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Abstract

The aim of this note is to give a construction and an enumeration of self-dual §-cyclic and
O-negacyclic codes of length n over F,» where p is a prime number and 6 is the Frobenius
automorphism over Fp». We use the notion of isodual codes to achieve this construction.

1 Introduction

Isodual codes ( [17]) have been recently studied on many aspects ( [2], [3], [1]). Meanwhile,
in [5], a construction and an enumeration formula for self-dual 6-cyclic and #-negacyclic codes of
even length n over F,. were given in the case when p is a prime number and 6 is the Frobenius
automorphism over Fp2. The aim of this note is to give a construction and an enumeration
formula for self-dual #-cyclic and #-negacyclic codes of length n over F,» when 6 is the Frobenius
automorphism over Fy». To this end, we will use and develop the notion of (¢,r)-isodual codes
which form a subfamily of the family of isodual codes. Lastly we will consider the construction of
some self-dual Gabidulin evaluation codes.

The text is organized as follows. In Section 2 we define the notion of (6, v)-isodual codes
over F, where ¢ is an automorphism of F, and v belongs to F;. We recall the definitions of
(0, a)-constacyclic, 6-cyclic and d-negacyclic codes and some generalities on the dual of a (6, a)-
constacyclic code. Then we characterize (6, v)-isodual 6-cyclic and f-negacyclic codes thanks to
an equation satisfied by the skew check polynomials of the codes. In Section 3 we consider the
special case when ¢ is equal to p™ where p is a prime number and 6 is the Frobenius automorphism
over Fy,». After having given a necessary and sufficient condition for the existence of (6, v)-isodual
f-cyclic and #-negacyclic codes, we give a construction and an enumeration formula for (6,v)-
isodual and self-dual f-cyclic and 6-negacyclic codes. In Section 4, we consider a subclass of
self-dual §-cyclic codes over F,» which are self-dual Gabidulin codes. We parametrize this family
by a parameter which satisfies a polynomial system.

2 Some generalities on isodual skew codes

We first recall that a linear code C of length n and dimension k over F, is a subspace of dimension
k of Fy. A generator matriz G of C is a k x n matrix with coefficients in F, and rank k such that
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C ={m G| m € FF}. Furthermore the dual of C' is C*+ = {z € F} | Vc € C, < x,¢ >= 0} where

n—1

for z = (zo,...,%n-1),¥y = (Yo,---,yn—1) in Fy, < x,y >:= > 1" 7 ;9; is the Euclidean scalar
product of z and y. Isodual codes ( [17]) have been recently studied on many aspects ( [2], [3], [1]).

Definition 1 ( [17] page 199). A code C' with generator matriz G is isodual if it is equivalent to
its dual. That means that there exists a monomial matrix D such that G- D is a generator matrix
of the dual C* of C.

In what follows, we define a special class of isodual codes which are parameterized by an
automorphism ¢ of F, and an element v of Fy.

Definition 2. Consider n € N*, v € F; and 0 € Aut(F,). A linear code C of length n and
generator matriz G is a (0, v)-isodual code if G - D is a generator matriz of C+ where D is the
n x n diagonal matriz with diagonal coefficients v,0(v),...,0" (v).

Remark 1. A code C is self-dual if and only if there exists v fixed by 0 such that C is (0, v)-isodual.

Recall that if 6 is an automorphism of F,,, the skew polynomial ring R is defined as R = F,[X; 0]
under usual addition of polynomials and where multiplication is defined by the commutation law :
Va € Fy, X-a = 6(a)X ([16]). The ring R is noncommutative unless 6 is the identity automorphism
on F,. The ring R is right-Euclidean and left-Euclidean. For f = Y a;X? in R and « in F,
the evaluation f(a) of f at « is the remainder in the right division of f by X — «. We have
f(a) =", a;Ni(a) where N;(x) := z0(z)--- 0"~ (x) (see [14]). Recall also that if ¢ = p™ and 6 is
the Frobenius automorphism, then the center of R is F,[X"] .

For a in F; and 6 in Aut(F,), a (0, a)-constacyclic code C of length n and dimension k is a left
R-submodule Rg/R(X™ —a) C R/R(X™ — a) where g is a monic skew polynomial of degree n — k
right-dividing X" —a in R ( [7]). That means that a word ¢ = (co, ..., c,—1) € Fy belongs to C' if
and only if the skew polynomial g right-divides the skew polynomial cg +c1 X + -+ + ¢ X" 1
in R. The skew polynomial g is called the skew generator polynomial of C. The monic skew
polynomial h defined by

0"h)-g=X"—a (1)
is called skew check polynomial of C.

The (6, a)-constacyclic code C' is denoted C' = (g)7. 5. If @ = 1, the code is f-cyclic and if
a = —1, the code is 0-negacyclic.

A generator matrix of C is

go R 1 0o ... 0
: .0
0o ... 0 0 go) 6 Yg) ... ... 1

The skew reciprocal polynomial of h = XF_(h; X' € R of degree k is h* = XF_ 0% (hy_;) X', If
ho # 0, the left monic skew reciprocal polynomial of h is h? = mh*. The following technical

lemma will be useful later. We will use the application © : R — R given by Zf:o a; X' =
S o 0(a) X"
Lemma 1 (Lemma 1 of [8]). Consider 0 € Aut(F,), R =F,[X;0], h and g in R. Then (h-g)* =
@deg(h) (g*) ChE
Example 1. Consider n = 4, Fos = Fy(a) with a* +a+1=0 and R = F1[X;0]. We have

X' 41=(X?*4+ad°X +a°)- (X?+a°X +a'?)

therefore the skew polynomial gy = X% + a®X + a'® generates a 0-cyclic code Oy of length 4 and
dimension 2 over Foa. As ©% is the identity over Fos, the skew check polynomial of the code is
hy = X2 +a5X+a5.



