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Abstract
Identifying directions where extreme events occur is a major challenge in multivariate extreme

value analysis. In this paper, we use the concept of sparse regular variation introduced by Meyer
and Wintenberger (2021) to infer the tail dependence of a random vector X. This approach relies on
the Euclidean projection onto the simplex which better exhibits the sparsity structure of the tail of
X than the standard methods. Our procedure based on a rigorous methodology aims at capturing
clusters of extremal coordinates of X. It also includes the identification of a threshold above which the
values taken by X are considered as extreme. We provide an efficient and scalable algorithm called
MUSCLE and apply it on numerical experiments to highlight the relevance of our findings. Finally
we illustrate our approach with wind speed data and financial return data.

Keywords: Euclidean projection onto the simplex, model selection, multivariate extremes, regular
variation, sparse regular variation

1 Introduction

The aim of this article is to study the tail dependence of a random vector X ∈ [0,∞)d. In this context
it is customary to assume that X is regularly varying (Resnick (1987), Beirlant et al. (2006), Resnick
(2007), Hult and Lindskog (2006)). Under this assumption we have

P((|X|/t,X/|X|) ∈ · | |X|> t)
w→ P((Y,Θ) ∈ ·) , t→∞ , (1.1)

where w→ denotes weak convergence, and where Θ is a random vector on the positive unit sphere {x ∈
[0,∞)d : |x|= 1} independent of the random variable Y which satisfies P(Y > y) = y−α, y > 1, for
α > 0. The parameter α is called the tail index. It highlights the intensity of the extremes. The smaller
this index is, the heaviest the tail of X is likely to be. The random vector Θ is called the spectral
vector and its distribution P(Θ ∈ ·) the spectral measure. Its support indicates the directions supported
by the large events. The subspaces of the positive unit sphere on which the spectral vector puts mass
correspond to the directions where large events are likely to appear. Note that the choice of the norm
in Equation (1.1) is arbitrary. In this article we choose the `1-norm and thus focus on the simplex
Sd−1

+ := {x ∈ [0,∞)d : x1 + . . .+ xd = 1}.
In order to study the support of the spectral measure it is convenient to partition the simplex in

terms of the nullity of some coordinates (Chautru (2015), Goix et al. (2017), Simpson et al. (2019)). For
β ⊂ {1, . . . , d} the subspaces Cβ are defined as

Cβ = {x ∈ Sd−1
+ : xi > 0 for i ∈ β, xi = 0 for i /∈ β} . (1.2)
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An illustration of these subsets in dimension 3 is given in Figure 1. This partition highlights the extremal
structure of X. For a given β ⊂ {1, . . . , d} the inequality P(Θ ∈ Cβ) > 0 implies that the marginals Xj ,
j ∈ β, are likely to take simultaneously large values while the ones for j ∈ βc are of smaller order. Hence
the identification of clusters of directions β which concentrate the mass of the spectral measure brings
out groups of coordinates which can be large together.
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Figure 1: The subspaces Cβ in dimension 3 for the `1-norm. In red the vectors e1, e2, and e3. In blue
the subsets C{i,j} for i, j ∈ {1, 2, 3}, i 6= j. The shaded part corresponds to the interior of the simplex.

Highlighting such groups of coordinates is at the core of several recent papers on multivariate extremes,
all of them relying on some hyperparameters (Chiapino and Sabourin (2016), Goix et al. (2017), Chiapino
et al. (2019), Simpson et al. (2019)). This approach faces a crucial issue: the difference of support between
Θ and X/|X|. Indeed, the spectral measure is likely to place mass on low-dimensional subspaces Cβ ,
β 6= {1, . . . , d}. We say that this measure is sparse when the number of coordinates in the associated
clusters β is small. Conversely, the distribution of the self-normalized vector X/|X| only concentrates on
the central subspace C{1,...,d} when X models real-world data. Besides, all the existing approaches in the
literature rely on nonstandard regular variation for which α = 1 and all marginals are tail equivalent,
possibly after a standardization. However, sparsity arises all the more for standard regular variation
(1.1). In this case it is possible that the marginals of X are not tail equivalent and thus that the support
of the spectral measure is included in Sr−1

+ for r � d. This is the approach we use in this article. For a
comparison of standard and nonstandard regular variation we refer to Resnick (2007), Section 6.5.6.

In this article we aim at providing a method which highlights the sparsity of the tail structure by
exhibiting sparse clusters of extremal directions. By sparse clusters we mean groups of coordinates which
contain a reduced number of directions compared to d. We refer to this method as sparse clustering.
The statistical procedure we propose to achieve this clustering relies on the framework of Meyer and
Wintenberger (2021) which allows to circumvent the estimation’s issue that arises with the spectral
measure. The idea is to replace the vector X/|X| (resp. Θ) by π(X/t) (resp. Z = π(YΘ)) where Y and
t are the same as in (1.1) and where π denotes the Euclidean projection onto Sd−1

+ (Duchi et al. (2008),
Kyrillidis et al. (2013), Condat (2016)), see Figure 2a. This substitution leads to the concept of sparse
regular variation. A random vector X is said to be sparsely regularly varying if

P((|X|/t, π(X/t)) ∈ · | |X|> t)
w→ P((Y,Z) ∈ ·) , t→∞ . (1.3)

Meyer and Wintenberger (2021) proved that under mild assumption both concepts of regular variation
(1.1) and (1.3) are equivalent (see Theorem 1 in their article). Similarly to the existing approaches with
Θ, we are willing to capture the tail dependence of X via the identification of the clusters β which satisfy
P(Z ∈ Cβ) > 0. We call such β’s the extremal clusters. They can be identified via the study of π(X/t)
since the convergence P(π(X/t) ∈ Cβ | |X|> t)→ P(Z ∈ Cβ) holds for any β ⊂ {1, . . . , d} (see Meyer and
Wintenberger (2021), Proposition 2). The latter convergence mainly holds because the subsets π−1(Cβ)
do not have empty interior, see Figure 2b.

This encourages to consider the estimators Tn(β) :=
∑n

j=1 1{π(Xj/un) ∈ Cβ, |Xj |> un} where
X1, . . . ,Xn is a sample of iid sparsely regularly varying random vectors. These estimators depend on

2



a threshold un satisfying un → ∞. It turns out that these estimators often overestimate the total
number of extremal clusters β. We call the clusters which satisfy Tn(β) > 0 and P(Z ∈ Cβ) = 0 the
biased clusters. The approach we propose to reduce this bias relies on model selection and is similar to
the minimization criterion developed by Akaike (1973). It is achieved for a fixed threshold for which
Equation (1.3) becomes a good approximation. This is the first step of our procedure, which we call the
bias selection.

The second step then consists in extending the procedure in order to automatically select an appro-
priate threshold. We call this step the threshold selection. Several authors have pointed out that choosing
an optimal threshold is a challenging task in practice (see for instance Rootzén et al. (2006)). This issue is
however tackled in a few articles (Stărică (1999), Abdous and Ghoudi (2005), Lee et al. (2015), Kiriliouk
et al. (2019), Wan and Davis (2019), see also the review on marginals threshold selection by Caeiro and
Gomes (2015)). It turns out that for sparse regular variation the choice of such a threshold is closely
related to the clusters β on which π(X/t) places mass. Therefore our approach consists in extending the
bias selection by including un as a parameter to tune. To the best of our knowledge, our work is the first
one which simultaneously tackles this issue with the study of tail dependence.
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(a) Three vectors and their image by π. The dotted
lines partition the space depending on the localization
of the projected vectors: e1, e2, or the interior of the

simplex.

(b) The preimages of the subsets Cβ by π. In purple
π−1(C{1}) and π−1(C{2}), and in blue π−1(C{1,2}).

Figure 2: Euclidean projection onto the simplex S1
+.

Outline of the paper The paper is organized as follows. Section 2 introduces the theoretical back-
ground on sparse regular variation and threshold selection that is needed throughout the paper. We
particularly insist on the influence of the threshold t on the sparsity of the projected vector π(X/t). We
end the section by a presentation of our procedure to detect the extremal clusters of a random vector X.
In particular we introduce the penalized criterion on which the model selection relies. Section 3 details
the methodology of our approach. We develop the two steps of the model selection, the bias selection
and the threshold selection. We gather all asymptotic results in Section 4 and we prove asymptotic
normality for the estimators Tn(β). We also derive in this section a test procedure based on the score to
identify biased clusters. In Section 5 we illustrate our findings on different numerical results and compare
our approach with the existing procedures of Goix et al. (2017) and Simpson et al. (2019). Finally we
illustrate our approach on financial and environmental data in Section 6.
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2 Preliminaries and MUSCLE algorithm

2.1 Notation

We introduce some standard notation that is used throughout the paper. Symbols in bold such as x ∈ Rd
are column vectors with components denoted by xj , j ∈ {1, . . . , d}. Operations and relationships involving
such vectors are meant componentwise. If x = (x1, . . . , xd)

> ∈ Rd is a vector, then Diag(x1, . . . , xd)
denotes the diagonal matrix whose diagonal is x. We also denote by Ids the identity matrix of Rs. We
define Rd+ := {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0}, 0 := (0, . . . , 0)> ∈ Rd, and 1 := (1, . . . , 1)> ∈ Rd. For
j = 1, . . . , d, ej denotes the j-th vector of the canonical basis of Rd. If x ∈ Rd and I := {i1, . . . , ir} ⊂
{1, . . . , d}, then xI denotes the vector (xi1 , ..., xir) of Rr. For p ∈ (1,∞] we denote by |·|p the `p-norm
in Rd. The `1-norm will simply be denoted by |·|. For d ≥ 1 we denote by Pd the power set of {1, . . . , d}
and by P∗d the set Pd \ {∅}. Finally we write A d

= B when the random variables A and B have the same
distribution.

2.2 Sparse regular variation

We consider a sparsely regularly varying random vector X ∈ Rd+ and focus on its angular component
π(X/t):

P (π(X/t) ∈ · | |X|> t)
w→ P(Z ∈ ·) , t→∞ , (2.1)

where π : Rd+ → Sd−1
+ denotes the Euclidean projection onto the simplex. We refer to Duchi et al. (2008),

Kyrillidis et al. (2013), and Condat (2016) for a theoretical and algorithmic study of this function. Both
limit components of (2.1) satisfies the relation Z | Y > r

d
= π(rZ) for all r > 1. The choice of this

particular angular vector is justified by the many properties enjoyed by the projection π. The main one
is that the vector π(X/t) may put mass in every subspace Cβ even if X does not. This is a key difference
with the self-normalized vector X/|X| which shares the same sparsity properties as X, and therefore
always concentrates on the interior C{1,...,d} of the simplex.

