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ABSTRACT:  

This paper addresses the topic of multi-disciplinary 

analysis (MDA) applied to hybrid electric aircraft 

(HEA) design focusing on the analysis of multi-

fidelity models for hybrid electric powertrain design. 

The motivation behind this work is the retrofit of a 

turboprop aircraft with hybrid electric propulsion 

system. An adapted MDA for multi-fidelity 

conceptual aircraft design is set in place for the 

evaluation of the aircraft performance with a hybrid 

electric propulsion architecture. For the gas turbine 

system, high fidelity data have been used to 

develop multi-fidelity models with different levels of 

detail and complexity. These models have been 

integrated into the MDA to evaluate the 

performance of the vehicle for a given mission. Fuel 

consumption is the main metric used to assess the 

aircraft performance in the presence of uncertainty 

introduced on each propulsion model.    

1. INTRODUCTION 

Aviation currently accounts for around 13% of 

transport related emissions and around 2% of global 

greenhouse gases [3], however this number is 

expected to rise significantly considering the 

increasing air transportation demand [1,2]. The 

European Union Commission together with aviation 

industry players agreed on very ambitious goals to 

reduce aircraft related emissions on the long term. 

In “Flightpath 2050” [4], the targets for CO2, NOx 

and perceived noise reduction have been set 

respectively to -75%, -90% and -65% relatively to a 

reference emission scenario in the year 2000. This 

challenge to reduce significantly the environmental 

impact of future aircraft requires innovative 

approaches in propulsion technologies and aircraft 

designs. In recent years, there has been increased 

attention towards hybrid electric vehicles; therefore, 

within the context of this study, hybrid electric 

propulsion technologies are investigated to assess 

the potential CO2 emissions reduction.  

However, the adoption of alternative power sources 

introduces new challenges at all stages of aircraft 

design from the conceptual to the detailed design 

phase. Conventionally, overall aircraft design (OAD) 

relies on well-established processes and equations 

that have been derived from the knowledge and the 

experience coming from existing aircraft and 

previous designs. Therefore, the introduction of a 

completely new technology raises challenges in the 

design of the aircraft inherent to the lack of data and 

information about existing aircraft. At the conceptual 

design stage, this lack of knowledge is addressed 

by developing and integrating into the design 

process new evaluation methods and models, 

which are able to predict the performance and the 

behavior of the technology we want to investigate.  

The main activity of the conceptual phase is the 

design space exploration of different overall aircraft 
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concepts in order to select the most promising 

solutions and discard the configurations that are not 

feasible or not interesting. However, as for each 

configuration different levels of information or 

different models will be required, there is a true 

challenge in having a fair and reliable comparison of 

the results. In this paper, this challenge has been 

addressed by taking into account the modeling 

uncertainty associated to the outputs of each 

discipline due to model assumptions, numerical 

approximations as well as imprecise model 

parameters [23]. By propagating the uncertainties 

through the entire process up to the final outputs of 

the MDA (e.g. fuel burn, emissions, take-off weight), 

the comparison of different aircraft design 

configurations will not be based only on absolute 

values of the chosen performance metrics, but will 

also rely on information about the uncertainty 

associated to these results.  

The baseline chosen for this work is the ATR42, a 

regional 48 seat turboprop aircraft (see Fig. 1). This 

type of aircraft was chosen because its typical flight 

distances, speeds and weights imply energy and 

power requirements that are limited compared to 

short-to-medium-haul jet aircraft, thus hybrid 

propulsion's viability may be proven even with short-

term previsions for energy storage and motor power 

densities. 

Figure 1: ATR 42 baseline aircraft 

Therefore, the retrofit of the ATR42 with hybrid 

electric propulsion system will be analyzed and its 

impact on overall aircraft performance will be 

compared to the baseline aircraft. However, before 

that, a comparative study of different gas turbine 

models has been performed in order to determine 

the most suitable model to reduce modeling 

uncertainties. Since the objective of this study is not 

the assessment of the potential emissions reduction 

of the hybrid electric version of the ATR42, only one 

configuration is presented among the potential 

architectures for hybrid electric propulsion (shown in 

Fig. 2). The main aim of the study is to show how 

the choice of the fidelity level of the models may 

affect the results, potentially leading to erroneous 

conclusions.  