We have
X*+1=(X*+aX +a") - (X*+a*X +a)

therefore the skew polynomial g = X2 + a*X + a generates a 0-cyclic code Cy of length 4 and
dimension 2 over Faa with skew check polynomial hy = X2 + aX + a'?.

The following proposition describes the dual of a (6, a)-constacyclic code.

Proposition 1 (Theorem 1 and Lemma 2 of [8], Proposition 1 of [6]). Consider n € N*, a € Fy,
0 € Aut(F,) and C a (0, a)-constacyclic code of length n with skew generator polynomial g and skew
check polynomial h. Then the dual C*+ of C is a (#,1/a)-constacyclic code with skew generator
polynomial h?.

Proof. (proof of Proposition 1 of [6]) We consider the equality (1) in R = F,[X; 6] and we multiply
both members of this equality by h on the right. We get ©™(h)-g-h = (X™ —a)-h and we deduce
from this equality that ©™(h) - (X™ —g-h) = a- h. As the skew polynomials ©"(h) and a - h
have the same degrees, the skew polynomial X™ — g - h is a constant that we will denote A and
©"(h)- A —a-h=0. As the leading coefficient of @™ (h) - A — a - h is equal to 8*()\) — a, we get
that A = 07%(a).

Furthermore, as ©"(h)-g = X™—a, according to Lemma 1, we have f%Gk*”(g
Therefore h? right-divides X" — % and is the skew generator polynomial of a (6,
code of length n.

A quick computation gives that for all (¢, j) in {0,...,k—1} x{0,...,n—k—1}, the Euclidean
scalar product of the words associated to X*- g and X7 - h* is equal to 0°((g - h)j—_;+x). Therefore
the scalar product is equal to 0 and the words of the code (g)‘jw are orthogonal to the words of

the code (hh)i{g. O

1)-constacyclic

In what follows, we characterize (6, a)-constacyclic codes which are (6, v)-isodual.

Proposition 2. Consider k € N*, n = 2k, v € F;, a € Fy, 0 € Aut(F,), R =F[X;0], h € R
monic. The (0,a)-constacyclic code of length n, dimension k and skew check polynomial h is
(0,v)-isodual if and only if
1
e*(h)-0*(v)-h*- = = X" —a. (3)

14

In this case we have a* = 0™(v)/v.

Proof. Consider C' = (g)% , the (6, a)-constacyclic code of length n = 2k, dimension k, skew check
polynomial & and skew generator polynomial g. According to (1), we have ©™(h) - g = X" — a.
Therefore, the relation (3) is satisfied if and only if h* = § where § = 0%(1/v) - g - v.

Let us prove that C is (,v)-isodual if and only if h* = §. As g right-divides X" — a, §

right-divides X" — & where a = aﬁ(y). Therefore we can consider the (6, a)-constacyclic code

of length n and skew generator polynomial §. Furthermore, according to Proposition 1, C* is a
(6, 1/a)-constacyclic code of length n with skew generator polynomial h°f.

Let us prove that C' is (6, v)-isodual if and only if (h“);{g =(9)%

Denote g = Z?;Ok gi Xt = Zi’c:o giX*and g = Zf:o 3:X*. We have §; = 0%(1/v)g;0*(v) for all

iin {0,...,k}. Therefore a generator matrix of (g);. , is
jo & ... 1 0 ... 0
0 0 9’“_1(@0) Gk_l(gl) R |

where G is given by (2) and D is the diagonal matrix with diagonal elements v, 0(v), ..., 0" (v).



According to Definition 2, the code C is (6, v)-isodual if and only if a generator matrix of
Cct = (hh)l/g is G-D. As G-D = G is a generator matrix of (§ )ne, we obtain that C is

(0, v)-isodual if and only if (hh)l/ (g)n o
Lastly as g right-divides X" —a g5 and hf right-divides X" — 1, we obtain a? = 0"(v)/v. O

In the case when 0 is the Frobenius automorphlsm over IF, and ¢ = p™ where p is prime and n
is the length of the code we obtain the following corollary that will be useful in next section.

Corollary 1. Consider k € N*, n = 2k, p a prime number, v € Fp., a € Fpn, 0z — 2P €
Aut(Fpn), R =Fpn[X;0], h € R monic. The (0,a)-constacyclic code of length n and skew check
polynomial h is (0,v)-isodual if and only if
1 1
h-0F(w)-hE- = =hf- = . h-0F)=X" —a. (4)
v

v

Furthermore, a®> = 1.

Proof. As 6 is the Frobenius automorphism over Fp», the order of 6 is equal to n. Therefore
O"(h) = h and 0™(v) = v. According to Proposition 2, the (6, a)- constacyclic code of length n
and skew check polynomial & is (6, v)-isodual if and only if h-0%(v)-hf- L = X™ —qa. In this case
a? = 1. Therefore X" —a is central in R, and we have h-6%(v)-h®-1 — X" q = Rt L.h6*v). O

Example 2. (Ezxample 1 continued) The left monic skew reciprocal polynomial of hy = X? +
a®X +d is Bl = X2+ X +a'® and X* +1 = (X2 +d°X + d®) - (X2 + d°X + a'0) =
(X2 +a’X +a'%) - (X2 +a®X +aP), therefore the O-cyclic code Cy with skew check polynomial hy
is self-dual.

