
HAL Id: hal-02904451
https://hal.science/hal-02904451

Submitted on 30 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ABOUT COMPETITION BETWEEN
TETRAHEDRAL AND OCTAHEDRAL
SYMMETRIES IN ATOMIC NUCLEI *

Irene Dedes, J. Dudek, Jinlong Yang, A. Baran, D. Curien, H.L. Wang

To cite this version:
Irene Dedes, J. Dudek, Jinlong Yang, A. Baran, D. Curien, et al.. ABOUT COMPETITION BE-
TWEEN TETRAHEDRAL AND OCTAHEDRAL SYMMETRIES IN ATOMIC NUCLEI *. XXV
Nuclear Physics Workshop ”Structure and Dynamics of Atomic Nuclei”, Sep 2018, Kazimierz Dolny,
Poland. pp.557-568, �10.5506/APhysPolBSupp.12.557�. �hal-02904451�

https://hal.science/hal-02904451
https://hal.archives-ouvertes.fr


ABOUT COMPETITION BETWEEN TETRAHEDRAL
AND OCTAHEDRAL SYMMETRIES

IN ATOMIC NUCLEI∗

I. Dedesa, J. Dudeka,b, J. Yanga, A. Barana, D. Curienb,
H. L. Wangb,c

a Instytut Fizyki - Uniwersytet Marii Curie-Sk lodowskiej,
pl. Marii Curie-Sk lodowskiej 1, PL-20031 Lublin, Poland
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Following a recent discovery of the simultaneous signs of the octahedral
and tetrahedral symmetries in 152Sm, we discuss the issue of a competition
between the two symmetries in atomic nuclei together with the identifica-
tion criteria. Illustrations using selected Rare-Earth and Zirconium nuclei
as examples are presented.

PACS numbers: 21.60.-n, 21.10.-k

1. Introduction

The issue of finding an evidence of the presence of tetrahedral symme-
try in atomic nuclei preoccupied several authors in the past, both theorists
and experimentalists. Among the first theory predictions obtained with the
help of a realistic phenomenological mean-field approach, which indicated
presence of the well pronounced tetrahedral (Td) symmetry minima in some
heavy even-even nuclei are those of Ref. [1]. The authors pointed out to the
existence of the new spectroscopic properties of the single particle spectra
of the mean-field Hamiltonians with tetrahedral symmetry. Indeed, as it is
well known from group theory, an appropriate realisation of the tetrahedral
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symmetry for the systems of Fermions is the so-called double tetrahedral-
group TD

d . The latter has two 2-dimensional and one 4-dimensional irre-
ducible representations. As a consequence, and in contrast to the case of
the ‘usual’ deformations studied so far, the nucleonic spectra of tetrahedral-
deformed nuclei are composed of three families of levels, those belonging to
the 4-dimensional representation carrying up to 4 nucleons per level. These
properties gave rise to the introduction, in the cited reference, of the new
labelling system of the corresponding single-particle levels as an alternative
to the traditional Nilsson labelling.

The presence of tetrahedral symmetry minima in many nuclei through-
out the Periodic Table has been predicted in Ref. [2] with tetrahedral magic
numbers Zt, N t = 32, 40, 56, 64, 70, 90, 112, 136. The possible presence of
the tetrahedral symmetry minima in the Z = N nuclei in the mass A ∼70
region has been suggested with the help of the Skyrme HF method in Ref. [3].

As the next step of the evolution it has been predicted in Ref. [4] that
the tetrahedral deformations should be accompanied by the octahedral one,
the new symmetry corresponding to the point-group Oh, in several nuclei
of the Rare Earth region. This prediction has been confirmed using the
experimental data vs. theory modelling in the recent Ref. [5], in which the
results obtained with the spin-parity and particle-number projected HFB
methods together with the group-theory methods have been employed.

In the present article we address the question of how universal the mecha-
nism of the simultaneous presence of the two deformations is. In particular,
it has been pointed out in Refs. [4, 5] that in the Rare Earth nuclei one
should expect the coexistence of these two deformations, whereas in the
recent Ref. [6] it has been predicted that the same should be expected for
at least some Actinide nuclei. In this article we will focus on the lighter
nuclei of (and around) Zirconium, in which the above property is predicted
by us not to apply. The issue attracts certain specific interests in terms of
interpreting the observed nuclear shape symmetries and symmetries more
generally, as the result of the spontaneous symmetry breaking, e.g. octa-
hedral by tetrahedral one. Indeed, on the one-hand side, the tetrahedral
symmetry group is the sub-group of the octahedral one, whereas on the
other, the signs of the simultaneous presence of the two may be seen as a
manifestation of the spontaneous breaking of the symmetry generated by a
given group by one of its subgroups.

