
HAL Id: hal-02904408
https://hal.science/hal-02904408

Submitted on 22 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Analysis for Shared Resources Effects with
Multi-Core Real-Time Systems

Julien Durand, Youcef Bouchebaba, Luca Santinelli

To cite this version:
Julien Durand, Youcef Bouchebaba, Luca Santinelli. Statistical Analysis for Shared Resources
Effects with Multi-Core Real-Time Systems. 13th IEEE International Symposium on Embed-
ded Multicore/Many-Core Systems-on-Chip, MCSoC 2019, Oct 2019, SINGAPOUR, Singapore.
�10.1109/MCSoC.2019.00058�. �hal-02904408�

https://hal.science/hal-02904408
https://hal.archives-ouvertes.fr


Statistical analysis for shared resources effects
with multi-core real-time systems

Julien Durand
P E&DS SE FR AET

CPT
Toulouse, France

julien.durand@continental-corporation.com

Youcef Bouchebaba, Luca Santinelli
DTIS

ONERA
Toulouse, France

{youcef.bouchebaba,luca.santinelli}@onera.fr

Abstract—Today’s multi-core and many-core COTS plat-
forms make available a large amount of computational re-
source for real-time applications. As they aim at increasing
performance for real-time, their challenges are the guarantees
for timing constraints. Real-time modeling and analysis are
thus facing shared resources, optimization mechanisms, and
sophisticated functionalities which all combine into complex
system dynamics that are extremely costly to characterize.
This paper proposes a measurement-based approach and a
statistical analysis applied to define average and worst-case
models to task executions under different possible execution
conditions. The framework is formalized and then used to
investigate different families of shared resources interference
effects occurring on multi-core platforms; such effects are
quantified with statistical metrics applied to measurements of
tasks execution times. The focus of the work is on effects due
to shared memories within the NXP T4240 multi-core platform
and the PikeOS hypervisor. A set of experiments is conducted
to validate the framework proposed.

I. INTRODUCTION AND MOTIVATION

The continuous quest for high performance is pushing
real-time embedded systems for implementations with multi-
core and many-core COTS platforms. Such platforms embed
shared memories and cache hierarchies, communication net-
works and DDR controllers, etc. which certainly improves
performance, but also makes more difficult guaranteeing
predictability.

Defining complete models of today’s real-time systems
is extremely complex or overly costly [1], [2]. Task execu-
tion times are largely affected by the variety of execution
conditions which can happen at runtime. The numerous
interference on shared resources may end up into difficult to
predict variations of tasks execution time, depending on the
actual execution condition and when the interference takes
place [3], [4]. Modeling interference effects and guarantee-
ing such epistemic variability [5] is the main challenge when
applying multi-core into real-time systems.

Figure 1 shows an example of a real-time application
executing on a multi-core platform. The maximum mea-
sured execution time of one of the application tasks is
plotted under different execution conditions, CaseXs. The

conditions are obtained varying the memory requirements of
the whole application, thus the effects of interference from
shared memory are considered. By increasing the memory
requirements, the interference increases and the maximum
measured execution time changes significantly e.g., caseF-
caseB where execution time increases 5 times for memory
requirement increase of 3.5 times: the impact of shared
resources on system performance and determinism cannot
be neglected.

Measurement-Based Probabilistic Timing Analysis
(MBPTA) [6], [7], [8], [9] is a probabilistic timing analysis
approach emerging as an alternative to the more classical
deterministic static timing analysis. MBPTA proposes to
estimate Worst-Case Execution Time (WCET) models from
measurements of execution time. For it, MBPTA does not
need a model of the platform and of its interactions [7], but
it infers empirical worst-case models from the measures of
the actual behaviors.

MBPTA aims at reducing pessimism of classical deter-
ministic WCETs with models that are closer to the nor-
mal/expected system behaviors [8]. That goal is achieved
with probabilistic models (probabilistic Worst-Case execu-
tion times - pWCETs) that are worst-case distributions able
to upper bounds task execution time under every possible
execution conditions. The main problem of MBPTA remains
guaranteeing exploration of every possible execution condi-
tions such that the estimated WCETs can be guaranteed safe
worst case models.
Contributions: With this paper we propose a timing analy-
sis, based on measurements and statistics, which is able to
develop average and worst-case models for task execution
time. The use of statistics is to have a rational and formal set
of metrics to derive statistical models for task executions; the
statistical representations developed are to enhance knowl-
edge of multi-core system dynamics. We focus on the effects
that shared memories have on execution time within multi-
core platforms, i.e. interference. The statistical analysis
proposed quantifies the interference effects under different
execution conditions, and the interference representations
provided can be later applied into development guidelines