The left monic skew reciprocal polynomial of hy = X2 4+ aX + a'* is hh X2 +a8X + a
Furthermore, X*+1 = (X?*+aX+a')-(X?+a* X +a) = (X*+aX +a')- L (X2—|—a6X+a )4,
therefore the 0-cyclic code Cy with skew check polynomial ho is (0,a14)—zsodual

Lastly, we consider below a technical lemma which will be useful later and which deals with
the factorization of skew polynomials right-dividing X™ £ 1 in F,n[X; 6] where 6 is the Frobe-
nius automorphism. These skew polynomials belong to a wide class of skew polynomials, called
Wedderburn polynomials, which have been extensively studied (see Theorem 6.4 of [11] for the
factorizations of these skew polynomials). Lemma 2 can be directly deduced from Theorem 6.4
of [11] as well as from Proposition 2.2.2. of [10]. We propose here a proof very specific to our
special case.

Lemma 2. Consider n € N*, p a prime number, 0 : z — xP € Aut(Fpn), R = Fpn[X;06], f in

R of degree d and € € {—1,1} such that [ right-divides X™ — € in R. Then f is the product of d
linear factors right-dividing X™ — € and

d

#H(a1,. .. aq) €FL | f=(X + 1) (X + aq)} H

i

Proof. Consider y1, ...,y in Fp» linearly independent over F,. Consider £ in F,» such that X —¢&
right-divides X™ — e, which means N,,(§) = e. Denote a7 := § yl) ey Qpy = 59(:: According
o [14], the least common left multiple of X — ay,..., X — ay, 1s lclmlgign(X —a) = X" —e
As f right-divides X™ — ¢, according to Theorem 4 of [16], there exist 31,..., 4 in Fp» such that
f = lclmy<j<q(X — B;). Furthermore N, (8;) = € = Ny (§). Therefore according to Theorem 27

of [13], there exists z; in Fy. such that 3; = f%zi‘). According to [14], z1,...,zq are linearly
independent over F,. Denote f = Zz 0@ X", we have {a € Fpn | f(a) =0} = {a = f%‘y) =
EyP=t € Fypn | L(y) = 0} where L(y) = Zf 0 @iN;(€)0(y). As the equation L(y) = 0 has d
solutions (z1,. .., 2q) in Fpn linearly independent over F),, there are p? — 1 nonzero y in Fpn such
that L(y) = 0. Therefore {a € Fpn | X — « right-divides f} has (p? —1)/(p — 1) elements. We

conclude using an inductive argument.

O



d
Remark 2. [t could be noted that the number H b s the size of the gemeral linear group
- pP—

GL(d,p) modulo diagonal matrices, and correspgnds to choosing a set of 1-dimensional vector
spaces spanning a d-dimensional vector space.

Example 3. (Ezample 1 continued) The skew polynomial hy = X?+a®X +a® has 3 factorizations
into the product of linear monic skew polynomials, namely by = (X +a'4)-(X+a®) = (X+a'!)-(X+

a®) = (X+1)-(X +a®). The skew polynomial hy = X?+aX +a'* has also 3 factorizations into the
pmduct of linear monic skew polynomials, namely ho = (X +a”)- (X +a") = (X +a't)- (X +a?) =
(X +a'%) - (X +at).

3 Construction and enumeration of (6,v)-isodual 6-cyclic
and 0-negacyclic codes of length n over F.

The aim of this section is to construct and to enumerate self-dual #-cyclic and 8-negacyclic codes
of length n over F,» where 0 is the Frobenius automorphism. Note that in this setting, §-cyclic
codes are called Gabidulin p-cyclical codes (page 6 of [12]).

To achieve this construction, we will consider #-cyclic and #-negacyclic codes which are (6, v)-
isodual.

We introduce some notation. Consider R = F,n[X;6]. We will denote, for € € {—1,1} and
velF;:

1
H,:={h € R|hmonic,h’ - ~-h-0F1) = X" —¢}.
v

According to Corollary 1, the set H, . is the set of the skew check polynomials of (6, v)-isodual
(0, €)-constacyclic codes. Following Remark 1, the set H; . is the set of the skew check polynomials
of self-dual (0, €)-constacyclic codes.

3.1 Necessary and sufficient existence condition for (6, v)-isodual -cyclic
and ¢-negacyclic codes of length n over [F,.

In [4] a necessary and sufficient condition for the existence of self-dual (6, €)-constacyclic codes over
a finite field F, was derived where 6 is an automorphism of F, and ¢ € {—1,1}. In what follows
we give a necessary and sufficient condition for the existence of (6, v)-isodual (6, €)-constacyclic
codes of length n over Fy» where p is a prime number and § is the Frobenius automorphism.

