
HAL Id: hal-02904076
https://hal.science/hal-02904076v1

Submitted on 21 Jul 2020 (v1), last revised 10 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring License Compliance in Federated Query
Processing

Benjamin Moreau, Patricia Serrano-Alvarado

To cite this version:
Benjamin Moreau, Patricia Serrano-Alvarado. Ensuring License Compliance in Federated Query Pro-
cessing. 36ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA
2020), Oct 2020, (Online), France. �hal-02904076v1�

https://hal.science/hal-02904076v1
https://hal.archives-ouvertes.fr

Ensuring License Compliance in FederatedQuery Processing
Benjamin Moreau

Nantes University, LS2N, CNRS
OpenDataSoft

Benjamin.Moreau@ls2n.fr
Benjamin.Moreau@opendatasoft.com

Patricia Serrano-Alvarado
Nantes University, LS2N, CNRS

Patricia.Serrano-Alvarado@ls2n.fr

©2020, Copyright is with the authors. Published in the Proceed-
ings of the BDA 2020 Conference (27-30 October 2020, Paris, France).
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.
©2020, Droits restant aux auteurs. Publié dans les actes de la con-
férence BDA 2020 (27 au 30 octobre 2020, Paris, France). Redistribu-
tion de cet article autorisée selon les termes de la licence Creative
Commons CC-by-nc-nd 4.0.

ABSTRACT
When two or more licensed data sources participate in the eval-
uation of a federated query, the query result must be protected
by a license that is compliant with each license of the involved
datasets. However, such a license does not always exist, and this
leads to a query result that cannot be reused. We propose to deal
with this issue during the federated query processing by discarding
datasets of conflicting licenses. But, a query with an empty result
set can be obtained. To face this problem, we use query relaxation
techniques. Our problem statement is, given a SPARQL query and
a federation of licensed datasets, how to guarantee a relevant and
non-empty query result whose license is compliant with each license
of involved datasets? In a distributed environment, the challenge is
to limit communication costs when the query relaxation process
is necessary. In this paper, to detect and prevent license conflicts,
we propose FLiQue, a license-aware query processing strategy for
federated query engines. Experiments show that FLiQue guaran-
tees license compliance, and if necessary, can find relevant relaxed
federated queries with a limited overhead in terms of execution
time.

KEYWORDS
Licenses, Federated Query, Privacy, Linked Data, RDF, Query Re-
laxation

1 INTRODUCTION AND MOTIVATION
A federated SPARQL query can retrieve information from several
RDF data sources distributed across the Linked Data. When two
or more licensed data sources participate in the evaluation of a
federated query, the query result must be protected by a license
that is compliant with each license of involved datasets.

To facilitate reuse, data owners should systematically associate
licenses with resources before sharing or publishing them[5, 19].
Licenses specify precisely the conditions of reuse of data, i.e., what
actions are permitted, obliged, and prohibited. The W3C Open Dig-
ital Rights Language (ODRL) [8] allows to define machine readable
licenses. The Data Licenses Clearance Center (DALICC) [14], pro-
poses a library of well-known standard licenses. We consider that a

license lj is compliant with a license li if a resource licensed under
li can be licensed under lj without violating li . If lj is compliant
with li , then li is compatible with lj . Unfortunately, it is not always
possible to find a license compliant with each license of datasets
involved in a federated query[12]. If such a license does not exist,
the query result cannot be licensed and, thus, should not be reused
nor published. We consider that a query whose result set cannot be
licensed should not be executed. Notice that having the rights to
query several datasets individually does not mean having the rights
to execute a federated query involving these datasets. Consider
datasets of LargeRDFBench[16], a benchmark for federated query
processing. Figure 1 shows the compatibility graph of Creative
Commons licenses1 that protect LargeRDFBench datasets. License
CC BY is compatible with itself, with CC BY-SA, CC BY-NC, and
CC BY-NC-SA. Thus, datasets protected by CC BY can be queried
along with other datasets protected by these licenses. But the whole
set of datasets of Figure 1 cannot be queried together because there
is no license compliant with the fourth licenses. For instance, there
is no license with which CC BY-SA and CC BY-NC-SA are both
compatible. Linked Data catalogs like Datahub2, show that the
problem of license compliance when combining datasets can be
frequent. For instance, Datahub shows 382 datasets with the license
CC BY-SA and 292 with license CC BY-NC. One solution to the