Figure 1: Task maximum execution time vs memory require-
ments.

to enforce determinism as well as to improve performance.
The statistical approach we propose does not rely on sys-
tem models, as for static timing analyses [10]; thus, it
will never be able to provide safety guarantees to the
representations obtained. Instead, it relies on easy-to-obtain
measurements, and it builds accurate average/nominal and
worst-cases statistical models of tasks executions that can
be applied during the design and development of multi-
core embedded systems. For average modeling, this paper
proposes the theory which is then implemented within the
MBPTA tool DIAGXTRM; for the worst-case modeling, the
paper applies the theory already developed in [11], and
also implemented in DIAGXTRM. The analysis is validated
with an experimental setup on the NXP T4240 multi-core
running the PikeOS hypervisor. Interference are examined
by characterizing the impact of tasks placement e.g., use
of multiple CPUs, and partitioning capabilities. Also, a
comparison with related work is carried out.
Organization of the paper: Section II presents the sta-
tistical analysis we propose with notions and the metrics
applied. Section III specifies hardware and software set
up for the multi-core case study considered. Section IV
shows some modeling results on interference generated by
the concurrent use of shared resource. It is detailed the
statistical analysis for memory utilization under different
execution conditions. Section V compares our results with
related work. Section VI is for conclusions and future work.

II. STATISTICAL ANALYSIS

Today’s multi-core and many-core real-time systems ex-
ploit variable behavior due to complex interactions happen-
ing at runtime, and due to different possible input conditions.
The task execution time can vary from one execution to
another, and the objective of MBPTA, and more in general
of statistical approaches to timing analysis, is to model such
epistemic variability [5].

The execution of a real-time task τ can be modeled with
the Execution Time (ET) which can be expressed by the
number of processor cycles from the beginning to the end
of its execution. Each instance of τ can take its own ET,

depending on the events happening at runtime before and
during the task execution.

A trace with T = {Cj |j ∈ [1, n]} is a collection of ET
measurements Cj ; the Execution Time Profile (ETP) C of
a task is the discrete random variable defined on the finite
support ΩC of all possible ET values C(k) for the task and
task instances executions. ΩC =

(
C(k)

)
k∈[1,N ]

and C(k) ∈
T . n is the size of the trace while N is the number of
different measured ETs.

Assuming the ETP C as discrete distribution, the probabil-
ity distribution function (pdf) pdfC describes the probability
of happening of certain events Ci from the random variable
C, P (C = Ci). cdfC denotes the cumulative distribution
function (cdf) representation of C, cdfC(Ci) = P (C ≤
Ci) =

∑Ci

0 pdfC(x), while the inverse cumulative distri-
bution function (icdf) icdfC(Ci) outlines the exceedance
thresholds, icdfC(Ci) = P (C ≥ Ci) as the probability of
having execution time greater than Ci, icdfC(Ci) = 1 −∑Ci

0 pdfC(x). As a reminder, the definition of a distribution
is such that

∑∞
0 pdfC(x) = 1.

The pWCET C of a task τ is defined as the worst-
case estimate distribution that upper-bounds any possible
execution time the task can exhibit [12]. Ci is composed of
multiple values, each with a probability associated1. Those
values are WCET thresholds, and the probability associated
to each of them is the probability/confidence for that value
of being task WCET: the probability for that value not being
overcome at runtime.

pWCETs and WCET thresholds are generalization of clas-
sical deterministic WCETs. Having multiple WCET thresh-
olds does not mean that a task has or need multiple WCETs;
instead, they allow a more fine grained representation of
what happens to task worst-case execution conditions: the
thresholds parametrize execution conditions, while proba-
bilities quantifies impacts of such execution conditions on
task behavior.

Assuming the pWCET C as continuous distribution, the
pdf pdfC it is such that P (C1 ≤ C ≤ C2) =

∫ C2

C1
pdfCi(x)dx

and
∫∞
0

pdfCi(x)dx = 1; the cdf representation is such that
cdfC(C) = P (C ≤ C) =

∫ C

0
pdfC(x)dx; the icdf represen-

tation is icdfC(C) = P (C ≥ C) = 1−
∫ C

0
pdfC(x)dx.

To note that ETPs are obtained measuring task ET, thus
are discrete empirical distributions from system that have
discrete time evolution, i.e. ticks. Instead, pWCETs are
estimated from MBPTA approaches and Extreme Value
Theory (EVT) statistics, thus are continuous distributions.
In this work, the MBPTA version applied is the one from
DIAGXTRM [11].

1In the following, calligraphic letters are used to represent distributions or
traces, while non-calligraphic letters are for scalars or deterministic values.



