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Abstract. We processed daily ocean-color satellite observa-
tions to construct a monthly climatology of phytoplankton
pigment concentrations in the Senegalo–Mauritanian region.
Our proposed new method primarily consists of associating,
in well-identified clusters, similar pixels in terms of ocean-
color parameters and in situ pigment concentrations taken
from a global ocean database. The association is carried out
using a new self-organizing map (2S-SOM). Its major advan-
tage is allowing the specificity of the optical properties of the
water to be taken into account by adding specific weights to
the different ocean-color parameters and the in situ measure-
ments. In the retrieval phase, the pigment concentration of a
pixel is estimated by taking the pigment concentration values
associated with the 2S-SOM cluster presenting the ocean-
color satellite spectral measurements that are the closest to
those of the pixel under study according to some distance.
The method was validated by using a cross-validation proce-
dure. We focused our study on the fucoxanthin concentration,
which is related to the abundance of diatoms. We showed that
the fucoxanthin starts to develop in December, presents its
maximum intensity in March when the upwelling intensity
is maximum, extends up to the coast of Guinea in April and
begins to decrease in May. The results are in agreement with
previous observations and recent in situ measurements. The
method is very general and can be applied in every oceanic
region.

1 Introduction

Phytoplankton are the basis of the ocean food web and con-
sequently drive ocean productivity. They also play a funda-
mental role in climate regulation by trapping atmospheric
carbon dioxide (CO2) through gas exchanges at the sea sur-
face and consequently lowering the rate of anthropogenic in-
crease in the atmosphere of CO2 concentration by about 25 %
(Le Quéré et al., 2018). With the growing interest in climate
change, one may ask how the different phytoplankton popu-
lations will respond to changes in ocean characteristics (tem-
perature, salinity, acidity) and nutrient supply, which presents
an important societal impact with respect to both climate and
fisheries, with a possible effect on fish that graze phytoplank-
ton via the marine food chain.

Methods for identifying phytoplankton have greatly pro-
gressed during the last 2 decades. Phytoplankton were first
described by microscopy. Microscopy is time-consuming
and unable to identify picoplankton. Imaging flow cytome-
try (IFC) has renewed microscopic methods, thanks to the
speed at which they are able to characterize phytoplankton
in a water sample (IOCCG, 2014). An alternative method is
the analysis of seawater samples by high-performance liquid
chromatography (HPLC), which is widely used to catego-
rize broad phytoplankton groups such as phytoplankton func-
tional type (PFT) or phytoplankton size class (PSC) (Jeffreys
et al., 1997; Brewin et al., 2010; Hirata et al., 2011). HPLC
enables the identification of 25 to 50 pigments within a single
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analysis, which is much easier and faster to conduct than mi-
croscopic observations (Sosik et al., 2014). Each phytoplank-
ton group is associated with specific diagnostic pigments,
and a conversion formula, the so-called diagnostic pigment
analysis, can be derived to estimate the percentage of each
group from the pigment measurements (Vidussi et al., 2001;
Uitz et al., 2010). HPLC measurements are now recognized
as the standard for calibrating and validating satellite-derived
chlorophyll a (chl a in the following) concentration and for
mapping groups of phytoplankton (IOCCG, 2014).

The use of satellite ocean-color sensor measurements has
permitted researchers to map the ocean surface at a daily
frequency. Satellite sensors measure the sunlight, at several
wavelengths, backscattered by the ocean. The downwelling
sunlight interacts with the seawater through backscattering
and absorption in such a manner that the upwelling radia-
tion transmitted to the satellite (“water-leaving” reflectance)
contains information related to the composition of the sea-
water. The light transmitted to the satellite depends on the
phytoplankton cell shape (backscattering), its pigments (ab-
sorption) and the dissolved matter (e.g., CDOM).

This upwelling radiation, the so-called remotely sensed re-
flectance ρw(λ), is determined by the spectral absorption a
and backscattering (bb; m−1) coefficients of the ocean (pure
water and various particulate and dissolved matter) using the
simplified formulation (Morel and Gentili, 1996)

ρw(λ)=Gbb(λ)/(a(λ)+ bb(λ)), (1)

where (a; m−1) is the sum of the individual absorption coef-
ficients of water, phytoplankton pigments, colored dissolved
organic matter and detrital particles; (bb; m−1) depends on
the shape of the phytoplankton species. G is a parameter
mainly related to the geometry of the situation (sensor and
solar angles) but also to environmental parameters (wind,
aerosols).

In the open ocean far from the coast (in case 1 waters),
the light seen by the satellite sensor mainly contains infor-
mation on phytoplankton abundance and diversity. Ocean-
color measurements have been used intensively to estimate
chlorophyll a concentration in the surface waters of the ocean
and marginal seas and lakes (Longhurst et al., 1995; Antoine
et al., 1996; Behrenfeld and Falkowski, 1997; Behrenfeld et
al., 2005; Westberry et al., 2008).

It has been shown that it is also possible to extract addi-
tional information such as phytoplankton size classes (PSCs)
by using some relationship between chlorophyll concentra-
tion and PSC (Uitz et al., 2006; Ciotti and Bricaud, 2006;
Hirata et al., 2008; Mow and Yoder, 2010). These algorithms
try to establish a relationship between the chl a concentration
and the chl a concentration fractions associated with each of
the three PSCs. Some of them (Uitz et al., 2006; Aiken et
al., 2009) break down the chl a abundance into several ranges
for each of which a specific relationship is computed. Others
(Brewin et al., 2010; Hirata et al., 2011) are based on a con-
tinuum of chl a abundance. Studies have also been done to

Figure 1. Mauritania and Senegal coastal topography. The land is
in brown, and the ocean depth is represented in meters by the color
scale on the right side of the figure. The UPSEN stations are shown
at the bottom left of the figure.

estimate the phytoplankton groups (PFTs) by taking into ac-
count spectral information (Sathyendranath et al., 2004; Al-
vain et al., 2005, 2012; Hirata et al., 2011; Ben Mustapha et
al., 2014; Farikou et al., 2015). This is of fundamental in-
terest to the understanding of phytoplankton behavior and to
modeling its evolution.

Due to highly nonlinear relationship linking the multispec-
tral ocean-color measurements with the pigment concentra-
tions, we proposed a neural network clustering algorithm
(2S-SOM) able to deal with multi-variables linked by com-
plex relationships. The 2S-SOM algorithm is well adapted
to this complex task by weighting the different inputs. The
clustering algorithm was calibrated on a restricted database
composed of remotely sensed observations collocated with
measurements taken in the global ocean.

In the present paper, we propose the retrieval of the major
pigment concentrations from satellite ocean-color multispec-
tral sensors in the Senegalo–Mauritanian upwelling, which is
an oceanic region off the coast of West Africa where a strong
seasonal upwelling occurs (Fig. 1).