Proposition 3. Consider k € N*, n = 2k, p a prime number, 0 : x — xP € Aut(Fpn), e € {—1,1}.
(i) If p =2, then there exists a (0,v)-isodual 0-cyclic code of length n for all v in F,
(i4) If p is odd, then for v € Fy., there exists a (0,v)-isodual (0, €)-constacyclic code of length 2k
if and only if

p™—1

Vi = —e(—1)F

Proof. According to Corollary 1, there exists a (6, v)-isodual (6, €)-constacyclic code of length n if
and only if the set H, . is nonempty.

e Assume that p = 2 (therefore ¢ = 1) and v € Fj.. Consider o in Fon such that o? =

1/]/2’“71 _ eklzu) and h = X* + a. We have
1 0F) 0% (v)a
_ 2% | gk [ 1
= X*"+9¢ (a )X "’gk(a)y'



As v/6%(v) = a?, we obtain

1
afk(a)

hh-l-h.e’f(y):)ﬁu
14

we obtain §%+1(a) = ek(”), 0(a)0k* (o) = 1 and af*(a) = 1.

v

As O(a) = o® = 9%@),
Therefore the skew polynomial h belongs to H, .

n

Assume that p is odd and "= = —e(—l)’“p%1
We have
N k(P =1)/2
(_HT())(p n/2 _ E 1% ;Z %
= 1 (because p is odd, therefore p> =1 (mod 4) and p" =1 (mod 4)).

Therefore _WIZV) is a square. Consider « such that —e%(u) = o?. Consider h = X* + a in
R.

1 0% (V)
lone0Fw) = [ XxP A xr W
h P h (V) < + ek(a)) < + ”
k k
= X2k+9k l+a07(y) Xk+9 (1/)04.
“ 0% (a)v
As v/0%(v) = —a?, we obtain
! 0% (v)a
bl pk(,) — y2k
h » h-0 (l/) X% + ek(a)yo
Furthermore
k V) k v k v T‘ —1
gkéa))u - ¢ ( ) g IE ) (because _ek(y)/y _ 1/042)
(_ ) p 7 . 1
= —¢ (because v = —6(—1)’”’%).
Therefore
hh.%.h,gk(y) _ oxn_ .

Assume that p is odd and that there exists a (0, ¢)-constacyclic code of length 2k which
s (0,v)-isodual. Consider h its skew check polynomial and hg the constant term of h.
Necessarily the degree of h is equal to k.

As the code is (6, ¢)-constacyclic of length 2k, h right-divides X2¥ —e. As the code is defined
over Fzr with 6 : @ — 2P, X?* — ¢ is central of degree 1 in F,[X?*] and h is the product of
k linear skew polynomials X + a,..., X + aj right-dividing X?* — e. Therefore hg is the
product of the k constant terms «y,...,ag. As Naog(—a;) = ¢, we have :

Nzk(ho) = Gk = Nk(h())Nk(ek(ho))
As the code is (6, v)-isodual, we have h? - L . h.0%(v) = X™ — € and
hoﬂk(y) + €0%(ho)v =

As Ni(ho) Ny (0% (hg)) = €*, we obtain Ny (hg)?(— e)kx""sz)’g =¥ and




Not(v) = (—1)* Ni(v/ho)?.
Furthermore, 8(Ng(v/hg)) = Nk(u/ho)% = Ni(v/ho)(—e¢). Therefore we have
Ny (v/hg)P~t = —e. To conclude, if p is odd,

p"—1 p—1

v T = Ng(v) P12 = (—1)kp%1Nk(y/h0)p_1 = —e(—-1)F"=.

O

Remark 3. Consider k € N*, n = 2k, p an odd prime number, 6 : x — aP € Aut(Fpn),
e € {—1,1}. According to Proposition 3 and Remark 1, there exists a self-dual (0, €)-constacyclic

code of length n = 2k over Fpn if and only if 1 = —e(—l)k%;l. We therefore obtain the previous
result of Proposition 5 of [4]: if p is odd, there exists a self-dual 0-cyclic code of dimension k if
and only if p = 3 (mod 4) and k is odd; there exists a self-dual 0-negacyclic code of dimension k
if and only if p=1 (mod 4) or p=3 (mod 4) and k even.

The existence result of Proposition 3 is not constructive and the aim of what follows is to
design a construction of the set H, . based on the construction of the sets H,, . defined for p € Fy.
by

Huye:={h€R|h&Hpyue}

Thanks to factorization properties of the elements of 7:1“76, we will give both a construction
and an enumeration formula.

3.2 Construction and enumeration formula for the set #,,

The following technical lemma (Lemma 3) will be useful for the construction of 7'2“,5 (Proposition
4).

Lemma 3. Consider k € N*, n =2k, p a prime number, 0 : x — zP € Aut(Fpn), R =TF,n [X; 0],
Pec R and (€ {0,...,k} such that ©F¢(P*) = P and deg(P) = 2k — 2¢. If X + « right-divides
P then there exists Q € R satisfying the two following properties :

1. P=0"""1(X+a)") Q (X +a);
2. OFHL(Q*) = Q.
Proof. Consider f € R such that P = f - (X + «).

1. Let us prove that P = ©F 1=¢((X +a)*) - ©*¢(f*) and that X + « right-divides @FT¢(f*).
As P = f-(X +q), according to Lemma 1, we have P* = ©%~2=1((X 4-a)*)- f*. Therefore
P = @k+€(P*) _ @k%q((X 4 a)*) . @k+€(f*).
Denote K = k—Cand f = 355" a; X7, then f* = Y25 02K=173 (q;) XK =17 Consider
B = —60%(a), then X + a right-divides ©***(f*) if and only if f* cancels at 3.
Let us prove that