Our aim is to infer the behavior of the angular vector Z by focusing on the probabilities p∗(β) :=
P(Z ∈ Cβ) for β ∈ P∗d . We are willing to identify the extremal directions of X, i.e. the clusters of
coordinates β for which are p∗(β) > 0. We define the set

S∗(Z) := {β : p∗(β) > 0} , (2.2)

and denote by s∗ its cardinality. Meyer and Wintenberger (2021) proved that for any β we have

P(π(X/t) ∈ Cβ | |X|> t)→ p∗(β) , t→∞ . (2.3)

This convergence allows one to study the behavior of Z on the subsets Cβ via the one of π(X/t). This
main difference between the vector Z and Θ comes from the topological properties of the subspaces
{|x|> 1, π(x) ∈ Cβ}. Indeed, while the latter are of positive Lebesgue measure the subsets {|x|>
1, x/|x|∈ Cβ} associated to X/|X| are of zero Lebesgue measure (see Figure 2b for an illustration of the
subspaces π−1(Cβ) in dimension 2). This topological difference entails that it is easier to estimate the
tail dependence of X with Z rather than with Θ.

The aim of this paper is to build a statistical procedure to identify the extremal clusters β ∈ S∗(Z).
In a statistical setting we consider Equation (2.3) as an approximation for t high enough. Hence we need
to provide a method to select an optimal threshold t. This issue is all the more challenging since the
directions on which π(X/t) places mass vary with t, as explained in the following section.

Example 1 (Discrete spectral measure). For β ∈ P∗d , we denote by e(β) the sum
∑

j∈β ej. Then the
vector e(β)/|β| belongs to the simplex Sd−1

+ , with |β| corresponding the the length of the cluster β. We
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consider the following family of discrete distributions on the simplex:

S =
∑
β∈P∗d

c(β) δe(β)/|β| , (2.4)

where (c(β))β is a probability vector on R2d−1 (see Segers (2012), Example 3.3). Meyer and Wintenberger
(2021) proved that in this case we have Z = Θ a.s. and that the family of distribution in (2.4) is the only
possible discrete distributions for Z. We have S∗(Z) = {β : c(β) > 0}.

If we choose c(β) = 1/d for all β of length 1 then the spectral measure becomes S = d−1
∑d

j=1 δej ,
which corresponds to asymptotic independence (see for instance Ledford and Tawn (1996), Heffernan
and Tawn (2004), de Haan and Ferreira (2006), Section 6.2).

2.3 Impact of the threshold on the bias selection

In a statistical context we want to study the tail behavior of n iid random vectors. It is then common
to choose a threshold un → ∞, or a number k = kn of vectors which have the largest norms satisfying
k → ∞ and k/n → 0 as n → ∞ (de Haan and Ferreira (2006), Beirlant et al. (2006), Resnick (2007)).
The most common choice for k in a multivariate setting is

k = nP(|X|> un) . (2.5)

The smaller k the closer we are from the theoretical framework. However, we need to keep a substantial
number of extreme data to correctly learn their tail structure. No rigorous methodology for choosing k
has been obtained in a multivariate framework yet.

For t > 0, let us denote by πt the Euclidean projection onto the positive sphere {x ∈ Rd+ : x1 + . . .+
xd = t}. For a vector v ∈ Rd+ with `1-norm |v| the number of null coordinates of the projected vector
πt(v) strongly depends on the choice of t. Indeed, if t is close to |v| then πt(v) has almost only non-null
coordinates (as soon as v itself has non-null coordinates). On the contrary, if t � |v| then the vector
πt(v) becomes sparser. The impact of the threshold t on the sparsity of projected vectors is illustrated
in Figure 3.

For a large threshold t only extreme data are selected but many vectors are close to this threshold.
This implies that these vectors are projected on subsets Cβ with large |β|’s. The projected vectors are
thus not very sparse. On the other hand if we select a low threshold then we move away from the extreme
region. In this case the largest vectors are projected on subsets Cβ with small |β|’s, i.e. the projected
vectors are very sparse. Thus we have to make a balanced choice between providing a sparse structure
for the data and staying in the extreme region.

These considerations entail that the bias selection and the threshold selection have to be achieved
accordingly. For practical reasons it is often more convenient to focus on the number of exceedances k
rather than on the threshold t. We observe on Figure 3 that the projected vector π(X/t) is all the more
sparse that the threshold t is away from the vector X. If the level k is fixed, the sparsest representation
of π(Xj/t) is thus obtained for t = |X(k+1)|, where |X(j)| denotes the jth largest norm among the sample
X1, . . . ,Xn.

The identification of an appropriate number of extreme values k and of the set S∗(Z) is then achieved
via a model selection procedure. For a textbook treatment of model selection, see Massart (2007). Our
approach consists in fitting a multinomial model to the data. This is achieved by comparing the Kullback-
Leibler divergence between the data and the theoretical model (Kullback and Leibler (1951)), see Section
2.4. This leads to a model selection procedure which relies on the minimization of a penalized maximum
likelihood similarly to Akaike’s criterion (Akaike (1973)). Since the latter only holds for a constant sample
size, we have to adapt the standard approach to an extreme setting where the number of extremes vary.
Therefore we include the non-extreme values in the model and separate the data into an extreme group
and a non-extreme one. The procedure then provides a level k for which this separation is optimal.
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Figure 3: Impact of the threshold on sparsity. The image of the vector u is π1(u) = (0, 1) with the
threshold z = 1 while it is π2(u) > 0 with the threshold z = 2. The sparsity decreases when the
threshold increases.

2.4 Algorithm: MUltivariate Sparse CLustering for Extremes (MUSCLE)

Our procedure aims at providing the tail structure of X based on a sample X1, . . . ,Xn of iid sparsely
regularly varying random vectors with the same distribution as X. In order to identify the set S∗(Z)
defined in (2.2) we provide suitable estimators for the family of probabilities p∗ := (p∗(β))β∈P∗d . Therefore
we rewrite Equation (2.3) as

pn(β) := P(π(X/un) ∈ Cβ | |X|> un)→ p∗(β) , n→∞ ,

where un is a threshold satisfying un →∞. We define the estimators

Tn(β) =

n∑
j=1

1{π(Xj/un) ∈ Cβ, |Xj |> un} , β ∈ P∗d ,

and consider the random vector Tn = (Tn(β))β∈P∗d whose components are in the decreasing order (see
Section 3). This leads to the empirical version of the set S∗(Z) given by

Ŝn := {β : Tn(β) > 0} . (2.6)

We denote by ŝn its cardinality. For a given integer level k satisfying (2.5) the vector Tn follows a
multinomial distribution denoted by Pk with parameters k and pn := (pn(β))β∈P∗d . The bias between
the clusters β in S∗(Z) and in Ŝn entails that s∗ ≤ ŝn (see also Section 4.2). Note that for sake of
simplicity we omit the dependence in un of the quantities Tn, pn, and ŝn.

The bias selection consists in comparing the distribution Pk with a theoretical multinomial model Mk

whose probability vector is given by (p1, . . . , ps, p, . . . , p, 0, . . . , 0)> ∈ R2d−1, with p1 ≥ . . . ≥ ps > p and
r− s components p satisfying p1 + . . . p1 + (r− s)p = 1. The parameters pj model the probability that Z
belongs to the associated subsets Cβ while the parameter p models the probability that a biased cluster
appears. We denote by p the vector (p1, . . . , ps)

> ∈ Rs. The identification of the extremal clusters β in
S∗(Z) is then done by choosing the model Mk which best fits the sample Tn. To this end, recall that
the Kullback-Leibler divergence between two discrete distributions F and G is given by

KL(F ||G) = Eξ∼F
[

log
(F (ξ)

G(ξ)

)]
=
∑
x∈Ξ

x log(F (x)/G(x)) ,

where Ξ denotes the support of the distribution F (Kullback and Leibler (1951)). In order to minimize
the divergence KL(Pk||Mk) we estimate it by KL(Pk||Mk)|p̂, where p̂ denotes the maximum-likelihood
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estimator of p (see Akaike (1973)). This boils down to finding s which minimizes the penalized log-
likelihood

− logLMk
(p̂; Tn) + (s+ 1) , (2.7)

where LMk
denotes the likelihood of the model Mk, see Section 3.1 for more details. We denote by ŝ(k)

the parameter s for which the minimum is reached.
The second step consists in including the level k as a parameter of the model in order to tackle

the threshold selection. This is done by considering the vector T′n which models the behavior of the
large vectors Xj ’s on the subsets Cβ as well as the non-extreme ones. We assume that this vector
follows a multinomial distribution P′n. We consider an extended multinomial model M′

n with probability
vector given by (q′p′1, . . . , q

′p′s′ , q
′p′, . . . , q′p′, 0, . . . , 0, 1 − q′)> ∈ R2d with p′1 ≥ . . . ≥ p′s′ > p′ and r′ − s′

components q′p′ satisfying the relation p′1 + . . . + p′s + (r′ − s′)p′ = 1. Here q′ models the proportion
of extreme vectors. We denote by p′ the vector (p′1, . . . , p

′
s′ , q

′)> ∈ Rs′+1. As in the bias selection
we estimate the Kullback-Leibler divergence KL(P′n||M′

n) by KL(P′n||M′
n)|

p̂′
, where p̂′ denotes the

maximum-likelihood estimator of p′. Thus we choose the model M′
n whose parameters minimize the

following penalized log-likelihood:

1

k

(
− logLMk

(p̂; Tn) + (s+ 1)− k log(1− k/n)
)
, (2.8)

see Section 3. This leads to the choice of the estimators k̂ and ŝ(k̂). Then we define Ŝ∗ as the set
gathering the ŝ(k̂) clusters corresponding to the largest Tn(β)’s. Finally we consider the probability
vector ζ̂ defined by

ζ̂(β) :=
Tn(β)/k̂∑
γ∈Ŝ∗ Tn(γ)/k̂

,

for β ∈ Ŝ∗ and 0 elsewhere, as an estimator of p∗. Our procedure entails the following parameter-free
algorithm called MUSCLE for MUltivariate Sparse CLustering for Extremes.

Algorithm 1: MUltivariate Sparse CLustering for Extremes (MUSCLE)
Data: A sample X1, . . . ,Xn ∈ Rd+ and a range of values K for the level
Result: A list Ŝ∗ of clusters β and the associated probability vector ζ̂.
for k ∈ K do

Compute un = |X|(k+1) the (k + 1)-th largest norm;
Assign to each π(Xj/un) the subsets Cβ it belongs to;
Compute Tn;
Compute the minimizer ŝ(k) which minimizes the criterion given in Equation (2.7);

end
Minimize k̂ of (2.8) plugging in the minimal value in (2.7);
Output: Ŝ∗ = {the clusters β associated to the Tn,1, . . . , Tn,ŝ(k̂)} and ζ̂ as above.

3 Methodology

We develop in this section our methodology to estimate the set S∗(Z). We consider a sample of sparsely
regularly varying random vectors X1, . . . ,Xn with generic distribution X. Our model selection relies on
some asymptotic results for which it is necessary to have knpn(β) → ∞ when n → ∞ for some clusters
β and a level k = kn. Thus for a given level k we define the set

S∞k = {β ∈ P∗d : knpn(β)→∞ when n→∞} , (3.1)

7



and denote by s∞ its cardinality. In what follows we fix a large n and work under the event S∞k = Ŝn.
We refer to Section 4.2 for more insights on this assumption.

