
HAL Id: hal-02904416
https://hal.science/hal-02904416

Submitted on 22 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A construction of self-dual skew cyclic and negacyclic
codes of length n over _pn

Aicha Batoul, Delphine Boucher, Ranya Boulanouar

To cite this version:
Aicha Batoul, Delphine Boucher, Ranya Boulanouar. A construction of self-dual skew cyclic and
negacyclic codes of length n over _pn. WAIFI 2020: Arithmetic of Finite Fields, Jul 2020, RENNES,
France. �hal-02904416�

https://hal.science/hal-02904416
https://hal.archives-ouvertes.fr


A construction of self-dual skew cyclic and negacyclic codes

of length n over Fpn.

Aicha Batoul ∗

Delphine Boucher †

Ranya Djihad Boulanouar ‡

July 19, 2020

Abstract

The aim of this note is to give a construction and an enumeration of self-dual θ-cyclic and
θ-negacyclic codes of length n over Fpn where p is a prime number and θ is the Frobenius
automorphism over Fpn . We use the notion of isodual codes to achieve this construction.

1 Introduction

Isodual codes ( [17]) have been recently studied on many aspects ( [2], [3], [1]). Meanwhile,
in [5], a construction and an enumeration formula for self-dual θ-cyclic and θ-negacyclic codes of
even length n over Fp2 were given in the case when p is a prime number and θ is the Frobenius
automorphism over Fp2 . The aim of this note is to give a construction and an enumeration
formula for self-dual θ-cyclic and θ-negacyclic codes of length n over Fpn when θ is the Frobenius
automorphism over Fpn . To this end, we will use and develop the notion of (θ, ν)-isodual codes
which form a subfamily of the family of isodual codes. Lastly we will consider the construction of
some self-dual Gabidulin evaluation codes.

The text is organized as follows. In Section 2 we define the notion of (θ, ν)-isodual codes
over Fq where θ is an automorphism of Fq and ν belongs to F∗q . We recall the definitions of
(θ, a)-constacyclic, θ-cyclic and θ-negacyclic codes and some generalities on the dual of a (θ, a)-
constacyclic code. Then we characterize (θ, ν)-isodual θ-cyclic and θ-negacyclic codes thanks to
an equation satisfied by the skew check polynomials of the codes. In Section 3 we consider the
special case when q is equal to pn where p is a prime number and θ is the Frobenius automorphism
over Fpn . After having given a necessary and sufficient condition for the existence of (θ, ν)-isodual
θ-cyclic and θ-negacyclic codes, we give a construction and an enumeration formula for (θ, ν)-
isodual and self-dual θ-cyclic and θ-negacyclic codes. In Section 4, we consider a subclass of
self-dual θ-cyclic codes over Fpn which are self-dual Gabidulin codes. We parametrize this family
by a parameter which satisfies a polynomial system.

2 Some generalities on isodual skew codes

We first recall that a linear code C of length n and dimension k over Fq is a subspace of dimension
k of Fnq . A generator matrix G of C is a k× n matrix with coefficients in Fq and rank k such that
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C = {m G | m ∈ Fkq}. Furthermore the dual of C is C⊥ = {x ∈ Fnq | ∀c ∈ C,< x, c >= 0} where

for x = (x0, . . . , xn−1), y = (y0, . . . , yn−1) in Fnq , < x, y >:=
∑n−1
i=0 xiyi is the Euclidean scalar

product of x and y. Isodual codes ( [17]) have been recently studied on many aspects ( [2], [3], [1]).

Definition 1 ( [17] page 199). A code C with generator matrix G is isodual if it is equivalent to
its dual. That means that there exists a monomial matrix D such that G ·D is a generator matrix
of the dual C⊥ of C.

In what follows, we define a special class of isodual codes which are parameterized by an
automorphism θ of Fq and an element ν of F∗q .

Definition 2. Consider n ∈ N∗, ν ∈ F∗q and θ ∈ Aut(Fq). A linear code C of length n and

generator matrix G is a (θ, ν)-isodual code if G · D is a generator matrix of C⊥ where D is the
n× n diagonal matrix with diagonal coefficients ν, θ(ν), . . . , θn−1(ν).

Remark 1. A code C is self-dual if and only if there exists ν fixed by θ such that C is (θ, ν)-isodual.

Recall that if θ is an automorphism of Fq, the skew polynomial ring R is defined as R = Fq[X; θ]
under usual addition of polynomials and where multiplication is defined by the commutation law :
∀a ∈ Fq, X ·a = θ(a)X ( [16]). The ring R is noncommutative unless θ is the identity automorphism
on Fq. The ring R is right-Euclidean and left-Euclidean. For f =

∑
aiX

i in R and α in Fq,
the evaluation f(α) of f at α is the remainder in the right division of f by X − α. We have
f(α) =

∑
i aiNi(α) where Ni(x) := xθ(x) · · · θi−1(x) (see [14]). Recall also that if q = pn and θ is

the Frobenius automorphism, then the center of R is Fp[Xn] .
For a in F∗q and θ in Aut(Fq), a (θ, a)-constacyclic code C of length n and dimension k is a left

R-submodule Rg/R(Xn− a) ⊂ R/R(Xn− a) where g is a monic skew polynomial of degree n− k
right-dividing Xn− a in R ( [7]). That means that a word c = (c0, . . . , cn−1) ∈ Fnq belongs to C if
and only if the skew polynomial g right-divides the skew polynomial c0 + c1X + · · ·+ cn−1X

n−1

in R. The skew polynomial g is called the skew generator polynomial of C. The monic skew
polynomial h defined by

Θn(h) · g = Xn − a (1)

is called skew check polynomial of C.
The (θ, a)-constacyclic code C is denoted C = (g)an,θ. If a = 1, the code is θ-cyclic and if

a = −1, the code is θ-negacyclic.
A generator matrix of C is

G =


g0 g1 . . . . . . 1 0 . . . 0

0 θ(g0) θ(g1) . . . . . . 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 θk−1(g0) θk−1(g1) . . . . . . 1

 . (2)

The skew reciprocal polynomial of h = Σki=0hiX
i ∈ R of degree k is h∗ = Σki=0θ

i(hk−i)X
i. If

h0 6= 0, the left monic skew reciprocal polynomial of h is h\ = 1
θk(h0)

h∗. The following technical

lemma will be useful later. We will use the application Θ : R 7→ R given by
∑k
i=0 aiX

i 7→∑k
i=0 θ(ai)X

i.