The Senegalo–Mauritanian upwelling is one of the most
productive eastern boundary upwelling systems (EBUSs)
with strong economic impacts on fisheries in Senegal and
Mauritania. Since the region has been poorly surveyed in
situ, we have chosen to extract pertinent biological informa-
tion from ocean-color satellite measurements. The region has
been intensively studied through analysis of SeaWiFS (Sea-
Viewing Wide Field-of-View Sensor) ocean-color data and
AVHRR sea surface temperature as reported in Demarcq and
Faure (2000), Sawadogo et al. (2009), Farikou et al. (2013,
2015), Ndoye et al. (2014), and more recently by Capet et
al. (2017) with in situ observations.

Ocean Sci., 16, 513–533, 2020 www.ocean-sci.net/16/513/2020/
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The paper is organized as follows: in Sect. 2, we present
the data we used (in situ and remote sensing observations).
The mathematical aspect of the clustering method (2S-SOM)
is detailed in Sect. 3. In Sect. 4 we present the methodolog-
ical results. The spatiotemporal variability of the fucoxan-
thin and chl a concentration in the Senegalo–Mauritanian up-
welling region are presented in Sect. 5, as are the results of
the oceanic UPSEN campaigns. In Sect. 6 we discuss the re-
sults and the method. A conclusion is presented in Sect. 7.

2 Materials

In this study we used three distinct datasets: the first was used
to calibrate the method, the second to conduct a climatolog-
ical analysis of the Senegalo–Mauritanian upwelling region
and the third was obtained during the oceanographic UPSEN
campaign. These datasets are composed of satellite remote
sensing observations and in situ measurements.

2.1 The calibration database (DPIG)

The calibration database (DPIG) comprises in situ pigment
measurements collocated with satellite ocean-color obser-
vations by the SeaWiFS (Sea-Viewing Wide Field-of-View
Sensor).

This DPIG is composed of 515 matched satellite obser-
vations and in situ measurements made in the global ocean
(mainly in the North Atlantic and the equatorial ocean; Ben
Mustapha et al., 2014). The matchup criteria were quite se-
vere: we used satellite pixels situated at a distance of less
than 20 km from the in situ measurement in a time window
of ±12 h. The geographic distribution of the 515 coincident
in situ and satellite measurements is shown in Fig. 2. The
matchup procedure between in situ and satellite observations
is a crucial question to estimate remote sensing algorithms. If
the parameters of the procedure are too severe, the number of
collocated data points dramatically decreases. If the param-
eters are too large, it is the accuracy of the matching that
decreases. We accordingly chose some compromise. Usu-
ally people use a matchup window of 3× 3 pixels (Alvain
et al., 2005), which corresponds to a distance of less than
20 km between the satellite pixel and in situ measurement,
since we deal with level 3 satellite observations whose pixel
size is of the order of 9× 9 km. This criterion refers to the
typical length of ocean variability (Lévy et al., 2012; Lévy,
2003).

In Fig. 3 we present the R2 coefficient between the in situ
chl a and the SeaWiFS chl a computed by using the OC4V4
algorithm (O’Reilly et al., 2001) for the DPIG collocated ob-
servations. We remark that the two measurements are in good
agreement at global scale. Each data point of DPIG is a vec-
tor having 17 components (five ocean reflectance ρw(λ) and
Ra(λ) at five wavelengths (412, 443, 490, 510 and 555 nm),
SeaWiFS chl a, five in situ pigment ratios, and in situ chl a

concentration). The in situ chl a concentration ranges be-
tween 0.007 and 3 mg m−3 (see Table 1).

The five Ra(λ) are defined following Alvain et al. (2012):

Ra(λ)= ρW(λ)/ρWref(λ,chl a), (2)

where the parameter ρWref(λ,chl a) is an average reflectance
depending on the chl a concentration only that was computed
according to the procedure reported in Farikou et al. (2015).
Ra(λ) is a nondimensional parameter that depends on the
chl a abundance at second order and is mainly sensitive to
the secondary pigments (Alvain et al., 2012).

The DPIG database thus provides information on the exist-
ing links between the pigment composition and the SeaWiFS
measurements. The pigment composition is defined by the
pigment ratios, which are nondimensional variables of the
form in the present study:

pigment ratio= DP/Tchl a, (3)

which is defined as the ratio of the diagnostic pigment (DP)
versus the total chl a (Tchl a = chl a+divinyl chl a), accord-
ing to Alvain et al. (2005).

The pigments of the DPIG and their statistical charac-
teristics are given in Table 1. The statistical tests presented
in Fig. 3 (R2 and RMSE) and in Table 1 (MEAN, SD,
MIN, MAX) were computed in milligrams per cubic meter
(mg m−3).

2.2 The Senegalo–Mauritanian upwelling satellite data
(DSAT)

The satellite dataset we processed to retrieve the pigment
concentration consists of five ρw(λ) and five Ra(λ) at five
wavelengths (412, 443, 490, 510 and 555 nm), as well as
the SeaWiFS chl a concentration observed in the Senegalo–
Mauritanian upwelling region (8–24◦ N, 14–20◦W; Fig. 3)
during 11 years (1998–2009) by SeaWiFS. This dataset is
denoted here as DSAT.

The satellite observations (ρw(λ) and chl a concentration)
were provided by NASA with a resolution of 9 km. Due to
the presence of Saharan dust in this region, very few esti-
mations of satellite ρw(λ) and in situ chl a were available,
and some satellite estimations of chl a could present strong
overestimations (Gregg et al., 2004). For this reason, we re-
processed the ρw(λ) and chl a data with an atmospheric
correction algorithm developed specifically for Saharan dust
(Diouf et al., 2013; http://poacc.locean-ipsl.upmc.fr/, last ac-
cess: 4 March 2020) in order to improve the satellite obser-
vations.

2.3 The UPSEN database

Recently, some HPLC measurements were made in the
Senegalo–Mauritanian region during two oceanographic
cruises (UPSEN campaigns) of the oceanographic ship
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Figure 2. Geographic positions of the 515 in situ and satellite collocated measurements of the DPIG database.

Table 1. Pigments of the DPIG and their statistical characteristics: SD (standard deviation), MIN (minimum value), MAX (maximum value).

Rdiviny A Rperid Rfuco R19HF Rzeax Chl a in situ

Mean 0.1414 0.0272 0.1248 0.1859 0.1696 0.5292
SD 0.1584 0.0196 0.0971 0.0996 0.2063 0.5720
MIN 0.0037 0.0035 0.0053 0.0066 0.0027 0.007
MAX 0.8889 0.2027 0.8514 0.7654 1.5574 2.9980

Figure 3. Dispersion diagram of DPIG chl a computed from the
SeaWiFS observations using the OC4V4 algorithm versus in situ
chl a. The coefficient of determination R2 and the RMSE (root
mean square error) were computed in milligrams per cubic meter
(mg m−3).

Le Suroit from 7 to 17 March 2012 and from 5 to 26 Febru-
ary 2013 as reported in Ndoye et al. (2014) and Capet et
al. (2017). The goal was to study the dynamics and the bi-
ological variability of the Senegalo–Mauritanian upwelling.
During these campaigns, in situ HPLC measurements were
carried out. We expected to be able to collocate them with
the ocean-color VIIRS (Visible Infrared Imaging Radiome-
ter Suite) sensor observations, whose wavelengths are close
to those of the SeaWiFS. Unfortunately, we were only able
to process satellite observations made on 21 February 2013
due to the presence of clouds and Saharan aerosols the other
days. We processed the satellite observations provided by the
VIIRS sensor at four wavelengths (443, 490, 510, 555 nm)
for pixels in the vicinity of the ship stations (within a dis-
tance of 20 km) observed in a time window of ±12 h and for
which the satellite chl a was less than 3 mg m−3, which is
the limit of validity of our method imposed by the range of
chl a observed in DPIG (mean of 0.52 mg m−3). Only five
stations off the Cabo Verde peninsula fit these requirements
(see Fig. 1 for their positions).