3.1 Bias selection

In this section we fix a level k = kn. Recall that the distribution of Tn is denoted by Pk and that the multi-
nomial model Mk has 2d−1 outcomes adding up to k and probability vector (p1, . . . , ps, p, . . . , p, 0, . . . , 0)>.
Recall also that p denotes the vector (p1, . . . , ps)

> ∈ Rs. In order to estimate the Kullback-Leibler di-
vergence between Pk and Mk we compute the maximum likelihood estimators of the latter model. The
likelihood LMk

is given by

LMk
(p; x) =

k!∏2d−1
i=1 xi!

s∏
i=1

pxii

r∏
i=s+1

(1−
∑s

j=1 pj

r − s

)xi
1{xj = 0, j ≥ r + 1} ,

for any vector p ∈ [0, 1]s such that p1 + . . .+ ps ≤ 1, and x ∈ R2d−1
+ adding up to k. It is maximal for a

vector x whose components are ordered in the decreasing order. Hence we define Tn,1 = maxβ Tn(β) and

Tn,j = max {Tn(β), β ∈ P∗d} \ {Tn,1, . . . , Tn,j−1} , j = 2, . . . , 2d − 1 .

We consider the associated order for the vectors p∗ and pn. Finally, we fix the number of positive
parameters r to be equal to the number of clusters that appear ŝn and work under this event.

The optimization of the log-likelihood

logLMk
(p; Tn) = log(k! )−

2d−1∑
i=1

log(Tn,i! ) +
s∑
i=1

Tn,i log(pi) +
( r∑
i=s+1

Tn,i

)
log
(1−

∑s
j=1 pj

r − s

)
(3.2)

yields the maximum likelihood estimators p̂j := Tn,j/k for 1 ≤ j ≤ s.
The last parameter remaining is s which needs to be fitted. It is achieved by computing the Kullback-

Leibler divergence between the true distribution Pk and the model Mk,

KL(Pk‖Mk) = E
[

log

(
LPk(Tn)

LMk
(p; Tn)

)]
= E[ logLPk(Tn)]− E[ logLMk

(p; Tn)] . (3.3)

This quantity must be seen as a function of p. In particular the first term of the right-hand side is
constant with respect to the parameter p. Regarding the second term, Equation (3.2) yields

E[ logLMk
(p; Tn)] = log(k! )−E

[ 2d−1∑
i=1

log(Tn,i! )

]
+ k

s∑
i=1

pn,i log(pi) + k
( r∑
i=s+1

pn,i

)
log
(1−

∑s
j=1 pj

r − s

)
,

(3.4)
for any vector p ∈ [0, 1]s such that p1 + . . .+ ps ≤ 1. Following the approach of Akaike (1973) we select
the multinomial model which minimizes the Kullback-Leibler divergence between the true distribution
and the model Mk evaluated at the maximum likelihood p̂:

KL(Pk‖Mk)|p=p̂= E[ logLPk(Tn)]− E[ logLMk
(p; Tn)]|p=p̂ . (3.5)

We establish in Section 4 some asymptotic results which lead to the following approximation for the
expectation of the estimator in Equation (3.5):

E[KL(Pk‖Mk)|p=p̂] ≈ E[ logLPk(Tn)]− E[ logLMk
(p̂; Tn)] + E[χ2(s+ 1)]

≈ E[ logLPk(Tn)]− E[ logLMk
(p̂; Tn)] + (s+ 1) ,
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where χ2(s + 1) denotes a chi-squared distribution with s + 1 degrees of freedom. We defer the tech-
nical calculations to Appendix C.1. The first term of the right-hand side is constant with respect to
the parameter p. Moving back to Equation (3.3), we estimate the quantity E[ logLMk

(p; Tn)] with
− logLMk

(p̂; Tn) + (s+ 1). Therefore for a given level k the bias selection procedure consists in choosing
the parameter ŝ(k) which minimizes this penalized log-likelihood. This provides ŝ(k) extremal clusters
β on which the distribution of the vector Z places mass.

3.2 Threshold selection

The second step is to consider k = kn as a parameter which has to be estimated and tuned. It is therefore
necessary to consider all observations X1, . . . ,Xn and not only the extreme ones. We consider a vector
T′n which models the repartition of the Xj ’s on the subsets Cβ and with the last components T ′

n,2d

corresponding to the number of non-extreme values of the sample. We assume that this vector follows a
multinomial distribution P′n with parameter n and probability vector

p′n = (qnpn,1, . . . , qnpn,2d−1, 1− qn)> ∈ R2d , (3.6)

where the parameter 1− qn is associated to the non-extreme values. We make the following assumption
on the quantity qn.

Assumption 1. nqn log(n)→ 0 when n→∞.

Similarly to Section 3.1 we aim to compare the distribution P′n with the theoretical multinomial model
M′

n with parameter p′ defined in Section 2.4 by computing the Kullback-Leibler divergence between both
distributions. The interpretation of the model M′

n is the same as for Mk. The extra-parameter q′ models
the proportion of extreme values taken among the data.

We are willing to select the model M′
n which minimizes the Kullback-Leibler divergence between P′n

and M′
n given by

KL(P′n‖M′
n) = E

[
log

(
LP′n(T′n)

LM′n(p′; T′n)

)]
= E[ logLP′n(T′n)]− E[ logLM′n(p′; T′n)] , (3.7)

where LP′n (resp. logLM′n) denotes the likelihood of the distribution P′n (resp. M′
n). The log-likelihood

logLM′n(p′; T′n) can be decomposed as

logLM′n(p′; T′n) = log(n! )−
2d∑
j=1

log(T ′n,j ! ) +
s′∑
j=1

T ′n,j log(q′p′j) +
( 2d−1∑
j=s′+1

T ′n,j

)
log(p′q′) + T ′n,2d log(1− q′)

= log((n− T ′n,2d)! )−
2d−1∑
j=1

log(T ′n,j ! ) +

s′∑
j=1

T ′n,j log(p′j) + log(p′)

2d−1∑
j=s′+1

T ′n,j

+ log
( n!

(n− T ′
n,2d

)!

)
− log(T ′n,2d ! ) + (n− T ′n,2d) log(q′) + T ′n,2d log(1− q′)

= logLMn−T ′
n,2d

(p; T′n,{1,...,2d−1}) + φ(n, q′, T ′n,2d) ,

where

φ(n, q′, T ′n,2d) = log

(
n!

(n− T ′
n,2d

)!

)
− log(T ′n,2d ! ) + (n− T ′n,2d) log(q′) + T ′n,2d log(1− q′) .
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Following the same ideas as in Section 3.1 and similarly to an AIC procedure we estimate the Kullback-
Leibler divergence in Equation (3.7) by the estimator KL(P′n‖M′

n)|
p̂′

where p̂′ denotes the maximum
likelihood estimator of p′. Hence, we are willing to study the expectation of this estimator:

E[KL(P′n‖M′
n)|

p̂′
] = E[ logLPn(T′n)] + E

[
E
[
− logLMn−T ′

n, 2d

(p; T′n, {1,...,2d−1}) | T
′
n, 2d

]∣∣∣
p̂

]
− E

[
E
[
φ(n, q′, T ′n, 2d)

]∣∣∣
p̂′

]
. (3.8)

We refer to Appendix C.2 for several calculations regarding the aforementioned quantity which lead to
the following approximation:

E[KL(P′n‖M′
n)|

p̂′
] ≈ Cn +Dn

1

k

(
E[− logLMk

(p̂; Tn)] + (s+ 1)− k log(1− k/n)
)
,

where Cn and Dn > 0 are constants depending on n. This implies that the penalized log-likelihood

1

k

(
− logLMk

(p̂; Tn) + (s+ 1)− k log(1− k/n)
)

(3.9)

provides up to some constants an approximation of the Kullback-Leibler divergence in Equation (3.7)
evaluated at the maximum likelihood estimator p̂′. In practice we choose a large range of k (often
between 0.5% and 10% of n) and we compute the value of (3.9) for these k and for s = 1, . . . , ŝn, where
we recall that ŝn depends on the chosen level k. Finally we choose the couple (k̂, ŝ(k̂)) which minimizes
this quantity in (3.9). We then consider the vector ζ̂ defined in Section 2.4 as an estimator of vector p∗.

Remark 1. While our procedure leads to the choice of a unique k̂, we expect that this approach is not
too sensitive to this choice. Therefore, it is relevant to plot the function k 7→ ŝ(k) on which a stability
region around the optimal value k̂ should appear.

4 Asymptotic analysis of the support of extremes

In this section we establish asymptotic results which justify the approximations in the model selection
procedure developed in Section 3. Note that in all what follows we study random variables with the
condition |X|> un.

4.1 Consistency

We consider a sequence of iid sparsely regularly varying random vectors X1, . . . ,Xn with generic distri-
bution X, a positive sequence (un)n∈N and a level k = kn = nP(|X|> un). We discuss some convergence
results for the random vector Tn. The first one is consistency.

Proposition 1. If un → ∞ and kn = nP(|X|> un) → ∞, then the following convergence in probability
holds:

Tn

kn
→ p∗ , n→∞ . (4.1)

Proof. It suffices to prove that a univariate convergence holds for every cluster β. For ε > 0, Markov’s
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inequality entails that

P
(∣∣∣Tn(β)

kn
− pn(β)

∣∣∣ > ε
)
≤ E[|Tn(β)/kn − pn(β)|2]

ε2

≤
E
[∑n

j=1|1{π(Xj/un) ∈ Cβ, |Xj |> un} − P(π(Xj/un) ∈ Cβ, |Xj |> un)|2
]

k2
nε

2

=
nVar(1{π(X/un) ∈ Cβ, |X|> un})

k2
nε

2

≤ nP(π(X/un) ∈ Cβ, |X|> un)k−2
n ε−2 .

Since nP(π(X/un) ∈ Cβ, |X|> un)k−2
n ε−2 ≤ k−1

n ε−2 → 0 when n→∞ we obtain that Tn(β)/kn − pn(β)
converges to 0 in probability. The convergence pn(β)→ p∗(β) in Equation (2.3) concludes the proof.

Proposition 1 implies that if p∗(β) = 0, i.e. if Z does not place mass on the subset Cβ , then Tn(β)/kn
becomes smaller and smaller as n increases. Actually as soon as the dimension d is large a lot of Tn(β)’s
are even equal to 0 since the level kn is far below the number of subsets 2d − 1.

4.2 The bias between Ŝn and S∗(Z)

We study in this section the difference between S∗(Z) and the empirical set Ŝn. The following lemma
gives an asymptotic relation for the probability P(Tn(β) = 0).

Lemma 1. For β ∈ P∗d , we have

logP(Tn(β) = 0)

−knpn(β)
→ 1 , n→∞ .

Proof. We have

P(Tn(β) = 0) = P(π(Xj/un) /∈ Cβ or |Xj |≤ un, j = 1, . . . , n)

= [1− P(π(X/un) ∈ Cβ, |X|> un)]n

= exp (n log[1− P(π(X/un) ∈ Cβ, |X|> un)]) .

Since P(π(X/un) ∈ Cβ , |X|> un)→ 0 we obtain a Taylor expansion

n log (1− P(π(X/un) ∈ Cβ , |X|> un)) ∼ −knpn(β) , n→∞ .

This concludes the proof.

