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Algebraic intersection for translation surfaces in a family of Teichműller disks

We give a hyperbolic-geometric construction to compute the quantity KVol defined in Equation (1) in a family of Teichműller disks of square-tiled surfaces.

Introduction

Definitions

Let X be a closed surface, that is, a compact, connected manifold of dimension 2, without boundary. Let us assume that X is oriented. If two C 1 closed curves α and β in X intersect transversally at a point P ∈ X, we set Int P (α, β) = 1 if β crosses α from right to left, and Int P (α, β) = -1 otherwise. Then the algebraic intersection Int(α, β) of α and β is the sum over all intersection points P of Int P (α, β). The algebraic intersection endows the first homology H 1 (X, R) with a symplectic bilinear form. In particular Int(α, β) is finite, and only depends on the homology classes of α and β. Now let us assume X is endowed with a Riemannian metric g. We denote Vol(X, g) the Riemannian volume of X with respect to the metric g, and for any piecewise smooth closed curve α in X, we denote l g (α) the length of α with respect to g. When there is no ambiguity we omit the reference to g.

We are interested in the quantity KVol(X, g) = Vol(X, g) sup α,β

Int(α, β) l g (α)l g (β) [START_REF] Boissy | Systoles in translation surfaces[END_REF] where the supremum ranges over all piecewise smooth closed curves α and β in X. The Vol(X, g) factor is there to make KVol invariant to re-scaling of the metric g. See [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] as to why KVol is finite. The quantity KVol comes up naturally when you want to compare the stable norm (a norm which measures the length of a homology class, with respect to the metric g) with the Hodge norm (or L 2 -norm) on H 1 (M, R) (see [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF]). It is easy to make KVol go to infinity, you just need to pinch a non-separating closed curve α to make its length go to zero. The interesting surfaces are those (X, g) for which KVol is small.
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When X is the torus, we have KVol(X, g) ≥ 1, with equality if and only if the metric g is flat (see [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF]). Furthermore, when g is flat, the supremum in (1) is not attained, but for a negligible subset of the set of all flat metrics. In [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] KVol is studied as a function of g, on the moduli space of hyperbolic (that is, the curvature of g is -1) surfaces of fixed genus. It is proved that KVol goes to infinity when g degenerates by pinching a nonseparating closed curve, while KVol remains bounded when g degenerates by pinching a separating closed curve.

This leaves open the question whether KVol has a minimum over the moduli space of hyperbolic surfaces of genus n, for n ≥ 2. It is conjectured in [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF] that for almost every (X, g) in the moduli space of hyperbolic surfaces of genus n, the supremum in [START_REF] Boissy | Systoles in translation surfaces[END_REF] is attained (that is, it is actually a maximum).

In this paper we consider a different class of surfaces : translation surfaces of genus s, with one conical point. The set (or stratum) of such surfaces is denoted H(2s -2) (see [START_REF] Hubert | Samuel Prime arithmetic Teichműller discs in H(2)[END_REF]). We consider the family of translation surfaces St(2s -1) (so named after [START_REF] Schmithüsen | Gabriela An algorithm for finding the Veech group of an origami[END_REF]) depicted in Figure 1, for s ∈ N, s ≥ 2, obtained by gluing the opposite sides of a staircase-shaped template made of 2s -1 squares (see Figure 1). This is the first exact computation of KVol, outside of flat tori. Before stating our next result we need to elaborate a little bit on the Teichműller disk of St(2s -1).
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The Teichműller disc T of St(2s -1)

Let us explain the terminology. Every translation surface may be viewed as a plane template with parallel sides of equal length pairwise identified. The group GL + 2 (R) acts linearly on templates, preserving identifications, so it acts on translation surfaces. It may happen that for some template T and some element A of GL + 2 (R), both T and A.T are templates of the same translation surface X. Then we say that A lies in the Veech group of X, that is, the subgroup of GL + 2 (R) which preserves X. Since the Veech group must preserve volumes, it is a subgroup of SL 2 (R), and it turns out to be a Fuchsian group (see [START_REF] Veech | Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards[END_REF]). The orbit of X under GL + 2 (R) is called the Teichműller disk of X. For the purpose of studying KVol, it is convenient to identify templates which are related by a similitude transformation (an isometry composed with a re-scaling). Recall that GL + 2 (R) quotiented by similitudes is the hyperbolic plane H 2 . The Teichműller disk of X may thus be seen as the quotient of H 2 by the Veech group of X, which is a Fuchsian group.

We denote by T (St(2s -1)), or just T s if there is no ambiguity, the Teichműller disc T of St(2s -1). The Veech group Γ of St(2s -1) is generated, for any s ≥ 2, by [START_REF] Schmithüsen | Gabriela Examples for Veech groups of origamis[END_REF], or [START_REF] Delecroix | Surface Dynamics -SageMath package[END_REF]). It has a fondamental domain D in H 2 comprised between the straight lines x = ±1, and the unit half-circle centered at the origin. The two vertical straight lines are identified by T , and the two halves of the unit half-circle are identified by R, with i as fixed point (see Figure 2).

T = 1 2 0 1 and R = 0 -1 1 0 , it is a subgroup of index 3 in SL 2 (Z) (see
1 i -1 + i exp(2iπ/3) 1 + i exp(iπ/3) -1 0 Figure 2: A fundamental domain for the Teichműller disk of St(2s -1)
Here is a convenient way to view the Teichműller disk T s of St(2s -1). Any element X of T s , such as the one depicted on the right in Figure 3, has a template made of 2s -1 congruent parallelograms. Modulo some similitude, we may assume b=1. Then β lies in the fundamental domain depicted above, and completely determines X, together with the number 2s -1 of squares. We shall often label the surface X by the complex number α, or the corresponding vector in R 2 , and the integer s. For instance, St(3) is X 2 (i) = X 2 (0, 1), and St(2s -1) = X s (i) for all s. There are other interesting surfaces in 2 tiled by 6 equilateral triangles. It turns out that X s (1, 1) and X s (exp(iπ/3)) also have KVol= 2s -1.