2. Evolution of Concepts About Identification Criteria
for Nuclear Tetrahedral Symmetry

Let us briefly remind the reader about evolution of the ideas concerning
criteria of identification of the tetrahedral symmetry in atomic nuclei.
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2.1. Early Ideas Based on Collective Model and the Zero-Point Motion

To begin with, it will be instructive to consider a typical structure of
the potential energy surface in a doubly-magic tetrahedral symmetry nu-
cleus. Figure 1 presents the case of the tetrahedral doubly-magic 154

64Gd90
as an example. As one can see from the Figure, in addition to the ‘usual’
competition between the prolate and oblate axially symmetric minima, one
finds the characteristic pair of low-lying symmetric tetrahedral-symmetry
minima at α32 ≈ ±0.13 and α20 = 0.
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Fig. 1. Shape competition: Quadrupole minimum at α20 ≈ 0.22, and tetrahedral

one with symmetric minima at α32 ≈ ±0.12; Woods-Saxon mean-field, Ref. [7].

Since the orientation of quantum tetrahedral-deformed objects can be
defined (in contrast to the objects of spherical symmetry) they may generate
rotational bands with the rotational energies satisfying EI ∝ I(I + 1). One
can demonstrate using simple geometrical arguments that the dipole and
quadrupole moments of the tetrahedral-symmetric nuclei vanish. It follows
that the quadrupole transitions, which dominate the de-excitations patterns
of the rotational bands vanish – as well as the dipole transitions. Thus one
could expect an existence of the excited rotational states with vanishing
E2 transitions, thus possibly manifesting a sequence of isomeric states with
EI ∝ I(I + 1) spacing.

Following the elementary notions of collective nuclear oscillations one
needs to consider the zero-point motion of at least two vibrational modes:
The one, also called ‘tri-axial octupole’ or α32−tetrahedral oscillation and



4 I-DEDES˙KAZIMIERZ-2018 printed on October 31, 2019

the quadrupole oscillation in the direction of α20, which dynamically1 breaks
tetrahedral symmetry and induces non-vanishing quadrupole moments.

0+ 
2+ 

4+ 

123 

717 
6+ 

8+ 

10+ 

12+ 

1- 

(5-) 

(7-) 

1241 

1404 

1880 

n. p. band 

2041 

154Gd 

371 

1144 

1637 

2185 

(9-) 

2482 
(11-) 

14+ 2777 

2981 
13(-) 

16+ 3404 

1252 3- 

3519 
15(-) 

g. s. band 

Fig. 2. Experimental results for the

two rotational bands in 154Gd; the

data are from Ref. [8].

Moreover, increasing angular mo-
mentum of rotation which con-
tributes to the partial individual
angular momentum alignments due
to Coriolis effects, distinguishes a
direction in space and contributes
in addition to the zero-point mo-
tion to the tetrahedral symmetry
breaking. Thus it has been sug-
gested in a number of publications
that due to the dynamical pres-
ence of the quadrupole oscillations
and the nucleonic alignment, the
B(E2)-transitions are never strictly
zero. According to such a picture
one would expect that at relatively
high angular momenta the tetrahe-
dral configurations induce some E2-
transitions due to symmetry break-
ing especially since the transition
probabilities are proportional to
(∆EE2

γ )5. Such transitions, how-
ever, cease existing at the bottoms of
the bands giving rise to the presence
of the EI ∝ I(I+1) energies not con-
nected via E2-transitions anymore.

It turns out that experimental data on several nuclei satisfy these cri-
teria, as e.g. the results on 154Gd illustrated in Fig. 2, but as long as the
B(E2) values are not measured, the above interpretation remains a hypoth-
esis. The specifically designed measurements were performed using ultra-
high resolution γ-ray spectroscopy on the neighbouring 156Gd nucleus, in
which an analogous band structure exists, Ref. [9]. Results indicate that the

1 Let us note that the concept of the zero-point motion inherent to the collective
model proposed originally by A. Bohr strictly speaking invalidates the concept of any
geometrical symmetry. Indeed, accepting the presence of the zero-point motion for
at least / only quadrupole (αλ=2,µ=0,2) and octupole (αλ=3,µ=0,±1,±2,±3) modes is
not compatible with any static geometrical symmetry of the nuclear surface.