K—1 4 2K—1 ]
> 0K () Noge 15 (B) = — Y 0277 (a;) Nage— i1 (B).
i=0 =K

As P=f- (X +a)=0K"1((X +a)*) - ©K+2(f*) we obtain :

L N;1(—a) oK

VjE{].,...,K},aj_li N‘(—a)
J

(02T Yagk ) + ab* T (agr_ig1)).
1=1



Therefore,
S 02K (a;) Nae—1—(B)

K .
— ZGQK‘J (aj—1)Nag—;(B)

"x L\ Ni_1(—a)
= _ZN2K—j(B)92K_j< Jifz a) QK(GMH 1(G2K z)"‘aeﬂﬂ 1(a2K z+1))>
i=1 J
— _ZNQK _ ZeK-]( i— z )93[( 7 922-‘,—1 1(a2K—i)+a92£+i_1(a2K—i+l))
=1
- EIEZA%xfxﬂij< ) o )
Kt K
—Z Z Nok—;(8)0%~ ]< >9Z+K Iagk—i)0°" ()
i=1 j=i+1
. Nio1(B) i
= L NelB) gy O (i)
Ke1K—1
*Z Z (NzK j(B)oF—I (A;V%Eg)g)) 0T azkc—s)
i1 j—i

+N2K—(j+1)(3)9K_(j+1) (%) O K=" agp ;) 3K 9~ 1(04))

. J+1
= —ZNi_l(ﬁ)ei_l(CQK—i)

7

—1K

-2

Nl() H—Kjla )
Tyay) 01 o)

(92K Jj— 1( +93K—j—1(a))>_
As B = —0%(a), we obtain HQK_j_l(B) + 63K=3=1(a) = 0. Therefore

35 > CRRERRY

i=1 j=1

K-1
> 0*K T (a) Nage 1 -5(8) = _ZNZ 1 H(azx—i)
=0 2K 1 _
= - Z 92K7]71(CL]‘)N2K—3‘—1(5)-
J=K

We conclude that f*(3) = 0 and that X +a right-divides ©%+¢(f*). We deduce the existence
of a skew polynomial Q such that ©**¢(f*) = Q- (X + ) and we obtain P = @~ 17¢((X +
a)’)- Q- (X +a)

2. Let us prove that Q = ©1T4(Q*). According to Lemma 1, as @8 (f*) = Q - (X + a), we
obtain f = OF1=¢((X +a)*)-©F1H4(Q*). Therefore P = ©* 1 ¢((X +0)*)- Q- (X +a) =
ekflfé((X + Oc)*) . @k+1+Z(Q*) . (X + a) and Q _ 9k+1+€(Q*).

O

We are now giving a construction and an enumeration formula for the sets 7-lu,€ (Proposition
4 and Algorithm 1).

Proposition 4. Consider k € N*, n = 2k, p a prime number, 0 : x — 2P € Aut(F,n), R =
Fpr[X;0), € € {=1,1}, p € F} and P = —pe(X?* —€) € R. The set H,, . is nonempty if and
only if 0% (1) + e = 0. In this case we have



Hpe={(X+a1) - (X+ar)| X+ ay right-divides Py,
X + ag_1 right-divides P_1 (ag)

X + oy right-divides Py (aa, ..., ar)}
where for i = k,k —1,...,2, Pi_q1(ay,...,ar) is the quotient in the left-division of Q;—1 by
O (X + a;)*) and Q;_1 the quotient in the right-division of P;(ctiy1,...,ax) by X + a; :
Pi(ai+1; ey Ozk) = @1_1((X + Oél)*) . Pi_l(ai, . ,ak) (X —|— Ozi). (5)
Qi*l

Furthermore H,, . has Hle(pi + 1) elements.

Proof. Consider hin H, . and v = hg/u then h*-L.h=0k(hg)-hf-L-h= Hk(h0)~(X”—e)-9k—%y) =
Py.. Furthermore, ©F(P}) = —(1 —eX™) - (e0%(n)) = (X™ —1)(—€p) = P,. As X™ — € is central in
R of degree one in F,[X "], the skew polynomial h is the product of k linear factors right-dividing
X™—¢ and therefore P, : h = (X 4+a1) -+ (X +ag). As the skew polynomial X + ay, right-divides
Py, according to Lemma 3 applied to P = Py and ¢ = 0, there exists Py_1(ag) = Py—1 € R such
that

P, =0" (X +ap)*) - Pe1 - (X + o)

and ©FF1(Pr ) = P,_1. Consider H = (X +a1) -+ (X + ag_1), according to Lemma 1, we have
h* = OF1((X + ay)*) - H*. We obtain

OF (X +ap)")  Peot - (X + ) = O (X +ay)%) - H* - % CH - (X + ag).
Therefore P,_1 = H* - % - H and X + aj_1 right-divides Py_1. We conclude using an inductive
argument and Lemma 3.

Conversely, consider h = (X+a1) - - - (X+ag) in R such that X +a; right-divides P;(c;41, ..., @)
defined by (5). According to Lemma 3, OF1(P; ) = Py_1,...,0%* (P}) = Py; furthermore,
as X + «p right-divides P;, there exist Py such that P, = (X + «a1)* - Py - (X + a1). According
to Lemma 1, h* = OF 1((X + az)*)---O°((X + a1)*). Therefore, we obtain h* - Py - h = Pj. In
particular, the constant term of both polynomials is Pyhg = p. Considering v = hg/u, we obtain
h*-L.h = —eu(X"—e) and h*-L-h-0%(v) = fmeu()("fe)ﬂk(y) = —e%weu(ane) =X"—c.