T 2 : X 2 (±1 + i) = X 2 (±1,
For (x, y) ∈ H 2 , we denote T (x, y) the flat torus

R 2 /Z(1, 0) ⊕ Z(x, y).
The translation surface X s (x, y) is a ramified, (2s -1)-fold, Riemannian cover of T (x, y).

For (p, q) ∈ Z 2 with p ∧ q = 1, we say a geodesic segment in T (x, y) has direction (p, q) if its lifts to the universal cover R 2 of T (x, y) are parallel to the vector p(1, 0) + q(x, y).

We say a geodesic segment in X s (x, y) has direction (p, q) if it projects to a geodesic segment of direction (p, q) in T (x, y).

Beware this may cause a bit of confusion at first, because a geodesic segment in T (x, y) with direction (p, q) may not lift, in R 2 , to a segment parallel to (p, q), unless (x, y) = (0, 1). The upside is that this definition is independent of (x, y). For instance, the algebraic intersection of two simple closed geodesics in T (x, y), of respective directions (p, q) and (p , q ), is pq -p q, regardless of (x, y).

This allows a neat formulation of the following property : given p, q, p , q ∈ Z with p ∧ q = p ∧ q = 1, and p/q = p /q in Q ∪ {∞}, the hyperbolic geodesic with endpoints p/q and p /q is the locus of the flat tori in which the geodesics with respective directions (p, q) and (p , q ) are orthogonal. Since the covering X(x, y) -→ T (x, y) is Riemannian, the hyperbolic geodesic with endpoints p/q and p /q is also the locus of surfaces X(x, y) in which the geodesics with respective directions (p, q) and (p , q ) are orthogonal.

In the torus all directions are alike, because the group SL 2 (Z) of orientation-preserving, affine diffeomorphims of T 2 acts transitively on the set of directions. However (see [START_REF] Hubert | Samuel Prime arithmetic Teichműller discs in H(2)[END_REF]), the Veech group Γ of St(2s -1) has two orbits, that of (0, 1), which comprises all directions (p, q) with p = q mod 2, and that of [START_REF] Boissy | Systoles in translation surfaces[END_REF][START_REF] Boissy | Systoles in translation surfaces[END_REF], which comprises all directions (p, q) with p = q = 1 mod 2. Note that (p, q) = (1, 0) gives p/q = ∞, which is one of the points at infinity of the Teichműller disk T , while (1, 1) gives 1, which is the other point at infinity of T .

Simple closed geodesics on a translation surface in H(2s -2) are of two kinds (see [START_REF] Hubert | Samuel Prime arithmetic Teichműller discs in H(2)[END_REF]): saddle connections, which go through the conical point, and non-singular closed geodesics, which do not. Since our surfaces have only one conical point, every closed curve is homologous to a linear combination of closed saddle connections, so in the definition of KVol we may consider only closed saddle connections. Non-singular closed geodesics come in cylinders of parallel geodesics of equal length. In a translation surface in H(2s -2), for any direction, there are at most s such cylinders. If the translation surface lies in T s , the s-cylinder directions are precisely those in the orbit, under the Veech group Γ, of (0, 1), and the other directions have only one cylinder.

For any direction (p, q), denote r = p/q and l r (x, y) the length, in the torus T (x, y), of simple closed geodesics of direction (p, q). The horocycles with point at infinity r are the level sets of the function l r . We shall see (Lemma 2.5) that the saddle connections, in X(x, y), of direction (p, q), have the same length l r (x, y).

Therefore there are two ways of going to infinity in the Teichműller disk T s : (x, y) may converge to (1, 0), in which case there is a one-cylinder direction in X(x, y) whose saddle connections become arbitrarily short ; or y -→ ∞, in which case there is an s-cylinder direction in X(x, y) whose saddle connections become arbitrarily short.

Statement and discussion of the results

Let us call V ±1 the open horocyclic neighborhood of the lower cusp depicted in Figure 4. Denote Z the union in H 2 of all hyperbolic geodesics with endpoints in Z ∪ {∞}, and their images under the Veech group Γ. Let us denote End(Z) the set of pair of points at infinity of H 2 which are endpoints of elements of Z. 

14 ). For (x, y) ∈ V ±1 , we have KVol(X s (x, y)) > 2s -1, and KVol(X s (x, y)) goes to infinity when (x, y) tends to (±1, 0). Outside V ±1 , we have KVol(X s (x, y)) ≤ 2s -1, and KVol(X s (x, y)) = 2s -1 if and only if (x, y) ∈ Z. Furthermore KVol(X s (x, y)) tends to 2s -1 when y -→ ∞ while (x, y) remains in D.

The idea of the proof of Theorem 1.1 is that KVol(X s (x, y)), has a simple expression as a function of the hyperbolic distance between (x, y) and Z. The minimum is achieved by those points of D which are furthest away from Z. Then the problem becomes a simple exercise in hyperbolic geometry.

Here is why the set Z enters the picture : given two directions (p, q) and (p , q ), the saddle connections of respective directions (p, q) and (p , q ) only have so much algebraic intersection to share between them all since they are lifted from closed curves on the torus. Thus, to realize KVol we must look for pairs of directions which have saddle connections which take up all the possible intersection. Those are the pairs of directions for which the invariant probability measures supported on the saddle connections are Figure 4: The horocycle neighborhood V ±1 of Theorem 1.1 least equidistributed. By Theorem 1.2 of [START_REF] Mcmullen | Teichmüller dynamics and unique ergodicity via currents and Hodge theory[END_REF], those pairs of directions correspond to those geodesics in T s which are the least recurrent, that is, the geodesics which exit the fastest towards the cusps of T s . Those are precisely the geodesics in Z. The precise meaning of exiting fastest towards the cusp is that they bounce at most twice on the lower boundary of D-that is, the semi-circle between 1 and -1-before going straight to a cusp. Another way of defining Z would be to say that the geodesic between p/q and p /q is in Z if and only if (p/q, p /q ) is in the orbit, under the Veech group, of (∞, p /q ), where the continued fraction expansion of p /q has length ≤ 2. A quantitative version of Theorem 1.2 of [START_REF] Mcmullen | Teichmüller dynamics and unique ergodicity via currents and Hodge theory[END_REF] would be useful to generalize this work. In our proof, we use pedestrian arguments (Lemmata 2.6 and 2.7) instead.

