, blood 527 

assay results (Figure 2, Dataset S3)). Such findings may echo the concerns raised by Smith 528 



 

 23 

and Nichols about the presence of many (small) confounded associations in big-data 529 

neuroimaging (Smith & Nichols, 2018). The fact that we replicated the morphometricity in 530 

another UKB sample, does not completely rule out a confounding effect, as the same bias 531 

(e.g. healthy bias in recruitment (Fry et al., 2017)) may be present.  532 

We illustrated this concern using the example of body size (BMI, weight, height), 533 

which showed large, replicated morphometricity and was available in both cohorts. We 534 

evaluated its contribution to the reported morphometricity by performing conditional 535 

analyses and bivariate LMMs. Both approaches yielded the same conclusions: a large 536 

fraction of the morphometricity detected was attributable to body size (Figure S7, Dataset 537 

S3). However, co-variation does not necessarily imply confounding (which requires 538 

establishing direction of effects) but may instead point to intermediate phenotypes or arise 539 

from the pervasive pleiotropy across the human phenome (Solovieff, Cotsapas, Lee, Purcell, 540 

& Smoller, 2013). In addition, we are dealing with associations, meaning that (except for 541 

exposures such as age or sex) the trait-vertex associations responsible for the 542 

morphometricity may be a cause and/or a consequence of the phenotypes. For example, 543 

there is a known association between BMI and depression, with evidence of pleiotropy, but 544 

also of a causal effect of BMI on depression (Wray et al., 2018), though we do not know 545 

which of BMI and grey-matter structure cause the other and cannot label body size a 546 

confounder. Thus, a conservative interpretation is that morphometricity of the depression 547 

score is limited to the shared variation with body size in the UKB (Dataset S3, Figure S7). 548 

However, our findings shed a new light on previously published results, as even the largest 549 

case-control international initiatives (e.g. ENIGMA-MDD (Schmaal, Hibar, et al., 2016; 550 

Schmaal, Veltman, et al., 2016)) may reflect, at least in part, variance shared between 551 

depression and BMI (Cole et al., 2013). More work is needed to understand body size 552 
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contribution to published results linking grey-matter anatomy to psychiatric disorders 553 

(MDD, bipolar, schizophrenia and substance use are all associated with BMI (Luppino et al., 554 

2010; McElroy & Keck, 2012; Rajan & Menon, 2017; Saarni et al., 2009; Wray et al., 2018)) 555 

or sexually dimorphic traits (likely associated with height and weight). In addition, body size 556 

may be differently associated with the phenome across countries or age groups, which may 557 

limit the replication of findings and predictive abilities of body size dependent scores. 558 

Finally, the possible confounding effects of body size are exacerbated in small case-control 559 

samples, leading to increased chances of false positive associations (Button et al., 2013; 560 

Ioannidis, 2005). Note that body size being associated to many brain regions (Figure S9), its 561 

confounding effect could lead to widespread cortical or subcortical false positives. 562 

A different example may be that of cheese intake, previously given as an absurd 563 

example of putative association likely confounded by socio-economic status (Smith & 564 

Nichols, 2018), and for which we found a significant (replicated) morphometricity, even 565 

after correcting for body size (Figure 2, Dataset S3). Consistent with the hypothesis of a 566 

confounded association, our bivariate analysis identified large rGM (rGM=1) between cheese 567 

intake and household income level, or fluid intelligence (Figure S7), though the latter was 568 

significant only when controlling for body-size (Figure 3). Thus, grey-matter correlation may 569 

allow hypothesis-generation about the origin of the morphometricity signal and could help 570 

better identifying putative confounders. If confirmed, such confounded morphometricity 571 

would not translate into significant prediction into the general population (where IQ may 572 

not be associated with cheese intake) or into another sample/country with different dietary 573 

habits.  574 

 Beyond the confounding/mediating effect between phenotypes one should also be 575 