Lemma 1 (Lemma 1 of [8]). Consider θ ∈ Aut(Fq), R = Fq[X; θ], h and g in R. Then (h · g)∗ =
Θdeg(h)(g∗) · h∗.

Example 1. Consider n = 4, F24 = F2(a) with a4 + a+ 1 = 0 and R = F24 [X; θ]. We have

X4 + 1 = (X2 + a5X + a5) · (X2 + a5X + a10)

therefore the skew polynomial g1 = X2 + a5X + a10 generates a θ-cyclic code C1 of length 4 and
dimension 2 over F24 . As Θ4 is the identity over F24 , the skew check polynomial of the code is
h1 = X2 + a5X + a5.
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We have
X4 + 1 = (X2 + aX + a14) · (X2 + a4X + a)

therefore the skew polynomial g2 = X2 + a4X + a generates a θ-cyclic code C2 of length 4 and
dimension 2 over F24 with skew check polynomial h2 = X2 + aX + a14.

The following proposition describes the dual of a (θ, a)-constacyclic code.

Proposition 1 (Theorem 1 and Lemma 2 of [8], Proposition 1 of [6]). Consider n ∈ N∗, a ∈ F∗q ,
θ ∈ Aut(Fq) and C a (θ, a)-constacyclic code of length n with skew generator polynomial g and skew
check polynomial h. Then the dual C⊥ of C is a (θ, 1/a)-constacyclic code with skew generator
polynomial h\.

Proof. (proof of Proposition 1 of [6]) We consider the equality (1) in R = Fq[X; θ] and we multiply
both members of this equality by h on the right. We get Θn(h) ·g ·h = (Xn−a) ·h and we deduce
from this equality that Θn(h) · (Xn − g · h) = a · h. As the skew polynomials Θn(h) and a · h
have the same degrees, the skew polynomial Xn − g · h is a constant that we will denote λ and
Θn(h) · λ − a · h = 0. As the leading coefficient of Θn(h) · λ − a · h is equal to θk(λ) − a, we get
that λ = θ−k(a).

Furthermore, as Θn(h)·g = Xn−a, according to Lemma 1, we have − 1
aΘk−n(g∗)·h∗ = Xn− 1

a .
Therefore h\ right-divides Xn − 1

a and is the skew generator polynomial of a (θ, 1a )-constacyclic
code of length n.

A quick computation gives that for all (i, j) in {0, . . . , k−1}×{0, . . . , n−k−1}, the Euclidean
scalar product of the words associated to Xi · g and Xj · h∗ is equal to θi((g · h)j−i+k). Therefore
the scalar product is equal to 0 and the words of the code (g)an,θ are orthogonal to the words of

the code (h\)
1/a
n,θ .

In what follows, we characterize (θ, a)-constacyclic codes which are (θ, ν)-isodual.

Proposition 2. Consider k ∈ N∗, n = 2k, ν ∈ F∗q , a ∈ Fq, θ ∈ Aut(Fq), R = Fq[X; θ], h ∈ R
monic. The (θ, a)-constacyclic code of length n, dimension k and skew check polynomial h is
(θ, ν)-isodual if and only if

Θn(h) · θk(ν) · h\ · 1

ν
= Xn − a. (3)

In this case we have a2 = θn(ν)/ν.

Proof. Consider C = (g)an,θ the (θ, a)-constacyclic code of length n = 2k, dimension k, skew check
polynomial h and skew generator polynomial g. According to (1), we have Θn(h) · g = Xn − a.
Therefore, the relation (3) is satisfied if and only if h\ = g̃ where g̃ = θk(1/ν) · g · ν.

Let us prove that C is (θ, ν)-isodual if and only if h\ = g̃. As g right-divides Xn − a, g̃
right-divides Xn − ã where ã = a ν

θn(ν) . Therefore we can consider the (θ, ã)-constacyclic code

of length n and skew generator polynomial g̃. Furthermore, according to Proposition 1, C⊥ is a
(θ, 1/a)-constacyclic code of length n with skew generator polynomial h\.

Let us prove that C is (θ, ν)-isodual if and only if (h\)
1/a
n,θ = (g̃)ãn,θ.

Denote g =
∑n−k
i=0 giX

i =
∑k
i=0 giX

i and g̃ =
∑k
i=0 g̃iX

i. We have g̃i = θk(1/ν)giθ
i(ν) for all

i in {0, . . . , k}. Therefore a generator matrix of (g̃)ãn,θ is

G̃ =


g̃0 g̃1 . . . . . . 1 0 . . . 0

0 θ(g̃0) θ(g̃1) . . . . . . 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 θk−1(g̃0) θk−1(g̃1) . . . . . . 1

 = G ·D

where G is given by (2) and D is the diagonal matrix with diagonal elements ν, θ(ν), . . . , θn−1(ν).
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According to Definition 2, the code C is (θ, ν)-isodual if and only if a generator matrix of

C⊥ = (h\)
1/a
n,θ is G · D. As G · D = G̃ is a generator matrix of (g̃)ãn,θ, we obtain that C is

(θ, ν)-isodual if and only if (h\)
1/a
n,θ = (g̃)ãn,θ.

Lastly as g̃ right-divides Xn−a ν
θn(ν) and h\ right-divides Xn− 1

a , we obtain a2 = θn(ν)/ν.

In the case when θ is the Frobenius automorphism over Fq and q = pn where p is prime and n
is the length of the code we obtain the following corollary that will be useful in next section.

Corollary 1. Consider k ∈ N∗, n = 2k, p a prime number, ν ∈ F∗pn , a ∈ Fpn , θ : x 7→ xp ∈
Aut(Fpn), R = Fpn [X; θ], h ∈ R monic. The (θ, a)-constacyclic code of length n and skew check
polynomial h is (θ, ν)-isodual if and only if

h · θk(ν) · h\ · 1

ν
= h\ · 1

ν
· h · θk(ν) = Xn − a. (4)

Furthermore, a2 = 1.

Proof. As θ is the Frobenius automorphism over Fpn , the order of θ is equal to n. Therefore
Θn(h) = h and θn(ν) = ν. According to Proposition 2, the (θ, a)-constacyclic code of length n
and skew check polynomial h is (θ, ν)-isodual if and only if h · θk(ν) · h\ · 1ν = Xn− a. In this case
a2 = 1. Therefore Xn−a is central in R, and we have h·θk(ν)·h\ · 1ν = Xn−a = h\ · 1ν ·h·θ

k(ν).