CC
BY

KEGG

ChEBI

Affymetrix

New York Times

Geonames

Linked MDB

SW Dog Food

CC
BY-NC-

SA
Jamendo

License

Dataset

Compatibility
Has license

CC
BY-SA

CC
BY-NC

Linked TCGA

Drug bank

DBpedia

Figure 1: The compatibility graph of licenses for datasets of
LargeRDFBench.

incompatibility of licenses is to negotiate with data providers to
change a conflicting license, e.g., to ask DBpedia to change their
license to CC BY or CC BY-NC. But negotiation takes time and is
not always possible. A second solution is to discard datasets that
1This compatibility graph conforms to the license compatibility chart shown in https:
//wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility.
2https://old.datahub.io

https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
https://old.datahub.io

BDA, October, 2020 Benjamin Moreau and Patricia Serrano-Alvarado

are protected by conflicting licenses. However, this solution can
lead to a query with an empty result set. To face this problem, we
use query relaxation techniques. That is, we use relaxation rules to
relax triple patterns to match triples of other datasets. Consider the
query Q of Listing 1 which asks for students enrolled in a course
held at the University of Nantes taught by ex:Jamy. D2 and D3
should not be queried together because their licenses. Thus, the
result set of the query cannot be licensed. Creating a sub-federation
without D2 makes the result set licensable with CC BY-NC or with
another license compliant with CC BY-NC (e.g., CC BY-NC-SA).
The problem is that the query gives no result because there is no
more dataset to evaluate tp4. The case is similar if D3 is discarded
because there is no more dataset to evaluate tp1 and tp2. As there is
no sub-federation able to produce a licensable and non-empty result
set for Q , we use query relaxation techniques. In such relaxation,
for instance, instead of asking for students in tp1, the query could
ask for persons, or instead of asking for courses taught by ex:Jamy
in tp4, the query could ask for courses taught by anybody.
SELECT ? s t ud en t WHERE {

? s t u d en t r d f : type ex : S tuden t . # tp1@ {D3 } CC BY−NC
? s t ud en t ex : e n r o l l e d I n ? cou r s e . # tp2@ {D3 } CC BY−NC
? cou r s e ex : he ldAt ex : Un i v e r s i t yO fNan t e s . # tp3@ {D1 } CC BY
ex : Jamy ex : t e a c h e s ? cou r s e . # tp4@ {D2 } CC BY−SA

}

Listing 1: A SPARQL query Q annotated with the capable
datasets for each triple pattern and dataset licenses.

The number of possible relaxed queries can be huge. To find the
most relevant relaxed queries efficiently, we use approaches that
compute relaxed queries from the most to the least similar to the
original query [2, 6, 7]. But the most similar queries may produce
no results. In a distributed environment, verifying each relaxed
query is not feasible. So the challenge is to find the most similar
relaxed queries that return a non-empty result while limiting com-
munication costs. Our research question is, given a SPARQL query
and a federation of licensed datasets, how to guarantee a relevant and
non-empty query result whose license is compliant with each license
of involved datasets? The challenge is to limit the communication
cost when the relaxation process is necessary. We propose FLiQue3,
a Federated License-aware Query processing strategy. FLiQue is
designed to detect and prevent license conflicts and gives informed
feedback with licenses able to protect a result set of a federated
query. If necessary, it applies distributed query relaxation to pro-
pose a set of most similar relaxed queries whose result set can be
licensed. Our contributions are:
• a license-aware query processing strategy,
• an implementation of a license-aware federated query en-
gine, and
• an experimental evaluation of our approach.

In the next, Section 2 discuses related works, Section 3 introduces
FLiQue, Section 4 shows experimental results, and Section 5 con-
cludes.

2 RELATEDWORK
To our knowledge, there is no federated query engine that ensures
license compliance with all licenses involved in query execution.

3In French, FLiQue is a homophone of flic, which means cop.

Many works focus on access control over linked data using policy-
based [1, 9, 10, 15], view-based [3], or query-rewriting [13] ap-
proaches. In these works, datasets are protected by access control
rules that prevent non-authorized users from querying data of each
dataset. These approaches do not resolve our problem statement be-
cause having the right to query datasets individually does not mean
that it should be possible to execute a federated query involving
these datasets.