 

Figure 2: Overview of the potential hybrid electric 

architectures to be investigated 

In section 2, the parallel hybrid electric aircraft 

(HEA) configuration chosen for this study is 

presented. The propulsive architecture comprising 

a conventional gas turbine and a fuel cell for the 

generation of the electric power is described 

together with the hybridization strategy employed 

during the flight mission. The main parameters 

describing the design mission as well as the reserve 

mission are also given.  

Section 3 presents the MDA process set up for the 

study of both the conventional and the hybrid 

electric configurations. It shows the dependencies 

between the different disciplines and the main loops 

needed to converge to a solution.  

In section 4, the methods used to model the 

behavior of all the components of the propulsive 

architecture are presented. The main focus is on the 

presentation of the four gas turbine models used to 

perform the comparative study.  

In section 5, the MDA process is first used to 

compute the performance of the baseline aircraft in 
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order to validate the process and the methodology 

for the uncertainty propagation problem. Then, an 

adapted MDA is used to investigate the 

performance of the ATR42H and to perform a 

comparative study between different models for the 

gas turbine engine.  

Finally, the conclusions are provided in section 6. 

 

2. HYBRID ELECTRIC AIRCRAFT 

CONFIGURATION 

Figure 3 shows the propulsive architecture of the 

ATR42 hybrid chosen for this study. It is a parallel 

hybrid electric configuration, where each propeller 

is supplied with power provided by both the fuel cells 

and the gas turbine. The fuel burnt by the engine 

produces mechanical power which is directly 

converted into kinetic energy by the propeller. At the 

same time, the electric power supplied by the fuel 

cells is transferred via the inverter to the electric 

motor, which converts the electric power into 

mechanical power. This power is finally transferred 

to the propeller by means of a gearbox.  

 

 

Figure 3: Hybrid electric architecture 

The fuel cell module designed for this study 

generates 360 kW of electrical power and it consists 

of four independent fuel cell systems connected in 

parallel (as shown in Fig. 4). Each fuel cell system 

generating 90kW is composed of a fuel cell stack 

and of all the necessary components to ensure 

proper operation such as pumps, sensors, 

compressors etc. The power output of the fuel cell 

stack depends on its size. As the power obtainable 

from a single cell is rather low in comparison to the 

power requirement for this application, multiple cells 

are stacked to achieve higher voltage and power.  

Having more fuel cell stacks connected in parallel to 

provide the required power has a number of 

advantages compared to a single fuel cell stack 

capable to provide the 360 kW alone.  

 

Figure 4: Schematic of a parallel connected fuel 

cell network 

First, the reliability of a fuel cell stack may decrease 

as the number of cells in the fuel cell stack 

increases. Each cell may be subject to a number of 

failures due to many factors such as poisoning of 

the catalyst, water flooding etc. [5]. As a result, the 

fuel cell stack would be compromised, generating 

less power or, in the worst case scenario, no power 

at all. Second, the voltage of the electrical system is 

significantly reduced with the parallel architecture, 

therefore reducing the risks associated to too high 

voltage systems.  

The hybridization strategy consists in the full 

exploitation of the electrical power available during 

the flight phases of climb and cruise of the design 

mission. The gas turbine power varies in order to 

deliver only the necessary amount of power to fly at 

the same speeds and time to climb (TTC) as the 

baseline aircraft. Table 1 summarizes the main 

mission parameters used and Figure 5 illustrates 

the power profiles along the mission. The green and 

red dashed lines represent respectively the power 

generated by each gas turbine and electric motor. 

The solid blue line represents the flight altitude and 
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it shows clearly all the different flight phases. It can 

be seen how the electric power is required only 

during the climb and cruise phases of the design 

mission and the gas turbine supplies all the power 

needed for the reserve mission. 

Design Mission  200 NM 

Mission Altitude FL170 

TAS cruise speed 298 kts 

TTC 12.7 min 

CAS climb speed 160 kts 

CAS descent speed 250 kts 

Reserve mission 100 NM Diversion 
30 min Holding 

Diversion Altitude 16000 ft 

Holding Altitude 1500 ft 

Table 1: Mission parameters 

Figure 5: Mission profile with electric and gas 

turbine power levels (one engine) 

The geometry and the structural weight of the hybrid 

electric configuration (ATR42H) analyzed in this 

paper are identical to the one of the conventional 

reference aircraft. Therefore, the hybrid aircraft 

must respect the same max take-off weight 

(MTOW) limitation of the baseline. 