I-DEDES˙KAZIMIERZ-2018 printed on October 31, 2019 5

quadrupole moment of the corresponding negative parity band is very close
to the quadrupole moment of the ground-state. Today it is believed that
the E2-transitions, whose probabilities are proportional to (∆EE2

γ )5, loose
in competition with the E1-transitions to the ground-state band when the
spin decreases, given the fact that ∆EE2

γ decrease quickly whereas ∆EE1
γ

are of the order of 1 MeV and sometimes even increase with decreasing spin,
cf. Fig. 2. We may plausibly expect that similar conclusions apply to the
neighbouring nuclei in this region.

Thus the discussed negative-parity bands, which were originally inter-
preted as possibly carrying signs of tetrahedral-symmetry, should rather be
interpreted as axially-symmetric pear-shape octupole-vibration bands. In
the meantime a more rigorous interpretation has been developed in terms
of the spin-, and particle-number projected Hartree-Fock-Bogolyubov ap-
proach and the group theory, by Fukuoka-Strasbourg collaboration, Refs. [10,
11] and [6]. The main results are summarised below.

2.2. Recent Evolution: Ideas Based on the Group Theory Considerations

Let us consider double point-group TD
d as the symmetry group of a mean-

field Hamiltonian, Hmf . We will also introduce an auxiliary tetrahedral-
symmetric quantum rotor Hamiltonian, Hrot. It will be used as a discussion-
reference for the case of rotating even-even tetrahedral-symmetric nuclei and
for this reason Hrot will be assumed invariant under the Td-group.

We will be interested in the properties of the quantum rotor spectra
resulting from the quantum-rotor Hamiltonian symmetry-properties. These
can be conveniently described with the help of the irreducible represen-
tations of the symmetry group in question. Tetrahedral Td-group has 5
irreducible representations, here denoted A1, A2, E, F1 and F2. Whereas a
more complete discussion of the spectral properties of various bands gener-
ated by the quantum rotor in question can be found in Ref. [6] and references
theirein, here and in what follows we will limit our discussion to the unique,
‘tetrahedral ground-state band’ having as the band-head the Iπ = 0+ state.

Using the theory of group representations and the tables of group char-
acters one may demonstrate that the collective band built on the Iπ = 0+

tetrahedral ground-state is composed of the A1-representation states with
the following spin-parity combination, cf. e.g. Refs. [10, 11, 12]:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

(1)

The presence of the characteristic parity doublets and a complete lack of
the I = 1 and 2 states deserves noticing.
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It has been demonstrated in Refs. [10, 11] by explicit microscopic
calculations using the spin-parity and particle number projected
Hartree-Fock-Bogolyubov cranking approach with the Gogny in-
teractions, that the EI-vs.-I rotational sequences predicted by
the tetrahedral symmetric field manifest the above quantum-rotor
properties to a remarkable approximation, whose degree increases
with the tetrahedral deformation increasing.

It then follows that in order to be able to advance in the discussion of
the coexistence between the tetrahedral and octahedral symmetries in nuclei
and in particular to propose the experimentally applicable identification
criteria, it will be of particular importance to establish the similar features

.
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Fig. 3. Schematic: Tetrahedral symmetry band, full line, composed simultaneously

of positive and negative parity states, some of them (6±, 9±, 10±) degenerate,

cf. Eq. (1). Dashed lines illustrate the positive and negative parity octahedral band-

partners, cf. Eqs. (2-3). According to the discussed criteria, the pure tetrahedral

symmetry case should result in one band with both parity states forming approx-

imately a common parabola whereas dominating octahedral symmetry might lead

to two close-lying but well separated bands of opposite parities as schematically

illustrated.

for the rotor Hamiltonians with the octahedral symmetry as well. One may
apply the same methods of the group representation theory to conclude
that in the case of the octahedral symmetry the lowest energy part of the
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spectrum of the rotor takes the form of two branches, one with positive

A1g : 0+, 4+, 6+, 8+, 9+, 10+, (12+, 12+)︸ ︷︷ ︸
doublet

. . . , Iπ = I+

︸ ︷︷ ︸
Forming a common parabola

(2)

and one with the negative parity

A2u : 3−, 6−, 7−, 9−, 10−, 11−, 12−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

, (3)

where the role of the A1 representation in the previous case is played by A1g

and A2u in the present case. The bands defined in Eqs. (1-3) are illustrated
qualitatively in Fig. 3.

The discussed symmetry properties have been used in Ref. [5] to identify
the combination of octahedral and tetrahedral symmetries using existing
experimental data on 152Sm nucleus.

3. Possible Td-vs.-Oh Coexistence: Present or Missing

As announced in the preceding sections we wish to provide more details
about the possible scenarios as compared to the case identified in 152Sm
in Ref. [5]. We begin with the situation characteristic for the Rare Earth
nuclei.