Compatibility graph of licenses. To know if a result set can be
licensed, we need to know the license(s) with whom all licenses of
datasets involved in a federated query are compatible. A compati-
bility graph of licenses contains a set of licenses partially ordered
by compatibility. It can be defined by hand using, for instance,
the license compatibility chart of Creative Commons. But licenses
used in the Linked Data are not limited to Creative Commons li-
censes. Works like [20] address the problem of license compatibility
and license combination. If licenses are compatible, a new license
compliant with combined ones is generated. This approach allows
defining the compatibility graph of licenses progressively. However,
it does not allow us to know all the compliant licenses that can be
used to protect a result set. CaLi [11, 12], is a lattice-based model
for license orderings. It automatically positions a license over a
set of licenses in terms of compatibility and compliance. It uses
restrictiveness relations and constraints among licenses to define
compatibility. CaLi defines all the licenses that can be expressed
with a set of actions. For instance, the CaLi ordering for the set of
7 actions used by Creative Commons has 972 licenses. CaLi can
provide all the licenses than can protect a result set ordered by
restrictiveness. It can also identify which licenses are in conflict.
In this work, we use CaLi to verify license compliance. When the
result set of a federated query cannot be licensed, we propose to
define sub-federations that avoid license conflicts. If there is no
sub-federation able to produce a licensable and non-empty result
set for the user query, we propose alternative queries through query
relaxation.

Query relaxation. Query relaxation techniques are used to pro-
vide an alternative for queries producing no result. [7] proposes
query relaxation using RDFS entailment and RDFS ontologies. The
idea consists of relaxation rules that use information from the on-
tology; these include relaxing a class to its super-class, relaxing
a property to its super-property, etc. Other relaxations include
dropping triple patterns, replacing constants with variables, and
suppressing join dependencies. All possible relaxed queries are
organized in a lattice called relaxation graph. The size of the relax-
ation graph grows combinatorially with the number of relaxation
rules, the richness of the ontology, and the relaxation possibilities
of each triple pattern in the original query. [2, 6] focus on obtaining
a certain number of alternative results (top-k) by relaxing a query
that produces no results. Their challenge is to execute as less as
possible relaxed queries to obtain the top k results. Relaxed queries
are executed in a similarity-based ranking order to avoid executing
all relaxed queries in the relaxation graph. The information content
is used to measure the similarity between a relaxed query and the
original query. That is, statistical information about the concerned
dataset, like the number of entities per class and the number of
triples per property. But, the number of failing relaxed queries

Ensuring License Compliance in FederatedQuery Processing BDA, October, 2020

executed before obtaining the top-k results can be considerable.
Thus, it is necessary to identify unnecessary relaxations that do
not generate new answers. Relaxed queries containing unnecessary
relaxation should not be executed. [6] proposes OBFS (Optimized
Best First Search algorithm) to identify unnecessary relaxations in
a similarity-based relaxation graph. It is based on the selectivity of
relaxations using the number of entities per class or the number of
triples per property. If the selectivity is the same before and after
the relaxation, the relaxation is considered unnecessary. That is, if
the number of entities of a class is equal to the number of entities
of its super-class, then the class relaxation does not generate new
answers. The same idea is used for property relaxation. [2] proposes
OMBS (Optimized Minimal-failing-sub-queries-Based Search algo-
rithm) as an improvement to OBFS. The contribution of OMBS is
to identify the minimal sets of triple patterns in failing queries that
fail to return answers. These failing sets of triple patterns are called
Minimal Failing Sub-queries (MFS). MFS existing in a query must
be relaxed, otherwise, the query fails in producing results. Relaxed
queries where the MFS are not relaxed are considered unnecessary.
OMBS defines optimal similarity-based relaxation graphs where
relaxed queries producing no results (based on MFS), or not new
results (based on selectivity) are not executed. We use OMBS to find
relaxed queries with non-empty result sets. To limit the commu-
nication overhead, during the distributed query relaxation process,
we use data summaries.