It is proved in [START_REF] Judge | Hugo The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF] (see also [START_REF] Herrlich | Systolic geometry of translation surfaces[END_REF] and [START_REF] Boissy | Systoles in translation surfaces[END_REF]) that X 2 (exp(iπ/3)) minimizes the systolic volume in H(2). In the companion paper [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the stratum H(2)[END_REF], we prove that inf KVol ≤ 2 over H(2). Since the systolic volume is a close relative of KVol, it is interesting to contrast the results of [START_REF] Judge | Hugo The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF], [START_REF] Boissy | Systoles in translation surfaces[END_REF] and [START_REF] Herrlich | Systolic geometry of translation surfaces[END_REF] with ours. It is mildly surprising that the minimizers of KVol in T s look, at first glance, pretty dull, while the interesting surfaces are (degenerate) local maxima in T s . This prompts several questions. An easy consequence of Theorem 1.1 is that for every X ∈ T , the supremum in ( 1) is actually a maximum, and furthermore we identify the maximizers. We speculate this might be the case for every square-tiled surface ; since the union of the Teichműller disks of all square-tiled surfaces is dense in H(2), could it be true in the whole H(2) ? Question 1.4. Is it true that for every X ∈ H(2), the supremum in ( 1) is actually a maximum ?

This would be in sharp contrast, both with the known behavior for flat tori, and with the expected behavior for hyperbolic surfaces.
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Preliminaries

St(2s -1)

We call e 1 , . . . e s , e 2 , . . . , e s , (resp. f 1 , . . . , f s , f 1 , . . . , f s-1 ) the horizontal (resp. vertical) closed curves of length 1 in St(2s -1) obtained by gluing the endpoints of the sides of the squares (see Figure 5). Note that e i and e i (resp. f i and f i ) are homotopic since they bound a cylinder. The local picture at S in St(2s -1) may be obtained by induction : start from the local picture in St(2s -3), split f s-1 into f s-1 and f s-1 , and insert, between f s-1 and f s-1 , f s , e s , and e s , as shown in Figure 7.

e 1 e 2 e 2 f 1 f 1 f 2 • • • • • • • • • • • • e 1 e 2 e 2 e 3 f 1 f 2 f 2 e 3 f 3 f 1
Since e 1 , e 2 , f 1 , f 2 do not meet anywhere but at S, the local picture yields the algebraic intersections between any two of e 1 , e 2 , f 1 , f 2 , summed up in the following matrix: Lemma 2.1. For i, j = 1, . . . , s we have :

Int e 1 f 1 e 2 f 2 e 1 0 1 0 -1 f 1 -1 0 0 0 e 2 0 0 0 1 f 2 1 0 -1 0 e 1 f 1 e 2 f 2 e 2 f 1 e 1 f 1 e 2 f 2 e 2 f 1
f s f s-1 f s-1 f s-1 f s-1
Int(e i , f j ) = (-1) j-i if j ≥ i 0 if j < i and Int(e i , e j ) = Int(f i , f j ) = 0 • • • • • • • • • • • • α 1 α 2 α 3 β 1 β 2 β 3 Figure 8: The non-singular geodesics α i , β i , i = 1, 2, 3
Proof. Observe that the closed, non-singular vertical geodesic β 1 is homotopic to f 1 and for each j = 2, . . . , s, β j are homotopic to f j + f j-1 . We observe that

Int(e i , β j ) = 1 if i = j 0 if i = j
Then we have : For j = 1, Int(e 1 , f 1 ) = 1 and for i > 1, Int(e i , f 1 ) = 0. For j ≥ 2 we have three cases: 1) if i > j we have Int(e i , β j ) = 0 which implies Int(e i , f j ) = -Int(e i , f j-1 ), by induction we deduce Int(e i , f j ) = (-1) i-j Int(e i , f 1 ) = 0

2) if i = j we have Int(e i , f i ) + Int(e i , f i-1 ) = 1
but by the first case Int(e i , f i-1 ) = 0, so

Int(e i , f i ) = 1 3) if i < j we have Int(e i , f j ) = -Int(e i , f j-1 )
By induction and using the second case, we obtain

Int(e i , f j ) = (-1) j-i Int(e i , f i ) = (-1) j-i .
Observe that the closed, non-singular horizontal geodesic α s , is homotopic to e s and for each j = 1, . . . , s-1 , α j are homotopic to e j +e j+1 . Then for i = 1, . . . , s, Int(e i , e s ) = 0 and for i = 1, . . . , s, j = 1, . . . , s -1 Int(e i , α j ) = 0. Finally, we obtain

Int(e i , e j ) = -Int(e i , e j+1 ) = (-1) s-j Int(e i , e s ) = 0.

In an analogous way we have Int(f i , f j ) = 0.

For s > 2, the intersection matrix is, in the basis e 1 , f 1 , . . . , e s , f s (in this example s = 4):

              0 1 0 -1 0 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 1 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 1 0 -1 0              
.

Since the determinant of the intersection matrix is not zero, we get for free the fact that e i , f i , i = 1, . . . , s form a basis of H 1 (St(2s -1), R). From now on we always refer to homology classes in H 1 (St(2s -1), R) by their coordinates 

] , [f 1 ] + [f 2 ] , . . . , [f s-1 ] + [f s ].
Thus, using the intersection matrix, we see that, for any homology class h with coordinates 1 , . . . , s , φ 1 , . . . , φ s , we have

i = Int(h, [β i ]) φ i = -Int(h, [α i ]).