3 The proposed method (2S-SOM)

Classification methods were applied to retrieve geophysical
parameters from large databases in several studies including
weather forecasting (Lorenz, 1969; Kruizinga and Murphy,
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1983), short-term climate prediction (Van den Dool, 1994),
downscaling (Zorita and von Storch, 1999), reconstruction of
oceanic pCO2 (Friedrichs and Oschlies, 2009) and chl a con-
centration under clouds (Jouini et al., 2013). In the present
study, we used a new neural network classifier, which is an
extension of the SOM algorithms.

3.1 The SOM clustering

The SOM algorithms (Kohonen, 2001) constitute powerful
nonlinear unsupervised classification methods. They are un-
supervised neural classifiers that have been commonly used
to solve environmental problems (Cavazos, 2000; Hewitson
and Crane, 2002; Richardson et al., 2003; Liu and Weisberg,
2005; Liu et al., 2006; Niang et al., 2003, 2006; Reusch et
al., 2007). The SOM aims at clustering vectors zi ∈ RN of
a multidimensional database D. Clusters are represented by
a fixed network of neurons (the SOM), each neuron c being
associated with the so-called referent vector wc representing
a cluster. The self-organizing maps are defined as an undi-
rected graph, usually a rectangular grid of size p× q. This
graph structure is used to define a discrete distance (denoted
by δ) between two neurons of the p×q rectangular grid that
presents the shortest path between two neurons. Each vector
zi of D is assigned to the neuron whose referent wc is the
closest in the sense of the Euclidean distance: wc is called
the projection of the vector zi on the map. A fundamental
property of an SOM is the topological ordering provided at
the end of the clustering phase: close neurons on the map
represent data that are close in the data space. The estimation
of the referent vectors wc of an SOM and the topological
order is achieved through a minimization process in which
the referent vectors w are estimated from a learning dataset
(the DPIG database in the present case). The cost function is
shown in Appendix A.

The SOMs have frequently been used in the context of
completing missing data (Jouini et al., 2013), so the projected
vectors zi may have missing components. Under these con-
ditions, the distance between a vector zi ∈D and the referent
vectors wc of the map is the Euclidean distance that consid-
ers only the existing components (the truncated distance or
TD hereinafter).

3.2 The 2S-SOM classifier

In the present case, we used the 2S-SOM algorithm, a modi-
fied version of the SOM, which is very powerful in the case
of a large number of variables. It automatically structures the
variables having some common characteristics into concep-
tually meaningful and homogeneous blocks. The 2S-SOM
takes advantage of this structuration of D and the variables
into different blocks, which permits an automatic weighting
of the influence of each block and consequently of each vari-
able. The block weighting facilitates the clustering procedure
by considering the most pertinent variables. The vectors of

DPIG defined in Sect. 2 can be decomposed into four blocks.
The essence of this decomposition into blocks is that each of
the 17 components of the DPIG vectors gathers information
with a different physical influence in the classification phase.
The composition of each block is done as follows.

The 2S-SOM is able to deal with a large quantity of vari-
ables, choosing those that are the most significant for the
classification and neutralizing those that are the least signif-
icant. This is done by estimating weights on the blocks and
the variables. We fully describe the 2S-SOM algorithm in
Appendix A. In the following we use a simplified version of
2S-SOM in which only the blocks are weighted.

3.3 The calibration phase

Similarly to the standard SOM, the 2S-SOM is determined
through a learning phase by using a more complex cost func-
tion (see Appendix A) that estimates for each neuron, in ad-
dition to the referent vector, a weight (α) for each block. For
a neuron c, we define the weights of each block b (b = 1. . .4).

At the end of the calibration phase, each element zi of
the dataset DPIG is associated with a referent wc whose
components are partitioned into four blocks. In the present
study, the 2S-SOM is represented by a two-dimensional
(9× 18= 162) grid that represents the partition of the DPIG
dataset into different classes. Each class provided by the 2S-
SOM is associated with a so-called referent vector wc with
c ∈ {1. . .162}. The size of the map has been determined by
using the procedure provided by the SOM software available
at http://www.cis.hut.fi/projects/somtoolbox/download/ (last
access: 4 March 2020).

3.4 The pigment retrieval

In the second phase, which is an operating phase, we esti-
mated the pigment concentration ratios of a pixel from its
satellite ocean-color sensor observations only. The 11 ocean-
color satellite observations (5ρw(λ), 5Ra(λ) and chl a) of
pixel PXm were projected onto the 2S-SOM using the trun-
cated Euclidian distance (Sect. 3.1). We select the neuron c
associated with a referent vector whose 11 ocean-color pa-
rameters are the closest to those observed by the satellite
sensor. The pigment ratios PXm are those associated with
the neuron c. At the end of the assignment phase, each pixel
PXm of a satellite image is associated with a referent vector
wc, which has six pigment concentration ratios among its 17
components. The flowcharts of the method (2S-SOM learn-
ing and pigment retrieval) are presented in Fig. 4.

4 Methodological results

4.1 Statistical validation of the method

The validation of the method was focused on the retrieval of
the fucoxanthin ratio, which is a characteristic of diatoms,

www.ocean-sci.net/16/513/2020/ Ocean Sci., 16, 513–533, 2020
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Figure 4. Flowchart of the method: (a) learning phase; (b) opera-
tional phase that consists of pigment retrieval and the determination
of the block parameters.

but the same procedure could be applied to any pigment. The
hyper-parameter µ (see Appendix A) was optimized in order
to retrieve that ratio, while η was set as constant since only
the blocks were weighted in the present study. Due to the
small amount of data in the DPIG, we estimated the accuracy
of the fucoxanthin retrieval by a cross-validation procedure,
which is a powerful procedure in statistics. The principle is
the following: we learned 30 2S-SOMs using 30 different
learning datasets Li constituting 90 % of DPIG taken at ran-
dom, and then we computed a statistical estimator on the re-
trieved quantities using 30 test datasets (10 % of DPIG). The
algorithm was as follows.

Starting with i = 1. . .30:

1. determination at random of a learning dataset Li
(90 % of DPIG) and a test dataset T Li (10 % of
DPIG);

2. training of a 2S-SOM Mi using Li (see Sect. 3.2
and 3.3);

3. validation using T Li according to the procedure
described in Sect. 3.4; and

4. estimation of the RMSEi and R2
i on T Li between

the estimated and observed fucoxanthin ratios.

The flowchart of the cross-validation procedure is pre-
sented in Fig. 5 for the computation of the mean RMSE and
R2 (R2, RMSE= 1

30
∑I=30
i=1 R2i,RMSEi).