The gas turbine is also unchanged, thus there are 

no gains to be expected in terms of engine weight 

or drag reduction. This choice, whilst conservative 

on the potential benefits introduced by the hybrid 

electric propulsion, allows the design of the electric 

powertrain and electric system taking into account 

only the nominal condition. With the same MTOW 

and the same gas turbine power, the hybrid aircraft 

will be able to take-off and fly the full mission even 

with a complete failure of the electric propulsion 

system. Therefore, the electric power system 

doesn’t need to be oversized to take in to account 

failure cases and redundancies which would 

introduce additional mass penalties. 

The performance of this hybrid electric configuration 

with respect to fuel burn and emissions has been 

evaluated using a MDA process which is described 

more in detail in the next section. 

3. SET UP OF A MDA PROCESS FOR THE 

EVALUATION OF AIRCRAFT PERFORMANCE 

Multi-disciplinary design analysis is a powerful 

method, which is able to handle the large amount of 

dependencies between all the disciplines involved 

in a classical design problem. Some platforms have 

been developed for the preliminary and conceptual 

designs of innovative aircraft architectures. In [6], 

the authors present the theory and architecture of 

OpenMDAO and some applications such as 

trajectory optimization, wing design, and structural 

topology optimization. In [7], the Multi-disciplinary 

design analysis and optimisation platform 

developed by ONERA and ISAE-SUPAERO named 

FAST is used for the preliminary sizing of a medium 

range blended wing body. 

For this study, a conceptual aircraft design platform 

named RHEA (Regional Hybrid Electric Aircraft) 

design tool based on FAST, is used to set up a MDA 

process in order to evaluate the performance of the 

given aircraft configuration for a given mission. For 

the conventional aircraft architecture, the simulation 

starts with an initial guess of take-off weight (TOW) 

equal to the MTOW, which is given as input. The 

aerodynamic module computes the drag polar and 

the aerodynamic forces with respect to the flight 

conditions and to the aircraft geometry provided as 

an input “.xml” file. Using the aircraft geometry and 

the MTOW provided as input, the weight module 

computes the masses of the different aircraft 

components. Based on a segment-by-segment 

simulation using time step integration, the 

performance module solves the equations of motion 

to evaluate the performance of the vehicle 

throughout the mission in terms of fuel consumption 

and CO2 emissions. At the last step, TOW is 

updated with the value calculated as a sum of the 

Operating Empty Weight (OWE) evaluated by the 

weight module, the total fuel needed to perform the 

mission (FW) and the given payload weight (PW) 

(see Eq. 1). The iterations continue until the 
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difference between the value of TOW used to 

perform the mission and the one calculated at the 

last step is lower than a given tolerance. 

 𝑇𝑂𝑊 = 𝑂𝑊𝐸 + 𝐹𝑊 + 𝑃𝑊         (1) 

In the case of hybrid electric aircraft’s simulations, 

the weight module computes also the masses of the 

electric propulsion system (e.g. electric motors, 

inverters, fuel cells, hydrogen storage etc.). The 

TOW is fixed and equal to the MTOW of the aircraft. 

The performance module calls the fuel cell model to 

evaluate hydrogen consumption throughout the 

mission. At the last step, the payload weight is 

updated with the value calculated as the difference 

between the MTOW and the aforementioned 

weights of the conventional case, plus the hydrogen 

fuel weight (HFW) and with the OWE taking into 

account the masses of the electric propulsion 

system. 

𝑃𝑊 = 𝑀𝑇𝑂𝑊 − 𝑂𝑊𝐸 − 𝐹𝑊 − 𝐻𝐹𝑊  (2) 

This approach ensures that the TOW of the aircraft 

will not be greater than the MTOW, therefore no 

structural sizing is needed. The mass penalties 

deriving from the introduction of the electric 

propulsion system are counterbalanced by the 

reduction of the payload weight. 

In the following section, some of the methods used 

to evaluate the outputs of each discipline involved 

in the MDA process are briefly described. 

4. MDA MODELS 

The key disciplines involved in the MDA are 

aerodynamics, weights and propulsion. For each 

discipline, multiple computational models are 

available with different levels of detail using physics-

based methods as well as empirical or semi-

empirical correlations. Each model accounts for a 

certain level of modeling errors, which induces a 

modeling uncertainty on the output of the model. 