Let us determine the cardinality of ’;fiu’e. According to Lemma 2, the number of factorizations
(as a product of k linear monic factors) of any monic skew polynomial of degree k right-dividing

X" —e€in Ris Hle ’i%ll. Furthermore, as P; has degree 27 and right-divides X™ — €, the number

of a; € F, such that X + «; right-divides P; is 1_11. The number of elements of 7:[#,5 is therefore

p2

P
k 2i_q L

Hi:l pp*l i

—r .1 = (p'+1).

ITiz 1;_1 i=1

O

Example 4. Consider Fy1s = Fo(a) with a* +a+1=0 andn = 4. For p € {1,a°a'°}, H,1 has
15 elements :

Hig={X’+a"* X +a, X’ +a X +a", X2 +a" X +a*, X?>+a® X +a", X% +a"® X +
a2, X2+ a* X+a'h X2+ X 4+a0, X2 +1, X2 +a® X +a", X% 40, X24+4a" X +a8, X2+
a12,X2—|—a3,X2+a6,X2+a10X+a5},

7—~la5_’1 ={X?+a® X+a® X?+a"* X +a'', X%+ a5 X +a*, X% +a® X +a?, X2 +a'! X +
a4 X2+ X400 X?4+a2 X 4+a®, X?2+1,X24+a® X +a", X%24+a° X +a,X?>+a°, X?+a'2 X +
a'®, X2 + a'2, X2 + a3, X2 + a5},



Algorithm 1 Construction of the set 7:{,“’6

Require: : p in F},. such that 6% (u) +ep =0
Ensure: : 7—~l”76

1: P+ —epu(X™ —¢)

25«10

3: Construct the sequences (o, Pi_1)i=k,....1 such that
e X + a; right-divides FP;;

e P, is the quotient in the left-division of Q;_1 by ©~!((X + «;)*) where Q;_; is the
quotient in the right-division of P; by X + a.

4: for each sequence (aq,...,a;) do
5 S+ SU{(X+a) - (X+a)}
6: end for

7: return S

7:[(110,1 ={X?+a% X +a X?+a® X +a", X?+a2? X +a8, X2 +0a° X +a't, X2+ X +
a®, X?+a X+a*, X?>+1,X%24+a% X+a'*, X?+a® X+a?, X?+a°, X?+a* X +a, X?*+a'?, X2+
a’” X +a'3, X2+ a3, X% + a%}.

3.3 Enumeration of (0, v)-isodual and self-dual #-cyclic and #-negacyclic
codes

From Proposition 4, we deduce the number of (6, €)-constacyclic codes of length 2k which are
(0, v)-isodual. Let us first consider the particular case when k =1 :
Example 5. Consider k =1,n=2. Ifp=2 and v € F},, then H, . = {X + a} where o* = v.

2 e
If p is odd and V"= = —e(—l)Tl, then Hye = {X + a | o> = —vP~1}. Namely, consider
h=X+a¢€ R, then

Beveheghs = (X+$)-(X+%)
B o v+0()f(a?) va
= X0 0(a)v X+ O(va)

Therefore h belongs to H,.e if and only if a* = —0(v)/v.

Proposition 5. Consider k € N*, n = 2k, p a prime number, 6 : x — 2P € Aut(F,n), e € {—1,1}
p"—1

andv € Fy. Ifv 2 = —e(—l)k%1 then the number of (0, v)-isodual (6, €)-constacyclic codes of
length n over Fpn is

k—1
NH(pi—Fl)
i=1
where N =1 if p=2 and N =2 if p is odd.

Proof. We first prove that for v in F}.., if H, . is nonempty, then its cardinality does not depend
on v. Consider v, v’ in F, such that

n_q p"—

VIR = (V) = —e(—1)F

Then according to Proposition 3, H, . and H,s . are nonempty. Consider { = ;> and a a square

p"—1

root of 0% (¢). As ¢" 7 =1, a is well defined. The application
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h — %~h~a

Hu,e - HV',S
r:d
0% (a)

is also well defined : namely, consider for h in H, ., H = 9%@ ~h-a, then H* = (h-a)* - ‘9%@ =
0% (a) - h* - sz2—. Therefore H? = 0%(6%(a)/(hoa))0*(a)0% (ho) - h? - st~ = a - h¥ - 0%@ and

0% (a) 0% (a)
Hh~l~H~9k(u’):a-hh~ 1L ¢ 1 ~h~a9k(1/):a-hh-l-h-aek(y) =a(X"—e¢) @ _xn_e
v/ 0%(a) v 0*(a) v 0R(E) 0%(€) -

Therefore H belongs to H, ..
Consider H in H,/ . then h = 0%(a)H - % is the unique pre-image of H in H, .. Therefore f
is bijective and all nonempty sets H, . have the same number of elements, M : for all v in Fpn-

such that 2~ = —e(—l)kp%l, the number of (6, v)-isodual (8, €)-constacyclic codes of length 2k
is M. Furthermore, we have
VheR,(3u:h€Hyee I h € Hpgpe < v hety,) (6)
Therefore ~
UpHpe = U Hye.