Statistical parameters (R2 coefficients, RMSE and P val-
ues) of the cross-validation between the DPIG in situ pig-
ments and the pigments given by the 2S-SOM averaged for
the 30 2S-SOM realizations, which are presented in Table 2,
show the good performance of the method.

Table 2. Statistical parameters (R2 coefficients, RMSE and P val-
ues) of the cross-validation between the DPIG in situ pigments and
the pigments given by the 2S-SOM averaged for the 30 2S-SOM
realizations.

R2 RMSE PVAL
(mg m−3)

Chl a SOM 0.84 0.22 0.001
DV Chl a 0.60 0.02 0.001
Fuco 0.87 0.02 0.001
Perid 0.81 0.01 0.001

4.2 Analysis of the topology of the 2S-SOM

As explained in Sect. 3.2 and 3.3, the referent vector com-
ponents (wc ∈ R17), which are estimated during the learn-
ing phase, are partitioned into four blocks B1, B2, B3 and
B4. The hyper-parameter µ was tuned in order to favor the
accuracy of the retrieval of the fucoxanthin ratio. We recall
that all the pigment ratios are estimated during the calibra-
tion phase, but in the present paper attention was focused
on the fucoxanthin ratio when selecting the parameter µ. In
Fig. 6, we present six of the referent vector components of
the 2S-SOM. These components are ρw(490), Ra(490), Sea-
WiFS chl a, and the ratios of fucoxanthin, which is a specific
diatom pigment, and of peridinin and divinyl. They exhibit a
coherent topological order, with the components having val-
ues that are close together on the topological map. The re-
maining 11 components (not shown) exhibit the same coher-
ent topological order. One can observe a very good topolog-
ical order for the fucoxanthin ratio that was favored by the
determination of the hyper-parameter µ. Moreover, the bot-
tom right region in the 2S-SOM (Fig. 6) may correspond to
the diatoms with a good confidence since high fucoxanthin
is associated with a high chlorophyll concentration and low
peridinin. This is confirmed in Sect. 5 by looking at the ge-
ographical location of the different pigment concentrations
(Figs. 8, 10, 11). Another important remark is that the value
of each component presents a large range of variation of the
same order as the range of variation found in the DPIG vari-
ables. This means that the 2S-SOM has captured most of the
variability of the dataset.

Figure 6 shows a strong link between the values of the
referent vectors for fucoxanthin and chl a (high fucoxanthin
and chl a values at the bottom right of the 2S-SOM), while
fucoxanthin is high and chl a low for the referent vectors at
the bottom left of the 2S-SOM. Additional information will
be provided by the Ra(490) values when the fucoxanthin is
less closely linked to the chlorophyll.

In addition, for each neuron, the 2S-SOM provides a
weight for each block (αcb) and each variable (βcbj). For a
given neuron c the weights (αcb) of the blocks are normal-
ized, their sum being 1. A value of 1 for one block (and there-

Ocean Sci., 16, 513–533, 2020 www.ocean-sci.net/16/513/2020/
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Figure 5. Flowchart of the cross-validation procedure for 30 partitions of the DPIG database.

fore a value of 0 for the other blocks) indicates that the data
in the neuron are gathered with respect to that block only be-
cause there is too much noise in the variables in the other
blocks. By examining the weights on the map, one can see
which block most influences the link between the satellite
measurements and the pigment ratios.

In Fig. 7, we present the αcb values estimated during the
learning phase of the four blocks (B1, B2, B3, B4). For some
neurons, only the blocks related to the reflectance and the re-
flectance ratio are used for the definition of the neuron, while
the weights for the two other blocks (pigments and chl a)
are null, indicating that for these neurons, in situ observa-
tions and SeaWiFS chl a are more noisy than the reflectance.
These neurons correspond to very small chl a concentrations,
which are estimated with large error. We remark that high α
values for chl a correspond to high chl a concentration values
(bottom right of the chl a panel in Figs. 7 and 6). For these
cases, the clustering assembled data that mainly depend on
chl a concentration.

5 Geophysical results

In the present study, we apply the 2S-SOM (Sect. 3), which
explicitly makes weighted use of the data according to their

specificity (ocean-color signals or in situ observations) to re-
trieve the fucoxanthin concentration from remotely sensed
data in the Senegalo–Mauritanian upwelling region where in
situ measurements are lacking. According to the good results
of the cross-validation method as shown in Sect. 4.1, we ex-
pect that the 2S-SOM will provide pertinent results in a re-
gion that has been poorly surveyed.

5.1 The pigment estimation from SeaWiFS
observations in the Senegalo–Mauritanian
upwelling region

We decoded the DSAT database (Sect. 2.3) using the 2S-
SOM for 11 years (1998–2009) of SeaWiFS data observed
in the Senegalo–Mauritanian upwelling region (8–24◦ N, 14–
20◦W). This study was done according to the retrieval phase
described in Sect. 3.4. For each day, we projected the 11
SeaWiFS observations (5ρw(λ), 5Ra(λ) and chl a) of each
pixel on the 2S-SOM. At the end of the assignment phase,
each pixel of a satellite image was associated with six pig-
ment concentration ratios. The underlying assumption is that
the link between the remote sensing information and the pig-
ment ratios of a pixel is provided by the selected referent wc.
Thanks to the topological order provided by the 2S-SOM,
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Figure 6. 2S-SOM. From left to right and top to bottom, values of the referent vectors for (a) ρw(490), (b) Ra(490), (c) SeaWiFS chl a, and
the (d) fucoxanthin, (e) peridinin and (f) divinyl ratios. The number in each neuron indicates the amount of DPIG data captured at the end of
the learning phase; the values indicated by the color bars are centered–reduced nondimensional values.

we expected that the best neurons chosen during the retrieval
would give accurate concentration ratios. In Figs. 8, 10 and
11 we present the fucoxanthin concentration ratio estimation
for 3 different days and the associated SeaWiFS chlorophyll
images (1 and 6 January and 28 February 2003). Due to the
limited size of the DPIG, the range of the ratio learned for
fucoxanthin is between 0.3 % and 20 % with a mean of 10 %,
and the chl a content is between 0.5 and 3 mg m−3. The sta-
tistical estimator we used cannot extrapolate what has not
been learned, and for that reason we flagged the pixels in the
SeaWiFS images that have a chl a concentration greater than
3 mg m−3.

Regarding the images obtained for 1 January 2003 in the
Senegalo–Mauritanian region (Fig. 8a–d), we observe that
the chl a (Fig. 8a) is very high at the coast and decreases off-
shore in accordance with the upwelling intensity as shown in
the sea surface temperature (SST) image (Fig. 9). Moreover,
we observed a persistent well-marked chl a pattern south of
the Cabo Verde peninsula in the form of a W, which is the
signature of a baroclinic Rossby wave (Sirven et al., 2019).