These uncertainties may be caused by model 

assumptions and numerical approximations as well 

as imprecise model parameters [23]. Generally, the 

models with high level of detail and many 

parameters are able to better describe the physical 

phenomena or system of interest with respect to a 

simpler model. However, low level of detail of the 

model does not always involve low accuracy of the 

results. In fact, when the physical phenomenon or 

the system is well known and there are enough 

related available information, a simple model can be 

calibrated to perfectly predict its behavior. In fact, in 

the MDA process set up for this study, 

aerodynamics and weights models, whilst using 

simple well-known semi-empirical correlations, 

result in an accurate evaluation of the aerodynamic 

coefficients and the weight breakdown respectively. 

For example, for the aerodynamic module, the 

availability of the manufacturer’s data for the 

geometry of the aircraft allowed us to avoid 

introducing any sources of data uncertainty into the 

model. Moreover, its results in terms of drag 

coefficients at different lift coefficients and Mach 

numbers were calibrated according to 

manufacturer’s flight data, resulting in a maximum 

mean squared error (MSE) of 10-6. Concerning the 

propulsion module and in particular the gas turbine 

model, due to the complex physical behavior of a 

gas turbine, when compared to reference 

manufacturer’s data, it was not possible to reach a 

satisfactory accuracy of the results with a simple 

and computationally cheap model as for the 

aerodynamics and weights modules. Therefore, it 

was decided to undertake a comparative study of 

four different gas turbine models with different levels 

of detail and complexity. Among the ones available 

from literature, two models have been chosen and 

are presented in section 4.2. Moreover, two multi-

fidelity models have been developed combining the 

aforementioned models with available high fidelity 

data as described in section 4.2.3. 

4.1. Electric propulsion models 

The electric propulsion system is composed of: 

electric motor, inverter, fuel cell system and 

hydrogen storage system. These components have 

been modeled using published or assumed values 

for specific energy (𝐸𝑠𝑝), specific power (𝑃𝑠𝑝) and 

efficiency to determine their performance (see 

Table 2). As presented in section 2, based on the 

hybridization strategy chosen for this study, the 

electric power system is always working at one 

single operating point, therefore no performance 

maps were needed to determine the efficiency of 

the electric motors, inverters and fuel cells as a 

function of the power load. Instead, one constant 



 

6 

 

value of efficiency was given as input, based on 

published values representing state of the art 

technology levels.  

Fuel cell system efficiency 40% [20] 

Fuel cell system 𝑃𝑠𝑝 650 W/kg [20] 

Electric motor efficiency 97%  [17] 

Electric motor 𝑃𝑠𝑝 7 kW/kg  [17] 

Inverter efficiency 98%    [18] 

Inverter 𝑃𝑠𝑝 11 kW/kg  [18] 

Liquid H2 storage  𝐸𝑠𝑝 5 kWh/kg [19] 

Table 2: Components’ performance parameters 

4.2 Gas turbine models 

Gas turbine models suitable for preliminary aircraft 

design generally go from simple semi-empirical 

relations capable of determining the main engine 

performance parameters as a function of 

atmospheric conditions, to 0D models where a 

physics-based method is used to compute average 

flow conditions at the inlet and the exit of each 

engine component. For example, Vratny [9] and 

Pornet [10] used commercial software for gas 

turbine performance calculations based on 0D 

thermodynamic equations named Gasturb to 

evaluate fuel flow and shaft power tables. Engine 

performance properties are extrapolated from these 

tables and used in the MDA process to evaluate 

overall performance of hybrid electric aircraft.  In [8], 

a simplified analytical gas turbine model using 

experimentally derived factors has been used for 

the development of a conceptual design method for 

hybrid electric aircraft. In the proposed model, the 

available power at a given flight condition is 

calculate as a function of the sea-level-static power 

and a so called power lapse coefficient. The fuel 

flow required by the gas turbine is computed as a 

function of the throttle and flight state (altitude, 

Mach number) using a fuel flow map.  

The two models employed for this study are briefly 

introduced in the following sections. Within the MDA 

process, these models take as inputs altitude, Mach 

and engine throttle and calculate the available 

power and the specific fuel consumption as 

illustrated in Figure 6. 