3.1. Example of Td-vs.-Oh Coexistence: Rare Earth Nuclei

Figure 4 illustrates the effect of the coexistence between the two sym-
metries in the case of one of the double-magic tetrahedral nuclei from the
Rare Earth range: 154Gd, direct neighbour of 152Sm mentioned earlier. The
potential energy projection shown here should be directly compared with
the one in Fig. 1. As one can see from the Figure, tetrahedral and octahe-
dral deformations co-exist, the result deduced from the presence of the two
symmetric minima corresponding to α32 ≈ ±0.12 showing at the same time
that the tetrahedral-symmetry minimum is lowered by over 1 MeV when
the minimisation over o4 is allowed. Moreover, a pure octahedral symmetry
minimum (α32 = 0 and o4 ≈ 0.06) is predicted to coexist in this case.

3.2. Counter-Example: Pure Tetrahedral Symmetry in Zirconium Region

Figure 5 illustrates an appropriate potential energy surface for 96Zr.
Results show a pure tetrahedral-deformed ground-state minimum in this
nucleus. Let us notice that a deformed nucleus at the Iπ = 0+ (here:
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Fig. 4. Total energy calculations analogous to those shown in Fig. 1 but for the

octahedral (o4 ↔ {α40,±
√

5/14α4,±4}) and tetrahedral (α32) deformation projec-

tion; for the exact definition of the octahedral deformation cf. Ref. [13]. These

results suggest two high-rank symmetry mechanisms: Pure octahedral symmetry

configuration corresponding to α32 ≈ 0 at o4 ≈ 0.06, and the double minimum of

the combined tetrahedral, α32 ≈ ±0.13, and octahedral, o4 ≈ −0.08 deformations.

ground) state appears in any laboratory frame as spherical. The same is
approximately true for any particle-hole excited configurations coupled to
the Iπ = 0+ core of (A− 2) nucleons. It would be extremely important to
attempt identifying in this nucleus the predicted tetrahedral symmetry rota-
tional bands using the mass spectrometry methods as suggested in Ref. [6].

Table 1. Experimental values of the reduced transition probabilities B(E3) in Weis-

skopf units for the first Iπ = 3− excitation; from NNDC http://www.nndc.bnl.gov

Nucleus: Z vs. N 52 54 56 58 60

64Pd – – – – 29 ±10

44Ru – – 14 ±3 – –

42Mo – – 31 ±4 35 ±3 –

40Zr 18.3 ±11 – 57 ±4 – –

38Sr – 18.3 ±11 – – –

Experimental data in Table 1 show particularly high values of the B(E3)
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Fig. 5. Total nuclear energy surface for 96Zr projected onto the (α20, α32) deforma-

tion plane showing two symmetric tetrahedral symmetry minima at α32 ≈ ±0.12.

The importance of this indication is enforced by the results presented in Table 1

and showing a very high value of the B(E3) value associated with the first Iπ = 3−

excitation in this nucleus.
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Fig. 6. Illustration similar to the one in Fig. 4 showing two symmetric tetrahedral

symmetry minima at o4 ≈ 0 indicating no coexistence between tetrahedral and

octahedral degrees of freedom in contrast to the previous case; these results predict

a pure tetrahedral symmetry configuration.
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Fig. 7. Top: Total nuclear energy surface for 104Zr projected onto the (α32, α20)

deformation plane. Bottom: total nuclear energy projected onto the (o4, α32) de-

formation plane. In this case the pure tetrahedral deformed minimum appears

to be again the ground state but the strongly deformed (α20 ∼ 0.38) and oblate

(α20 ∼ −0.2) shapes are also predicted.

reduced transition probabilities in nuclei in the vicinity of the doubly magic
tetrahedral nucleus 96Zr thus providing support to the predictions of a
strong octupole effects in this nuclear range. Similar results are predicted
to hold for another doubly-magic tetrahedral nucleus, 104

40Zr64; α
th
20 = 0.38.

Experimental quadrupole deformations of the neighbouring 102Zr and 106Mo
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are αexp
20 = 0.427± 0.044 and αexp

20 = 0.354± 0.009, respectively, Ref. [14].

4. Summary and Conclusions

We discussed the theory predictions related to the possible competi-
tion between the exotic tetrahedral and octahedral nuclei and the corre-
sponding criteria of the experimental identification. According to our pre-
dictions, in the Zirconium nuclei tetrahedral deformations appear not to
be accompanied by the octahedral ones, in contrast to the Rare Earth
and Actinide nuclei. Experimental manifestation of this prediction is ex-
pected to take the form of a single parabolic branch composed of states
Iπ = 0+, 3−, 4+, 6±, 6−, 8+, 9±, . . . , and can be today studied using mass
spectrometry methods.
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