Except in the southern part of the region, the AOT (aerosol
optical thickness) is low; this means that the atmospheric cor-
rection of the reflectance is quite small, which gives confi-
dence in the ocean-color data products. The fucoxanthin con-

centration is maximum at the coast and decreases offshore as
does the chl a concentration, in agreement with the works of
Uitz et al. (2006, 2010). Fucoxanthin presents coherent spa-
tial patterns. The peridinin concentration is somewhat com-
plementary to that of fucoxanthin, with the low fucoxanthin
concentration area corresponding to the high peridinin con-
centration area (northern part of Fig. 8b, d). This behavior
is also observed in Fig. 10 (6 January 2003) and in Fig. 11
(28 February 2003), supporting the analysis shown in Fig. 8.

For 28 February, we selected two square box regions
(Fig. 11), one near the coast (NSB, long. [−20◦, −18◦], lat.
[12◦, 14◦]) and the other about 800 km offshore (OFB, long.
[−28◦,−26◦], lat. [12◦, 14◦]). NSB waters correspond to up-
welling waters, while OFB waters correspond to oligotrophic
waters. We projected the 11 ocean-color parameters of the
NSB and OFB pixels on the 2S-SOM.

Figure 12 presents the reflectance spectra (in blue) cap-
tured by three neurons of the 2S-SOM corresponding to pix-
els located in the NSB region (panels a–c) and those captured
by three neurons corresponding to pixels located in the OFB
region (panels d–f). The reflectance spectra of the associ-
ated referent vectorsw are in yellow. The satellite reflectance
spectra match the referent vector spectra; moreover, the fu-
coxanthin ratio varies inversely with the mean value of the
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Figure 7. 2S-SOM. Weights (αcb) of the four block parameters de-
termined at the end of the learning phase; (a) ρw, (b) Ra, (c) pig-
ment, (d) SeaWiFS chl a. The color bars show the percent of the
weight estimated by 2S-SOM, with a value of 1 or 0 indicating that
the data in the neuron are assembled with respect to that block only.

spectrum: the higher the fucoxanthin ratio, the smaller the
mean value of the spectrum. The pigment concentration is
greater near the coast.

We note a strong difference between the shape and the in-
tensity of the nearshore (NSB) and offshore (OFB) spectra.
The OFB spectra present mean values higher than those of
the NSB spectra. This is due to the fact that NSB spectra
were observed in a region where diatoms are abundant, as
shown by the high value of the fucoxanthin concentration in
this region (Figs. 8, 10 and 11), which is a proxy for diatoms
along with a higher chl a concentration. In Fig. 12, we note
the lower values of the coastal spectra at 443 nm, which can
be interpreted as a predominant effect of spectral absorption
by phytoplankton pigments and CDOM. The different spec-
tra are close together in the OFB region and more disperse
in the NSB region. This can be explained by the fact that
the OFB region corresponds to case 1 waters, while the NSB
region waters are close to case 2 waters and are influenced
by the variability of nearshore process like turbidity or the
presence of dissolved matter and dynamical instabilities.

We analyzed the weights of the blocks for the neurons
selected in the analysis of the coastal (NSB) and offshore
(OFB) boxes. Figure 13 presents the box plot of the weight
αcb corresponding to the neurons belonging to the four
blocks (B1, B2, B3, B4), with the constraint that the sum

of the weights of a neuron is 1; a weight α larger than 0.25
indicates the predominance of a block in the learning for the
classification (see Sect. 3.5). It is clear that the weights for
pixels near the coast (Fig. 13a) are different from those for
offshore pixels (Fig. 13b). As already mentioned in Sect. 4.3
and also shown in Fig. 7, the weights of the 2S-SOM play
a significant role in the 2S-SOM topology and consequently
in the pigment retrieval. The weights of blocks B1 and B4
that take into account the influence of the pigment ratios and
the chlorophyll content in the retrieval are very low for the
offshore (OFB) oligotrophic region and more important for
the coastal (NSB) region. The weights of the blocks B2 and
B3, which take into account the influence of the reflectance
(ρw(λ), Ra(λ)), dominate for the offshore regions. In coastal
waters, the weights of all the blocks are used, with a smaller
influence of B3, which is associated with Ra. This gives in-
formation on the role played by the different variables in the
classification in waters having different phytoplankton con-
centrations and compositions. It also shows the automatic
adaptation of the 2S-SOM to the environment in order to
optimize the clustering efficiency with respect to a classical
SOM.

In order to study the seasonal variability of the fucoxan-
thin concentration with some statistical confidence in the
Senegalo–Mauritanian upwelling region, we constructed a
monthly climatology for an 11-year period (1998–2009) of
the SeaWiFS observations by summing the daily pixels of the
month under study. The resulting climatology is presented in
Fig. 14 for December (Fig. 14a), March (Fig. 14b) and May
(Fig. 14c), which correspond to the most productive period
(Fig. 14c). The fucoxanthin concentration, and consequently
the associated diatoms, presents a well-marked seasonality.
Fucoxanthin starts to develop in December north of 19◦ N,
presents its maximum intensity in March when the upwelling
intensity is maximum, extends up to the coast of Guinea
(12◦ N) in April and begins to decrease in May when it is
observed north of the Cabo Verde peninsula (15◦ N) in agree-
ment with the observations reported by Farikou et al. (2015)
and Demarcq and Faure (2000).

Figure 15 shows the fucoxanthin (in green) and the chl a
(in blue) concentrations computed from satellite observations
for an 11-year period of SeaWiFS observations in the NSB
region. There is a good correlation in phase between these
two variables but not in amplitude (a good coincidence of
peak occurrence but weak correlation in peak amplitude),
showing that the relationship between fucoxanthin and chl a
is complex as mentioned by Uitz et al. (2006). In particular,
there is a weak peak in fucoxanthin in October 2001, which
is not correlated with a chl a peak.

5.2 Analysis of the UPSEN campaigns

Figure 16 shows, for each UPSEN station 1, 2, 3, 5a and 5b
(see Fig. 1 for their geographical position), the averaged in
situ UPSEN spectrum (in blue) and the referent spectrum (in
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Figure 8. (a) Chl a concentration, (b) fucoxanthin ratio and (c) aerosol optical thickness, (d) peridinin for 1 January 2003. Panels (b, d)
show that second-order information was retrieved, which is correlated with the chl a concentration (a) but not equivalent. The aerosol optical
thickness (c) does not seem to contaminate the estimated parameters (fucoxanthin and peridinin ratios).

Figure 9. SST for 2 January 2003. Note the well-marked upwelling
(cold temperature) north of 13◦ N.

red) of the 2S-SOM neuron captured by the collocated satel-
lite VIIRS sensor observations. The referent spectrum is the
mean of the different spectra captured by that neuron during
the learning phase. Among these different spectra, there is
one (black curve in Fig. 16) that is the closest to the UPSEN
spectrum. Obviously, the black curve is closer to the blue
curve than the red one that is flattened due to the averaging
process. These three spectra are close together, showing the
good functioning of the 2S-SOM.