wary of known MRI acquisition artefacts and confounds (Smith & Nichols, 2018). Here, we 576 
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focused on well-studied MRI modalities (T1w and T2w) which may be among the least 577 

sensitive to artefacts, especially that acquisition was performed on a single MRI machine 578 

and processed using standard image processing pipelines (Fischl, 2012). However, we 579 

detected significant morphometricity for pulse rate, bone mineral density and indirect 580 

measures of breathing rate/depth (Smith & Nichols, 2018), even after controlling for body 581 

size (Dataset S3). In addition, the large grey-matter correlations between pulse rate and 582 

overall health rating, and between forced expiratory volume and fluid intelligence (Figure 583 

3), suggest they might indeed act as confounders. More work is needed to extend the list of 584 

acquisition confounders studied (e.g. head motion), and more power is needed to detect 585 

finer grained rGM with the phenotypes of interest (Appendix S7). Finally, note that rGM would 586 

also capture correlated measurement errors between traits (e.g. when 2 traits are 587 

associated with head motion). 588 

Next, we constructed BLUP scores that estimate the random effects of the LMM and 589 

demonstrated their predictive abilities in independent samples (UKB replication and to a 590 

lower extend in the HCP, [Figure 4, S12, Table 1, S2, Dataset S11], which differs in term of 591 

scanner and sample composition). In addition to its statistical properties (unbiased, best 592 

predictor in the class of linear predictors), we demonstrated that BLUP achieved similar (to 593 

greater) prediction accuracy compared to LASSO based prediction, while being more 594 

computationally efficient than most traditional machine learning approaches as it does not 595 

require hyper-parameter estimation. Note that prediction relates naturally to association 596 

which is apparent from our model formulation (Figure 1). Thus, the morphometricity value 597 

represents the upper asymptote achievable in linear prediction (Figure 4, (Dudbridge, 598 

2013)); in addition, grey-matter correlation indicates when transfer learning is possible 599 

between the 2 variables.  The limited prediction accuracy currently prevents BLUP scores 600 
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being used in the clinical settings. However, they open the way to new analyses on samples 601 

already collected, for which information was not or could not be collected. Further 602 

application of our BLUP grey-matter scores include studying correlates of brain age or 603 

predicted age difference (difference between predicted and chronological age) (Cole, 2017; 604 

Cole et al., 2017; Liem et al., 2017). 605 

 Despite good statistical power in theory (Appendix S7), the low numbers for some of 606 

the binary variables may explain the lack of associations found with psychiatry (e.g. 607 

schizophrenia, ADHD), stresses, traumas (Dataset S3), which would have to be confirmed 608 

using a larger UKB sample or case-control samples (see results in (Sabuncu et al., 2016)). 609 

Similarly, a lot of the trait variance remains unaccounted for by the grey-matter structure 610 

variation (Figure 2) which calls to study brain regions not extracted here (e.g. brain stem, 611 

cerebellum), other processing options (e.g. volume based processing), or MRI images 612 

(diffusion weighted, fMRI) to further characterise the phenotypes.  613 

 Our approach is suited to studying other MRI contrasts and even multiple MRI 614 

modalities at once by fitting several random effect components (Figure S4). In addition, the 615 

efficient implementation in the OSCA software (Zhang et al., 2019) means the analyses are 616 

scalable to the future full UKB sample of 100,000 participants, which should improve power 617 

and BLUP prediction accuracy (Dudbridge, 2013). Beyond the global or regional associations 618 

reported here, future analyses should aim at identifying the vertices that contribute to the 619 

morphometricity. An existing method is mass-univariate vertex-wise analysis, though this 620 

comes as a huge increase of multiple testing burden and may still be underpowered with 621 

the current sample sizes (Smith & Nichols, 2018). 622 

 623 

8. URLs 624 
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Summary-level data (BLUP weights): https://cnsgenomics.com/content/data and 625 

https://cloudstor.aarnet.edu.au/plus/s/T1gyJyQsF6wTMjF; Code used for the analyses and 626 

plots is downloadable at https://github.com/baptisteCD/Brain-LMM and viewable at 627 

https://baptistecd.github.io/Brain-LMM/index.html ; OSCA: 628 

http://cnsgenomics.com/software/osca/ ;  ENIGMA processing protocols: 629 

http://enigma.ini.usc.edu/protocols/imaging-protocols/ ;  630 
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Table 1: Summary of the prediction accuracy (R2) of the BLUP grey-matter scores.  902 