A short excursion into the Teichműller space of flat tori

Recall that the Teichműller space of flat tori is the hyperbolic plane ; one way to see that is to fix a homology class of simple closed curves, then every flat torus is biholomorphic to

T (x, y) = R 2 /Z(1, 0) ⊕ Z(x, y)
where (x, y) ∈ R × R * + and the biholomorphism sends a simple closed curve in the homology class h to the image in T (x, y) of (0, 1). Now take p, q, p , q ∈ Z such that p ∧ q = p ∧ q = 1, set r = p/q, r = p /q , r (resp. r ) being understood as the point at infinity if q = 0 (resp. q = 0). Let γ r,r be the hyperbolic geodesic with endpoints r and r . Recall that γ r,r is the locus, in the Teichműller space, of the flat tori in which the closed geodesics with respective directions (p, q) and (p , q ) are orthogonal. , and let θ r,r (x, y) be the angle between E r,r (d) and γ r,r (see Figure 9). Denote l r (x, y) the length, in the flat torus T (x, y), of the closed geodesics with direction (p, q). Set K r,r (x, y) = Vol(T (x, y)) pq -p q l r (x, y)l r (x, y) .

r = p q r = p q γ r,r E r,r (d) E r,r (d) θ θ
This definition is tailored so

KVol(T (x, y)) = sup r,r K r,r (x, y).
Lemma 2.2. For any g ∈ SL 2 (Z), we have

K r,r (g(x, y)) = K g(r),g(r ) (x, y)).
Proof. First, pq -p q and Vol(T (x, y)) are invariant under the orientation-and volumepreserving diffeomorphism g. Second, l r (g(x, y)) = l g(r) (x, y).

Lemma 2.3. For any (x, y) ∈ H 2 and p, q, p , q ∈ Z such that p ∧ q = p ∧ q = 1, we have, setting r = p/q, r = p /q , K r,r (x, y) = cos θ r,r (x, y).

(x, y)

-p q γ r,r θ r,r (x, y) α γ r,r
E r,r (x, y) E r,r (x, y)

Figure 10: α = π/2 -θ r,r (x, y)
Proof. By Lemma 2.2, acting by some element of SL 2 (Z) if we need to, we may assume that p = 1, q = 0, that is, γ r,r is vertical. Then l r (x, y) = 1, l r (x, y) = (p + qx) 2 + (qy) 2 , pq -p q = q, and Vol(T (x, y)) = y, so

K r,r (g(x, y)) = qy (p + qx) 2 + (qy) 2 .
Take radial coordinates (ρ, α) with origin at -r, so x + p/q = ρ cos α and y = ρ sin α. Then K r,r (g(x, y)) = ρ sin α ρ = sin α. Now observe on Figure 10 that α = π/2 -θ r,r (x, y). This concludes the proof.

Saddle connections and intersection

Recall that a saddle connection is a closed geodesic which contains a cone point. Saddle connections on surfaces in the Teichműller disk of St(2s -1) have a special property :

Lemma 2.4. If X ∈ T s and γ is a saddle connection on X, then the projection Π :

X -→ T 2 , restricted to γ, is 1-to-1.
Proof. Parametrize γ at unit speed by [0, l(γ)], so that γ(0

) = γ(l(γ)) = S, S being the cone point of X. Assume Π(γ(t 1 )) = Π(γ(t 2 )) for t 1 , t 2 ∈ [0, l(γ)], with t 1 = t 2 . Then Π(γ)([t 1 , t 2 ]) is a closed subarc of Π(γ)([0, l(γ)]
), parametrized at unit speed, so it must contain all of Π(γ)([0, l(γ)]). Therefore there exists t 3 ∈ [t 1 , t 2 ] such that Π(γ)(t 3 ) = (0, 0) = Π(S). Now recall that S is the only pre-image of (0, 0) (this is where surfaces in T s are special), and the only pre-images of S by the chosen parametrization of γ are 0 and l(γ), so t 3 = 0 or t 3 = l(γ). Then Π(γ)(t 1 ) = Π(γ)(t 2 ) = (0, 0), whence γ(t 1 ) = γ(t 2 ) = S, which proves that t 1 = 0, t 2 = l(γ), and the lemma.

The conical point is the only pre-image of the ramification point, unlike the case of the surface L(n, n) (see [START_REF] Cheboui | Massart Algebraic intersection for translation surfaces in the stratum H(2)[END_REF]), so by Lemma 2.4 a closed geodesic of direction (p, q) projects 1-to-1 to a closed geodesic in the flat torus. Therefore a saddle connection of direction (p, q) is exactly (p + qx) 2 + (qy) 2 -long. For future reference we state this fact as a lemma. Lemma 2.5. Given (x, y) ∈ H 2 and (p, q) ∈ Z 2 with p∧q = 1, for any saddle connection α with direction (p, q) in the translation surface X s (x, y), we have, using the notation of Subsection 2.2, l(α) = l r (x, y).