Their shapes are close to those observed in the NSB region
(Fig. 12) but their intensity is lower, meaning that their wa-
ters are more absorbing than the NSB waters due to a higher
pigment concentration. In fact, the UPSEN stations were lo-
cated close to the coast (Fig. 1) in the Hann bight south of the
Cabo Verde peninsula, which is very rich in phytoplankton
pigments. In Table 3, we present the fucoxanthin ratios as-
sociated with the referent vectors (Rfuco2S-SOM), the closest
DPIG fucoxanthin ratios captured by the neuron of the refer-
ents and the fucoxanthin ratios measured during the UPSEN
campaign. We note that the fucoxanthin ratios of the in situ
measurements are in the range of the DPIG (see Table 1),
which allows for the good functioning of the 2S-SOM esti-
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Figure 10. (a) Chl a concentration, (b) fucoxanthin ratio, (c) aerosol optical thickness and (d) peridinin for 6 January 2003. Panels (b, d)
show that second-order information was retrieved, which is correlated with the chl a concentration (a) but is not equivalent. It is found that
the aerosol optical thickness (c) does not contaminate the estimated parameters (fucoxanthin and peridinin ratios).

mator. The pigment ratios obtained from ocean-color obser-
vations through the 2S-SOM are close to pigment concentra-
tions measured at the ship stations, which confirms the valid-
ity of the method we have developed. We remark that the best
2S-SOM estimate of the fucoxanthin ratio with respect to the
UPSEN in situ measurement is given at station 5b, which is
the farthest off the coast. These results support the climato-
logical study of the Senegalo–Mauritanian upwelling region
we have done with the 2S-SOM (Sect. 5.1).

The 2S-SOM method gives pigment concentrations that
are close to those obtained by in situ observations. The
method could be applied to a large variety of other parame-
ters in the context of studying and managing the planet Earth.
The major constraint to obtaining accurate results is to deal
with a learning dataset that statistically reflects all the situ-
ations encountered in the observations processed. Due to its
construction, the method cannot be used to find values be-
yond the range of the learning dataset.

Table 3. For ship stations 1, 2, 3, 5a and 5b of the UPSEN campaign,
we show the referent captured by the VIIRS observations, the fu-
coxanthin ratio associated with this referent (Rfuco-2S-SOM), the
fucoxanthin ratio of the closest DPIG fucoxanthin ratio captured by
the neuron of the referent and the fucoxanthin ratio measured in situ
during the UPSEN campaign.

UPSEN station Referent Rfuco

No. 2S-SOM DPIG UPSEN

STAT 1 17.3◦ E 14.5◦ N 126 0.213 0.236 0.378
STAT 2 17.2◦ E 14.4◦ N 126 0.213 0.236 0.391
STAT 2 17.2◦ E 14.5◦ N 126 0.213 0.236 0.436
STAT 5A 17.5◦ E 14.5◦ N 126 0.213 0.171 0.299
STAT 5B 17.5◦ E 14.5◦ N 143 0.242 0.258 0.295

6 Discussion

Machine-learning methods are powerful methods to invert
satellite signals as soon as we have an adequate database to
support the calibration. Several techniques have been used
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Figure 11. (a) Chl a concentration, (b) fucoxanthin ratio, (c) aerosol optical thickness and (d) peridinin for 28 February 2003. Panels (b, d)
show that second-order information was retrieved, which is correlated with the chl a concentration (a) but is not equivalent. It is found that
the aerosol optical thickness (c) does not contaminate the estimated parameters (fucoxanthin and peridinin ratios). The positions of the NSB
and OFB are outlined by black square boxes.

Figure 12. Reflectance spectra (in blue) captured on 28 February by six neurons whose referent vector spectra are in yellow: (a–c) pixels in
the NSB region (long. [−20◦, −18◦], lat. [12◦, 14◦]); (d–f) pixels in the OFB region (long. [−28◦, −26◦], lat. [12◦, 14◦]).
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Figure 13. Box plot of the weights of the selected neurons during
the decoding of the 28 February data. From left to right are the
weights of blocks B1, B2, B3 and B4 (a) n the NSB region (long.
[−20◦, −18◦], lat. [12◦, 14◦]) and (b) in the OFB region (long.
[−28◦, −26◦], lat. [12◦, 14◦]).

for retrieving biological information from ocean-color satel-
lite observations. First, studies have employed multilayer
perceptrons (MLPs), which are a class of neural networks
suitable to model transfer function (Thiria et al., 1993). Gross
et al. (2000, 2004) retrieved the chl a concentration from Sea-
WiFS, Bricaud et al. (2006) modeled the absorption spectrum
with MLP, and Raitsos et al. (2008) and Palacz et al. (2013)
introduced additional environmental variables in their MLPs
such as SST in the retrieval of PSC and PFT from SeaWiFS,
which improved the skill of the inversion. Another suitable
procedure was to embed NN in a variational inversion, which
is a very efficient way when a direct model exists (Jamet et
al., 2005; Brajard et al., 2006a, b; Badran et al., 2008). Sta-
tistical analysis of the absorption spectra of phytoplankton
and pigment concentrations was conducted by Chazottes et
al. (2006, 2007) using an SOM.

In the present study, due to the fact that the learning dataset
was quite small (515 elements), we used an unsupervised
neural network classification method, which is an extension
of the SOM method well adapted to dealing with a small
database whose elements are very inhomogeneous. We clus-
tered available satellite ocean-color reflectance at five wave-
lengths and their derived products, such as chlorophyll con-
centration and the associated in situ pigment ratios.

The major points of this study are as follows.

1. The clustering was carried out by developing a new neu-
ral classifier, the so-called 2S-SOM, which presents sev-
eral advantages with respect to the classical SOM. As
in the SOM, we defined clusters that assemble vectors
that are close together in terms of a specified distance.
This classifier was learned from a worldwide database
(DPIG) whose vectors are ocean-color parameters ob-
served by satellite multispectral sensors and associated
pigment concentrations measured in situ. In the opera-
tional phase, SeaWiFS images are decoded, allowing for
the estimation of the pigment concentration ratios. The
major advantage of 2S-SOM with respect to the clas-
sical SOM is to cluster variables having similar physi-
cal significance into blocks having specific weights. The
weights attributed to the four blocks are computed dur-
ing the learning phase and vary with the quality of the
variables and with respect to their location in the ocean
(near the coast or offshore). This permits us to modulate
the variable influence in the cost function, which makes
the clustering more informative than that provided by
the SOM. The block decomposition provides useful sci-
entific information. For offshore, the weight analysis al-
lowed us to show that more influence is given to the re-
flectance ratios Ra(λ) and less to the chl a and pigment
concentrations; in contrast, near the coast the weights
indicate a more active use of the pigment composition
and the chl a concentration. Therefore, the resulting 2S-
SOM clustering at best takes into account the informa-
tion that belongs to the specific water content.

2. The 2S-SOM decomposes the DPIG into a large num-
ber of significant ocean-color classes, allowing for the
reproduction of the different possible situations encoun-
tered in the dataset we analyze. We assume that the re-
lationship between the pigment concentration and the
remotely sensed ocean-color observations is indepen-
dent of the location, which is justifiable since the rela-
tionship depends on the optical properties of ocean wa-
ters through well-defined physical laws that are region-
independent. This also supports the fact that we used
a global database to retrieve pigments in a definite re-
gion. In contrast, the different phytoplankton species
vary from one region to another, making the relationship
between the pigment ratio and phytoplankton species
strongly dependent on the region. This justifies the fact
we focused our study on the pigment retrieval rather
than on the PSC or PFT, as mentioned above. Moreover,
most of the recent phytoplankton in situ identifications
have been made using pigment measurements with the
HPLC method (Hirata et al., 2011). It is therefore more
natural to retrieve the pigment concentration, which is
the quantity we measured, than the associated PSC or
PFT, which are estimated from the pigment observa-
tions through complex nonlinear and region-dependent
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Figure 14. Monthly fucoxanthin concentration averaged over 11 years (1998–2009) for December (a), March (b) and May (c).