Example 2. (Example 1 continued) The left monic skew reciprocal polynomial of h1 = X2 +

a5X + a5 is h\1 = X2 + a5X + a10 and X4 + 1 = (X2 + a5X + a5) · (X2 + a5X + a10) =
(X2 + a5X + a10) · (X2 + a5X + a5), therefore the θ-cyclic code C1 with skew check polynomial h1
is self-dual.

The left monic skew reciprocal polynomial of h2 = X2 + aX + a14 is h\2 = X2 + a6X + a4.
Furthermore, X4+1 = (X2+aX+a14)·(X2+a4X+a) = (X2+aX+a14)· 1a4 ·(X

2+a6X+a4)· 1
a14 ,

therefore the θ-cyclic code C2 with skew check polynomial h2 is (θ, a14)-isodual.

Lastly, we consider below a technical lemma which will be useful later and which deals with
the factorization of skew polynomials right-dividing Xn ± 1 in Fpn [X; θ] where θ is the Frobe-
nius automorphism. These skew polynomials belong to a wide class of skew polynomials, called
Wedderburn polynomials, which have been extensively studied (see Theorem 6.4 of [11] for the
factorizations of these skew polynomials). Lemma 2 can be directly deduced from Theorem 6.4
of [11] as well as from Proposition 2.2.2. of [10]. We propose here a proof very specific to our
special case.

Lemma 2. Consider n ∈ N∗, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), R = Fpn [X; θ], f in
R of degree d and ε ∈ {−1, 1} such that f right-divides Xn − ε in R. Then f is the product of d
linear factors right-dividing Xn − ε and

#{(α1, . . . , αd) ∈ Fdpn | f = (X + α1) · · · (X + αd)} =

d∏
i=1

pi − 1

p− 1
.

Proof. Consider y1, . . . , yn in Fpn linearly independent over Fp. Consider ξ in Fpn such that X− ξ
right-divides Xn − ε, which means Nn(ξ) = ε. Denote α1 := ξ θ(y1)y1

, . . . , αn = ξ θ(yn)yn
. According

to [14], the least common left multiple of X − α1, . . . , X − αn is lclm1≤i≤n(X − αi) = Xn − ε.
As f right-divides Xn − ε, according to Theorem 4 of [16], there exist β1, . . . , βd in Fpn such that
f = lclm1≤i≤d(X − βi). Furthermore Nn(βi) = ε = Nn(ξ). Therefore according to Theorem 27

of [13], there exists zi in F∗pn such that βi = ξ θ(zi)zi
. According to [14], z1, . . . , zd are linearly

independent over Fp. Denote f =
∑d
i=0 aiX

i, we have {α ∈ Fpn | f(α) = 0} = {α = ξ θ(y)y =

ξyp−1 ∈ Fpn | L(y) = 0} where L(y) :=
∑d
i=0 aiNi(ξ)θ

i(y). As the equation L(y) = 0 has d
solutions (z1, . . . , zd) in Fpn linearly independent over Fp, there are pd − 1 nonzero y in Fpn such
that L(y) = 0. Therefore {α ∈ Fpn | X − α right-divides f} has (pd − 1)/(p − 1) elements. We
conclude using an inductive argument.
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Remark 2. It could be noted that the number

d∏
i=1

pi − 1

p− 1
is the size of the general linear group

GL(d, p) modulo diagonal matrices, and corresponds to choosing a set of 1-dimensional vector
spaces spanning a d-dimensional vector space.

Example 3. (Example 1 continued) The skew polynomial h1 = X2+a5X+a5 has 3 factorizations
into the product of linear monic skew polynomials, namely h1 = (X+a14)·(X+a6) = (X+a11)·(X+
a9) = (X+1)·(X+a5). The skew polynomial h2 = X2+aX+a14 has also 3 factorizations into the
product of linear monic skew polynomials, namely h2 = (X+a7) ·(X+a7) = (X+a11) ·(X+a3) =
(X + a10) · (X + a4).

3 Construction and enumeration of (θ, ν)-isodual θ-cyclic
and θ-negacyclic codes of length n over Fpn

The aim of this section is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic codes
of length n over Fpn where θ is the Frobenius automorphism. Note that in this setting, θ-cyclic
codes are called Gabidulin p-cyclical codes (page 6 of [12]).

To achieve this construction, we will consider θ-cyclic and θ-negacyclic codes which are (θ, ν)-
isodual.

We introduce some notation. Consider R = Fpn [X; θ]. We will denote, for ε ∈ {−1, 1} and
ν ∈ F∗q :

Hν,ε := {h ∈ R | h monic, h\ · 1

ν
· h · θk(ν) = Xn − ε}.

According to Corollary 1, the set Hν,ε is the set of the skew check polynomials of (θ, ν)-isodual
(θ, ε)-constacyclic codes. Following Remark 1, the set H1,ε is the set of the skew check polynomials
of self-dual (θ, ε)-constacyclic codes.

3.1 Necessary and sufficient existence condition for (θ, ν)-isodual θ-cyclic
and θ-negacyclic codes of length n over Fpn

In [4] a necessary and sufficient condition for the existence of self-dual (θ, ε)-constacyclic codes over
a finite field Fq was derived where θ is an automorphism of Fq and ε ∈ {−1, 1}. In what follows
we give a necessary and sufficient condition for the existence of (θ, ν)-isodual (θ, ε)-constacyclic
codes of length n over Fpn where p is a prime number and θ is the Frobenius automorphism.

Proposition 3. Consider k ∈ N∗, n = 2k, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), ε ∈ {−1, 1}.

(i) If p = 2, then there exists a (θ, ν)-isodual θ-cyclic code of length n for all ν in F∗pn .

(ii) If p is odd, then for ν ∈ F∗pn , there exists a (θ, ν)-isodual (θ, ε)-constacyclic code of length 2k
if and only if

ν
pn−1

2 = −ε(−1)k
p−1
2 .

Proof. According to Corollary 1, there exists a (θ, ν)-isodual (θ, ε)-constacyclic code of length n if
and only if the set Hν,ε is nonempty.