Now consider the union of the intersections 7—2,“ N 7—2%6 for p # p' and 72“,67 7—~lu/76 nonempty. We
have, according to (6) :

U (ﬂu,e N 7:[u’,e) = U (Hu,e N Hu’,e)~

wFEp v#Y

Similarly, we get

U HuenHpenHurd= | HoeNHoeNHorl). ..
pFE A vV £yl

where the involved sets H,,. and H, . are nonempty. Furthermore, #(U,H, ) = > u #Hpe —

Z#;é#/ #(7:[#’5 N '}f[“gg) + Z‘u##/##// #(7‘2”’5 N 7:[”/’6 M 7‘2;‘//’6) — .- and #(UVHV@) = ZU #Hy’g -
Dovpr #F Mo e VHure) + 30 sy #(Hoe N Hore N Hyrr ) — -+ - Therefore

Z #ﬁu,e = Z #Hu,e-
n v

Lastly, according to Proposition 4, the p* —1 nonempty sets 7:[#’6 all have Hle (1+p?) elements.

k
As the pQN_l nonempty sets H, . all have M elements, we obtain

k 2k

) p 1
||1+l F_)=M
i:1( p')(p ) N

O

Example 6. Consider the (0,v)-isodual 0-cyclic codes of length 4 over Fos = Fa(a) where a* +
a+1=0. For p € {1,a% a'"}, 7'2“,1 has 15 elements (Example 4) and U’}-N[,M = U Hu, has 35
elements. For v € Fs,, H, . has 3 elements : there are 3 (0,v)-isodual §-cyclic codes :

Hip = {X?+1,X?>+a"0 X +a'%X?>+ad° X +a°}, Houyg = {X?+a X +a X%+
a®, X% +a% X +a'}, Hos 1 = {X?+a®> X +a, X?+a'? X +a5 X? + a3}, Hareqg = {X2+
A X +a® X2 +a® X +a", X2 +a'?}, Hon g = {X?4+a° X +0a,X*+a% X% +a* X +a''},
Haro = { X241, X?+ X +a°, X?+a® X+a'"}, Heo 1 = {X?+a X+a*, X?+a'! X+a', X?+a"},
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Hos 1 ={X?+ad" X +a®, X?+a? X +a3, X2+ a3}, Hor s = {X?+a® X +a", X% +a'?, X% +
a® X +a%}, Heoqp = {X?+a" X +a", X? +a* X +a, X% +a%}, Hesq = {X2+1,X%+
X +a'% X% +a'® X +a°}, Haosq = {(X2+a" X +a*, X% +a% X%+ a® X +a}, Hesy =
{X2+a2 X+a8,X2+a7 X+a13,X2+a3}, Haz,l :{X2+a3 X+a77X2+a13 X+a2,X2+a12},
Hor1 ={X?’+a" X +0a,X?+a° X +a'', X% + a8}

We check that

U HpanHa) = | Hoe M) = {X2+ 1, X2 +0°, X* +0°, X* +a'%, X* +a},
AN v#V

HiaNHas 1N Hgr01 = U (Hy " Hyr NHyr ) = {X24+1, X% 40, X2 +a?®, X% +a'?, X2 +a°},
V#V/¢VI,
@ = U (Hl/7€ ﬂ HV',E m r)"[y//,6 ﬂ HV”/,e)-
U#U'#V”;ﬁv/”
In [5], a formula for the number of self-dual (0, €)-constacyclic codes of length n is given over

F,2 C F,n when €2 = 1. In what follows, we deduce from Proposition 5 the number of self-dual
(0, €)-constacyclic codes of length n over Fyn.

Proposition 6. Consider k € N*, n = 2k, e € {—1,1}, p a prime number and 0 : x +— 2P €
Aut(Fpn). If p =2, there are Hf;ll (p" + 1) self-dual 6-cyclic codes of length n over Fyn. If p # 2,
and if (—1)“72;16 = —1, there are 2 Hf;ll (p* +1) self-dual (0, €)-constacyclic codes of length n over
]F‘p"L .

Proof. Self-dual (0, €)-constacyclic codes are (6, 1)-isodual (6, €)-constacyclic codes. The result
follows from Proposition 5. O

Algorithm 2 (6, v)-isodual (6, €)-constacyclic codes of length n over Fn

Require: : k € N*, n = 2k, p, prime number, ¢ € {-1,1}, v € F}.
Ensure: : H, : the set of the skew check polynomials h of (0, v)-isodual (6, €)-constacyclic codes
of length n and dimension k over Fyn.
1. S« 0
2: for y in F}, such that 6%(u) + e = 0 do
30 Pp+ —epn(X™—¢)
4:  Construct the sequences («;, P;—1) for i = k,..., 1 such that

o X + o right-divides P;;

e P, ; is the quotient in the left-division of Q;_1 by ©*~*((X + «a;)*) where Q;_; is the
quotient in the right-division of P; by X + ay;

° POZ#/Hleai:V'