Here is why Subsection 2.2 is relevant to the determination of KVol in T s . For (x, y) ∈ H 2 , and for p, q, p , q ∈ Z such that p∧q = p ∧q = 1, setting r = p/q, r = p /q , and calling α i , i = 1, . . . , 2s -1 (resp. β i , i = 1, . . . , 2s -1) the saddle connections with direction (p, q) (resp. (p , q )) in the translation surface X s (x, y), we have l(α i ) = l r (x, y) and l(β i ) = l r (x, y) for i = 1, . . . , 2s -1, and Vol(X s (x, y)) = (2s -1)Vol(T (x, y)), since X s (x, y) is a (2s-1)-fold ramified Riemannian cover of T (x, y). Hence KVol(X s (x, y)) ≥ sup

r =r sup i,j Vol(X s (x, y)) Int(α i , β j ) l(α i )l(β j ) (2) = (2s -1) sup r =r sup i,j Int(α i , β j ) pq -p q K r,r (x, y). ( 3 
)
The reason why there is a ≥ instead of = in the inequality above is that there could be saddle connections with the same direction, i.e. r = r , and non-zero intersection, in which case pq -p q = 0 and the formula above does not apply ; more on that in subsection 2.3.1. For the time being, we set

I r,r (x, y) = sup i,j
Int(α i , β j ) pq -p q and study I r,r (x, y) as a function of r and r . Note that actually I r,r (x, y) does not depend on (x, y), so from now on we shall denote it I r,r .

Intersections and I r,r

Recall from [START_REF] Hubert | Samuel Prime arithmetic Teichműller discs in H(2)[END_REF] that the action on Z 2 of the Veech group Γ of St(2s-1) has two orbits, that of (1, 0), which consists of vectors whose coordinates are not equal modulo 2, and that of (1, 1), which consists of vectors whose coordinates are equal modulo 2. Therefore, since Γ acts by orientation-preserving diffeomorphisms, for (p, q) ∈ Z 2 , with p = q mod 2, the saddle connections in St(2s -1) with direction (p, q) are the images under some diffeomorphism of e 1 , e i , e i , i = 2, . . . s, so they have zero mutual intersection. On the other hand, for p, q ∈ Z both odd, the saddle connections in St(2s -1) with direction (p, q) are the images under some diffeomorphism of g i , g i , g s , i = 1, . . . s -1 depicted in Figure 11.

• • • • • • • • • • • • e 1 e 2 f 1 f 2 e 3 f 3 g 1 g 1 g 2 g 2 g 3
Figure 11: the saddle connections of direction (1, 1)

The homology classes of g 1 , g i , g i-1 , i = 2, . . . s are, in the basis {e 1 , . . . , e s , f 1 , . . . , f s }, g 1 = e 1 + f 1 , and g i = e i + f i , g i-1 = e i + f i-1 , so using the intersection matrix we see that

Int(g i , g j ) = Int(g j-1 , g i-1 ) = (-1) j-i if j > i -(-1) i-j if j < i
and for any i = 1, . . . s, j = 2, . . . s, Int(g i , g j-1 ) = -(-1) j-i . Since the game is to find curves which intersect a lot, our next task is to maximize I r,r as a function of r, r . The next two lemmas are the reason why the geodesics in Z are special. Lemma 2.6. For any (r, r ) ∈ End(Z), we have I r,r = 1.

Proof. Let (p, q), (p , q ) ∈ Z 2 be such that p ∧ q = p ∧ q = 1, and p/q = r, p /q = r . We want to prove that for any surface X s (x, y) ∈ T s , there exist saddle connections γ, γ , with respective directions (p, q) and (p , q ), such that Int(γ, γ ) = pq -p q. By the definition of End(Z), there exists V ∈ Γ such that (V (r), V (r )) ∈ Z 2 ∪ {∞}, where V (r) is understood as the projective action of Γ on the projective line. Since Γ has two orbits in Q, that of ∞ (or 0), which corresponds to p = q mod 2, and that of 1, which corresponds to p = q = 1 mod 2, we may assume V (r) = ∞ (or 0) or V (r) = 1.

First case : V (r) = 0, that is, V (p, q) = (0, 1) (where V (p, q) is understood as the linear action of Γ on R 2 ). Since V (r ) ∈ Z, there exists n ∈ Z such that V (p , q ) = (-n, 1). Then (recall that

R 3 = -R), R 3 • V (p , q ) = (1, n) and R 3 • V (p, q) = (1, 0).
Since Γ is a subgroup of SL 2 (R), we have n = pq -p q. Since I r,r does not depend on (x, y), we might as well assume (x, y) = (0, 1), that is, X s = St(2s -1). Observe (in

γ 1 e 2 e 1 e 2
Figure 12: the saddle connection γ 1 , with s = 2 and n = 3, in the two-cylinder case Figure 12) that there exists a saddle connection

γ 1 with direction (1, n), whose homology class is [e 1 ] + n [f 1 ], so Int(e 1 , γ 1 ) = n, hence I r,r = 1.
Second case : V (r) = 1, that is, V (p, q) = (1, 1). Since V (r ) ∈ Z, there exists n ∈ Z such that V (p , q ) = (-n, 1). Since I r,r does not depend on (x, y), we might as well assume (x, y) = (-1, 1). The surface X s (-1, 1) has a (2s -1)-square template depicted in Figure 13, and there exists a saddle connection γ 1 with direction (-n, 1), whose homology class is -n [e s ] + [g s ], so Int(g s , γ 1 ) = n, hence I r,r = 1. Lemma 2.7. For r, r ∈ Q ∪ {∞}, with (r, r ) ∈ End(Z), we have I r,r < 9/10. Proof. Let p, q, p , q ∈ Z be such that p ∧ q = p ∧ q = 1, p/q = r, p /q = r .

First case : p, q, p , q are not all odd. Multiplying (p, q) and (p , q ) by some element of the Veech group, and swapping (p, q) and (p , q ) if necessary, we may assume (p , q ) = (1, 0), that is, r = ∞, and |p| < |q|, so pq -p q = q. Furthermore by the symmetries of St(2s -1), we only need consider the case when 0 < p < q. Note that we then have q ≥ 2, otherwise p is 0 and in that case we have (r, r ) ∈ End(Z). Let γ be a saddle connection with direction (p, q). We want to show that Int(e i , γ) = Int(e i , γ) < 9q 10 for i = 2, . . . , s

Int(e 1 , γ) < 9q 10 .