The available power at the propeller shaft 

(𝑃𝑠ℎ𝑎𝑓𝑡) given by the sum of the gas turbine and 

electric motor power is then converted into forward 

thrust (𝑇𝑝𝑟𝑜𝑝) using Eq. (3). 

 

Figure 6: Inputs and outputs of the gasturbine 

model 

 

𝑇𝑝𝑟𝑜𝑝 =
𝜂𝑝𝑟𝑜𝑝𝑃𝑠ℎ𝑎𝑓𝑡

𝑠𝑝𝑒𝑒𝑑
 

(3) 

The propeller efficiency (𝜂𝑝𝑟𝑜𝑝) is determined at 

each condition during the flight mission using the 

H568F propeller response surface provided by the 

company. 

4.2.1 L0 gas turbine model 

The first model was proposed by Stuckl in [11] and, 

as of now, it will be referred to as L0 model. It uses 

Eqs. (4) and (5) to estimate the available power and 

the specific fuel consumption SFC (lb/hr/shp).  

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝑇𝑎𝑘𝑒𝑂𝑓𝑓 ∗ (𝑀2 + 1) ∗ (
𝜌

𝜌0

)
0.7

 
(4) 

     𝑆𝐹𝐶 =  𝑆𝐹𝐶𝑡𝑎𝑘𝑒𝑂𝑓𝑓 ∗
1

(0.258 log(𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) +1)
    

 

(5) 

Equation (4) calculates the available power taking 

into account altitude effects and the velocity. The 

maximal power that a gas turbine engine is able to 

generate is affected by the altitude due to the 

change in air density. Moreover, due to pressure 

recovery in the engine air intake, the power 

increases with flight velocity. The specific fuel 

consumption of the engine is influenced by engine 

size, engine throttle and atmospheric conditions. 

The SFC is modeled as relative increase of the 

specific fuel consumption at take-off, taken from the 

PW127 engine datasheet. Throttle setting and 

atmospheric conditions are taken into account with 

the corrected part-load factor 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 as given in 

Eqs. (6) and (7): 

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑝√𝜃

𝛿
 (6) 
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𝑝 =
𝑃

𝑃𝑚𝑎𝑥𝑅𝑎𝑡𝑒𝑑

 (7) 

 

where 𝜃 and 𝛿 are respectively the ambient 

pressure ratio and the temperature ratio. 

4.2.2 L1 gas turbine model 

The second model, referred to as L1 model, 

consists in the characterization of a twin-shaft free 

turbine engine architecture to reproduce the 

performances of the PW127 engine which equips 

the ATR42. The gas turbine architecture is shown in 

Fig. 7. 

 

Figure 7: Gas turbine architecture 

The L1 gas turbine model evaluates the available 

power and the specific fuel consumption by 

computing the thermodynamic properties of the air 

flow at the inlet and the outlet of each engine 

component and by solving the power balance 

equations of the low pressure and high pressure 

spools. At the design point, available data from the 

engine’s manufacturer were used to characterize 

engine’s components, such as compressor 

pressure ratios, max turbine inlet temperature and 

compressors’ bleed airflow. The component 

efficiencies were estimated using representative 

values relative to the state-of-art engine technology 

according to [13]. The off-design analysis is 

performed following the method described by 

Mattingly [13] and Oates [14]. The components' 

efficiencies are assumed to be constant, therefore 

no scaled performance characteristics are 

calculated from the original performance maps. The 

off-design performance is calculated only by 

considering relations related to the gas-generator's 

turbine and compressor matching and the power 

turbine and exhaust nozzle matching. 

4.2.3. Multi-fidelity gas turbine models 

High fidelity data of the engine performance 

provided by ATR, were used to build an error model 

based on the difference between the reference 

values and the calculated ones of the L0 and L1 

models. We note 𝑥 the vector of the inputs of the 

gasturbine module (Eq. (8)), 𝛿𝑃(𝑥) the difference 

between the values of available power (Eq. (9)) and 

𝛿𝑆𝐹𝐶(𝑥) the difference between the values of 

specific fuel consumption (Eq. (10)). 