A. Average modeling

Some statistics are used to characterize the average be-
havior of task executions; they apply to T and C.
Expected behavior. The mean µ(T )

def
= 1

n

∑n
j=1 Cj , is

the mean value of a trace T and its associated discrete
empirical random variable C. µ contributes to define the
nominal behavior of a trace. The moving average µ(T , k)
applied here is defined as an equally weighted average of
the sequence of k values, with k ∈ [1, n]. Mode m̄(T ) is
the value that appears most often in T ; median m̃(T ) is
the value separating the higher half from the lower half of
a data sample T .
Variability. the standard deviation σ(T )

def
=√

1
n

∑n
j=1 (Ci − µ)

2, contributes defining measurements
variability around the nominal behavior µ.
Extreme behaviors. The minimum min(T )

def
=

min1≤j≤n(Cj) defines the minimum measurement in
T ; the maximum max(T )

def
= max1≤j≤n(Cj) defines

the maximum measurement in T . min and max are
extreme cases of the measured behavior. Also, we apply
the quantiles in order to have a better representation of the
worst-case measurements. In particular, the quantiles aims
at detailing the trace in specific range of behaviors toward
the tail of the C distribution. We use the quantile at 0.8,
D8, and the quantile at 0.9, D9 to focus on the ETP tail.
Together with σ, D8 and D9 help describing ET variability.

The analysis is conceived in a compositional manner such
that other metrics can and will be added in future work
to help better defining average models. All the metrics
proposed are implemented into DIAGXTRM. Figure 2 is
an example of average statistics applied to characterize a
distribution of measurements.

B. Trends with time series and worst-case modeling

Traces of measurements can be seen as time series since
the ETs taken and kept in time order. From ET time series
it is possible to extract properties which tells about the
behavior of the system under specific execution conditions.
Those properties are used by DIAGXTRMfor the applicability
of the EVT, and in this work, they are applied for the first
time to represent real-time systems dynamics.
Stationarity and identical distribution hypothesis - h1.1
and h1.2. A trace T is strictly stationary if every subset
of ETs has an ETP which follows the same probabilistic
law. Statistical tests and moving average metrics are applied
for checking if T has not a non-null deterministic trend
and has not a non-null random walk, thus it follows a
well defined reference distribution law. Stationarity is also a
necessary condition for the identical distribution hypothesis:
measurements are identically distributed from the same
probabilistic law. For the stationary and identical distribution
hypotheses, the KPSS test [11] is applied.

Independence - h2.1 and h2.2. The notion of statistical
dependence could instantiate into short range dependence
or long range dependence. The short range independence
hypothesis h2,1, equivalently local independence, focuses
on the relationship between close-in-time measurements, i.e.
close-by within the trace. It is for verifying if there are
dependence effects which shortly affect task executions e.g.,
locality from cache memories. A valuable short range de-
pendence test applied here is the Brock Dechert Scheinkman
test [11].
The long range independence h2,2, equivalently extremal
independence, focuses on the relationship between far-in-
time measurements: it is used to verify if there exist trends
between measurements separated in time. Statistical esti-
mators exist to define how far away are the dependent
measurements or the distance between dependent execution
times measurements. Possible estimators comes from [11].
Maximum domain of attraction (MDA) - h3. MDA applies
to evaluate if the input ETPs – T or C – belong to the domain
of attraction of the EVT possible resulting distributions. This
is applied to validate the reliability of the resulting pWCET
model of the worst-case behavior. The Cramer Von Mises
criterion (CVM) detects whether the measurements come
from a chosen distribution, thus it verifies the validity of
the MDA hypothesis [11]. The MDA will be accurately
developed in the future to derive from it, and from the
distribution representing ETPs, assumptions on the system
behavior.
Convergence - h4. The convergence hypothesis h4 defines
if the input trace T is representative of all the events that
can happen to the system under the scenario considered. In
particular, it defines if the n measurements taken are enough,
and that by adding more measurements the empirical distri-
bution ETP does not change; the estimator used for h4 is
the continuous rank probability score [11].

Figure 3 exhibits three examples of properties for ET
time series which does not allow EVT application, but also
that describe, and quantify, the system execution behaviors.
In Figure 3a is represented the non-stationarity case with
changing moving average (continuous red line); in Figure 3b
the local dependence with clusters of large values; in Fig-
ure 3c the extreme dependence with far away clusters of
large values that repeats.

The EVT allows estimating uncertainties on the rare
events, i.e. where the worst-cases are. It is then the statistic
applied to compute pWCET estimates C [6], [7], [8].