• Assume that p = 2 (therefore ε = 1) and ν ∈ F∗2n . Consider α in F2n such that α2 =

1/ν2
k−1 = ν

θk(ν)
and h = Xk + α. We have

h\ · 1ν · h · θ
k(ν) =

(
Xk +

1

θk(α)

)
·
(
Xk +

θk(ν)α

ν

)
= X2k + θk

(
1

α
+ α

θk(ν)

ν

)
Xk +

θk(ν)α

θk(α)ν
.
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As ν/θk(ν) = α2, we obtain

h\ · 1

ν
· h · θk(ν) = X2k +

1

αθk(α)
.

As θ(α) = α2 = ν
θk(ν)

, we obtain θk+1(α) = θk(ν)
ν , θ(α)θk+1(α) = 1 and αθk(α) = 1.

Therefore the skew polynomial h belongs to Hν,ε.

• Assume that p is odd and ν
pn−1

2 = −ε(−1)k
p−1
2 .

We have

(− θ
k(ν)
ν )(p

n−1)/2 = (−1)(p
n−1)/2 θk(ν(pn−1)/2)

ν(pn−1)/2

= (−1)(p
n−1)/2

= 1 (because p is odd, therefore p2 ≡ 1 (mod 4) and pn ≡ 1 (mod 4)).

Therefore − ν
θk(ν)

is a square. Consider α such that − ν
θk(ν)

= α2. Consider h = Xk + α in

R.

h\ · 1ν · h · θ
k(ν) =

(
Xk +

1

θk(α)

)
·
(
Xk +

θk(ν)α

ν

)
= X2k + θk

(
1

α
+ α

θk(ν)

ν

)
Xk +

θk(ν)α

θk(α)ν
.

As ν/θk(ν) = −α2, we obtain

h\ · 1

ν
· h · θk(ν) = X2k +

θk(ν)α

θk(α)ν
.

Furthermore

θk(ν)α
θk(α)ν

= θk(ν)
ν

(
− θ

k(ν)
ν

) pk−1
2

(because −θk(ν)/ν = 1/α2)

= (−1)
pk−1

2 ν
pn−1

2

= −ε (because ν
pn−1

2 = −ε(−1)k
p−1
2 ).

Therefore
h\ · 1ν · h · θ

k(ν) = Xn − ε.

• Assume that p is odd and that there exists a (θ, ε)-constacyclic code of length 2k which
is (θ, ν)-isodual. Consider h its skew check polynomial and h0 the constant term of h.
Necessarily the degree of h is equal to k.

As the code is (θ, ε)-constacyclic of length 2k, h right-divides X2k− ε. As the code is defined
over Fp2k with θ : x 7→ xp, X2k − ε is central of degree 1 in Fp[X2k] and h is the product of
k linear skew polynomials X + α1, . . . , X + αk right-dividing X2k − ε. Therefore h0 is the
product of the k constant terms α1, . . . , αk. As N2k(−αi) = ε, we have :

N2k(h0) = εk = Nk(h0)Nk(θk(h0)).

As the code is (θ, ν)-isodual, we have h\ · 1ν · h · θ
k(ν) = Xn − ε and

h0θ
k(ν) + εθk(h0)ν = 0.

As Nk(h0)Nk(θk(h0)) = εk, we obtain Nk(h0)2(−ε)k N2k(ν)
Nk(ν)2

= εk and

6



N2k(ν) = (−1)kNk(ν/h0)2.

Furthermore, θ(Nk(ν/h0)) = Nk(ν/h0) θ
k(ν/h0)
ν/h0

= Nk(ν/h0)(−ε). Therefore we have

Nk(ν/h0)p−1 = −ε. To conclude, if p is odd,

ν
pn−1

2 = N2k(ν)(p−1)/2 = (−1)k
p−1
2 Nk(ν/h0)p−1 = −ε(−1)k

p−1
2 .

Remark 3. Consider k ∈ N∗, n = 2k, p an odd prime number, θ : x 7→ xp ∈ Aut(Fpn),
ε ∈ {−1, 1}. According to Proposition 3 and Remark 1, there exists a self-dual (θ, ε)-constacyclic

code of length n = 2k over Fpn if and only if 1 = −ε(−1)k
p−1
2 . We therefore obtain the previous

result of Proposition 5 of [4]: if p is odd, there exists a self-dual θ-cyclic code of dimension k if
and only if p ≡ 3 (mod 4) and k is odd; there exists a self-dual θ-negacyclic code of dimension k
if and only if p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and k even.

The existence result of Proposition 3 is not constructive and the aim of what follows is to
design a construction of the set Hν,ε based on the construction of the sets H̃µ,ε defined for µ ∈ F∗pn
by

H̃µ,ε := {h ∈ R | h ∈ Hh0/µ,ε}.

Thanks to factorization properties of the elements of H̃µ,ε, we will give both a construction
and an enumeration formula.

3.2 Construction and enumeration formula for the set H̃µ,ε

The following technical lemma (Lemma 3) will be useful for the construction of H̃µ,ε (Proposition
4).

Lemma 3. Consider k ∈ N∗, n = 2k, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), R = Fpn [X; θ],
P ∈ R and ` ∈ {0, . . . , k} such that Θk+`(P ∗) = P and deg(P ) = 2k − 2`. If X + α right-divides
P then there exists Q ∈ R satisfying the two following properties :

1. P = Θk−`−1((X + α)∗) ·Q · (X + α);

2. Θk+`+1(Q∗) = Q.

Proof. Consider f ∈ R such that P = f · (X + α).

1. Let us prove that P = Θk−1−`((X +α)∗) ·Θk+`(f∗) and that X +α right-divides Θk+`(f∗).

As P = f ·(X+α), according to Lemma 1, we have P ∗ = Θ2k−2`−1((X+α)∗) ·f∗. Therefore
P = Θk+`(P ∗) = Θk−`−1((X + α)∗) ·Θk+`(f∗).

Denote K = k−` and f =
∑2K−1
j=0 ajX

j , then f∗ =
∑2K−1
j=0 θ2K−1−j(aj)X

2K−1−j . Consider

β = −θK(α), then X + α right-divides Θk+`(f∗) if and only if f∗ cancels at β.

Let us prove that

K−1∑
j=0

θ2K−1−j(aj)N2K−1−j(β) = −
2K−1∑
j=K

θ2K−j−1(aj)N2K−j−1(β).