Data summaries. Some federated query engines, use statistics to
reduce the number of requests sent to data sources during query
processing, in particular in the source selection and query opti-
mization steps. For instance, SPLENDID[4], uses VOID descrip-
tions of datasets to speed-up query processing. VOID descriptions
contain basic statistical information about datasets, such as the
number of entities per class and the number of triples per prop-
erty. HIBISCuS[17], a join-aware source selection algorithm, dis-
cards dataset that are relevant for a triple pattern, but that do not
contribute to a query result. It proposes data summaries, called
dataset capabilities, containing all the distinct properties with all
the URI authorities of their subjects and objects. CostFed[18], an
index-assisted federated engine for SPARQL endpoints, extends
the join-aware source selection of HIBISCuS by considering URI
prefixes instead of URI authorities. The dataset capabilities calcu-
lated by CostFed are more precise, its source selection chooses,
in general, more pertinently the data sources for each query. We
use the licenses of the data sources identified by a source selection
process to know if the result set of a federated query (or a relaxed
federated query) would be licensable. We use the join-aware source
selection of CostFed.

3 A FEDERATED LICENSE-AWARE QUERY
PROCESSING STRATEGY

We propose FLiQue, a federated license-aware query processing
strategy to detect and prevent license conflicts. Our approach gives
informed feedback with licenses that can protect a result set of a
federated query. When the result set of a federated query cannot
be licensed, we define sub-federations that avoid license conflicts.
If there is no sub-federation able to produce a licensable and non-
empty result set, we propose alternative relaxed federated queries.

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D3}
 ?student ex:enrolledIn ?course . #tp2@{D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ex:Jamy ex:teaches ?course . #tp4@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:attends ?course . #tp4’d@{D2,D3}
 }

Q’4b with Simple relaxation Result licensable
Sim=0.66 in F1 if D3 excluded

Q’4d with Simple and Property relaxations Result licensable
Sim=0,33 in F2 if D2 excluded

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ?y . #tp3b@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

Q’3b4b with Simple relaxations Result licensable
 Sim=0.44 in F1 if D3 excludedQ (original query) Result not licensable

Figure 2: Example of SPARQL query Q and some relaxed
queries Q’.

Figure 3: Ontology representing courses in a university.
⪯sc is rdfs:subClassOf, ⪯sp is rdfs:subPropertyOf, ←↩d is
rdfs:domain, and ↪→r is rdfs:range.

FLiQue is located between the query parsing and the query op-
timization functions of a federated query engine. A join-aware
source selection [18], selects the capable datasets for each triple
pattern of a query. Using a compatibility graph of licenses [12], we
search for licenses compliant with each license of the chosen capa-
ble datasets. Then, the query is executed and the result set returned
with the licenses that can protect it. If no compliant license exists,
we identify the license conflicts and define sub-federations that
avoid these conflicts. If one sub-federation can produce a licensable
and non-empty result, the query is executed. Otherwise, based on
the OMBS approach [2], we propose to the query issuer a set of
relaxed queries whose result sets are licensable and non-empty.
Several sub-federations may produce a licensable and non-empty
result. In that case, we choose the sub-federation that produces a
result set licensable by the least restrictive license.4 Consider the
queryQ of Listing 1, and the federation containing datasets D1, D2,
and D3 shown in Tables 1-3. As there is no license compliant with
the licenses of D2 and D3, the result set of Q cannot be licensed.
Thus, our strategy defines the sub-federations F1={D1, D2} and
F2={D1, D3} that avoid license conflicts. The source selection for Q
over F1 and F2 fails to obtain a data source for each triple pattern.
This launches a process of federated query relaxation for each sub-
federation. To avoid verifying that the result set of an important
number of relaxed queries is not empty, our strategy defines, by
sub-federation, an optimal similarity-based relaxation graph. When
we find one licensable and non-empty relaxed query, we stop the
relaxation process. OMBS guarantees that a candidate query is the
most similar to Q for a sub-federation. Figure 2 shows Q and three
relaxed queries. Figure 3 shows the ontology used in our example.
As we explain next, Q ′4b and Q ′4d are the most similar licensable,

4Other options could be defined, for example, based on the cardinality estimations of
result sets or based on the number of involved data sources.

BDA, October, 2020 Benjamin Moreau and Patricia Serrano-Alvarado

Subject Predicate Object
ex:UniversityOfNantes rdf:type ex:University
ex:SemanticWeb rdf:type ex:Course
ex:SemanticWeb ex:heldAt ex:UniversityOfNantes
ex:Databases rdf:type ex:Course
ex:Databases ex:heldAt ex:UniversityOfNantes

Table 1: Dataset D1 containing courses. D1 has licence CC
BY.