The MBPTA version that DIAGXTRMapplies is the
so called ”generalized EVT” or ”weak independence
EVT” [11], [6]. In it, the EVT is applicable also in case
of certain cases of light dependence (local or extreme de-
pendence) within the time series; the hypotheses that applies
are: {h1,1, (h2,1 ∨ h2,2), h3}.

In DIAGXTRM, the fuzzy logic defines the confidence
level (cl) of each hypothesis [11], [6]; the EVT is applicable



Figure 2: ET measurements and statistics that apply to those
for average modeling.

(a) h1,1 (b) h2,1 (c) h2,2

Figure 3: Time series and patterns: non-stationarity, cluster-
ing and extreme dependence.

iff:

{cl1,1 ≥ 1} ∧ ({cl2,1 ≥ 1} ∨ ({cl2,2 ≥ 1}) ∧ {cl3 ≥ 1};

the greater each confidence level, the more confidence there
is on the obtained pWCET to be a safe pWCET estimate.
h1,2 (more constrained version of stationarity h1,1) and h4,
hence cl1,2 and cl4, are not in the classical nor in the
generalized EVT definition. They are used hereby to extract
properties from inputs time series.

In Figure 4 is an example of pWCET estimates from
the input measurements, and the hypothesis testing for EVT
applicability with the fuzzy logic. In Figure 4a it is shown
that the MBPTA is able to accurately upper bound the ETPs
under certain execution conditions; values are the ET in
cycles (with k the number of values above a threshold u) and
the risk probability is the inverse cumulative probability. In
Figure 4b all the hypotheses tested passes, thus the pWCET
obtained has good quality and good confidence to be the
pWCET.

To note that the pWCET obtained with MBPTA ap-
proaches is the probabilistic worst-case execution time only
for the scenario considered by the measurements.

III. EXPERIMENTAL SETUP

The test case we apply is composed of the NXP T4240
multi-core platform running the PikeOS operating system.

The NXP QorIQ R© T4240-QDS is composed of twelve
cores grouped into three clusters [13]. The T4240 has three
hierarchical levels of cache such that each processor access
its own cache level L1 data of 32 KB size and instruction of
32 KB size, and the processors within the same cluster share
cache levels L2 and L3, of size 2MB and 512KB respectively
and RAM memory controller. The RAM is DDR of size

(a) Worst-case modeling in icdf
representation

(b) Trend verification and hy-
pothesis testing with the spyder-
plot representation

Figure 4: Worst-case modeling from measurements and trend
verification with DIAGXTRM.

Figure 5: Three scenarios – isolation, single-cluster, and
multi-cluster – with shared resource utilization and and
interference sources.

8GB per cluster, and is required for memory needs higher
than about 2.5MB per processor (at most for full L1 and L2
caches usage). A central bus Corenet connects each cluster’s
L2 cache to its related L3 cache; this last being connected
to one of the three DDR controller.

PikeOS 4.2 is the real-time operating system running
onto the platform considered here. PikeOS is based on
a preemptive hypervisor which offers a separation kernel.
Among many key features of PikeOS, one interesting is the
configuration of partitions with time and hardware resources,
in order to separate different tasks in time, and resources
in space. PikeOS version 4.2 applied here, compared to
version 4.1, offers a multi-processor schedule table able to
ensure parallelism between processors with a different time
partition for each. The time partitions considered have period
of 10ms. L3 cache is inhibited by default with PikeOS 4.2,
so we do not consider L3 cache interference effects. In addi-
tion, PikeOS offers an Eclipse-based integrated development
environment named CODEO, the version of which is 6.2 for
PikeOS 4.2. The development language applied is C.



With PikeOS, a high priority partition Service is ex-
ecuted on all cores by default. The partition is required to
execute drivers and different tools, such as target monitoring,
remote application deployment, or timing analysis. Target
monitoring allows to obtain an history/log comparable to
in-circuit debuggers, but with intrusion from read/write
memory and core registers.

Limitations from PikeOS 4.2 multi-core schedule table are
that in order to partition core m, it requires to partition each
core with at least one task. To comply with that, we have
created a task MX, named ”gap task” which has a minimal
footprint in memory consisting on calling the sleep function
sleep().

A. Real-time application

In the real-time application implemented, we distinguish
between Tasks (T) and Interfering (I) tasks. T task is
the part of the application under observation; I tasks are
concurrently run with T, they are not observed, and they
make interference to T tasks with shared memory.

To implement T and I tasks we use the code of an
algorithm which relies on writing and reading into two
arrays of equal size repeated in a loop, i.e. periodic tasks.
The arrays size is the parameter through which changing
the memory requirements of the tasks, and thus of the
application. The memory footprint of each task is mostly
due to data: data cache is mostly solicited.