We constructed BLUP scores for the 39 UKB variables showing significant morphometricity and evaluated their predictive power in the UKB (10 903 

fold-cross validation) and HCP sample. When the phenotype corresponding to the grey-matter score was not available in the HCP, we chose the 904 

closest available (e.g. waist circumference grey-matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM 905 

controlling for height, weight and BMI as well as for the baseline covariates (acquisition, age, sex and head size); except for (#) denoting 906 

associations not controlling for height, weight and BMI. Rows in bold indicate significant association after correcting for multiple testing 907 

(p<0.05/39=1.3e-3) both in and out of sample. This reduced table only shows prediction results significant in all 3 scenarios, see Table S2 for full 908 

table of results. We reported the AUC (for discrete variables) as it is independent of the proportion of twins and males, thus differences in AUC 909 

likely reflect differences in morphometricity between the UKB and HCP samples. 910 

 In sample prediction (UKB) Prediction into UKB replication Out of sample prediction (HCP) 

 r p-value R
2
 AUC (SE) r p-value R

2
 AUC (SE) HCP variable 

predicted 
r p-value R

2
 AUC 

(SE) 

Age 0.64  0.0e+00 0.41  0.68  0.0e+00 0.46  Age 0.15 

3.1e-
08 0.024  

Sex 0.26  0.0e+00 0.067 

0.58 
(0.0059) 0.33 9.8e-305 0.11 

0.8 
(0.0064) Sex -0.25 

8.0e-
42 0.061 

0.68 
(0.016) 

Part of multiple 
birth 0.078  4.1e-14 0.0061 

0.66 
(0.022) 0.13  1.5e-03 0.016 

0.72 
(0.065) Being a twin 0.31 

1.1e-
28 0.098 

0.69 
(0.016) 

Body fat 
percentage# 0.29  0.0e+00 0.085  0.31 7.7e-190 0.095  BMI 0.21 

5.6e-
13 0.045  

Waist 
circumference# 0.39  0.0e+00 0.16  0.38 2.0e-205 0.14  BMI 0.21 

3.5e-
13 0.046  
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BMI# 0.45  0.0e+00 0.2  0.45 7.4e-235 0.20  BMI 0.21 

2.4e-
12 0.042  

Hip 
circumference# 0.38  0.0e+00 0.15  0.36 7.3e-143 0.13  BMI 0.21 

5.2e-
13 0.045  

Height# 0.25 

6.5e-
318 0.062  0.23 2.6e-132 0.054  Height 0.17 

1.8e-
17 0.03  

Weight# 0.39  0.0e+00 0.15  0.39 5.8e-231 0.15  Weight 0.19 

1.2e-
12 0.036  

Maternal smoking 
around birth 0.26 

9.8e-
132 0.069 

0.66 
(0.0067) 0.25  1.7e-08 0.063 

0.65 
(0.027) FTND score 0.19 

8.9e-
04 0.037  

 911 
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Figure 1: Summary of the analyses and methods 912 

The data used in the analyses are detailed at the top, and include phenotypes, covariates and vertex-913 

wise measurements. Calculation of the brain relatedness matrix from the vertex-wise data is also 914 

described. The two LMM formulations are equivalent, though the first one emphasises how 915 

morphometricity relates to the brain relatedness matrix and the second emphasises the joint effects 916 

of all vertex-wise measurements. The boxes at the bottom provide brief interpretations of the new 917 

methods and concepts. Morphometricity estimate may be restricted to vertex-wise measurements 918 

within a ROI, to estimate the phenotype-ROI association that takes into account all local variations 919 

within the ROI. Morphometricity may also be used to compare the information retained by different 920 