Lemma 1 encourages to focus on the quantity knpn(β). Recall that we defined in (3.1) the set
S∞k = {β ∈ P∗d : knpn(β) → ∞ when n → ∞} which contains S∗(Z). In particular we have the
inequality s∗ ≤ s∞. A consequence of Lemma 1 is that

P(S∞k ⊂ Ŝn) = 1− P(∃β ∈ S∞k , β /∈ Ŝn) ≥ 1−
∑
β∈S∞k

P(Tn(β) = 0)→ 1 ,

when n→∞. Consequently, since S∗(Z) ⊂ S∞k we obtain the following proposition.

Proposition 2. With probability converging to 1, we have the inclusions

S∗(Z) ⊂ S∞k ⊂ Ŝn . (4.2)
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These inclusions highlight the fact that the observations Tn(β) tend to overestimate the number of
clusters β in S∗(Z). It therefore justifies the assumption made for the bias selection that all extremal
clusters appear in Ŝn but some extra clusters might appear because of a bias between the true probability
p∗ and the pre-asymptotic one pn. We recall that for our study we work under the event S∞k = Ŝn.

Remark 2. If a cluster β satisfies knpn(β) → 0, then Lemma 1 ensures that P(Tn(β) = 0) → 1. If this
holds for all β ∈ S∗(Z)c, then we obtain that

P(S∗(Z)c ⊂ Ŝcn) = 1− P(∃β ∈ S∗(Z)c, β ∈ Ŝn) ≥ 1−
∑

β∈S∗(Z)c

P(Tn(β) > 0)→ 1 ,

when n→∞. Under such an assumption the sets in (4.2) are all equal with probability converging to 1.
However this assumption is quite strong and is not satisfied on numerical examples.

4.3 Asymptotic normality of the estimators

We now study the asymptotic distribution of the vector Tn. To avoid degenerate cases we restrict
ourselves to the clusters β ∈ S∞k where S∞k is defined in (3.1). Consequently, the restricted vectors p∗S∞k

,
pn,S∞k , and Tn,S∞k of Rs∞ are considered. We gather our results in the following theorem whose proof is
given in Appendix B.

Theorem 1. Assume that un →∞ and kn = nP(|X|> un)→∞. Then the following convergence hold.

1. On S∞k : √
kn Diag(pn,S∞k )−1/2

(
Tn,S∞k
kn

− pn,S∞k

)
d→ N (0, Ids∞) , n→∞ . (4.3)

2. On S∗(Z):

√
kn Diag(pS∗(Z))

−1/2

(
Tn,S∗(Z)

kn
− pn,S∗(Z)

)
d→ N (0, Ids∗) , n→∞ . (4.4)

3. Moreover, if we assume that

∀β ∈ S∗(Z) ,
√
kn(pn(β)− p(β))→ 0 , n→∞ , (4.5)

then we have √
kn Diag(pS∗(Z))

−1/2

(
Tn,S∗(Z)

kn
− pS∗(Z)

)
d→ N (0, Ids∗) , n→∞ . (4.6)

Remark 3. Some comments on Theorem 1.

1. In all convergences the square root of the diagonal matrix is meant componentwise.

2. The convergence (4.4) is obtained by restricting the previous convergence to the clusters β ∈ S∗(Z)
and writing down that

Diag(pn,S∗(Z))
1/2 Diag(pS∗(Z))

−1/2 → Ids∗ , n→∞ .

This observation does not hold for S∞k \ S∗(Z) since for such β’s we have p∗(β) = 0.

3. The assumption (4.5) is a standard assumption to control the bias.
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4. The left-hand side of the convergences (4.3), (4.4), and (4.6) are never degenerate even if the sets
S∗(Z) or S∞k correspond to all clusters β. Indeed, in such a case the randomness comes from the
extremes sampling via the condition |Xj |> un.

From Equation (4.3) we obtain that the vector

Un :=
√
kn Diag(pn,S∞k )−1/2

(
Tn,S∞k
kn

− pn,S∞k

)
satisfies the convergence

U>n ·Un = kn

(
Tn,S∞k
kn

− pn,S∞k

)>
Diag(pn,S∞k )−1

(
Tn,S∞k
kn

− pn,S∞k

)
d→ χ2(s∞) , (4.7)

when n → ∞ and where χ2(s∞) denotes a chi-squared distribution with s∞ degrees of freedom. This
convergence can be rephrased as follows:

kn

s∞∑
j=1

(Tn,j/kn − pn,j)2

pn,j

d→ χ2(s∞) , n→∞ . (4.8)

Now, let us fix s1 < s2 and consider s2 clusters β1, . . . , βs2 in S∞k . Since the associated subsets Cβ
are disjoint, we have the relation

s2∑
j=s1+1

Tn(βj) = Tn(∪s2j=s1+1βj) , and
s2∑

j=s1+1

pn(βj) = pn(∪s2j=s1+1βj) .

This implies that the vector

Un(s1) =
√
kn

(
Tn(β1)/kn − pn(β1)√

pn(β1)
, . . . ,

Tn(βs1)/kn − pn(βs1)√
pn(βs1)

,

∑s2
j=s1+1 (Tn(βj)/kn − pn(βj))√∑s2

j=s1+1 pn(βj)

)>
converges in distribution to a random vector of Rs1+1 with distribution N (0, Ids1+1). Then, similarly to
Equation (4.7), we have the convergence of Un(s1)> ·Un(s1) to a chi-square distribution with s1 degrees
of freedom, i.e.

kn

s1∑
j=1

(Tn(βj)/kn − pn(βj))
2

pn(βj)
+ kn

(
∑s2

j=s1+1(Tn(βj)/kn − pn(βj)))
2∑s2

j=s1+1 pn(βj)

d→ χ2(s1 + 1) , n→∞ . (4.9)

This convergence is used to identify the parameter s in the bias selection, see Appendix C.1.

4.4 Asymptotic test for the biased clusters

In this section we advocate our approach by providing an asymptotic test similar to the standard score
test. It motivates the use of the AIC approach for the bias selection. The idea is to test whether some
parameters pj of the models are equal or not. This is particularly relevant for the study of the biased
clusters for which we assumed in every model Mk that the associated parameters are the same.

We recall that we work under the event S∞k = Ŝn, where S∞k is defined in (3.1). With such an
assumption the convergence (4.3) holds true for the clusters in Ŝn. We fix s1 < s2 and consider the model
Mk with s2 parameters. We test the hypothesis H0: Tn ∼ Mk with pj = ρn for all j = s1 + 1, . . . , s2.
Our test statistic is given by

Tn := kn

s2∑
j=s1+1

(Tn,j/kn − ρ̂n)2

ρ̂n
,
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where ρ̂n = k−1
n (s2 − s1)−1

∑s2
i=s1+1 Tn,j . For a given α > 0, we reject H0 if Tn > q

(s2−s1−1)
1−α , where

q
(s2−s1−1)
1−α is the (1 − α)-quantile of a chi-square distribution with s2 − s1 − 1 degrees of freedom. The
following proposition, proved in Appendix D, states that such a test has asymptotically a significance
level α.

Proposition 3 (Score test for the biased clusters). With the previous notation we have the convergence

Tn
d→ χ2(s2 − s1 − 1) , n→∞ .

Testing the equality of the probability of occurrence of some clusters is more accurate for the biased
clusters. Indeed, for the extremal clusters these probabilities are not close to zero so that it is very
unlikely that two of them are identical. On the other hand, since the probability of occurrence of the
biased clusters are near zero, some of them may be equal. Therefore this test gives some insights on
the bias selection of Section 3.1. As for the score test, we establish in Appendix C.1 a convergence to a
chi-square distribution for the bias selection.

However, this test applied to the biased clusters is slightly different from the AIC-type approach we
propose in Section 3.1. Indeed, for the test we only look at the bias between s1 and s2 and we assume
that this bias is constant equal to ρn. In particular, we do not make any assumption on the clusters after
s2. On the other hand, the bias selection as any AIC-type approach requires nested models. This is why
for a given model Mk with s extremal clusters associated to a vector p = (p1, . . . , ps) we assume that all
clusters between s and r have the same probability of occurrence.

Remark 4. In both the test and the bias selection we assumed a bias uniformly spread over non-extremal
clusters. However it might be more reasonable to consider an isotropic bias, i.e. invariant under a change
of direction. Such alternative assumption is approximately consistent with the uniform one we assumed
for convenience. But with an isotropic bias we might face some issues regarding the cluster {1, . . . , d}.
Indeed, this cluster might be over-represented even if it is not an extremal cluster because of the topology
of the subspace C{1,...,d}. Therefore, if the cluster {1, . . . , d} appears as an extremal cluster, the result
must be considered with care.

5 Numerical results

5.1 Overview

We apply our algorithm on two numerical examples to demonstrate our method. For both examples our
aim is to recover the clusters β on which Z places mass, that is, the set S∗(Z). To this end we compare
the estimated probability vector ζ̂ with the theoretical one p∗ via the Hellinger distance

h(p∗, ζ̂) =
1√
2

[ ∑
β∈P∗d

(p∗(β)1/2 − ζ̂(β)1/2)2
]1/2

. (5.1)

The closer h(p∗, ζ̂) is to 0, the better ζ̂ estimates p∗. In order to compare our method with some existing
ones, we also compute the Hellinger distance between the true probabilities P(Θ ∈ Cβ) and the estimated
ones given by the algorithm called DAMEX of Goix et al. (2017) and the two methods of Simpson et al.
(2019). We represent the mean Hellinger distance over N = 100 simulations. The parameters in the
method of Goix et al. (2017) are chosen to be ε = 0.1, k =

√
n, and p = 0.1, see the notation in their

paper. Regarding the methods of Simpson et al. (2019) we use the parameters given by the authors in
Section 4.2 of their paper, i.e. we set π = 0.01, and p = 0.5 and uβ to be the 0.75 quantile of observed
Q values in region Cβ for the first method, and δ = 0.5 and uβ to be the 0.85 quantile of observed Q
values in region Cβ for the first method. We refer to Simpson et al. (2019) for more insights on these
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parameters. Contrary to the aforementioned methods, we recall that MUSCLE does not require any
hyperparameter. This is a main advantage from a statistical and computational point of view.

For the first example we consider a Gaussian copula with correlation parameter ρ < 1 and Pareto
distributed marginals. With such a parameter ρ the random vectors Z and Θ only places mass on the
axes. These directions are all the more identifiable as the parameter ρ is close to 0 (no dependence). The
second example is the one developed by Simpson et al. (2019) and deals with a max-mixture of Gaussian
and extreme value logistic distributions. The latter distribution is characterized by a parameter α ∈ (0, 1)
and leads to asymptotic dependence. We provide numerical examples for different values of ρ and α. The
code can be found at https://sites.google.com/view/nicolasmeyer/programs.

5.2 Asymptotic independence

Let X = (X1, . . . , Xd)
> be a random vector with a Gaussian copula with a common correlation parameter

ρ < 1 and marginal distributions satisfying P(Xj > x) = x−1. Then X is regularly varying with tail
index −1 and its marginals are asymptotically independent, see Resnick (1987), Corollary 5.28. The
spectral measure only places mass on the subsets Cβ such that |β|= 1, and so does the distribution of Z,
see Example 1. The aim of our procedure is then to recover these d directions among the 2d− 1 clusters.