Each task is allocated on a different core, thus preventing
preemption. At each loop of writing and reading of arrays,
the ET of T is measured via a gettime() function. The
measurement is a sample of the trace T printed on the serial
port output. 5000 samples/measurements per trace is enough
to capture all the behaviors. This has been proved by the
convergence hypothesis testing h4. After each trace, config-
uration is changed through modification of T and/or Is arrays
size. So as to guarantee a homogeneous interference from I
tasks, they always start executing the algorithm before T, and
always end after T, which meanwhile waits with a sleep()
function. Start/end synchronization is done through a global
variable flag. The first measurements are filtered out of the
trace in order to ensure that each sample is measured in
similar condition, thus enforcing representativity.

B. Memory requirements and execution scenarios

The interference between tasks from shared memory
is obtained changing memory requirement and triggering
data transfer through all the memory hierarchy: data are
sometimes only transferred throughout the core – L1 caches,
sometimes across the same cluster (intra-cluster) – L2 cache,
and sometimes across the platform (inter-cluster) – Corenet
bus, DDR controller.

We define memory requirements cases with two parame-
ters NumT and NumI, CaseNumT-NumI: NumT corresponds
to the size of arrays of T task, while NumI correspond to the

size I tasks composing the application. The correspondence
between num (numT or NumI) and the real size s in kB of
the arrays is such that s = 21+num. Thus, the size of each
array ranges from 4kB (Case1) to 4Mb (Case11), in order
to cover different cache levels. For instance, case Case6-8
refers to 128kB for T, and 512kB for the single or multiple
Is.

Together with memory requirements, we impose execu-
tion scenarios. They define task placement, and together with
memory requirements cases, they define which part of the
memory is impacting interference.

We investigate scenarios: 1) SM1 in which only task T0
executes on core 0 - baseline scenario; 2) SM2 in which task
T1 executed on core 1 and task I0 executes on core 0; 3)
SM3 with three tasks executing - T1 on core 1, I0 on core
0, and I2 on core 2; 4) SM4 with four task executing in the
4 core composing a cluster, T1 I0, I2, and I3.
The scenario for multi-cluster case investigated is SMC1,
which has 2 different tasks on two core of two different
clusters.

With cache disabled, inhibited by PikeOS, we study
scenarios: 1) SMnC1 as the scenario equivalent of SM1; 2)
SMnC2 with two tasks executing in separate cores T1 and
I0, equivalent to SM2; 3) SMnC3 for three tasks executing,
equivalent to SM2; 4) SMnC4 with four tasks executing, each
in a separate core of the same cluster, equivalent to SM4.
Also, the multi-cluster scenario investigated is SMC1nC1
with 2 different tasks each in different core of two different
clusters. Figure 5 depicts 3 scenarios with task mapping and
resource usage for cores, clusters and DDR. In it: isolation
which is SM1 or SMnC1 depending on the cache being
enabled or not; single-cluster for SM2, SM3, SM4, SMnC2,
SMnC3, or SMnC4; multi-cluster for SMC1 or SMCnC1.

The task chosen are representative of a realistic real-
time application with strong memory usage; the scenarios
considered, and the platform are representative of realistic
today’s real-time system implementations with multi-core
and with multiple execution conditions.

IV. MEMORY EFFECT RESULTS

A. Memory interference with cache enabled

The effects of increasing memory requirements are de-
composed considering a single-core scenario (isolation),
multi-core scenarios (single-cluster), and multi-cluster sce-
narios.
Single-cluster scenarios. This part is about adding I tasks
to the same cluster where one T task is running, and
to analyze the evolution of T task’s ETs. With it, we
investigate interference from L1 and L2 cache, i.e. intra-
cluster interference. In particular, we consider scenarios: 1)
SM1, SM2, SM3, and SM4; SM1 (isolation) is the baseline
for scenario comparisons.
The results of average statistical analysis show that with
low memory requirement there is no variation of the maxi-



(a) max (b) σ
Figure 6: ET max and σ vs. memory requirements in SM2
from Case9-1 on.

Figure 7: max, D8, D9, median, µ, and mode for SM4 and
from Case9-1 on.