As P = f · (X + α) = ΘK−1((X + α)∗) ·ΘK+2`(f∗), we obtain :

∀j ∈ {1, . . . ,K}, aj−1 =

j∑
i=1

Ni−1(−α)

Nj(−α)
θK(θ2`+i−1(a2K−i) + αθ2`+i−1(a2K−i+1)).
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Therefore,∑K−1
j=0 θ2K−1−j(aj)N2K−1−j(β)

=

K∑
j=1

θ2K−j(aj−1)N2K−j(β)

= −
K∑
j=1

N2K−j(β)θ2K−j

(
j∑
i=1

Ni−1(−α)

Nj(−α)
θK(θ2`+i−1(a2K−i) + αθ2`+i−1(a2K−i+1))

)

= −
K∑
j=1

N2K−j(β)

j∑
i=1

θK−j
(
Ni−1(β)

Nj(β)

)
θ3K−j

(
θ2`+i−1(a2K−i) + αθ2`+i−1(a2K−i+1)

)
= −

K∑
i=1

K∑
j=i

N2K−j(β)θK−j
(
Ni−1(β)

Nj(β)

)
θi+K−j−1(a2K−i)

−
K−1∑
i=1

K∑
j=i+1

N2K−j(β)θK−j
(
Ni(β)

Nj(β)

)
θi+K−j(a2K−i)θ

3K−j(α)

= −
K∑
i=1

NK(β)
Ni−1(β)

NK(β)
θi−1(a2K−i)

−
K−1∑
i=1

K−1∑
j=i

(
N2K−j(β)θK−j

(
Ni−1(β)
Nj(β)

)
θi+K−j−1(a2K−i)

+N2K−(j+1)(β)θK−(j+1)
(

Ni(β)
Nj+1(β)

)
θi+K−j−1(a2K−i) θ

3K−j−1(α)
)

= −
K∑
i=1

Ni−1(β)θi−1(a2K−i)

−
K−1∑
i=1

K−1∑
j=i

(
N2K−j−1(β) θK−j−1

(
Ni(β)

Nj+1(β)

)
θi+K−j−1(a2K−i)

(θ2K−j−1(β) + θ3K−j−1(α))
)
.

As β = −θK(α), we obtain θ2K−j−1(β) + θ3K−j−1(α) = 0. Therefore

K−1∑
j=0

θ2K−1−j(aj)N2K−1−j(β) = −
K∑
i=1

Ni−1(β)θi−1(a2K−i)

= −
2K−1∑
j=K

θ2K−j−1(aj)N2K−j−1(β).

We conclude that f∗(β) = 0 and that X+α right-divides Θk+`(f∗). We deduce the existence
of a skew polynomial Q such that Θk+`(f∗) = Q · (X +α) and we obtain P = Θk−1−`((X +
α)∗) ·Q · (X + α).

2. Let us prove that Q = Θk+1+`(Q∗). According to Lemma 1, as Θk+`(f∗) = Q · (X + α), we
obtain f = Θk−1−`((X+α)∗) ·Θk+1+`(Q∗). Therefore P = Θk−1−`((X+α)∗) ·Q · (X+α) =
Θk−1−`((X + α)∗) ·Θk+1+`(Q∗) · (X + α) and Q = Θk+1+`(Q∗).

We are now giving a construction and an enumeration formula for the sets H̃µ,ε (Proposition
4 and Algorithm 1).

Proposition 4. Consider k ∈ N∗, n = 2k, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), R =

Fpn [X; θ], ε ∈ {−1, 1}, µ ∈ F∗pn and Pk = −µε(X2k − ε) ∈ R. The set H̃µ,ε is nonempty if and

only if θk(µ) + εµ = 0. In this case we have
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H̃µ,ε = {(X + α1) · · · (X + αk) | X + αk right-divides Pk
X + αk−1 right-divides Pk−1(αk)
...
X + α1 right-divides P1(α2, . . . , αk)}

where for i = k, k − 1, . . . , 2, Pi−1(αi, . . . , αk) is the quotient in the left-division of Qi−1 by
Θi−1((X + αi)

∗) and Qi−1 the quotient in the right-division of Pi(αi+1, . . . , αk) by X + αi :

Pi(αi+1, . . . , αk) = Θi−1((X + αi)
∗) · Pi−1(αi, . . . , αk)︸ ︷︷ ︸
Qi−1

·(X + αi). (5)

Furthermore H̃µ,ε has
∏k
i=1(pi + 1) elements.

Proof. Consider h in H̃µ,ε and ν = h0/µ then h∗ · 1ν ·h = θk(h0) ·h\ · 1ν ·h = θk(h0) ·(Xn−ε) · 1
θk(ν)

=

Pk. Furthermore, Θk(P ∗k ) = −(1− εXn) · (εθk(µ)) = (Xn− 1)(−εµ) = Pk. As Xn− ε is central in
R of degree one in Fp[Xn], the skew polynomial h is the product of k linear factors right-dividing
Xn− ε and therefore Pk : h = (X+α1) · · · (X+αk). As the skew polynomial X+αk right-divides
Pk, according to Lemma 3 applied to P = Pk and ` = 0, there exists Pk−1(αk) = Pk−1 ∈ R such
that

Pk = Θk−1((X + αk)∗) · Pk−1 · (X + αk)

and Θk+1(P ∗k−1) = Pk−1. Consider H = (X +α1) · · · (X +αk−1), according to Lemma 1, we have

h∗ = Θk−1((X + αk)∗) ·H∗. We obtain

Θk−1((X + αk)∗) · Pk−1 · (X + αk) = Θk−1((X + αk)∗) ·H∗ · 1

ν
·H · (X + αk).

Therefore Pk−1 = H∗ · 1ν ·H and X + αk−1 right-divides Pk−1. We conclude using an inductive
argument and Lemma 3.

Conversely, consider h = (X+α1) · · · (X+αk) inR such thatX+αi right-divides Pi(αi+1, . . . , αk)
defined by (5). According to Lemma 3, Θk+1(P ∗k−1) = Pk−1, . . . ,Θ

2k−1(P ∗1 ) = P1; furthermore,
as X + α1 right-divides P1, there exist P0 such that P1 = (X + α1)∗ · P0 · (X + α1). According
to Lemma 1, h∗ = Θk−1((X + αk)∗) · · ·Θ0((X + α1)∗). Therefore, we obtain h∗ · P0 · h = Pk. In
particular, the constant term of both polynomials is P0h0 = µ. Considering ν = h0/µ, we obtain
h∗ · 1ν ·h = −εµ(Xn−ε) and h\ · 1ν ·h·θ

k(ν) = − 1
θk(h0)

εµ(Xn−ε)·θk(ν) = − 1
θk(µ)

εµ(Xn−ε) = Xn−ε.
Let us determine the cardinality of H̃µ,ε. According to Lemma 2, the number of factorizations

(as a product of k linear monic factors) of any monic skew polynomial of degree k right-dividing

Xn− ε in R is
∏k
i=1

pi−1
p−1 . Furthermore, as Pi has degree 2i and right-divides Xn− ε, the number

of αi ∈ Fq such that X +αi right-divides Pi is p2i−1
p−1 . The number of elements of H̃µ,ε is therefore∏k

i=1
p2i−1
p−1∏k

i=1
pi−1
p−1

=

k∏
i=1

(pi + 1).