We first consider d = 40, a sample size n = 30 000, and a correlation parameter ρ = 0.5. Following
Remark 1, we plot the evolution of the penalized log-likelihood (2.8) for a given sample X1, . . . ,Xn.
Figure 4 shows that this quantity first decreases for small values of k before it slightly increases with k.
The minimum is reached for k̂ = 1050 which corresponds to a proportion of extreme values of k̂/n = 3.5%.
Regarding the evolution of ŝ(k), we observe that the value of ŝ(k) remains constant for k close to k̂. It
stabilizes around an optimal value of ŝ(k̂) = 41. Recall that in this example the true clusters corresponds
to the d = 40 one-dimensional ones. In turns out that the algorithm identifies the 40 one-dimensional
clusters. The extra cluster which appears is {1, . . . , d} (see Remark 4 for some insights on this cluster).

Figure 4: Evolution of the penalized log-likelihood given in (2.8) (left) and of ŝ(k) (right) with respect
to k. Here ρ = 0.5 and n = 30 000.

We then compare the estimated probabilities ζ̂ given by our algorithm with the true ones p∗(β) = 1/d
for |β|= 1 and zero elsewhere. To do so, we still consider d = 40 and n = 30 000. We apply our procedure
for different correlation parameters ρ ∈ {0, 0.25, 0.5, 0.75} and repeat our procedure over N = 100
simulations. Then we compute the Hellinger distance defined in (5.1) and we compare ourselves with the
approach of Goix et al. (2017). For the two methods proposed by Simpson et al. (2019) it is necessary to
compute the empirical mass on all 2d−1 subsets Cβ which can not be achieved for such a high dimension.
This is why for this example we restrict our comparison with DAMEX.

Figure 5 shows the mean Hellinger distance achieved by our method and the one of Goix et al. (2017)
over 100 simulations. We observe that the performance of both methods deteriorates as the value of the
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parameter ρ increases. For any ρ ∈ {0, 0.25, 0.5, 0.75} our approach leads to better results than the one
of Goix et al. (2017).

Figure 5: Mean Hellinger distance for ρ ∈ {0, 0.25, 0.5, 0.75} over 100 simulations. In orange: MUSCLE.
In red: Goix et al. (2017).

5.3 Max-mixture distribution

The second example is taken from Simpson et al. (2019) and consists of a mixture of Gaussian and
extreme-value logistic distributions. For any β ∈ P∗d , let Aβ ∈ R|β|+ be a random vector with standard
Fréchet marginal distributions, and let {Aβ : β ∈ P∗d} be independent random vectors. Then the vector
X = (X1, . . . , Xd)

> whose components are defined via

Xj = max
β∈P∗d :i∈β

λi, βXj ,β ,

with λi, β ∈ [0, 1] and
∑

β∈P∗d :i∈β λi, β = 1, has also standard Fréchet marginal distributions and is
regularly varying.

For our simulations we consider the five-dimensional example introduced by Simpson et al. (2019)
which we recall for completeness. We consider two bivariate Gaussian copulas with correlation parameter
ρ and Fréchet marginals A{1,2} and A{4,5}, and three extreme-value logistic copulas with dependence
parameter α and Fréchet marginals A{1,2,3}, A{3,4,5}, and A{1,2,3,4,5}. For ρ < 1, the Gaussian copula is
asymptotically independent and thus the spectral measure defined in (1.1) concentrates on the subsets
C{1}, C{2}, C{4}, and C{5}. For α ∈ (0, 1) the logistic distribution is asymptotically dependent so that
the spectral measure also places mass on the subsets C{1,2,3}, C{3,4,5}, and C{1,2,3,4,5}. Following Simpson
et al. (2019), we set

λ{1,2} = (5, 5)/7 , λ{4,5} = (5, 5)/7

λ{1,2,3} = (1, 1, 3)/7 , λ{3,4,5} = (3, 1, 1)/7 , λ{1,2,3,4,5} = (1, 1, 1, 1, 1)/7 ,

so that equal mass is assigned to each of the seven aforementioned subsets. In order to compute the mass
the distribution of Z assigns to every subset Cβ we start from the distribution of Θ and use Monte-Carlo
simulation. We then compare these probabilities with their estimated ones ζ̂ given by MUSCLE.

We run our algorithm for different values of ρ ∈ {0, 0.25, 0.5, 0.75} and α ∈ {0.1, 0.2, . . . , 0.9}. Figure
6 shows the average mean Hellinger distance for our method, the one of Goix et al. (2017), and the two
of Simpson et al. (2019) over 100 simulations. Our method provides a mean Hellinger distance which
stabilizes between 0.2 and 0.3 for all values of ρ and α. For α ≤ 0.7 the distance slightly decreases with
alpha, while it increases for α ≥ 0.8. The standard deviation is quite small for α ≤ 0.7 and then increases
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with α. Regarding the approach of Goix et al. (2017), the mean Hellinger distance tends to increase
with α and with ρ. The smallest values is obtained for ρ ∈ {0, 0.25} and for small α. The estimation
particularly deteriorates for ρ = 0.75. Finally both methods proposed by Simpson et al. (2019) provide
a mean Hellinger distance which increases with α and ρ. The second one seems to provide almost always
better results than the first one.

Figure 6: Mean Hellinger distance over 100 simulations for ρ = 0 (top left), ρ = 0.25 (top right), ρ = 0.5
(bottom left), ρ = 0.75 (bottom right). The abbreviation SWT1 (resp. SWT2) refers to the first (resp.
second) method of Simpson et al. (2019)

While all methods provided by Goix et al. (2017) and Simpson et al. (2019) deteriorate when ρ or
α increase, our procedure provides results which stabilize around a mean Hellinger distance of 0.2. This
distance is the smallest one for ρ = 0.5 and ρ = 0.75 for all α compared to the one of the three other
methods. For small ρ, MUSCLE better performs for large α. For small α the second method of Simpson
et al. (2019) provides better results than our approach, while its standard deviation is larger. It turns
out that except for small α with ρ = 0 and ρ = 0.25 our algorithm better detects the extremal clusters.
These performances are all the more remarkable than they are achieved without any hyperparameter.

6 Application to real-world data

6.1 Preprocessing for real-world data

In Section 5 we considered examples with standard Pareto or standard Fréchet marginal distributions
so that the tail index (see Equation (1.1)) of the considered vector is equal to 1. The influence of this
index on the extremal clusters has been studied on some numerical results by Meyer and Wintenberger
(2021). It turns out that a large tail index does not provide accurate results while a small one highlights
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one-dimensional clusters, see Remark 11 in their article. A tail index of α = 1 seems to provide the best
results.

For real-world data the estimation of the tail index of a sample x1, . . . ,xn is achieved with a Hill plot
(Hill (1975)). It consists in plotting

α̂(k) =

(
1

k

k∑
j=1

log(|x|(j))− log(|x|(k))

)−1

, k = 2, . . . , n ,

where |x|(j) denotes the order statistics of the norms |x1|, . . . , |xn|, i.e.

|x|(1)≥ . . . ≥ |x|(n) ,

and to choose α̂ as the value around which the plot stabilizes.
Then, we consider the power transform x′j = (xj)

α̂. This transformation highlights the tail structure
of the data without modifying the support of the spectral measure, see Meyer and Wintenberger (2021),
Remark 8. It differs from the standardization discussed in the introduction for which the vectors are
normalized via a rank transform.

6.2 Wind speed data

The data correspond to the daily-average wind speed for 1961-1978 at 12 synoptic meteorological stations
in the Republic of Ireland (n = 6574, d = 12). They are available at http://lib.stat.cmu.edu/
datasets/ and have been analyzed in detail by Haslett and Raftery (1989). The stations are the following
ones: Malin Head (Mal), Belmullet (Bel), Clones (Clo), Claremorris (Cla), Mullingar (Mul), Dublin
(Dub), Shannon (Sha), Birr (Bir), Kilkenny (Kil), Valentia (Val), Roche’s Pt. (Rpt), Rosslare (Ros).
Seven of these stations are along the sea: Belmullet (west), Dublin (east), Malin Head (north), Roche’s
Pt. (south), Rosslare (east), Shannon (west), and Valentia (southwest). The five other stations are more
than 50 kilometers away from the coast. We refer to Haslett and Raftery (1989) for a map of the stations.

The preprocessing of the data provides a Hill estimator of α̂ = 10.7. Before applying MUSCLE and
similarly to Section 5 we plot the evolution of the penalized log-likelihood in (2.8) as a function of k.
The optimal value k̂ = 460 is clearly identified and corresponds to a proportion k̂/n = 7%. This choice
of k̂ leads to a number of clusters ŝ(k̂) = 11. Note that contrary to the numerical examples the value of
ŝ(k) does not stabilize when k is close to k̂.

Figure 7: Evolution of the penalized log-likelihood given in (2.8) (left) and of ŝn(k) (right) with respect
to k for the wind speed data.

MUSCLE provides 11 extremal clusters which correspond to 6 stations: Belmullet, Malin Head,
Roche’s Pt., Rosslare, Dublin, and Shannon. All of these stations are located close to the sea, where
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wind speed is likely to be higher than in inland cities. The only coastal city which does not appear in the
extremal clusters is Valentia which is located more than 200 kilometers away from the other stations.

The 11 clusters and their inclusions are illustrated on Figure 8. The algorithm exhibits low-dimensional
clusters as the largest ones are of dimension 3. The northern station Malin Head appears in all multivari-
ate clusters. Most of the clusters are related to a specific localization: {Sha, Bel, Mal} and {Bel, Mal}
correspond to stations in the north/west, {Mal, Dub} and {Mal, Ros} to stations in the north/east.
Three extremal clusters gather the northern station Malin Head and the southern one Roche’s Pt.

We conclude that the aforementioned 11 clusters correspond to subsets Cβ which gather the mass of
the angular vector Z. In particular, the subsets related to the clusters {Sha, Bel, Mal}, {Rpt, Bel, Mal},
{Rpt, Ros, Mal}, and {Dub, Mal} gather some mass of Z and are not included in larger subsets on
which Z places mass. Following Meyer and Wintenberger (2021), Theorem 2, these maximal subsets also
concentrate the mass of the spectral measure. The remaining clusters, which correspond to non-extremal
subsets, contain almost all the station Malin Head. We interpret this as follows: among the maximal
subsets the wind speed in Malin Head is likely to be larger than in the other stations. We also refer to
Meyer and Wintenberger (2021), Section 3.2, for a discussion on maximal and non-maximal subsets. A
separate study can then be conducted on each group of stations for which standard methods for low-
dimensional extremes can be applied, see Coles and Tawn (1991), Einmahl et al. (1993), Einmahl et al.
(1997), Einmahl and Segers (2009).

Sha, Bel, Mal Rpt, Bel, Mal Rpt, Ros, Mal

Bel, Mal Dub, Mal Rpt, Mal Ros, Mal

Bel Mal Rpt Ros

Figure 8: Representation of the 11 clusters and their inclusions.

In order to study the remaining stations, we remove the 6 extremal stations and reapply our procedure.
MUSCLE then provides 16 clusters:

• Four one-dimensional clusters: Val, Clo, Cla, Mul.