The projection Π restricted to γ is injective by Lemma 2.4, so the q -1 intersections of (p, q) with (1, 0) in T 2 \ {(0, 0)} lift to q -1 intersections of γ with the singular cycle e 1 + e 2 + e 2 + . . . e s + e s . Let us consider the sequence S int of all intersections of γ with e 1 , e i , e i , for i = 2, . . . , s, in cyclical order along γ, with the intersection at the conical point S set apart. Denote #S int (e i ) (resp. #S int (e i )) the number of e i 's (resp. e i 's) in the sequence S int . We have

Int(e, γ) ≤ #S int (e) + 1 for e = e 1 , . . . , e s , and e = e 2 , . . . , e s , g 1

g 2 g 1 g 1 g 1 g 2 g 1 γ 1 e 2 e 2 g 1 g 2 g 3 g 1 g 1 g 2 g 3 g 2 g 1 g 2 g 1 γ 1 e 3 e 3
Figure 13: the saddle connection γ 1 , for s = 2, and s = 3, and n = 3, in the one-cylinder case where the +1 accounts for the intersection at S. Observe that in the sequence S int there are never two consecutive e i or e i , for i = 2, . . . , s : each e i is followed by e i or e i+1 , and each e i is followed by e i or e i-1 . So the proportion of e i or e i in S int , for i = 2, . . . , s is at most 1/2 (only possible when s = 2). Therefore, since q ≥ 2,

Int(e i , γ) = Int(e i , γ) ≤ q -1 2 + 1 ≤ 3 4 q.
Intersections with e 1 must be treated separately, with a case-by-case analysis : Case 1.1: p < q < 2p. Observe that each block of e 1 has length at most 2, and is followed by at least an e 2 , so the proportion of e 1 in the sequence S int is at most 2/3, so Int(e 1 , γ) ≤ 2(q -1) 3 + 1 ≤ 9q 10 .

Case 1.2: 2p < q < 3p (see Figure 14). Then a block of e 1 has length at most 3, and is followed by at least an e 2 and an e 2 , so as previously, the proportion of e 1 in the sequence S int is at most 3/5, so

Int(e 1 , γ) ≤ 3(q -1) 5 + 1 ≤ 9q 10 .

Case 1.3: 3p < q. Intersections with e 1 come in blocks of length at most q/p , because two consecutive (along γ) intersections are exactly p/q apart along e 1 (see Figure 14). Each block of e 1 's is followed by a block of e 2 e 2 (this is where we use the fact that (r, r ) ∈ End(Z)), of length at least q/2p . Recall that 2 q/2p ≥ q/p -2. So the proportion of e 1 in S int is at most q/p q/p + 2 q/2p ≤ q/p 2 q/p -2 ≤ 3 4

where the last inequality stands because 3 < q/p. Then

Int(e 1 , γ) ≤ 3(q -1) 4 + 1 ≤ 9q 10 .

This finishes the first case.

Remark 2.8.

There is numerical evidence that I r,∞ ≤ 2/3 for all r ∈ Q such that (r, ∞) ∈ End(Z), except when r = 3/7, in which case I r,∞ = 5/7.

Second case : p, q, p , q are all odd. Multiplying (p, q) and (p , q ) by some element of the Veech group, and swapping (p, q) and (p , q ) if necessary, we may assume (p , q ) = (1, 1), that is, r = 1, so pq -p q = p -q. Again multiplying by an element of the Veech group which stabilizes (1, 1), we may assume (p, q) = (p -q)(1, 0) + q(1, 1) satisfies |p -q| > |q|. Furthermore by the symmetries of St(2s -1), we only need consider the case when 0 < q < p -q. Note that we then have p -q ≥ 2, otherwise p = q and in that p q 2p q γ Figure 14: (p, q) = (3, 7) case we have (r, r ) ∈ End(Z). Let γ be a saddle connection with direction (p, q). We want to show that Int(γ, g i ) <

9(p -q) 10 for i = 1, . . . , s Int(γ, g i ) < 9(p -q) 10 for i = 1, . . . , s -1.

The projection Π restricted to γ is injective by Lemma 2.4, so the p -q -1 intersections of (p, q) with (1, 1) in T 2 \ {(0, 0)} lift to p -q -1 intersections of γ with the singular cycle g 1 + g 1 + g 2 + g 2 + . . . + g s . Let us consider the sequence S int of all intersections of γ with g 1 , g 1 , . . . , g s , in cyclical order along γ, with the intersection at the conical point S set apart. Denote #S int (g i ) (resp. #S int (g i )) the number of g i 's (resp. g i 's) in the sequence S int . We have Int(g, γ) ≤ #S int (g) + 1 for g = g 1 , . . . , g s , and g = g 1 , . . . , g s-1 ,

where the +1 accounts for the intersection at S. Observe that in the sequence S int there are never two consecutive g i , for i = 1, . . . , s -1, or g i , for i = 2, . . . , s -1 : each g i (2 ≤ i ≤ s -1) is followed by g i or g i-1 , and each g i (1 ≤ i ≤ s -1) is followed by g i or g i+1 (see Figure 13). So the proportion of g i or g i in S int , for i = 2, . . . , s is at most 1/2 (only possible when s = 2). Therefore, since p -q ≥ 2, Int(g, γ) ≤ p -q -1 2 + 1 ≤ 3 4 (p -q) for g = g 1 , . . . , g s-1 , or g = g 2 , . . . , g s-1 .