mum measured nor variability. The determinism is intrinsic
to the behavior of the task, since there is no significant
interference. Nonetheless, the statistical analysis with its
metrics, guarantees such determinism with accurate mod-
els. By increasing memory requirements, some effects are
captured by the metrics proposed. In Figure 6 scenarios
are compared with respectively max and σ metrics applied.
Some variability manifests for large memory requirements,
while max increases are step-wise, as the memory require-
ments reach the size of cache levels. In here there is not
intrinsic determinism, but the statistical analysis makes it
with average and worst-case representations.
The cache never compromises determinism since: 1) for low
memory requirements the system behavior is intrinsically
deterministic, i.e. it has no variability or very low variabil-
ity; 2) for large memory requirements in which variability
appears, it is possible to derive accurate average and worst-
case probabilistic models which guarantee determinism.
How the metrics for average analysis react to memory
requirement changes is represented in Figure 7. A future
analysis of that will contribute to define metrics most
sensitive to changes, thus creating monitoring tools.
In Figure 8a is represented the trace for Case6-1 (all the
cases with low memory requirement have similar behavior):
for Case6-1 the EVT does not apply because there is not
enough variability. But as soon as the variability increases
(sufficient level of variability or EVT applicability evaluated
with {h1,1, h1,2, h2,1, h2,2, h3, h4}), i.e. Figure 8b, Figure 8c
and Figure 8d, the EVT applies with large confidence, and
the pWCET estimates obtained are accurate in modeling

tasks worst-case behaviors. The results of EVT applicability
with DIAGXTRM, accurate pWCET models and good confi-
dence are visible on Figure 9 and Figure 10. The pWCET
representation is plotted with the icdf and logarithmic scale.
As an example, with Case10-11 and Figure 10b, the sta-
tionarity and identical distribution is largely guaranteed
(cl1,1 = 4), the independence is minimal but enough to be
guaranteed (cl2,2 = 1 – only extremal independence exists),
and the MDA is maximal (cl3 = 4).
Multi-cluster scenarios. Here, the scenarios at study are:
SMC1, SMC2, SMC3, and SMC4; SM1 (isolation) remains
the baseline for comparisons. The separation between L2
caches, DDR memory and controller of the different clusters
is now observed and analyzed. With multi-cluster scenarios,
the additional interference applied through the use and band-
width limitation of the Corenet, i.e. inter-cluster interference,
is quantified.
Figure 6 shows the comparison of SMC1 with other single-
cluster scenarios; the results, both in terms of max and σ
are comparable with SM2 and SM3.
Superposition effect. With SMC4, we also study the su-
perposition of intra- and inter-cluster interference effects,
see Figure 6a, and Figure 6b. SMC4 is built such that
intra-cluster interference is similar to SM4 and inter-cluster
interference is similar to SMC3. Intra- and inter-cluster inter-
ference are observable by the increase in ET they produce.
We verify if increases from both interference sum up as if
they were independent. With max, this is true for some cases
e.g., Case9-9 on, but still a bit inferior to the independent
summation. The total effect is on average 11.3% less the
independent summation of effects. This is also the case for
σ. We prove that intra- and inter-cluster interference are not
independent; this is explained by the fact that intra-cluster
interference requires access to DDR via Corenet.

(a) Case6-1
under SM2

(b) Case9-10
under SM2

(c) Case11-11
under SM2

(d) Case11-10
under SMC1

Figure 8: Traces from different cases and different scenarios.

(a) Case9-10 (b) Case10-11 (c) Case11-5 (d) Case11-10
Figure 9: pWCET of different cases under SM2.



(a) Case9-10 (b) Case10-11 (c) Case11-5 (d) Case11-10
Figure 10: pWCET reliability different cases under SM2
scenario.

(a) Average model compari-
son (b) pWCET comparison
Figure 11: Average models and pWCET models comparison
of Case11-10 under different scenarios.

Figure 11 compares average and worst-case models for
Case10-11 under scenarios SM2, SM4, and SMC1. The
results from SM2 and SMC1 are comparable, thus the in-
terference is comparable; for SM4 there is more variability,
larger maximum, and all the other metrics increase due to
a larger interference from larger memory requirements. To
note that the SM2 resulting distribution is a ”heavy tail”
distribution. This result from the input best fit procedure
that the EVT applies; the MDA hypothesis supports this
and the resulting distribution best represents the behavior
of the system under the scenario. The average comparison
is made with a box plot representation, while the pWCET
representation is with the icdf and logarithmic scale.

Interference effects from cache memory have to be inves-
tigated, since they affect task behavior (on average and for
worst-cases) even with hypervisors executing, see Figure 1
which is an example of the investigation made here, Figure 6,
and Figure 9. In certain cases, the effects can be neglected, in
other cases they need to be taken into account, and different
task placements can reduce them.