• Five two-dimensional clusters: {Val, Cla}, {Val, Clo}, {Val, Mul}, {Mul, Clo}, {Cla, Clo}.

• Two three-dimensional clusters: {Val, Cla, Clo}, {Val, Mul, Clo}.

• and other clusters: {Val, Cla, Mul, Clo}, {Val, Bir, Cla, Clo}, {Val, Bir, Cla, Mul, Clo},
{Val, Kil, Bir, Cla, Mul, Clo}.

The station Valentia appears in almost all of these clusters. It is the only remaining coastal station,
the other ones are inland ones. No particular tail dependence structure appears for these non-extremal
stations. In particular, the largest clusters {Val, Kil, Bir, Cla, Mul, Clo} indicates that it is likely that
the wind speed in all of these six stations is simultaneously large.

6.3 Extreme variability for financial data

In the second example we deal with financial data. The data set we use corresponds to the value-
average daily returns of 49 industry portfolios compiled and posted as part of the Kenneth French Data

19



Library. They are available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html. A related study on a similar dataset has been conducted by Cooley and Thibaud (2019).
We restrict our study to the period 1970 − 2019 which provides n = 12 613 observations denoted by
xobs

1 , . . .xobs
n ∈ R49. Our goal is to study the variability of these returns so that we take the componentwise

absolute value xj = |xobs
j | of the data. Thus, we study the non-negative vectors x1, . . . ,xn in Rd+ with

n = 12 613 and d = 49. Following Section 6.1, we consider the vectors x′j = (xj)
α̂, where α̂ = 2.99 is the

Hill estimator of the sample |x1|, . . . , |xn|.
Following Remark 1, we plot the evolution of the estimator of the Kullback-Leibler divergence in (2.8)

as a function of k. We see on Figure 9 that this estimator decreases until it reaches a minimal value for
k̂ = 441, before increasing for k ≥ k̂. The level k̂ corresponds to a proportion k̂/n = 3% and leads to
a number of extremal clusters ŝ(k̂) = 14. Contrary to the numerical results and as for the wind speed
data, we do not observe a range of k for which the minimal value ŝ(k) remains approximately constant.

Figure 9: Evolution with respect to k of the penalized log-likelihood given in (2.8) (left) and of ŝn(k)
(right) for the financial data.

MUSCLE provides ŝ(k̂) = 14 extremal clusters which gather 12 portfolios. These clusters and their
inclusions are represented in Figure 10. The number of identified clusters is much smaller compared to
the total number 249 ≈ 1015. Besides these clusters are at most three-dimensional so that our procedure
drastically reduces the dimension of the study. Most of the extremal portfolios which appear in the clusters
correspond to "office/executive" sectors, such as Health, Software, Hardware, Banks, Finance, Electronic
Equipment (Chips), Real Estate. Some other clusters group portfolios related to heavy industries, such as
Steel, Coal, and Gold. The only clusters gathering a heavy industry and service sectors are {Coal, Banks}
and {Coal, Banks, Fin}. The tail dependence of the variability of these different kinds of portfolios may
result from the financing of the coal industry by several big banks, see Raval et al. (2020).

As for the wind speed data, we conclude that the 14 clusters given by MUSCLE correspond to subsets
Cβ which gather the mass of Z. Among them, 8 are maximal: the spectral measure places mass on the
associated Cβ . Here again, standard approaches which hold for low-dimensional extremes can now be
applied on these subsets.

After removing the 12 extremal components we reapply MUSCLE to obtain the dependence structure
of the non-extremal portfolios. The algorithm provides a unique cluster with all 37 remaining portfolios.
Hence these portfolios tend to have a dependent tail structure: their extreme variability is strongly
correlated.

7 Conclusion

The statistical analysis introduced in this article provides a new approach to detect the extremal directions
of a multivariate random vector X. This method relies on the notion of sparse regular variation which

20

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Coal, Banks, Fin

Hlth, Softw Coal, Banks Steel, Coal Gold, Coal Hardw, Chips

Softw Hlth Banks Coal Txtls Gold RlEst Smoke

Figure 10: Representation of the 14 clusters and their inclusions. The abbreviations are the following
ones: Softw = Computer Software, Txtls = Textiles, Hlth = Healthcare, RlEst = Real Estate, Hardw =
Hardware, Chips = Electronic Equipment, Fin = Finance.

better highlights the tail dependence of X. Several convergence results are established in Section 4 and
are used to build a rigorous statistical method based on model selection. This approach provides not
only the clusters of directions on which the extremes of X gather but also an optimal threshold above
which the data are considered as extreme values. The latter issue has always been challenging and no
theoretical-based procedure has been provided in a multivariate setting yet, even if it has been the subject
of much attention in the literature. The model selection is done with an AIC-type minimization whose
penalization allows to reduce the number of selected subsets. Including the choice of an appropriate
level k then entails a multiplicative penalization. This approach leads to the parameter-free algorithm
MUSCLE whose purpose is to recover the extremal clusters of a sample of iid sparsely regularly varying
random vectors X1, . . . ,Xn.

The absence of any hyperparameter is a main difference with the existing methods (Goix et al. (2017),
Simpson et al. (2019), Chiapino and Sabourin (2016), Chiapino et al. (2019)). In these articles the level
k is always chosen as a function of n, usually k =

√
n. Moreover, the estimation of the tail dependence in

such papers often relies on some hyperparameters which allow to reduce the number of extremal clusters
β. Another main advantage of our procedure is that it is still efficient for large d. This follows from the
expected linear-time algorithm introduced by Duchi et al. (2008) to compute the Euclidean projection,
see Appendix A.

The numerical experiments provide promising results for asymptotic independent and dependent
cases. Our algorithm is tested on samples of dimension d = 40 for which the number of possible clusters
is 240 − 1. Despite this very high number of potential subsets Cβ we succeed in capturing the extremal
clusters and do not recover many extra subsets. In particular, the numerical results show that our
approach is quite accurate for asymptotically independent data. Regarding the max-mixture example,
our algorithm provides better results than the ones of Goix et al. (2017) and Simpson et al. (2019) for
ρ close to 1, or small ρ and α close to 1. Moreover the results do not vary a lot with ρ and α. Finally
the application of our algorithm on two types of real-world examples highlights sparse clusters and thus
reduces the dimension of the study. We obtain a sparse tail dependence structure for extreme wind speed
in different stations, as well as for the extreme variability of several industry portfolios. This reinforces
the relevance of our approach for reducing the dimension in Extreme Value Theory.

A Algorithm

We introduce here the expected linear-time algorithm given in Duchi et al. (2008). It is based on a
random selection of the coordinates.
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Algorithm 2: Expected linear-time projection onto the positive sphere Sd−1
+ (z).

Data: A vector v ∈ Rd+ and a scalar z > 0
Result: The projected vector w = π(v)
Initialize U = {1, . . . , d}, s = 0, ρ = 0;
while U 6= ∅ do

Pick k ∈ U at random;
Partition U : G = {j ∈ U, vj ≥ vk} and L = {j ∈ U, vj < vk};
Calculate ∆ρ = |G|, ∆s =

∑
j∈G vj ;

if (s+ ∆s)− (ρ+ ∆ρ)vk < z then
s = s+ ∆s;
ρ = ρ+ ∆ρ;
U ← L;

else
U ← G \ {k};

end
end
Set η = (s− z)/ρ;
Output: w s.t. wi = vi − η.

B Proof of Theorem 1

We consider the vector Vn,S∞k ∈ Rs∞ whose components are

Vn,β =
1√

knpn(β)

(
1{π(X/un) ∈ Cβ, |X|> un} −

kn
n
pn(β)

)
, β ∈ S∞k .

This vector has null expectation. We denote by Σn ∈ Ms∞(R) its covariance matrix. The diagonal
entries correspond to the variance of a Bernoulli distribution:

Σn(β, β) =
1

knpn(β)
P(π(X/un) ∈ Cβ, |X|> un)[1− P(π(X/un) ∈ Cβ, |X|> un)] =

1

n
− kn
n2
pn(β) .

Regarding the non-diagonal entries they can be computed as follows:

Σn(β, β′)

= E[Vn,βVn,β′ ]

=
1

kn
√
pn(β)pn(β′)

(
E[1{π(X/un) ∈ Cβ, |X|> un}1{π(X/un) ∈ Cβ′ , |X|> un}]

− kn
n
pn(β)E[1{π(X/un) ∈ Cβ′ , |X|> un}]−

kn
n
pn(β′)E[1{π(X/un) ∈ Cβ, |X|> un}] +

k2
n

n2
pn(β)pn(β′)

)
= − 1

kn
√
pn(β)pn(β′)

k2
n

n2
pn(β)pn(β′)

= −kn
n2

√
pn(β)pn(β′) .

This implies that we can rewrite the covariance matrix Σn as

Σn =
1

n
Ids∞ −

kn
n2

√
pn,S∞k ·

√
pn,S∞k

> ,
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where the square root is meant componentwise. In particular we have nΣn → Ids∞ when n→∞.
Consider now a triangular array V

(1)
n , . . . ,V

(n)
n with the same distribution as Vn,S∞k . We prove that

this triangular array satisfies Lindeberg’s condition:

n∑
j=1

E
[

1

kn
max
β

1

pn(β)

∣∣∣1{π(Xj/un) ∈ Cβ, |Xj |> un} −
kn
n
pn(β)

∣∣∣21{maxβ |V
(j)
n,β |>ε}

]
→ 0 , n→∞ ,

for all ε > 0, or equivalently that

E
[
n

kn
max
β

1

pn(β)

∣∣∣1{π(X/un) ∈ Cβ, |X|> un} −
kn
n
pn(β)

∣∣∣21{maxβ |V
(1)
n,β |>ε}

]
→ 0 , n→∞ . (B.1)

Fix ε > 0. Recall that S∞k gathers all clusters β such that knpn(β)→∞. Thus, there exists n0 such that
for all n ≥ n0,

max
β∈S∞k

∣∣∣1{π(X/un) ∈ Cβ, |X|> un} −
kn
n
pn(β)

∣∣∣ ≤ εkn min
β∈S∞k

pn(β) ,

since the term on the left-hand side is always bounded by 1. This implies that for n large enough, the
inequality maxβ|Vn,β|> ε is never satisfied. Hence, Lindeberg’s condition in (B.1) holds and yields to the
following convergence

n∑
j=1

V(j)
n

d→ N (0, Ids∞) , n→∞ .

This convergence can be rephrased as√
kn Diag(pn,S∞k )−1/2

(
Tn,S∞k
kn

− pn,S∞k

)
d→ N (0, Ids∞) , n→∞ ,

which proves (4.3).
To obtain the convergence (4.4), it suffices to restrict the previous convergence to the clusters β ∈

S∗(Z) and to notice that

Diag(pn,S∗(Z))
1/2 Diag(pS∗(Z))

−1/2 → Ids∗ , n→∞ .

Finally, to prove (4.6) it suffices to show that
√
kn Diag(pS∗(Z))

−1/2(pn,S∗(Z) − pS∗(Z)) → 0 which
holds true under assumption (4.5).