𝑥 =  [Altitude, Mach, throttle] (8) 

𝛿𝑃(𝑥) =  𝑃𝑟𝑒𝑓(𝑥) −  𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)  (9) 

𝛿𝑆𝐹𝐶(𝑥) =  𝑆𝐹𝐶𝑟𝑒𝑓(𝑥) − 𝑆𝐹𝐶𝑚𝑜𝑑𝑒𝑙(𝑥)  (10) 

where the subscript “ref” refers to the reference 

value and the subscript “model” refers to the 

calculated value of the model (L0 or L1). The vector 

𝑥 consists of 166 points called training points for 

which the reference and the model values are both 

known. The training points are not uniformly 

distributed over the domain, but they have higher 

density in the regions representing the operating 

conditions of the gas turbine for the conventional 

aircraft (high throttle settings). 𝛿𝑃(𝑥) and 𝛿𝑆𝐹𝐶(𝑥) 

have been evaluated at these specific points and 

approximated by a surrogate model for each value 

of 𝑥. This was done using the Surrogate Modeling 

Toolbox (SMT), an open-source Python package 

consisting of libraries of surrogate modeling 

methods [22].  

The choice has been made to use a kriging model 

(also called Gaussian Process interpolation) as 

surrogate model. This kind of surrogate model has 

two main advantages: 

- Once constructed, the cost of evaluating the 

surrogate model is negligible. 

- An estimate of the modeling uncertainty is 

intrinsically provided by the kriging model. 

After modeling the error between the models’ and 

the reference’s values, two multi-fidelity models 

(L0MF, L1MF) were obtained by correcting the 

output of each model with the modelled error. As the 

error is approximated by an analytical model 

provided by kriging technique, the resulting multi-

fidelity model, called L0MF (resp. L1MF), is 
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obtained as the sum between the L0 model (resp. 

L1 model) and the kriging model. For example, for 

the L0MF model, the outputs relative to the SFC and 

the power are calculated as in Eqs. (12-13). 

𝑆𝐹𝐶𝐿0𝑀𝐹(𝑥) =  𝑆𝐹𝐶𝐿0(𝑥) +  ε0_𝑆𝐹𝐶(𝑥) (12) 

𝑃𝐿0𝑀𝐹(𝑥) =  𝑃𝐿0(𝑥) +  ε0_𝑃(𝑥) (13) 

For the L1MF, we have some similar expressions 

(see Eqs. (12bis-13bis)). 

𝑆𝐹𝐶𝐿1𝑀𝐹(𝑥) =  𝑆𝐹𝐶𝐿1(𝑥) +  ε1_𝑆𝐹𝐶(𝑥) (12bis) 

𝑃𝐿1𝑀𝐹(𝑥) =  𝑃𝐿1(𝑥) +   ε1_𝑃(𝑥) (13bis) 

where ε denotes the kriging model associated to the 

error for the SFC or the power. 

For sake of simplicity, perfectly dependent kriging 

models will be considered in the resolution of the 

MDA. Numerical validations of this simplification 

have been assessed in [15]. Thus, in the following 

the kriging models  ε0_𝑆𝐹𝐶  , ε0_𝑃,  ε1_𝑆𝐹𝐶  and  ε1_𝑃  are 

defined as in Eqs. (14-15-14bis-15bis). 

 ε0_𝑆𝐹𝐶(𝑥) =  𝜇0_𝑆𝐹𝐶(𝑥) +  𝜎0_𝑆𝐹𝐶(x)ξ0_𝑆𝐹𝐶    (14) 

 ε0_𝑃(𝑥) =  𝜇0_𝑃(𝑥) +  𝜎0_𝑃(x)ξ0_𝑃    (15) 

 ε1_𝑆𝐹𝐶(𝑥) =  𝜇1_𝑆𝐹𝐶(𝑥) +  𝜎1_𝑆𝐹𝐶(x)ξ1_𝑆𝐹𝐶     (14bis) 

 ε1_𝑃(𝑥) =  𝜇1_𝑃(𝑥) +  𝜎1_𝑃(x)ξ1_𝑃    (15bis) 

 
where ξ are independent and identically distributed 

standard normal random variables. The terms 𝜇 and 

𝜎 are respectively the mean value and the standard 
deviation and their expressions are given 
analytically by the kriging interpolation. For more 
details about the kriging model, the reader can refer 
to [21]. 
 