Example 4. Consider F24 = F2(a) with a4 + a+ 1 = 0 and n = 4. For µ ∈ {1, a5, a10}, H̃µ,1 has
15 elements :
H̃1,1 = {X2 + a14 X + a,X2 + a X + a14, X2 + a11 X + a4, X2 + a2 X + a13, X2 + a13 X +

a2, X2 + a4 X + a11, X2 + a5 X + a10, X2 + 1, X2 + a8 X + a7, X2 + a9, X2 + a7 X + a8, X2 +
a12, X2 + a3, X2 + a6, X2 + a10 X + a5},
H̃a5,1 = {X2 + a5 X + a5, X2 + a14 X + a11, X2 + a6 X + a4, X2 + a8 X + a2, X2 + a11 X +

a14, X2 +X + a10, X2 + a2 X + a8, X2 + 1, X2 + a3 X + a7, X2 + a9 X + a,X2 + a9, X2 + a12 X +
a13, X2 + a12, X2 + a3, X2 + a6},
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Algorithm 1 Construction of the set H̃µ,ε
Require: : µ in F∗pn such that θk(µ) + εµ = 0

Ensure: : H̃µ,ε
1: Pk ← −εµ(Xn − ε)
2: S ← ∅
3: Construct the sequences (αi, Pi−1)i=k,...,1 such that

• X + αi right-divides Pi;

• Pi−1 is the quotient in the left-division of Qi−1 by Θi−1((X + αi)
∗) where Qi−1 is the

quotient in the right-division of Pi by X + αi.

4: for each sequence (α1, . . . , αk) do
5: S ← S ∪ {(X + α1) · · · (X + αk)}
6: end for
7: return S

H̃a10,1 = {X2 + a10 X + a10, X2 + a13 X + a7, X2 + a12 X + a8, X2 + a9 X + a11, X2 + X +
a5, X2 +a X+a4, X2 +1, X2 +a6 X+a14, X2 +a3 X+a2, X2 +a9, X2 +a4 X+a,X2 +a12, X2 +
a7 X + a13, X2 + a3, X2 + a6}.

3.3 Enumeration of (θ, ν)-isodual and self-dual θ-cyclic and θ-negacyclic
codes

From Proposition 4, we deduce the number of (θ, ε)-constacyclic codes of length 2k which are
(θ, ν)-isodual. Let us first consider the particular case when k = 1 :

Example 5. Consider k = 1, n = 2. If p = 2 and ν ∈ F∗22 , then Hν,ε = {X + α} where α2 = ν.

If p is odd and ν
p2−1

2 = −ε(−1)
p−1
2 , then Hν,ε = {X + α | α2 = −νp−1}. Namely, consider

h = X + α ∈ R, then

h\ · ν · h · 1
θ(ν) = (X +

1

θ(α)
) · (X +

να

θ(ν)
)

= X2 +
ν + θ(ν)θ(α2)

θ(α)ν
X +

να

θ(να)
.

Therefore h belongs to Hν,ε if and only if α2 = −θ(ν)/ν.

Proposition 5. Consider k ∈ N∗, n = 2k, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), ε ∈ {−1, 1}
and ν ∈ F∗pn . If ν

pn−1
2 = −ε(−1)k

p−1
2 then the number of (θ, ν)-isodual (θ, ε)-constacyclic codes of

length n over Fpn is

N

k−1∏
i=1

(pi + 1)

where N = 1 if p = 2 and N = 2 if p is odd.

Proof. We first prove that for ν in F∗pn , if Hν,ε is nonempty, then its cardinality does not depend
on ν. Consider ν, ν′ in F∗pn such that

ν
pn−1

N = (ν′)
pn−1

N = −ε(−1)k
p−1
N .

Then according to Proposition 3, Hν,ε and Hν′,ε are nonempty. Consider ξ = ν
ν′ and a a square

root of θk(ξ). As ξ
pn−1

N = 1, a is well defined. The application
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f :

{
Hν,ε → Hν′,ε
h 7→ 1

θk(a)
· h · a

is also well defined : namely, consider for h in Hν,ε, H = 1
θk(a)

· h · a, then H∗ = (h · a)∗ · 1
θk(a)

=

θk(a) · h∗ · 1
θk(a)

. Therefore H\ = θk(θk(a)/(h0a))θk(a)θk(h0) · h\ · 1
θk(a)

= a · h\ · 1
θk(a)

and

H\ · 1

ν′
·H ·θk(ν′) = a·h\ · 1

θk(a)
· ξ
ν

1

θk(a)
·h·aθk(ν′) = a·h\ · 1

ν
·h·aθ

k(ν)

θk(ξ)
= a(Xn−ε) a

θk(ξ)
= Xn−ε.

Therefore H belongs to Hν′,ε.
Consider H in Hν′,ε then h = θk(a)H · 1a is the unique pre-image of H in Hν,ε. Therefore f

is bijective and all nonempty sets Hν,ε have the same number of elements, M : for all ν in Fpn
such that ν

pn−1
N = −ε(−1)k

p−1
N , the number of (θ, ν)-isodual (θ, ε)-constacyclic codes of length 2k

is M . Furthermore, we have

∀h ∈ R, (∃µ : h ∈ H̃µ,ε ⇔ ∃µ : h ∈ Hh0µ,ε ⇔ ∃ν : h ∈ Hν,ε). (6)

Therefore
∪µH̃µ,ε = ∪νHν,ε.

Now consider the union of the intersections H̃µ,ε ∩ H̃µ′,ε for µ 6= µ′ and H̃µ,ε, H̃µ′,ε nonempty. We
have, according to (6) : ⋃

µ6=µ′
(H̃µ,ε ∩ H̃µ′,ε) =

⋃
ν 6=ν′

(Hν,ε ∩Hν′,ε).