C Model selection

C.1 Bias selection

We recall the expression of the log-likelihood logLMk
as a function of p := (p1, . . . , ps)

> ∈ Rs:

logLMk
(p; Tn) = log(k! )−

2d−1∑
i=1

log(Tn,i! ) +
s∑
i=1

Tn,i log(pi) +
( r∑
i=s+1

Tn,i

)
log
(1−

∑s
j=1 pj

r − s

)
.

The expectation of this log-likelihood is then given by

E[LMk
(p; Tn)] = k!−

2d−1∑
i=1

E[log(Tn,j ! )] +

s∑
i=1

pn,i log pi +

r∑
i=s+1

pn,i log
(1−

∑s
j=1 pj

r − s

)
.
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A similar computation as for the maximum likelihood estimator in Section 3.1 entails that this expectation
is maximized for

p = p̃ :=
( pn,1∑r

j=1 pn,j
, . . . ,

pn,s∑r
j=1 pn,j

)>
∈ Rs .

note that since we work under the event S∞k = Ŝn we have r = ŝn ≥ s∗ and thus
∑ŝn

j=1 pn,j ≥
∑s∗

j=1 pn,j →
1.

The first step of the bias selection consists in establishing a Taylor expansion for the estimator in
Equation (3.5).

Lemma 2. There exists c1 ∈ (0, 1) such that

KL(Pk‖Mk)|p=p̂= KL(Pk‖Mk)|p=p̃+
1

2
(p̂− p̃)>

∂2

∂p2
E[− logLMk

(p,Tn)]|c1p̂+(1−c1)p̃(p̂− p̃) . (C.1)

Since the quantity p̃ is deterministic, the first term of the right-hand side in (C.1) can be written as

KL(Pk‖Mk)|p=p̃= E[ logLP(Tn)]− E[ logLMk
(p̃; Tn)] .

The idea is then to provide a Taylor expansion of logLMk
(p̃; Tn) around the vector p̂. This is the

purpose of the following lemma.

Lemma 3. There exists c2 ∈ (0, 1) such that

logLMk
(p̃; Tn) = logLMk

(p̂; Tn) +
1

2
(p̃− p̂)>

∂2

∂p2
logLMk

(c2p̃ + (1− c2)p̂; Tn)(p̃− p̂) . (C.2)

Lemmas 2 and 3 are a consequence of the following result known as "Cauchy’s Mean-Value Theorem"
(see Hille (1964) for a proof).

Lemma 4. Let f and g be two continuous functions on the closed interval [a, b], a < b, and differentiable
on the open interval (a, b). Then there exists some c ∈ (a, b) such that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c) .

Proof of Lemma 2. Let f be the function defined as f(t) = h(tp̂ + (1 − t)p̃) for t ∈ [0, 1], where h is
defined as

h(p) = KL(Pk‖Mk) +
∂

∂p
KL(Pk‖Mk)(p̂− p) .

Some short calculations give the following relations:

f(1) = h(p̂) = KL(Pk‖Mk)|p=p̂ ,

f(0) = h(p̃) = KL(Pk‖Mk)|p=p̃+
∂

∂p
KL(Pk‖Mk)|p=p̃(p̂− p̃)

= KL(Pk‖Mk)|p=p̃−
∂

∂p
E[ logLMk

(p; Tn)]|p=p̃︸ ︷︷ ︸
=0 by definition of p̃

(p̂− p̃) = KL(Pk‖Mk)|p=p̃ ,

f ′(t) =
∂h

∂p
(tp̂ + (1− t)p̃)(p̂− p̃)

= (p̂− [tp̂ + (1− t)p̃])>
∂2

∂p2
KL(Pk‖Mk)|tp̂+(1−t)p̃(p̂− p̃)

= (1− t)(p̂− p̃)>
∂2

∂p2
E[− logLMk

(p; Tn)]|tp̂+(1−t)p̃(p̂− p̃) .
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We apply Lemma 4 to the functions f and g : t 7→ (t − 1)2. There exists c1 ∈ (0, 1) such that (f(1) −
f(0))g′(c1) = (g(1)− g(0))f ′(c1), i.e.

KL(Pk‖Mk)|p=p̂−KL(Pk‖Mk)|p=p̃= −1

2
(p̂− p̃)>

∂2

∂p2
E[ logLMk

(Tn)]|c1p̂+(1−c1)p̃(p̂− p̃) .

This concludes the proof.

We now prove Lemma 3.

Proof of Lemma 3. Consider f(t) = h(tp̃ + (1− t)p̂), for t ∈ [0, 1] where h is defined as

h(p) = logLMk
(p; Tn) +

∂

∂p
logLMk

(p; Tn)(p̃− p) .

After some calculations we obtain

f(1) = h(p̃) = logLMk
(p̃; Tn) ,

f(0) = h(p̂) = logLMk
(p̂; Tn) +

∂

∂p
logLMk

(p̂; Tn)︸ ︷︷ ︸
=0 by definition of p̂

(p̃− p̂) ,

f ′(t) =
∂h

∂p
(tp̃ + (1− t)p̂)(p̃− p̂)

= (p̃− [tp̃ + (1− t)p̂])>
∂2

∂p2
logLMk

(tp̃ + (1− t)p̂; Tn)(p̃− p̂)

= (1− t)(p̃− p̂)>
∂2

∂p2
logLMk

(tp̃ + (1− t)p̂; Tn)(p̃− p̂) .

We apply Lemma 4 to the functions f and g : t 7→ (t − 1)2. There exists c2 ∈ (0, 1) such that (f(1) −
f(0))g′(c2) = (g(1)− g(0))f ′(c2), i.e.

logLMk
(p̃; Tn)− logLMk

(p̂; Tn) =
1

2
(p̃− p̂)>

∂2

∂p2
logLMk

(c2p̃ + (1− c2)p̂; Tn)(p̃− p̂) .

This concludes the proof.

After taking the expectation with respect to p̂ in Equations (C.1) and (C.2), and after combining
these equations, we obtain the following expression for the expectation of the estimator in (3.5):

E[KL(Pk‖Mk)|p=p̂] = E[ logLPk(Tn)]− E[ logLMk
(p̂; Tn)] (C.3)

E
[
−1

2
(p̂− p̃)>

( ∂2

∂p2
logLMk

(p; Tn)
∣∣∣
c2p̃+(1−c2)p̂

+
∂2

∂p2
E[ logLMk

(p; Tn)]|c1p̂+(1−c1)p̃

)
(p̂− p̃)︸ ︷︷ ︸

ψn

]
.

In the following lemma we establish the convergence of ψn to a chi-square distribution with s + 1
degrees of freedom.

Lemma 5. For a sequence (kn) such that kn →∞ and kn/n→ 0, the following weak convergence holds:

ψn
d→ χ2(s+ 1) , n→∞ .
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Proof of Lemma 5. Starting from the second order derivative of the log-likelihood logLMk
,

∂2

∂p2
logLMk

(p; Tn) = −Diag
(Tn,1
p2

1

, . . . ,
Tn,s
p2
s

)
−

∑r
i=s+1 Tn,i

(1−
∑s

i=1 pi)
2
1 · 1> ,

we obtain

ψn =

s∑
j=1

(Tn,j
k
− p̃j

)2( Tn,j
2(c2Tn,j/k + (1− c2)p̃j)2

+
pn,j

2(c1Tn,j/k + (1− c1)p̃j)2

)
+
( s∑
j=1

(Tn,j
k
− p̃j

))2( ∑r
j=s+1 Tn,j

2(c2
∑s

j=1 Tn,j/k + (1− c2)
∑s

j=1 p̃j)
2

+

∑r
j=s+1 pn,j

2(c1
∑s

j=1 Tn,j/k + (1− c1)
∑s

j=1 p̃j)
2

)
.

We rewrite ψn as

ψn = k
s∑
j=1

(Tn,j/k − p̃j)2

pn,j
An,j +

(∑r
j=s+1(Tn,j/k − p̃j)∑r

j=s+1 pn,j

)2
Bn (C.4)

where

An,j :=
pn,jTn,j/k

2(c2Tn,j/k + (1− c2)p̃j)2
+

p2
n,j

2(c1Tn,j/k + (1− c1)p̃j)2
,

and

Bn :=

∑r
j=s+1 pn,j

∑r
j=s+1 Tn,j

2(c2
∑r

j=s+1 Tn,j/k + (1− c2)
∑r

j=s+1 p̃j)
2

+
(
∑r

j=s+1 pn,j)
2

2(c1
∑r

j=s+1 Tn,j/k + (1− c1)
∑r

j=s+1 p̃j)
2
.

Since
∑ŝn

i=1 pn,i → 1 as n → ∞, we obtain p̃j = pn,j/
∑ŝn

i=1 pn,i ∼ pn,j . Therefore, by Slutsky’s lemma
and convergence (4.9) it suffices to prove that An,j and Bn converges to 1 in probability.

Theorem 1 entails that for any j ∈ S∞k we have the convergence in probability

Tn,j
kpn,j

=
1√
kpn,j

√
k
Tn,j/k − pn,j√

pn, j
+ 1→ 1 , n→∞ . (C.5)

Therefore, for any c ∈ (0, 1) we have

cTn,j/k + (1− c)p̃j
pn,j

= c
Tn,j
kpn,j

+
1− c∑ŝn
j=1 pn,j

→ c+ (1− c) = 1 , n→∞ .

This proves that for all j = 1, . . . , s we have the convergence in probability

pn,jTn,j/k

2(c2Tn,j/k + (1− c2)p̃j)2
+

p2
n,j

2(c1Tn,j/k + (1− c1)p̃j)2
→ 1 , n→∞ , j = 1, . . . , s ,

The same arguments apply to Bn since we have
∑r

j=s+1 Tn,j = Tn(∪rj=s+1βj) and
∑r

j=s+1 pn,j =
pn(∪rj=s+1βj).

This proves that the convergence of ψn to a chi-square distribution with s+ 1 degrees of freedom.

Lemma 5 entail the following approximation of (C.3) when n is large:

E[KL(Pk‖Mk)|p=p̂] ≈ E[ logLPk(Tn)]− E[ logLMk
(p̂; Tn)] + E[χ2(s+ 1)] .

The first expectation is constant with respect to the parameter p. Therefore the variations of the
divergence KL(Pk‖Mk)|p=p̂ can be estimated by the variations of logLMk

(p̂; Tn) + (s+ 1).
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C.2 Threshold selection

We start from Equation (3.8) which we recall here:

E[KL(P′n‖M′
n)|

p̂′
] = E[ logLPn(T′n)] + E

[
E
[
− logLMn−T ′

n,2d

(p; T′n,{1,...,2d−1}) | T
′
n,2d

]∣∣∣
p̂

]
− E

[
E
[
φ(n, q′, T ′n,2d)

]∣∣∣
p̂′

]
. (C.6)

The first term on the right-hand side is a constant. For the second term we write

logLMn−T ′
n,2d

(p; T′n,{1,...,2d−1}) = log((n−T ′n,2d)! )−
2d−1∑
i=1

log(T ′n,i! )+

s′∑
i=1

T ′n,i log(p′i)+
( ŝn∑
i=s′+1

T ′n,i

)
log(p′)

The two first terms satisfy

E
[
− log((n− T ′n,2d)! ) +

2d−1∑
i=1

log(T ′n,i! ) | T ′n,2d
]

= −E
[

log((n− T ′n,2d)! )−
2d−1∑
j=1

log(T ′n,j ! )
]
.