B. Memory interference with cache disabled

The statistical analysis is also applied with cache mem-
ories disabled. In these scenarios, the CPUs directly access
the DDR memory, and interference effect of the Corenet
and of DDR controllers are expected to happen with less
memory requirements than in case of cache memories. We

study scenarios SMnc1, SMnc2, SMnc3, and SMnc4, with
SM1 used as reference.
Single-core scenario: SMnC1. As expected, the single-core
scenario without cache memory has worse metrics than
with cache memories activated, see Figure 12 with the
comparisons of max and σ of SMnC1 with other scenarios
and different memory requirements. Also, the results are
generally worse than scenarios SM3 and SM4, see Figure 6
for comparisons. Comparing SM1 and SMnC1 in terms of
σ shows that for high memory requirements e.g., larger
than Case7-1, the difference is of only 33 times in favor
of SM1. On the contrary, with light memory requirements
(smaller than Case6-1), the difference is quickly growing up
to 366 more σ without cache. The reason is that with cache
memories, theses cases were benefiting a lot from the use
of L1 and L2. Such benefit has disappeared here.
Multi-core scenarios: SMnC2, SMnC3. As expected, the
more I tasks concurrently run with T, the worse the metrics
are, as seen on Figure 12 and Figure 13. In particular, max
is greatly impacted by memory needs, and that depends on
both on T and Is needs. This was not the case with cache
memory, where increases of 100% in Is requirements would
only grow max of 19% for scenario SM4 and Case11-10,
for example.
Also, adding I tasks while inhibiting cache memories
largely increases the variability, primarily checked with σ.
The exponential increase of σ with memory requirements,
in particular with I tasks, can be interpreted as the effect of
both intra-cluster and inter-cluster interference.
Multi-cluster scenarios: SMnC4. SMnc4 represents the
multi-cluster case. Figure 12 shows the metrics for SMnC4
compared to SMnC2 and SMnc1. max, and σ are growing
together with T memory requirements.
When T memory requirements increase, the decrease oc-
curs for smaller I memory requirements. This means that
for small T and I memory requirements, T and I are
already interfering even on different clusters. Thus, they
both try to access DDR and experience delay caused by
cache inhibition. We interpret this delay as attempts to
access to inhibited cache (equivalent to cache misses). Also,
frequently accessing small memory region in DDR, i.e. small
memory requirements, may be more expensive than rarely
accessing big region. On the other hand, when the T memory
requirements increase, then it switches to a default use of the
DDR with less of those two possible sources of delay. There
is also not enough Corenet use to produce notable inter-
cluster interference. Finally, scenario SMnC4 is reaching
scenario SMnC1 because there is no intra-cluster interference
in both scenarios.

With multi-core platforms and cache disabled, the system
is not necessarily deterministic: the variability is evident due
to interference and concurrent access to shared memory.
The system becomes deterministic with accurate pWCET
models, which is possible with the analysis we propose.



(a) max (b) σ

Figure 12: ET max, µ, and σ vs. memory requirements in
different scenarios from Case9-1 on.

Figure 13: max, D8, D9, median, µ, and mode for SMnC3.

In Figure 14 two cases are represented under the same
scenario SMnC2, in which the EVT has been applied and
accurate pWCET estimate has been obtained. The pWCET
representations are in the icdf form and logarithmic scale.
Contrary-wise to the cases with cache memory, already with
lower memory requirements e.g., Case2-2, the EVT can be
applied: there is enough variability for that, and all the ap-
plicability hypotheses successfully pass their tests. Without
cache, the system becomes intrinsically non-deterministic
already with low memory requirements. Nonetheless, the
statistical analysis we propose is able to infer average and
worst-case models and to make the system deterministic out
of those.

(a) Case2-2 (b) Case11-10 (c) Case2-2 (d) Case11-10
Figure 14: Trace and pWCET estimates of different cases
under SMnC2 scenario.

As verified by the statistical analysis, not using the cache
does not increase system determinism. This is especially true
with application heavily memory oriented and with multi-
core platform. Also in this case the statistical analysis is
required to have accurate average and worst-case models in
order to make determinism.

C. Comparing cache and no cache performance

With the statistical analysis we propose, it is relatively
easy to extract accurate average and worst-case models
with and without cache. With it, it is possible quantify
performance changes from the presence of cache to the
absence of it. Also, we verify that in both cases, determinism
can be achieved, and how.

The average models show that without cache, the variabil-
ity becomes important since low memory requirements; with
cache there are shaping and locality effects in place which
reduce variability; low memory requirements enforce intrin-
sic determinism e.g., low variability, strong dependence. The
stationarity is always ensured, not because of the application
implemented, but because of the unpredictability in multi-
core runtime executions.

With cache, few are the cases with variability, but for
those the EVT can be applied and pWCETs can be com-
puted: determinism can be achieved with them. Without
cache, to all cases and scenarios it is possible to apply the
EVT and to derive accurate pWCETs: determinism can be
achieved with them.