By performing a set of simulations, each with a 

randomly chosen value of ξ, many results will be 

obtained from the MDA. Therefore, constructing the 

multi-fidelity models as shown in this section allows 

analyzing the results in terms of mean value and 

variance. Main results for the conventional and 

hybrid configuration are shown in the next section. 

5. RESULTS 

First, the performance of the conventional 

configuration of the ATR42 is evaluated with the 

four different gas turbine models in order to validate 

the MDA process and the methodology for the 

uncertainty propagation problem. Then, the hybrid 

electric configuration is analyzed to investigate the 

discrepancy between the results of the different gas 

turbine models. 

5.1. Conventional architecture 

The performance of the conventional ATR42 in 

terms of fuel consumption have been evaluated on 

the given mission of 200 NM (see Table 1) and on a 

longer mission of 500 NM. The calculated values 

have been compared to reference performance 

data obtained by replacing the gas turbine model 

with the reference data of engine performance 

provided by ATR. The results of the models will be 

presented in terms of relative error of the calculated 

block fuel with respect to the reference results. 

The block fuel values obtained with the L0 and L1 

models show respectively a relative error of +1.7% 

and +5.8% for the 200 NM mission (+3% and +5.9% 

for the 500 NM) with respect to the reference values 

as given in Table 3. The results of the multi-fidelity 

models are shown in Figs. 8 to 11. Mean value and 

variance (calculated with Bessel’s correction) of the 

results of each model, estimated based on 500 

sampling points are summarized in Table 4. 

 L0 L1 

200 NM +1.7% +5.8% 

500 NM +3% +5.9% 

Table 3: Relative error of the calculated block fuel 

with respect to the reference results for the 

conventional architecture. 

For both missions, the mean values of the multi-

fidelity models’ results are closer to the reference 

value than the corresponding mono-fidelity model 

(L0 or L1). For example, for the 200 NM mission, the 

absolute value of the relative error between the 

calculated and the reference block fuel reduces 

from 1.7% with the L0 model to 0.13% with the 

L0MF model (5.8% with the L1 model to 2.19% with 

the L1MF model). However, the variance of the 

results of the L1MF model is always lower than the 

one of the L0MF model. This is related to the 

capability of the surrogate model to predict the error 

between the mono-fidelity model and the reference. 



 

9 

 

The more accurate the mono-fidelity model is to 

predict the performance of the gas turbine, the 

easier it is for the kriging model to predict the model 

errors. This results in a lower variance associated to 

the results of the multi-fidelity model. 

Figure 8: L0MF model’s results distribution on the 

200 NM mission for the baseline configuration. 

Histogram based on 500 sampling points. 

Figure 9: L1MF model’s results distribution on the 

200 NM mission for the baseline configuration. 

Histogram based on 500 sampling points. 

 

  L0MF L1MF 

200 NM Mean value -0.13 % -2.19 % 

Variance 1.918 0.598 

500 NM Mean value -0.740 % -2.248 % 

Variance 2.727 0.937 

Table 4: Mean value and variance of the results of 

each multi-fidelity model for the baseline 

configuration. Estimation is done based on 500 

sampling points. 

Figure 10: L0MF model’s results distribution on the 

500 NM mission for the baseline configuration. 

Histogram based on 500 sampling points. 

Figure 11: L1MF model’s results distribution on the 

500 NM mission for the baseline configuration. 

Histogram based on 500 sampling points. 

5.2. Hybrid electric architecture 

For the hybrid electric configurations, the results for 

the given mission of 200 NM will be presented in 

terms of percentage reduction of the block fuel per 

passenger with respect to the reference value of the 

conventional configuration. As mentioned in section 

3, the maximum number of passengers that the 

hybrid electric aircraft configuration designed for 

this study is allowed to accommodate is expected to 

be lower than the conventional capacity of the 

ATR42. Since the OWE of the aircraft increases due 

to the installation of the hybrid electric systems, in 

order to respect the same MTOW limitation of the 

conventional ATR42, the max payload weight of the 

aircraft decreases.  
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Nevertheless, the results obtained with L0 and L1 

models show that for the 200 NM mission the hybrid 

electric configuration gives a potential reduction of 

block fuel per passenger respectively of -8.9% and 

-2.4% (as shown also in Table 5). There is a 

considerable difference between the results of 

these two models, therefore without additional 

information it would be impossible to conclude 

about the performance of the hybrid electric aircraft 

configuration. The multi-fidelity models are 

therefore used in order to analyze the aircraft 

performance taking into account the modeling 

uncertainty associated to the results.  