The idea is then to condition the last two terms of the log-likelihood with respect to T ′
n,2d

in order to
apply the results of the bias selection. Since T′n follows a multinomial distribution with parameter p′n
given in (3.6), the conditional distribution of (T ′n, 1, . . . , T

′
n,2d−1

)> | T ′
n, 2d

is multinomial with parameters
n− T ′

n,2d
and pn. This entails in particular that E[T ′n,j | T ′n,2d ] = (n− T ′

n,2d
)pn,j . Hence, we obtain

E
[
− logLMn−T ′

n,2d

(p; T′n,{1,...,2d−1}) + log((n− T ′n,2d)! )−
2d−1∑
j=1

log(T ′n,j ! ) | T ′n,2d
]

=

s∑
j=1

E[T ′n,j | T ′n,2d ] log(pj) + log(p)

2d−1∑
j=s+1

E[T ′n,j | T ′n,2d ]

= (n− T ′n,2d)
( s∑
j=1

pn,j log(pj) + log(p)

2d−1∑
j=s+1

pn,j

)

=
n− T ′

n,2d

k

(
k

s∑
j=1

pn,j log(pj) + k log(p)
2d−1∑
j=s+1

pn,j

)

=
n− T ′

n,2d

k

(
E[− logLMk

(p; Tn(k))] + log(k! )− E
[ 2d−1∑
j=1

log(Tn,j(k)! )
])
,

where Tn(k) ∈ R2d−1 corresponds to the vector of Section C.1 and for which we emphasize the dependence
in k. The last relation results from (3.4) since Tn(k) is given T ′

n, 2d
= n− k implicitly in the model Mk.

Then, we evaluate the previous quantity in p̂ and take its expectation:

E
[
E
[
− logLMn−T ′

n,2d

(p; T′n,{1,...,2d−1}) + log((n− T ′n,2d)! )−
2d−1∑
j=1

log(T ′n,j ! ) | T ′n,2d
]∣∣∣

p̂

]

=
n(1− qn)

k

(
E
[
E
[
− logLMk

(p; Tn(k))
]∣∣∣

p̂

]
+ log(k! )− E

[ 2d−1∑
j=1

log(Tn,j(k)! )
])

.
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For the third term in Equation (3.8), we have

E[φ(n, q′, T ′n,2d)]|p̂′ = E
[

log
( n!

(n− T ′
n,2d

)!

)
− log(T ′n,2d ! )

]
+ E

[
(n− T ′n,2d) log(q′) + T ′n,2d log(1− q′)

]∣∣∣
q̂′

= E
[

log
( n!

(n− T ′
n,2d

)!

)
− log(T ′n,2d ! )

]
+ nqn log(k/n) + n(1− qn) log(1− k/n) ,

as we use the estimator q̂′ = k/n.
We consider a large n and we use the results of the previous section. Then, we estimate the Kullback-

Leibler divergence KL(P′n‖M′
n) in (3.7) by the unbiased estimator E[KL(P′n‖M′)|

p̂′
] in (3.8) which can

be approximated by the following quantity

E[ logLP′n(T′n)] +
n(1− qn)

k

(
E[− logLMk

(p̂; Tn(k))] + (s+ 1)
)

+Rn,k , (C.7)

where Rn,k is defined as

Rn,k = −E
[

log
( n!

(n− T ′
n,2d

)!

)
− log(T ′n,2d ! )

]
− nqn log(k/n)− n(1− qn) log(1− k/n)

+
n(1− qn)

k

(
log(k! )− E

[ 2d−1∑
j=1

log(Tn,j(k)! )
])

+ E
[
− log((n− T ′n,2d)! ) +

2d−1∑
j=1

log(T ′n, j ! )
]
.

After withdrawing the terms which are constant with respect to k, it remains

− nqn log(k/n)− n(1− qn) log(1− k/n) +
n(1− qn)

k

(
log(k! )− E

[ 2d−1∑
j=1

log(Tn,j(k)! )
])
. (C.8)

Regarding the last term, Stirling’s approximation log(m! ) = m log(m)−m+ o(m) yields

log(k! )− E
[ 2d−1∑
j=1

log(Tn,j(k)! )
]
≈ k log(k)− k −

2d−1∑
j=1

(
kpn,j log(kpn,j)− kpn,j

)

≈ k log(k)−
2d−1∑
j=1

kpn,j log(k)−
2d−1∑
j=1

kpn,j log(pn, j)

≈ −k
2d−1∑
j=1

pn,j log(pn,j) ,

where we use that the pn,j add up to 1. This implies that the last term in (C.8) is approximately constant.
Regarding the first one, Assumption 1 implies that

|−nqn log(k/n)|≤ nqn log(n)→ 0 , n→∞ .

The only term remaining which has not been neglected in Rn,k is then −n(1− qn) log(1− k/n).

D Proof of Proposition 3

We recall the expression of the log-likelihood logLMk
, for p ∈ Rs2 :

logLMk
(p; Tn) = log(k! )−

2d−1∑
i=1

log(Tn,i! ) +

s2∑
i=1

Tn,i log(pi) +
( r∑
i=s2+1

Tn,i

)
log
(1−

∑s2
j=1 pj

r − s2

)
. (D.1)
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The gradient and the Hessian matrix of this log-likelihood are given by

∂

∂p
logLMk

(p; Tn) =
(Tn,j
pj
−
∑r

i=s2+1 Tn,i

1−
∑s2

i=1 pi

)
1≤j≤s2

, (D.2)

and
∂2

∂p2
logLMk

(p; Tn) = −Diag
(Tn,1
p2

1

, . . . ,
Tn,s
p2
s2

)
−
∑r

i=s2+1 Tn,i

(1−
∑s2

i=1 pi)
2
1 · 1> , (D.3)

where 1 ∈ Rs. In particular the information matrix satisfies

IMk
(p) := −E

[ ∂2

∂p2
LMk

(p; Tn)
]

= kn Diag
(pn,1
p2

1

, . . . ,
pn,s2
p2
s2

)
+ kn

∑r
i=s2+1 pn,i

(1−
∑s2

i=1 pi)
2
1 · 1> .

Under H0 the log-likelihood in (D.1) varies like
s1∑
i=1

Tn,i log(pi) +

s2∑
i=s1+1

Tn,i log(ρn) + (

r∑
i=s2+1

Tn,i) log
(1−

∑s1
j=1 pj − (s2 − s1)ρn

r − s

)
.

The parameters p̂1, . . . , p̂s1 , ρ̂n which maximize this quantity are

p̂j =
Tn,j
kn

, j = 1, . . . , s1 , and ρ̂n =

∑s2
i=s1+1 Tn,j

kn(s2 − s1)
.

Thus we obtain that the gradient (D.2) and the information matrix (D.3) evaluated in p̂H0 :=
(p̂1, . . . , p̂s1 , ρ̂n, . . . , ρ̂n)> ∈ Rs2 correspond to

∂

∂p
logLMk

(p̂H0 ; Tn) = kn

(
0, . . . , 0,

(s2 − s1)Tn,s1+1∑s2
i=s1+1 Tn,i

− 1, . . . ,
(s2 − s1)Tn,s2∑s2

i=s1+1 Tn,i
− 1
)>

,

and

IMk
(p̂H0) = Diag(Wn) + k3

n

∑r
i=s2+1 pn,i

(
∑r

i=s2+1 Tn,i)
2
1 · 1> ,

where

Wn =
(k3

npn,1
T 2
n,1

, . . . ,
k3
npn,s1
T 2
n,s1

,
k3
nρn(s2 − s1)2

(
∑s2

i=s1+1 Tn,i)
2
, . . . ,

k3
nρn(s2 − s1)2

(
∑s2

i=s1+1 Tn,i)
2

)>
∈ Rs2 .

For the information matrix we used the fact that pn,j = ρn for all j = s1 + 1, . . . , s2 under H0. The
inverse of this matrix is given by the Sherman–Morrison formula,

IMk
(p̂H0)−1 = Diag (W−1

n )− k3
nγ
−1
n W−1

n (W−1
n )> ,

where W−1
n is meant componentwise and where

γn :=

s1∑
j=1

T 2
n,j

pn,j
+

(
∑s2

j=s1+1 Tn,j)
2

ρn(s2 − s1)
+

(
∑r

j=s2+1 Tn,j)
2∑r

j=s2+1 pn,j
.

Similarly to the score test we compute the quantity( ∂

∂p
logLMk(s2)(p̂H0 ; Tn)

)>
IMk(s2)(p̂H0)−1

( ∂

∂p
logLMk(s2)(p̂H0 ; Tn)

)
(D.4)

=

s2∑
j=s1+1

k2
n

((s2 − s1)Tn,j∑s2
i=s1+1 Tn,i

− 1
)2 (
∑s2

j=s1+1 Tn,j)
2

k3
nρn(s2 − s1)2

− k3
nγ
−1
n

[ s2∑
j=s1+1

kn

((s2 − s1)Tn,j∑s2
i=s1+1 Tn,i

− 1
)(
∑s2

j=s1+1 Tn,j)
2

k3
nρn(s2 − s1)2

]2

= kn

s2∑
j=s1+1

(Tn,j
kn
− ρ̂n

)2 1

ρn
.
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The second term vanishes since
s2∑

j=s1+1

((s2 − s1)Tn,j∑s2
i=s1+1 Tn,i

− 1
)

=
(s2 − s1)

∑s2
j=s1+1 Tn,j∑s2

i=s1+1 Tn,i
− (s2 − s1) = 0 .

For the remaining term, we write (Tn,j/kn − ρn)2 = (Tn,j/kn − ρ̂n + ρ̂n − ρn)2 and develop this square.
We obtain

s2∑
j=s1+1

(Tn,j/kn − ρ̂n)2

ρn
=

s2∑
j=s1+1

(Tn,j/kn − ρn)2

ρn
− (s2 − s1)

(ρ̂n − ρn)2

ρn
.

We consider the vector p̄n ∈ Rs2−s1 whose components are
√
kn(Tn,j/kn−ρn)/

√
ρn for j = s1 +1, . . . , s2.

Then the quadratic form (D.4) can then be written as p̄>n (Diag(1) − (s2 − s1)−11 · 1>)p̄n. We notice
that the matrix Diag(1) − (s2 − s1)−11 · 1> is an orthogonal projection on the subspace {x ∈ Rs2−s1 :
x1 + . . .+ xs2−s1 = 0} so that

kn

s2∑
j=s1+1

(Tn,j/kn − ρ̂n)2

ρn
= |(Diag(1)− (s2 − s1)−11 · 1>)p̄n|2 .

Theorem 1 ensures that this quantity converges to a chi-square distributions with s2 − s1 − 1 degrees of
freedom. Finally, the convergence in probability ρn/ρ̂n → 1 when n → ∞ and Slutsky’s lemma ensure
that

Tn = kn

s2∑
j=s1+1

(Tn,j/kn − ρ̂n)2

ρ̂n

d→ χ2(s2 − s1 − 1) , n→∞ ,

which concludes the proof.
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