Intersections with g 1 and g s must be treated separately, with a case-by-case analysis. First we deal with g s : Case 2.1: q < p -q < 2q. Observe that each block of g s has length at most 2, and is followed by at least a g s-1 , so the proportion of g s in the sequence S int is at most 2/3, whence Int(g s , γ) ≤ 9(p-q) 10 . Case 2.2: 2q < p -q < 3q. Then a block of g s has length at most 3, and is followed by at least a g s-1 and a g s-1 , so so the proportion of g s in the sequence S int is at most 3/5, whence Int(g s , γ) ≤ 9(p-q) 10 . Case 2.3: 3q < p -q. Intersections with g s come in blocks of length at most (p -q)/q , because two consecutive (along γ) intersections are exactly q/(p -q) apart along g s (see Figure 13). Each block of g s 's is followed by a block of g s-1 g s-1 , of length at least (p -q)/2q . Recall that 2 (p -q)/2q ≥ (p -q)/q -2. So the proportion of g s in S int is at most

(p -q)/q (p -q)/q + 2 (p -q)/2q ≤ (p -q)/q 2 (p -q)/q -2 ≤ 3 4
where the last inequality stands because 3 < (p -q)/q. Again, Int(g s , γ) ≤ 9(p-q) 10 . Now we deal with g 1 . In that case it is more convenient to write (p, q) = (p-q)(2, 1)+ (2q -p) [START_REF] Boissy | Systoles in translation surfaces[END_REF][START_REF] Boissy | Systoles in translation surfaces[END_REF]. Note that 2q -p < 0 because p -q > q.

Case 2.4: p -q < 2|2q -p|, that is, 2q < p -q. Observe that each block of g 1 has length at most 2, and is followed by at least a g 1 , so the proportion of g 1 in the sequence S int is at most 2/3, whence Int(g 1 , γ) ≤ 9(p-q) 10 . Case 2.5: 2|2q -p| < p -q < 3|2q -p|, that is, 3q/2 < p -q < 3q. Then a block of g 1 has length at most 3, and is followed by at least a g 1 and a g 2 , so so the proportion of g s in the sequence S int is at most 3/5, whence Int(g s , γ) ≤ 9(p-q) 10 . Case 2.6: p -q > 3|2q -p|, that is, q < p -q < 3q/2. Intersections with g 1 come in blocks of length at most (p -q)/|2q -p| , because two consecutive (along γ) intersections are exactly |2q -p|/(p -q) apart along g 1 (see Figure 13). Each block of g 1 's is followed by a block of g 2 g 1 , of length at least (p -q)/2|2q -p| . Recall that 2 (p -q)/2|2q -p| ≥ (p -q)/|2q -p| -2. So the proportion of g 1 in S int is at most

(p -q)/|2q -p| (p -q)/|2q -p| + 2 (p -q)/2|2q -p| ≤ (p -q)/|2q -p| 2 (p -q)/|2q -p| -2 ≤ 3 4 
where the last inequality stands because 3 < (p -q)/|2q -p|. Again, Int(g 1 , γ) ≤ 9(p-q) 10 .

3 Proof of Theorem 1.1 Lemma 3.1. Take s ∈ N * and X ∈ H(2s -2). Assume X is an n-fold ramified Riemannian cover of a flat torus. Then KVol(X) ≤ n, unless there exists a pair of closed geodesics α and β on X, which have the same direction, non-zero intersection, and such the product of their lengths is < Vol(X)/n.

Proof. Assume, up to isometry and re-scaling, that the flat torus which X covers is R 2 /(1, 0)Z ⊕ (a, b)Z, with |a| ≤ 1/2 and a 2 + b 2 ≥ 1. Then any closed geodesic on the torus is at least 1 long, and the volume of the torus is b, so the volume of X is nb.

Let α and β be simple closed geodesics in X. Since X has but one conical point, both α and β have a well-defined direction, say p q and p q in irreducible terms. Remark 3.2. If X had several conical points, α or β could be made up of several saddle connections of distinct directions.

Let Π : X -→ T 2 be the projection of the ramified cover. Then Π maps α (resp. β) to a closed geodesic of the torus, with homology class (p, q) (resp. (p , q )).

First case : pq -p q = 0. Observe that Π(α) and Π(β) intersect exactly |pq -p q| times, and their intersections are equidistributed along Π(α), since the first return map to Π(α) of the linear flow with direction (p , q ), is a rotation of Π(α). Therefore, two consecutive intersections are exactly (p + aq) 2 + b 2 q 2 /|pq -p q| apart along Π(α). Thus, two consecutive intersections of α and β cannot be less than √ (p+aq) 2 +b 2 q 2 |pq -p q| apart along α, since the restriction to α of Π is a local isometry. Hence denoting l(α) the length of α, Int(α, β) ≤ |pq -p q| (p + aq) 2 + b 2 q 2 l(α).

Besides, since Π is 1-Lipschitz, we have l(β) ≥ (p + aq ) 2 + b 2 q 2 , whence Int(α, β) l(α)l(β) ≤ |pq -p q| (p + aq) 2 + b 2 q 2 (p + aq ) 2 + b 2 q 2 ≤ K(T 2 ) = 1 b where the last equality stems from [START_REF] Massart | Bjoern On the intersection form of surfaces[END_REF].

Second case : pq -p q = 0. Then since α et β are simple, we have p = p , q = q . So the closed curves α and β, if they are distinct, cannot meet anywhere but at the conical point. Hence their algebraic intersection is 0 or ±1. Therefore Int(α, β) l(α)l(β) ≤ 1 (p + aq) 2 + b 2 q 2 ≤ 1.

So we have KVol(X) ≤ 1 b nb = n, unless there exists a pair of closed geodesics α and β on X, which have the same direction (that is, (p, q) = (p , q )), non-zero intersection, and such that the product of their lengths is < b. . For all n ≥ 3, C n ∩ A, C n ∩ A is contained in the interior of, respectively, V -n+1,1 , and V -n-1,1 ; and C 2 ∩ A is contained in the interior of V -3,1 (see Figure 15). Also, the interiors of V 0,2 , V -1,1 and V 1 2 ,∞ cover the region delimited by C 2 , γ -1,1 and γ 1 2 ,∞ except the point k Figure 15), so the interior of V 0,2 , V 1 2 ,∞ and V -n,1 , n ≥ 1, cover all the region A except the point k.