MRI image processing (“Best processing”). Grey-matter correlation measures the shared 921 

morphometricity between traits, or in other words the correlation between the vertex-phenotypes 922 

associations for each phenotype. BLUP scores are predictors of the random effect, and make the 923 

hypothesis that the vertex-phenotypes marginal joint associations weights are normally distributed. 924 

BLUP prediction, expressed in proportion of phenotypic variance, is capped by the morphometricity.  925 

 926 
Figure 2: Circular barplot of the associations (R2) between phenotypes and grey-matter structure 927 

vertices (morphometricity) 928 

For clarity, we only plotted the significant associations in the UKB discovery (panel a) and HCP 929 

sample (panel b). We applied Bonferroni correcting to account for multiple testing in each sample. 930 

The black bars represent the 95% confidence intervals of the morphometricity estimates. For 931 

context, we also present the association R2 between phenotypes and covariates of the baseline 932 

model, as per the legend under the barplot. As some covariates may be correlated, the R2 was 933 

calculated by adding progressively the covariates in that order: acquisition and processing variables 934 

(labelled “other”), age, sex and head size (ICV, total cortical thickness and surface area). Age and sex 935 

were not included as covariates when studying them as phenotypes. See Dataset S3-4 for full 936 

results. See Figure S1 for positive control associations. 937 
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Figure 3: Matrices of grey-matter correlations (upper diagonals) and residual correlations (lower 938 

diagonals) between all the variables showing significant morphometricity after controlling for 939 

baseline covariates, as well as height, weight and BMI.  940 

Panel (a) shows the results for the UKB and panel (b) the HCP results. We excluded phenotypes used 941 

as covariates (age, sex, head and body size) as regressing them out makes them orthogonal (i.e. not 942 

associated) with the remaining traits. We used conservative significance thresholds of 943 

0.05/(35*34)=4.2e-5 for UKB and 0.05/(18*17)=1.6e-4 for HCP that account for the total number of 944 

correlations performed in each sample. Correlations significant after multiple testing correction are 945 

indicated by a star. Blocks circled in black indicate the different phenotype categories used 946 

previously (see Figure 2). rGM is a measure of the shared brain-morphometricity between 2 traits. 947 

Contrasting rGM and residual correlation (rE) indicate how much of the phenotypic co-variance is 948 

attributable to individual’s resemblance in term of grey-matter structure vs. other factors (brain or 949 

non-brain resemblances).  950 

 951 

Figure 4: In sample and out of sample prediction accuracy as a function of the total association R2.  952 

Labels highlight some of the significant prediction having the greatest accuracy. As predicted by the 953 

theory, the prediction accuracy is capped by the total association R2 (points below the diagonal). We 954 

limited the prediction analysis to phenotypes showing a significant brain-morphometricity in the 955 

UKB discovery sample.  956 

 957 

Figure 5: Comparison of brain-morphometricity estimates varying cortical processing options in 958 

FreeSurfer.  959 

The reduction of brain-morphometricity as a function of mesh smoothing is presented on the left 960 

panel (a), while the right panel (b) shows the effect of reducing the cortical mesh complexity. The 961 

black bar indicates the lower bound of the 95% confidence interval of the fsaverage-no smoothing 962 

estimate (identical to results presented in Figure2, except that covariates R2 are not plotted here to 963 
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simplify the figure). Brain-morphometricity estimates below the 95%CI lower bound cannot be 964 

deemed significantly lower. Rather the 95%CI are presented for context and to remind that all 965 

estimate from Figure 2 do not have the same SE. See Table S3 for a conservative list of phenotypes 966 

with significantly reduced morphometricity compared to fsaverage – no smoothing.  967 

 968 