Figure 15. Chl a (in blue) and fucoxanthin (in green) concentrations
for nearshore pixels (in the NSB region).

algorithms (Uitz et al., 2006). Due to the characteristics
of the DPIG, the method can retrieve pigment concen-
tration patterns over a large range (0.02–2 mg m−3).

3. We were able to analyze the pigment concentration in
the Senegalo–Mauritanian region by processing satel-
lite ocean-color observations with the 2S-SOM. We
found an important seasonal signal of fucoxanthin con-
centration with a maximum occurring in March. We
found evidence of a large offshore gradient of fucox-
anthin concentrations, the nearshore waters being richer
than the offshore ones. We showed that the offshore
region waters correspond to case 1 waters, while the
nearshore waters are close to case 2 waters and are
influenced by the variability of nearshore process like
turbidity or the presence of dissolved matter. The UP-
SEN measurements show that the pigment ratios of the
Senegalo–Mauritanian region are in the range of the

DPIG database used to calibrate the method, which jus-
tifies the use of the 2S-SOM algorithm to investigate
this region.

4. We used daily satellite observations to construct a
monthly climatology of pigment concentrations of the
Senegalo–Mauritanian upwelling region, which has
been poorly surveyed by oceanic cruises. Due to the
highly nonlinear character of the algorithms for deter-
mining the pigment concentrations from satellite mea-
surements, it is mathematically more rigorous to apply
these algorithms to daily satellite data and average this
daily estimate for the climatology period under study
than to estimate them from the satellite data climatol-
ogy, as many authors have done (Uitz et al., 2010; Hirata
et al., 2011). We found that fucoxanthin starts develop-
ing in December north of 19◦ N, presents its maximum
intensity in March when the upwelling intensity is max-
imum, extends up to the coast of Guinea (12◦ N) in April
and begins to decrease in May.

Another important aspect of our study concerns the va-
lidity of our results. The 2S-SOM method has been validated
by focusing the retrieval accuracy on the fucoxanthin ratio by
using a cross-validation procedure. These results were quali-
tatively confirmed by two other independent studies.

- We first applied a cross-validation procedure (see
Sect. 4.1), which is a powerful technique for validating
models (Kohavi, 1995; Varma and Simon, 2006). We
learned 30 different 2S-SOMs using 30 different learn-
ing dataset determined at random from the DPIG dataset
(each learning dataset representing 90 % of DPIG) and
30 test datasets (10 % of DPIG). By averaging the re-
sults, we found that the 2S-SOM method retrieves the
fucoxanthin concentration with a good score (see the
statistical parameters in Table 2), which confirms the
pertinence of the method.
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Figure 16. For ship stations 1, 2, 3, 5a and 5b, we show the averaged spectrum of the in situ spectra of the UPSEN stations in blue and
the spectrum of the referent vector (in red) of the 2S-SOM neuron that has captured the closest satellite observations to the UPSEN station.
Among the different spectra constituting the referent spectrum, the spectrum of the learning database (DPIG) that is the closest to the averaged
satellite spectra is shown in black. In the rectangular boxes, we show the position of the UPSEN station, the number of the neuron of the
2S-SOM that has captured the satellite observation, the Rfuco of the referent vector, the RfucoDPIG of the closest DPIG and the in situ
RfucoUPSEN.

- We then found that our fucoxanthin climatology is in
agreement with in situ observations of phytoplankton
reported in Blasco et al. (1980) in March to May 1974
off the coast of Senegal during the JOINT I experi-
ment. These authors analyzed 740 water samples col-
lected with Niskin bottles at 136 stations extending
along a line at 21◦40′ N (in the northern part of the

studied region) from 0 to 100 km offshore. The sam-
ples were taken at several depths (mostly at 100, 50, 30,
15, 5 m). Phytoplankton cells were counted and iden-
tified by the Utermöhl inverted microscope technique
(Blasco, 1977). These authors found that diatoms reach
their maximum concentration in April–May and are the
most abundant group in that period, whereas the other
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cells predominate in March. Similar microscope obser-
vations were reported in the ocean area south of Dakar
by Dia (1985) during several ship surveys in February–
March 1982–1983.

- Our method is also in agreement with the monthly 11-
year climatology presented in Farikou et al. (2015), who
used a modified PHYSAT method to retrieve the PFT in
the Senegalo–Mauritanian region.

- The pigment concentrations provided by the 2S-SOM
from the VIIRS sensor observations are in qualitative
agreement with the in situ measurements done at five
stations during the two UPSEN campaigns in 2012 and
2013, showing that the method is able to function in
waters where the pigment concentrations are quite high
(fucoxanthin ratios of the order of 0.4).

7 Conclusions

We developed a new neural network clustering method, the
so-called 2S-SOM algorithm, to retrieve phytoplankton pig-
ment concentration from satellite ocean-color multispectral
sensors. The 2S-SOM algorithm is an SOM specifically de-
signed to deal with a large number of heterogeneous compo-
nents such as optical and chemical measurements. The major
advantage of 2S-SOM with respect to the classical SOM is
to cluster variables having similar significance into blocks
having specific weights. The weights attributed to the blocks
during the learning phase vary with the quality of the vari-
ables in the classification. This permits us to modulate the
variable influence in the cost function, which makes the clus-
tering more informative than that provided by the SOM. The
block weighting provides useful information on the function-
ing of the classification by permitting us to identify the vari-
ables that control it. It also allows us to better understand the
dynamics of the phytoplankton communities.

The 2S-SOM method is efficient and rapid as soon as the
calibration is done, since it uses elementary algebraic oper-
ations only. The 2S-SOM method is like a piecewise regres-
sion that takes advantage of the unsupervised classification
of the SOM. We decomposed the DPIG database into quite
a large number of partitions (9× 8= 162) when comparing
our study to other studies (Uitz et al., 2006). The validity
of the method has been controlled through a cross-validation
procedure and confirmed by three qualitative studies. Statis-
tical parameters (R2 coefficients, RMSE and P values) of the
cross-validation between the DPIG in situ pigments and the
pigments given by the 2S-SOM averaged for the 30 2S-SOM
realizations presented in Table 2 show the good performance
of the method. It must be noted that the performance mainly
depends on the size of the learning set used to calibrate the
2S-SOM. This set must include all the situations encountered
in the pigment retrieval. The larger the learning set, the bet-
ter the method performs. Due to its generic character and its

flexibility, the method could be used to determine a large va-
riety of measures with satellite remote sensing observations.