Subject Predicate Object
ex:Jamy rdf:type ex:Teacher
ex:Jamy rdf:type ex:Person
ex:Jamy ex:attends ex:SemanticWeb
ex:Jamy ex:teaches ex:SemanticWeb
ex:LaVoix rdf:type ex:Teacher
ex:LaVoix rdf:type ex:Person
ex:LaVoix ex:attends ex:Databases
ex:LaVoix ex:teaches ex:Databases
my:Tarzan rdf:type ex:Student
my:Tarzan rdf:type ex:Person
my:Tarzan ex:attends ex:Databases
my:Tarzan ex:enrolledIn ex:Databases

Table 2: Dataset D2 containing teachers and students. D2 has
licence CC BY-SA.

Subject Predicate Object
ex:Jeanne rdf:type ex:Student
ex:Jeanne rdf:type ex:Person
ex:Jeanne ex:attends ex:SemanticWeb
ex:Jeanne ex:enrolledIn ex:SemanticWeb

Table 3: Dataset D3 containing students. D3 has licence CC
BY-NC.

and non-empty relaxed query for F1 and F2 respectively. In the
next, Section 3.1 shows the relaxation techniques we use. Section
3.2 presents the information content measures that allow us to rank
relaxed queries. Section 3.3 shows the data summaries that allow
limiting communication costs. Finally, Section 3.4 explains how we
define the similarity-based relaxation graph.

3.1 Query relaxation techniques
In this work, we use query relaxation using RDFS entailment and
RDFS ontologies. We consider that ontologies of datasets are acces-
sible and that SPARQL endpoints expose saturated RDF data (or
support on-the-fly entailment) according to the RDFS entailment
rules rdfs7 and rdfs9. We use the relaxations of triple patterns and
queries as proposed in [6].

Triple Pattern Relaxation. Given two triple patterns tp and tp′,
tp′ is a relaxed triple pattern obtained from tp, denoted tp ≺ tp′, by
applying one or more triple pattern relaxations. We use the three
following triple pattern relaxations:

• Simple relaxation replaces a constant of a triple pattern by a
variable.

tp4
(ex:Jamy ex:teaches ?cours)

(ex:Jamy ex:attends ?cours)

(?x ex:attends ?cours)

(?x ?y ?cours)

(?x ex:teaches ?cours)

(ex:Jamy ?y ?cours)

tp4’a tp4’b

tp4’c tp4’d

tp4’e

Figure 4: Relaxation lattice of triple pattern tp4 of query Q .

• Type relaxation replaces a class C of a triple pattern with its
super-classC ′. It is based on the rdfs9 rule (rdfs:subClassOf).
• Property relaxation replaces a property P of a triple pat-
tern with its super-property P ′. It is based on the rdfs7 rule
(rdfs:subPropertyOf).

The set of all possible relaxed triple patterns of tp can be represented
as a lattice called a relaxation lattice of a triple pattern. Figure 4
shows this lattice for triple pattern tp4 of Q . tp4′b, tp4′c and tp4′e
show simple relaxations. tp4′a shows a property relaxation. This
lattice has three levels of relaxation.

Query Relaxation. Given two queries Q and Q ′, Q ′ is a relaxed
query obtained from Q , denoted Q ≺ Q ′, by applying one or more
triple pattern relaxations to triple patterns ofQ . ≺ is a partial order
over the set of all possible relaxed queries of Q . This order can be
represented as a lattice, called a relaxation lattice of a query (or
relaxation graph). Figure 2 shows the query Q and three relaxed
queries of its relaxation graph where, Q ≺ Q ′4b ≺ Q ′4d and Q ≺
Q ′4b ≺ Q ′3b4b.

3.2 Information content measures
Analyzing all relaxed queries is time-consuming and unnecessary.
We use information content measures to compute the similarity of
relaxed queries to the original query. To avoid the analysis of an
important number relaxed queries, our approach generates and
executes relaxed queries from the most to the least similar. This
execution allows to verify that the result set is not empty. It is
stopped when the first result is returned. We use the similarity
mesures proposed in [6], and explained in the following.