Similarly, we get ⋃
µ6=µ′ 6=µ′′

(H̃µ,ε ∩ H̃µ′,ε ∩ H̃µ′′,ε) =
⋃

ν 6=ν′ 6=ν′′
(Hν,ε ∩Hν′,ε ∩Hν′′,ε) . . .

...

where the involved sets Hν,ε and H̃µ,ε are nonempty. Furthermore, #(∪µH̃µ,ε) =
∑
µ #H̃µ,ε −∑

µ6=µ′ #(H̃µ,ε ∩ H̃µ′,ε) +
∑
µ6=µ′ 6=µ′′ #(H̃µ,ε ∩ H̃µ′,ε ∩ H̃µ′′,ε)− · · · and #(∪νHν,ε) =

∑
ν #Hν,ε −∑

ν 6=ν′ #(Hν,ε ∩Hν′,ε) +
∑
ν 6=ν′ 6=ν′′ #(Hν,ε ∩Hν′,ε ∩Hν′′,ε)− · · · . Therefore∑

µ

#H̃µ,ε =
∑
ν

#Hν,ε.

Lastly, according to Proposition 4, the pk−1 nonempty sets H̃µ,ε all have
∏k
i=1(1+pi) elements.

As the p2k−1
N nonempty sets Hν,ε all have M elements, we obtain

k∏
i=1

(1 + pi) (pk − 1) = M
p2k − 1

N
.

Example 6. Consider the (θ, ν)-isodual θ-cyclic codes of length 4 over F24 = F2(a) where a4 +
a + 1 = 0. For µ ∈ {1, a5, a10}, H̃µ,1 has 15 elements (Example 4) and

⋃
H̃µ,1 =

⋃
Hν,ε has 35

elements. For ν ∈ F∗24 , Hν,ε has 3 elements : there are 3 (θ, ν)-isodual θ-cyclic codes :
H1,1 = {X2 + 1, X2 + a10 X + a10, X2 + a5 X + a5}, Ha14,1 = {X2 + a X + a14, X2 +

a9, X2 + a6 X + a4}, Ha13,1 = {X2 + a2 X + a13, X2 + a12 X + a8, X2 + a3}, Ha12,1 = {X2 +
a8 X + a2, X2 + a13 X + a7, X2 + a12}, Ha11,1 = {X2 + a9 X + a,X2 + a6, X2 + a4 X + a11},
Ha10,1 = {X2+1, X2+X+a5, X2+a5 X+a10}, Ha9,1 = {X2+a X+a4, X2+a11 X+a14, X2+a9},
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Ha8,1 = {X2 + a7 X + a8, X2 + a12 X + a13, X2 + a3}, Ha7,1 = {X2 + a8 X + a7, X2 + a12, X2 +
a3 X + a2}, Ha6,1 = {X2 + a14 X + a11, X2 + a4 X + a,X2 + a6}, Ha5,1 = {X2 + 1, X2 +
X + a10, X2 + a10 X + a5}, Ha4,1 = {X2 + a11 X + a4, X2 + a9, X2 + a6 X + a14}, Ha3,1 =
{X2 +a2 X+a8, X2 +a7 X+a13, X2 +a3}, Ha2,1 = {X2 +a3 X+a7, X2 +a13 X+a2, X2 +a12},
Ha,1 = {X2 + a14 X + a,X2 + a9 X + a11, X2 + a6}.

We check that⋃
µ 6=µ′

(H̃µ,1 ∩ H̃µ′,1) =
⋃
ν 6=ν′

(Hν,ε ∩Hν′,ε) = {X2 + 1, X2 + a9, X2 + a3, X2 + a12, X2 + a6},

H̃1,1∩H̃a5,1∩H̃a10,1 =
⋃

ν 6=ν′ 6=ν′′
(Hν,ε∩Hν′,ε∩Hν′′,ε) = {X2+1, X2+a9, X2+a3, X2+a12, X2+a6},

∅ =
⋃

ν 6=ν′ 6=ν′′ 6=ν′′′
(Hν,ε ∩Hν′,ε ∩Hν′′,ε ∩Hν′′′,ε).

In [5], a formula for the number of self-dual (θ, ε)-constacyclic codes of length n is given over
Fp2 ⊂ Fpn when ε2 = 1. In what follows, we deduce from Proposition 5 the number of self-dual
(θ, ε)-constacyclic codes of length n over Fpn .

Proposition 6. Consider k ∈ N∗, n = 2k, ε ∈ {−1, 1}, p a prime number and θ : x 7→ xp ∈
Aut(Fpn). If p = 2, there are

∏k−1
i=1 (pi + 1) self-dual θ-cyclic codes of length n over Fpn . If p 6= 2,

and if (−1)k
p−1
2 ε = −1, there are 2

∏k−1
i=1 (pi+1) self-dual (θ, ε)-constacyclic codes of length n over

Fpn .

Proof. Self-dual (θ, ε)-constacyclic codes are (θ, 1)-isodual (θ, ε)-constacyclic codes. The result
follows from Proposition 5.

Algorithm 2 (θ, ν)-isodual (θ, ε)-constacyclic codes of length n over Fpn
Require: : k ∈ N∗, n = 2k, p, prime number, ε ∈ {−1, 1}, ν ∈ F∗pn
Ensure: : Hν,ε: the set of the skew check polynomials h of (θ, ν)-isodual (θ, ε)-constacyclic codes

of length n and dimension k over Fpn .
1: S ← ∅
2: for µ in F∗pn such that θk(µ) + εµ = 0 do
3: Pk ← −εµ(Xn − ε)
4: Construct the sequences (αi, Pi−1) for i = k, . . . , 1 such that

• X + αi right-divides Pi;

• Pi−1 is the quotient in the left-division of Qi−1 by Θi−1((X +αi)
∗) where Qi−1 is the

quotient in the right-division of Pi by X + αi;

• P0 = µ/
∏k
i=1 αi = ν.