In this work, the method was applied to study the seasonal
variability of the fucoxanthin concentration in the Senegalo–
Mauritanian upwelling region. We showed a large offshore
gradient of fucoxanthin, the higher concentration being situ-
ated near the shore. We were able to construct a monthly cli-
matology for an 11-year period (1998–2009) of the SeaWiFS
observations by summing the daily pixels of the month under
study in a region that was poorly surveyed by oceanic cruises.
The fucoxanthin concentration, and consequently the associ-
ated diatoms, presents a well-marked seasonality (Fig. 10).
Fucoxanthin starts developing in December north of 19◦ N,
presents its maximum intensity in March when the upwelling
intensity is maximum, extends up to the coast of Guinea
(12◦ N) in April and begins to decrease in May when it is ob-
served north of the Cabo Verde peninsula (15◦ N), in agree-
ment with the observations reported by Farikou et al. (2015)
and Demarcq and Faure (2000). The UPSEN campaign re-
sults confirm the validity of the study of the Senegalo–
Mauritanian upwelling region done with the 2S-SOM.

Ocean Sci., 16, 513–533, 2020 www.ocean-sci.net/16/513/2020/



K. Yala et al.: Phytoplankton pigments from ocean color 529

Appendix A

A1 Cost function of the SOM

Let us recall the following notation:

D = {z1, . . ., zi, . . ., zK} is the dataset composed of K
vectors zi ∈ RN , and

W = {w1, . . ., wc, . . ., wC} is the set of weights wc ∈
RN , where C = p× q is the size of the SOM.

The wc of the SOM is estimated by minimizing a cost
function of the form

J T
SOM(χ,W )

=

∑K

i=1

∑p×q

c=1
KT (δ(c,ξ(zi)))‖zi −wc‖

2, (A1)

where c indices are the neurons of the SOM, ξ is the alloca-
tion function that assigns each element zi ofD to its referent
vector wc, which is of the form ξ(zi)= argminc‖zi −wc‖,
δ(c,ξ(zi)) is the discrete distance on the SOM between a
neuron if index c and the neuron are allocated to observa-
tion zi , and KT is a kernel function parameterized by T that
weights the discrete distance on the map and decreases dur-
ing the minimization process. T acts as a regularization term
(Kohonen, 2001; Niang et al., 2003). In the present case KT

is of the form

KT (δ)= (1/T )K(δ/T ),

where K is the Gaussian function of mean 0 and standard
deviation 1.

The cost function (A1) takes into account the proper in-
ertia of the partition of the dataset D and ensures that its
topology is preserved.

A2 Definition of the algorithm 2S-SOM

The 2S-SOM algorithm is an extension of the self-organizing
maps (SOMs; Kohonen, 2001) based on the K-mean method
(Ouattara, 2014). It automatically structures the variables
having some common characters into conceptually meaning-
ful and homogeneous blocks during the learning phase. The
2S-SOM takes advantage of this structuration of D and the
variables into B different blocks, which permits an automatic
weighting of the influence of each block and consequently
of each variable in the classification phase. The 2S-SOM is
based on a modification of the cost function of the SOM algo-
rithm. For a neuron of index c, we define the weights αcb of
each block b(b = 1, . . ., B) and the weights βcbj of the vari-
ables j (j = 1, . . ., Pb) in this block, where Pb is the number
of variables in the block indexed by b. The vectors of weights
are denoted

α = {αcb}1≤c≤C,1≤b≤B and β =
{
βcbj

}
1≤c≤C,1≤b≤B,1≤j≤Pb

.

The new cost function is

J T
2S−SOM (χ,W ,α,β)=

∑
c(∑B

b=1

(∑
zi
αcbK

T (δ (c,ξ(zi)))dβcb (i)+ Jcb

)
+ Ic

)
,

(A2)

with

dβcb (i)=
∑Pb

j=1
βcbj

(
z
j
ib−w

j
ib

)
, (A3)

where c indices are the neurons of the 2S-SOM under the two
constraints∑B

b=1
αcb = 1,αcb ∈ [0,1]∀c,1≤ c ≤ C (A4)

and∑Pb

j=1
βcbj = 1;βcbj ∈ [0,1],∀c,1≤ c ≤ C;

∀b,1≤ b ≤ B. (A5)

Ic and Jcb are used to regularize the weights α and β. They
are defined as negative entropies weighted for the blocks and
for the variables of each block:

Ic = µ
∑b=1

Pb
αcb log(αcb), (A6)

and

Jcb = η
∑j=1

B
βcbj log(βcbj ). (A7)

The topological conservation properties of 2S-SOM are in-
fluenced by the weights αcb and βcbj in the classification
through the hyper-parameters µ and η as well as the neigh-
borhood parameter T .

The weights αcb and βcbj respectively indicate the relative
importance of blocks and variables in the neurons. Thus, the
greater the weight of a block b or a variable j , the more the
block or the variable contributes to the definition of the class
(or neuron) in the sense that it makes it possible to reduce
the variability of the observations in the cell and in its close
neighborhood. For a high value of η and a fixed one forµ, the
βcbj values in a block are equal to 1/Pb. In this case, only the
blocks are modified according to their capacity to define the
neurons. In this context, the 2S-SOM then makes it possible
to weight the different blocks for each neuron.

– For high values of µ, Ic is large. The minimization
of Jcb forces all its coefficients to become equal. For
a fixed value of η, the αcb values associated with the
blocks are all equal to 1/B. In this case, only the βcbj
values of the variables inside the blocks weight the neu-
rons.

– When µ and η tend to very large values, the blocks are
equiprobable as are the variables. Thus, the 2S-SOM al-
gorithm is comparable to the SOM.
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A3 How the 2S-SOM algorithm works

For fixed µ and η, the learning of the 2S-SOM algorithm is
as follows.

– Step 0. Initialization with the iteration of the algorithm
SOM by setting α and β to homogeneous values.

The optimization is carried out through an iterative process
composed of three steps (1, 2 and 3) presented below.

– Step 1. The wc referents and the weights α and β are
known and fixed, and the observations are assigned to
the neurons by respecting the assignment function

c(zi)= χ(zi)

= argmin
r∈C

(∑
r∈C

KT (δ(r,c))

(
B∑
b=1

αcbdβcb (i)

))
.

(A8)

– Step 2. Updating the neuron centers (the wc referents)
according to the formula of the SOM algorithm.

– Step 3. The assignment function and the referents wc
being fixed, α and β are determined according to
Eqs. (A9)–(A12) by minimizing the cost function with
respect to α and β under the following constraints
(Eqs. A4 and A5):

αcb =
exp

(
−ψcb
µ

)
∑B
b=1

exp
(
−ψcb

µ

)
(A9)

with

ψcb =
∑
zi∈D

KT (δ(χ(zi),c))dβcb (i) (A10)

and

βcbj =
exp

(
−φcbj
η

)
∑pb
b=1 exp

(
−φcbj
η

) (A11)

with

ψcbj =
∑
zi∈D

αcbK
T (χ(zi),c)

(
ziibw

j
cb

)2
. (A12)

This algorithm is repeated by sampling the hyper-parameters
µ and η until convergence.

Finally, at the convergence, the 2S-SOM provides a topo-
logical map allowing us to visualize the data and a weight
system for the neurons of the map allowing us to interpret the
role of the different variables, choose those that are the most
significant for the classification and neutralize those that are
the least significant.
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