5. for each (aq,...,qar) do

6: S+ SU{X+a) - (X+ar)}
7. end for

8: end for

9: return S

Example 7. There are 3 self-dual 0-cyclic codes of length 4 over Fas, given in Example 6 by H1 1.
There are 15 self-dual 0-cyclic codes of length 6 over Fos = Fa(a) where a® 4+ a* +a® +a+1=0.
Their skew check polynomials are : X3+a*?X2+a®X +a®, X3+ X2 +a°X +a%%, X3 +0a%0 X2+
a®0 X +a®, X3+1, X3+a'% X2+a?° X +a?", X3+a* X240 X +a*®, X3+a'® X% +a'® X +a™,
X3+a21X2+a42X—|—1, X3+(L26X2+G4SX+@27, X3+a9X2+a9X+a27, X3+a42X2+a21X—|—1,
X3+a13 X2+a53 X—I—a45, X3+a38 X2+a58 X+a54, X3+X2+CL18 X+a9 andX3+X2—|—a36 X_i_alS.
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4 A construction of self-dual 0-cyclic codes over [,» which
are Gabidulin evaluation codes

We consider here a special subfamily of self-dual #-cyclic codes of length n over F,» which are in
fact Gabidulin evaluation codes and therefore Maximum Rank Distance (MRD) codes (see [12]
for the theory of MRD codes). In previous sections we have provided a construction of self-dual
codes based on the factorization of the skew check polynomials into the product of linear skew
polynomials. Here we change the point of view by writting the skew generator polynomials as
least common left multiples (lclm) of special linear skew polynomials, namely skew polynomials
of the form X — 6(a).

Definition 3. [12] Consider k <n € N*, p a prime number, 0 : x — 2P € Aut(Fpn), y1,...,Yn €
Fpn linearly independent over IF,,. The Gabidulin evaluation code of length n, dimension k and

support (Y1, -..,Yn) 18 the code with generator matriz
Y1 Y1 Yn
G- Q(Z:Jl) 0(y2) S 0(yn) (7
O ly) 0 M) . 0 (y)

The following Proposition 7 can be found in [9] (Proposition 3, part 1).

Proposition 7 (Proposition 3 of [9]). Consider k < n € N*, p a prime number, 0 : © — 2P €
Aut(Fpn), R = Fpn[X;0], o € Fpn, € = Ny(a). Assume that € = 1 and that 1,a, No(a),.. .,
N, —1(a) are linearly independent over F,. The 0-cyclic code of length n and skew generator
polynomial g = lelmo<;<g—1(X — 0%(v)) is the dual of the Gabidulin evaluation code of length n,
dimension k and support (1, a, Na(cv),. .., Np—1()).

Proof. Consider ¢ = (cg,...,¢pn—1) € Fpn. The word ¢ belongs to the f-cyclic code generated by
g if and only if for all 4 in {0,...,k — 1}, X — 6%(«) right-divides g. As the remainder in the
right division of ¢ by X — 6%(«) is Z;:& ¢jN; (0 () = Z;L:_Ol ¢j0'(N;(«)), we obtain that a check
matrix for the code is the matrix G given by (7) where y; = 1,92 = «, ..., yn = Np—1(@). O

According to Theorem 4.10 of [15], if a Gabidulin evaluation code of length 2k and dimension
k is self-dual then p = 3 (mod 4) and k is odd. In what follows we construct a family of self-dual
Gabidulin evaluation codes parameterized by an element « of Fyn.

Proposition 8. Consider k € N*, n = 2k, p a prime number, § : x — 2P € Aut(Fpn), R =
Fpn[X;60], o € Fpn such that Ny(o) = 1 and 1,0, Na(e),. .., Np—1(a) are linearly independent
over F,. The 0-cyclic code of length n and skew generator polynomial g = lelmo<i<p—1(X — 0% ()
is self-dual if and only if Y27~ Ni(o) 7" =0,v0 € {0,... k- 1}.

Proof. The code is self-dual if and only if the lines of G are pairwise orthogonal i.e. GGT =0
where G is the matrix defined by (7) with y1 = 1,92 = «, ..., yn = Np—1(a). O

Example 8. Forp =3 and k = 3, according to Proposition 5, there are 80 self-dual 8-cyclic codes
of length 6 over Fss. The polynomial system

ZZ:O Ni(a)2 =0
Z%:O Ni(a)4 =0
Zi:o Ni(a)m =0

has 18 solutions o : a%80,a%06 ¢378 436 124 ;8 648 126 (388 (216 ;42 (72 14 ;284 24 372

a*®. a9 and we get 18 self-dual 0-cyclic codes generated by the skew polynomials g = lclm(X —
a, X —0(a), X —6%(a)). These codes are self-dual Gabidulin evaluation codes (and therefore self-
dual MRD codes). For example, take o = a8, then g = llm(X — a, X — 0(a), X — 6%(a)) =
X3 +a'® X2 +a33X +a®?? generates a self-dual 0-cyclic code of length 6 which is the Gabidulin
evaluation code of dimension 3 and support (1,a, ..., N5(a)) = (1,a8,a3?, a'%, 3?0, a10).
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An open question is to determine the number of self-dual #-cyclic codes generated by g =
lelmo<i<kp—1(X — 0% () over Fpn with n = 2k. More generally, it could be interesting to construct
and count self-dual #-cyclic codes which are MRD.

5 Conclusion

This note was devoted to the construction of self-dual 0-constacyclic codes of length n over [Fpm
when m is equal to n and § is the Frobenius automorphism over Fy,». This work completes previous
works on self-dual §-constacyclic codes over Fpm when m = 1 (then 6 is the identity and codes are
classical constacyclic codes) and when m = 2. As a further work, it could be interesting to study
the cases when 2 < m < n and to have a more general classification only based on the order of
the automorphism 6 in Aut(F,n).
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