5: for each (α1, . . . , αk) do
6: S ← S ∪ {(X + α1) · · · (X + αk)}
7: end for
8: end for
9: return S

Example 7. There are 3 self-dual θ-cyclic codes of length 4 over F24 , given in Example 6 by H1,1.
There are 15 self-dual θ-cyclic codes of length 6 over F26 = F2(a) where a6 + a4 + a3 + a+ 1 = 0.
Their skew check polynomials are : X3 +a52X2 +a23X+a54, X3 +X2 +a9X+a36, X3 +a36X2 +
a36X+a45, X3+1, X3+a19X2+a29X+a27, X3+a41X2+a46X+a45, X3+a18X2+a18X+a54,
X3+a21X2+a42X+1, X3+a26X2+a43X+a27, X3+a9X2+a9X+a27, X3+a42X2+a21X+1,
X3+a13X2+a53X+a45, X3+a38X2+a58X+a54, X3+X2+a18X+a9 and X3+X2+a36X+a18.
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4 A construction of self-dual θ-cyclic codes over Fpn which
are Gabidulin evaluation codes

We consider here a special subfamily of self-dual θ-cyclic codes of length n over Fpn which are in
fact Gabidulin evaluation codes and therefore Maximum Rank Distance (MRD) codes (see [12]
for the theory of MRD codes). In previous sections we have provided a construction of self-dual
codes based on the factorization of the skew check polynomials into the product of linear skew
polynomials. Here we change the point of view by writting the skew generator polynomials as
least common left multiples (lclm) of special linear skew polynomials, namely skew polynomials
of the form X − θi(α).

Definition 3. [12] Consider k ≤ n ∈ N∗, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), y1, . . . , yn ∈
Fpn linearly independent over Fp. The Gabidulin evaluation code of length n, dimension k and
support (y1, . . . , yn) is the code with generator matrix

G =


y1 y1 . . . yn
θ(y1) θ(y2) . . . θ(yn)

...
θk−1(y1) θk−1(y2) . . . θk−1(yn)

 . (7)

The following Proposition 7 can be found in [9] (Proposition 3, part 1).

Proposition 7 (Proposition 3 of [9]). Consider k ≤ n ∈ N∗, p a prime number, θ : x 7→ xp ∈
Aut(Fpn), R = Fpn [X; θ], α ∈ Fpn , ε = Nn(α). Assume that ε2 = 1 and that 1, α,N2(α), . . .,
Nn−1(α) are linearly independent over Fp. The θ-cyclic code of length n and skew generator
polynomial g = lclm0≤i≤k−1(X − θi(α)) is the dual of the Gabidulin evaluation code of length n,
dimension k and support (1, α,N2(α), . . . , Nn−1(α)).

Proof. Consider c = (c0, . . . , cn−1) ∈ Fnpn . The word c belongs to the θ-cyclic code generated by

g if and only if for all i in {0, . . . , k − 1}, X − θi(α) right-divides g. As the remainder in the

right division of c by X − θi(α) is
∑n−1
j=0 cjNj(θ

i(α)) =
∑n−1
j=0 cjθ

i(Nj(α)), we obtain that a check
matrix for the code is the matrix G given by (7) where y1 = 1, y2 = α, . . . , yn = Nn−1(α).

According to Theorem 4.10 of [15], if a Gabidulin evaluation code of length 2k and dimension
k is self-dual then p ≡ 3 (mod 4) and k is odd. In what follows we construct a family of self-dual
Gabidulin evaluation codes parameterized by an element α of Fpn .

Proposition 8. Consider k ∈ N∗, n = 2k, p a prime number, θ : x 7→ xp ∈ Aut(Fpn), R =
Fpn [X; θ], α ∈ Fpn such that Nn(α) = 1 and 1, α,N2(α), . . . , Nn−1(α) are linearly independent
over Fp. The θ-cyclic code of length n and skew generator polynomial g = lclm0≤i≤k−1(X−θi(α))

is self-dual if and only if
∑n−1
i=0 Ni(α)1+p

`

= 0,∀` ∈ {0, . . . , k − 1}.

Proof. The code is self-dual if and only if the lines of G are pairwise orthogonal i.e. GGT = 0
where G is the matrix defined by (7) with y1 = 1, y2 = α, . . . , yn = Nn−1(α).

Example 8. For p = 3 and k = 3, according to Proposition 5, there are 80 self-dual θ-cyclic codes
of length 6 over F33 . The polynomial system

∑6
i=0Ni(α)2 = 0∑6
i=0Ni(α)4 = 0∑6
i=0Ni(α)10 = 0

has 18 solutions α : a580, a406, a378, a436, a124, a8, a648, a126, a388, a216, a42, a72, a14, a284, a24, a372,
a488, a490 and we get 18 self-dual θ-cyclic codes generated by the skew polynomials g = lclm(X −
α,X − θ(α), X − θ2(α)). These codes are self-dual Gabidulin evaluation codes (and therefore self-
dual MRD codes). For example, take α = a8, then g = lclm(X − a,X − θ(a), X − θ2(a)) =
X3 + a185X2 + a383X + a322 generates a self-dual θ-cyclic code of length 6 which is the Gabidulin
evaluation code of dimension 3 and support (1, a, . . . , N5(a)) = (1, a8, a32, a104, a320, a240).
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An open question is to determine the number of self-dual θ-cyclic codes generated by g =
lclm0≤i≤k−1(X− θi(α)) over Fpn with n = 2k. More generally, it could be interesting to construct
and count self-dual θ-cyclic codes which are MRD.

5 Conclusion

This note was devoted to the construction of self-dual θ-constacyclic codes of length n over Fpm
when m is equal to n and θ is the Frobenius automorphism over Fpn . This work completes previous
works on self-dual θ-constacyclic codes over Fpm when m = 1 (then θ is the identity and codes are
classical constacyclic codes) and when m = 2. As a further work, it could be interesting to study
the cases when 2 < m < n and to have a more general classification only based on the order of
the automorphism θ in Aut(Fpn).
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[1] A. Alahmadia, S. Alsulami, R. Hijazi, P. Solé, Isodual cyclic codes over finite fields of odd
characteristic, Discrete Mathematics, 339 (2016), 344–353.

[2] A. Batoul, K. Guenda and T. A. Gulliver, Repeated-root isodual cyclic codes over finite
fields, Codes, cryptology, and information security, Lecture Notes in Comput. Sci., 9084
(2015), 119–132.

[3] A. Batoul, K. Guenda, A. Kaya and B. Yildiz, Cyclic Isodual and Formally Self-dual Codes
over Fq + vFq, European Journal of Pure and Applied Mathematics, 8 (2015), 64–80.

[4] D. Boucher, A note on the existence of self-dual skew codes over finite fields, Lecture Notes
in Comput. Sci., 9084 (2015), 228–239.

[5] D. Boucher, Construction and number of self-dual skew codes over Fp2 , Advances in Mathe-
matics of Communications (AMC), 10, no. 4 (2016), 765–795.
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