Thus for (x, y) ∈ A, (x, y) = k, we have K r,r (x, y) > 143 144 . By symmetry with respect to x = 1/2, and afterwards by x = 0, we then deduce the lemma.

We are now set to finish the proof of Theorem 
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 1 Figure 1: St(3) and St[START_REF] Hubert | Samuel Prime arithmetic Teichműller discs in H(2)[END_REF] 
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 3 Figure 3: X 2 (1, 1) and X 2 (exp(iπ/3))

Question 1 . 2 .Question 1 . 3 .

 1213 Is KVol, as a function on H(2), differentiable at St(3) ? Is it critical at St(3) ? Is every square-tiled surface (ramified Riemannian covering of the square flat torus) in H(2), a local maximum of KVol in its own Teichműller disk ? Are they critical points of KVol in H(2) ?
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Figure 9 :

 9 Figure 9: A banana neighborhood

Figure 15 :

 15 Figure 15: covering by banana neighbourhoods

Theorem 1.1. For every

  s ≥ 2, the minimum of KVol over the Teichműller disk T s

	is (2s -1) 143 144 . It is achieved at the two points (± 9 14 ,	√

  [e s ], while the homology classes of β 1 , β 2 , . . . , β s are [f 1

1 , . . . , s , φ 1 , . . . , φ s in the basis e i , f i . Observe that the homology classes of α 1 , . . . , α s-1 , α s are [e 1 ] + [e 2 ] , . . . , [e s-1 ] + [e s ] ,

  1.1. It is straightforward to check that

	so we have			KVol(X s (±	9 14	,	√ 14 143	)) = (2s -1)	143 144	,
	and for every (x, y) ∈ D, we have KVol(X s (x, y)) ≥ (2s -1) 143 144 , with equality if and only if (x, y) = (±9/14, √ 143/14).
	max{J 1 (	9 14	,	√ 14 143	), J -1 (	9 14	,	√ 14 143	)} = max{J 1 (-	9 14	,	√ 14 143	), J -1 (-	9 14	,	√ 14 143	)} =	143 144

Corollary 3.3. We have KVol(St(2s -1)) = 2s -1.

Proof. Lemma 3.1 and the facts that any closed curve on St(2s -1) is at least 1 long, and that Vol(St(2s -1)) = 2s -1, entail that KVol(St(2s -1)) ≤ 2s -1. On the other hand, we have Int(e 1 , f 2 ) = 1, l(e 1 ) = l(f 2 ) = 1. Now we want to know for which elements X = X s (x, y) of T s we have KVol(X s (x, y)) > 2s -1. Lemma 3.4. For (x, y) ∈ V ±1 ∩D, where V ±1 = {(x, y) : (x±1) 2 +(y-1/2) 2 < 1/4}, we have KVol(X s (x, y)) > 2s-1. For any other (x, y) in D, we have KVol(X s (x, y)) ≤ 2s-1. Furthermore, KVol(X s (x, y)) goes to infinity when y goes to zero, and goes to 2s-1 when y goes to ∞ while (x, y) remains in D.

Proof. By Lemma 3.1 and Subsubsection 2.3, finding which elements X s (x, y) of T s have KVol(X s (x, y)) > 2s -1 amounts to finding all (x, y) in the fundamental domain D such that there exist p, q ∈ Z, coprime and both odd, such that y (p + qx) 2 + (qy) 2 > 1 (4)

that is, (x, y) lies inside the open disk D(p, q) of radius 1/2q 2 , centered at (-p/q, 1/2q 2 ).

As we shall see this only happens when |p| = |q| = 1. Indeed if |p| > |q|, the center of D(p, q) lies at least 1/q apart from the vertical boundaries of D, and since the radius of D(p, q) is < 1/q, the whole D(p, q) lies outside of D. If |p| < |q|, the center of D(p, q) lies below the half-circle x 2 + y 2 = 1, and the distance between the center of D(p, q) and the half-circle x 2 + y 2 = 1 is greater than the radius of D(p, q), because 1 -

so the whole D(p, q) lies below the half-circle x 2 + y 2 = 1. Since p and q are coprime, the only remaining possibility is p = ±1, q = 1. So for any X s (x, y) in T s , we have KVol(X s (x, y)) ≤ 2s -1, unless (x, y) lies in the horocyclic neighborhood V ±1 of the lower cusp of D, bounded by the dotted circles depicted in Figure 4. For (x, y) inside V ±1 , we have

Since KVol(X s (1, y)) = 2s -1, KVol is continuous as a function of (x, y), and every (x, y) in D is within distance 1/y of (1, y), it follows that KVol(X s (x, y)) tends to 2s -1 when y goes to ∞.

For p, q ∈ Z, p ∧ q = 1, setting r = p/q, and for (x, y) ∈ H 2 , define

Now, thanks to Lemmata 3.1 and 3.4, we can give a more precise version of Equation (3) : ∀(x, y) ∈ D, KVol(X s (x, y)) = (2s-1) max{J 1 (x, y), J -1 (x, y), sup r =r ∈Q I r,r K r,r (x, y)}. Proof. By Lemma 2.6, we have I r,r = 1 whenever (r, r ) ∈ End(Z), and by Lemma 2.7, we have I r,r ≤ 9/10 < 143 144 whenever (r, r ) ∈ End(Z). Elementary calculations show that the bissectors of the triangle T delimited by the geodesics γ -1,1 , γ -2,1 and γ 0,2 intersect at the point k = ( 914 , √ 143 14 ). For each γ r,r different from the sides of T, γ r,r does not pass through the interior of T, therefore the distance between the point k and γ r,r is greater than the distance between k and the sides of the triangle T. Thus, for each γ r,r different from γ -1,1 , γ -2,1 and γ 0,2 , we have θ r,r (k) > θ -1,1 (k), so cos θ r,r (k) < cos θ -1,1 (k), which entails:

In all that follows, we call V r,r the banana neighbourhood of the geodesic γ r,r such that

Let

and