The results of each multi-fidelity model are shown in 

Figs. 12 and 13. Table 6 summarizes the mean 

value and variance of the results. 

Figure 12: L0MF model’s results distribution on the 

200NM mission for the HEA configuration. 

Histogram based on 500 sampling points. 

Figure 13: L1MF model’s results distribution on the 

200 NM mission for the HEA configuration. 

Histogram based on 500 sampling points. 

 L0 L1 

200 NM -8.9% -2.4% 

Table 5: Percentage reductions of the block fuel 

per passenger for the HEA configuration with 

respect to the reference value of the conventional 

configuration 

 

  L0MF L1MF 

200 NM Mean value -11.5 % -16.5 % 

Variance 6.01 4.82 

Table 6: Mean value and variance of the results of 

each multi-fidelity model for the HEA configuration. 

Estimation is done based on 500 sampling points. 

Analyzing the results of the L0MF model, the 

potential reduction of block fuel per passenger of 

the HEA configuration seems to be included in a 

rough interval ranging from  -20% and -5%. With the 

L1MF model it was possible to reduce the 

uncertainty of the results which gives a potential 

reduction approximatively between -20% and -10%. 

However, both the multi-fidelity models show a 

considerable increase of the variance of the results 

with respect to the results of the conventional 

configuration. This can be justified by the different 

operational points at which the gas turbine engine 

of the hybrid configuration is working. In fact, due to 

the contribution of the electric motors to supply the 

required power, the throttle setting of the gas turbine 

is lower than the baseline configuration. As 

mentioned in section 4.2.3, the training points used 

to build the error model have higher density in the 

region at high throttle, which results in a lower 

variance of the error estimated within this region. 

The characteristic bimodal distribution of the results 

observed in Figs. 12 and 13 can be attributed to the 

fact that the represented variable in the histogram is 

the ratio between a real number (block fuel) and an 

integer (number of passengers). The number of 

passengers is calculated dividing the payload 

weight (obtained with Eq. 2) by the passenger 

weight and approximating the result at the lower 

integer number. Therefore, each mode represents a 

change in the number of passengers the aircraft can 

transport.  

Moreover, assuming that the hydrogen used by the 

fuel cells to generate electrical power is completely 

derived from green power sources, the only source 
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of CO2 emissions is the combustion of fuel in the 

gas turbine engines. Since CO2 emissions from the 

aforementioned combustion are directly 

proportional to the fuel consumption, the reduction 

of CO2 emissions per passenger is equivalent to the 

one of block fuel. 

6. CONCLUSIONS 

In this paper, the performance of an ATR42 

retrofitted with a parallel hybrid propulsion 

architecture comprising a conventional gas turbine 

and a fuel cell powertrain have been investigated 

with a MDA platform called RHEA design tool. In 

order to deal with the modeling uncertainties 

introduced by the methods used to describe the 

disciplines involved in a classical aircraft design 

problem, high-fidelity aircraft’s manufacturer data 

have been used to verify and validate the results 

computed by each model. For some disciplines (e.g. 

aerodynamics and weights) the models were 

accurate enough to give results with a negligible 

error when compared to reference data. However, 

for some others it was not possible to achieve an 

acceptable accuracy of the results. Specifically, it 

was the case for the gas turbine model, therefore in 

order to assess the potential advantages of the 

selected hybrid electric configuration, multi-fidelity 

models were constructed and used into the MDA to 

provide more reliable results.  

By comparing the results of the four gas turbine 

models employed to perform this study, it can be 

concluded that relying only on the results of the 

models L0 and L1 would led to erroneous and 

contradictory results. However, the availability of 

high-fidelity data allowed creating two multi-fidelity 

models which converged towards similar results.  

These results shall not be interpreted as an 

assessment of the performance of the hybrid 

electric version of the ATR42. In fact, the hybrid 

architecture, the hybridization strategy and the 

assumptions used for the sizing of the electric 

power system and hydrogen storage represent only 

a potential scenario which was chosen as a test 

case for this study to set up the methodology for the 

modeling uncertainty propagation and to perform 

the comparative study of the different gas turbine 

models.   
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