In Figure 15 and Figure 16 are compared cases with
and without cache by increasing memory requirements.
With both max and σ statistics, there are evident linear
correlations between both max and σ and the memory
requirements. In particular, with and without cache there are
two linear correlation behaviors: for CasesX-11 and for the
others. Future work will be devoted to accurately quantify
the correlation with case-by-case investigations, correlation
tests, and adding other parameters to be measured.

Also, we detail a limit case, i.e. Case7-11 under scenario
SM2 and SMnC2. Under SM2 there is not enough variability
(intrinsic determinism), thus the EVT cannot apply. In
particular, it cannot apply because of a strong dependence
between ET measurements (h2,1 nor h2,2 satisfied). The
statistical analysis quantifies and guarantees that. Under
SMnC2 instead, there is enough variability and independence
such that the EVT can be applied, and an accurate pWCET
model can be obtained.

Much more experiments and results are
available in a technical report and at
https://forge.onera.fr/projects/diagxtrm2.

V. RELATED WORK

The way storage resources e.g., cache, and bandwidth
resources e.g., buses, can improve or degrade multi-core
performance is studied in [14]. In [3] it is studied maximum
interference in buses, depending on the bus arbiter which
goes along with our notion of intra- and inter-cluster inter-
ference. [15] targets the decrease of performance caused by
co-running tasks, and how to compute safe bounds on this
decrease. This goes in line with our analysis of interference
effect from different scenarios, and the need to account for
parameters such as placements of I tasks.



Figure 15: ET max vs. memory re-
quirements for SM2 and SMnC2.

Figure 16: ET σ vs. memory re-
quirements for SM2 and SMnC2 from
Case9-1 on.

(a) SM2 (b) SM2 (c) SMnC2 (d) SMnC2

Figure 17: Traces and spyder plots for Case7-11 in different
conditions.

[16] is a work about contention-mitigating techniques for
shared resources only using scheduling. In our case, schedul-
ing is not part of the study but it will be addressed in future
works by executing more than 1 task per core and including
multi-core scheduling in order to identify and investigate
other sources of interference. Recent research trends are
extending timing analysis with incremental hypotheses [17],
and interference analysis for certification purposes [18].
Our work differentiates from that since we propose first
to quantify scenarios and interference effects, and if not
possible to derive reliable models. Then countermeasures
can be taken in order to simplify system behavior and reduce

interference.
Previous researches agree that cache memories have much

faster access time than main memories. Cache performance
measurement and metrics such as in [19], [20], [21] indicate
bandwidth improvement of about 2 times with L1 and L2
caches. In our case, we were able to prove that ET is
about 23 times smaller for single-core scenario with L1
and L2 than without cache. Moreover, our analysis is able
to extract efficient average and worst-case models in every
configuration tested.

In [22] it is studied the notion of hypervisor on embedded
avionic systems to improve determinism; shortcomings of
virtualization are addressed in [23]. [24] presents a safety
process to analyze multi-core interference, based on a parti-
tioning process. Our work does not go along that direction
yet. We decided to first develop a statistical analysis frame-
work based on measurements, then to apply it for modeling
interference effects. We plan to apply the same framework
to study hypervisors and real-time operating systems and
verifying their safety in partitioning.

Measurement-based approaches such as [25] or [26] focus
on guaranteeing worst-case models with input coverage. In
particular, [26] is about improving execution time bounds
of multi-core platform, by taking into account contention
requests of co-running tasks on a shared resource. Instead,
our objective is to establish confident average models and
confident pWCETs only for the measurements obtained,
thus under the conditions considered and not others. Recent
timing analysis approaches are mixing measurement-based
and static timing analysis approaches to leverage qualities
of both and to derive more accurate worst-case models
for multi-core platforms [27]. Our approach can perfectly
cope with the new hybrid timing analysis paradigm, and
will benefit from it: basic block can be inferred and more
accurate measurements of those can be carried out.

VI. CONCLUSION

This work defines the basics for the statistical analysis of
task execution time measurements. Statistical metrics (for
average and worst-case) are applied on trace of execution
time measurements in order to characterize task execution
behavior under different conditions. The probabilistic repre-
sentations are used to characterize interference effects from
shared memory. An exhaustive experimental evaluation is
made together with some initial guidelines for predictable
development of multi-core real-time embedded systems.

Future work will consist in developing a measurement
framework to be minimal intrusive. It will be used in the fu-
ture to measure other system parameters e.g., cache misses,
and include them all in the statistical analysis. Moreover, we
intend to apply the statistical analysis to other realistic real-
time applications, to study other-than-memory interference
sources, to characterize cache-coherence methods, or to
study different bus access policies: interference effects and



policies to mitigate them will be investigated. Future work
will also include the comparison between real-time operating
system/hypervisors to investigate their isolation properties or
the interference they bring to task executions.
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