Similarity between terms. FLiQue uses three similarity measures
for terms in a triple pattern. They correspond to the three relax-
ations described in Section 3.1.
• Similarity between classes. is Sim(C,C ′) =

IC (C ′)
IC (C) where

IC (C) is the information content of C: −loдPr (C), where
Pr (C) =

|Instances (C) |
|Instances | is the probability of finding an in-

stance of class C in the RDF dataset.
• Similarity between properties. is Sim(P , P ′) =

IC (P ′)
IC (P) where

IC (P) is the information content of P : −loдPr (P), where
Pr (P) =

|T r iples (P) |
|T r iples | is the probability of finding a property

of P in triples of the RDF dataset.

Ensuring License Compliance in FederatedQuery Processing BDA, October, 2020

• Similarity between constants and variables is Sim(Tconst ,Tvar) =
0.

Similarity between triple patterns. Given two triple patterns tp
and tp′, such that tp ≺ tp′, the similarity of the triple pattern tp′

to the original triple pattern tp, denoted Sim(tp, tp′), is the sum of
the similarities between the terms of the triple patterns:

Sim(tp, tp′) =
1
3
.Sim(s, s ′) +

1
3
.Sim(p,p′) +

1
3
.Sim(o,o′)

where s , p, o, s ′, p′ and o′ are respectively the subject, predicate
and object of the triple pattern tp and the relaxed triple pattern tp′.
If tp′ and tp′′ are two relaxations obtained from tp and tp′ ≺ tp′′

then Sim(tp, tp′) ≥ Sim(tp, tp′′).

Similarity between queries. Given two queriesQ andQ ′, such that
Q ≺ Q ′, the similarity of the original queryQ ′ to the original query
Q , denoted Sim(Q,Q ′), is the product of the similarity between
triple patterns of the query:

Sim(Q,Q ′) =
n∏
i=1

wi .Sim(tpi , tp
′
i)

Where tpi is a triple pattern of Q , tp′i a triple pattern of Q ′ and
wi ∈ [0, 1] is the weight of triple patterns tpi . Weight can be spec-
ified by the user to take into account the importance of a triple
pattern tpi in query Q . Thus Sim(Q,Q ′) ∈ [0, 1] is a function that
defines a total order among relaxed queries. This similarity func-
tion is monotone, i.e., given two relaxed queriesQ ′(tp′1, ..., tp

′
n) and

Q ′′(tp′′1 , ..., tp
′′
n) of the user query Q , if Q ′ ≺ Q ′′ then Sim(Q,Q ′)

≥ Sim(Q,Q ′′). Considering the query Q and datasets D1 and D2,
Sim(Q,Q ′4b) = 0.66 is greater than Sim(Q,Q ′3b4b) = 0.44. This
verifies the ordering of these relaxed queries,Q ′4b ≺ Q ′3b4b, where
Q ′4b is analyzed first.

3.3 Data summaries
Using dataset statistics and dataset capabilities as in [18], allow us
to limit communication cost in the similarity calculation and the
source selection process.

Dataset statistics. contain VOID descriptions, such as the number
of entities per class and the number of triples per property. Having
dataset statistics is twofold; they allow computing similarities, and
they help in the source selection process. Tables 4 and 5 show
respectively statistics about properties and classes for F1 and F2.
In Table 4, the property ex:teaches has no triples in F2. So there is
no data source for tp4. That allows us to identify Q ′4b as a failing
query in F2.

Dataset capabilities. Capabilities contain the properties of a dataset
with the common prefixes of their subjects and objects. The rdf:type
property, is treated differently. The prefixes of its objects are re-
placed by all the classes used in the dataset. Dataset capabilities are
used in the source selection process. The goal is to discard datasets
that individually return results for a triple pattern, but that fail to
perform joins with other triple patterns of the query. For multiple
triple patterns of a query sharing a variable, the dataset capabilities
allow identifying data sources that do not share the same URIs
prefixes and thus whose joins yield empty results. This information

Number of triples
Property F1 = {D1, D2} F2 = {D1, D3}

ex:enrolledIn 1 1
ex:teaches 2 0
ex:heldAt 2 2
ex:attends 3 1
rdf:type 9 5
Total 17 9

Table 4: Statistics of properties in federations F1 and F2.

Number of entities
Class F1 = {D1, D2} F2 = {D1, D3}

ex:University 1 1
ex:Student 1 1
ex:Teacher 2 0
ex:Course 2 2
ex:Person 3 1
Total 6 4

Table 5: Statistics of classes in federations F1 and F2.

F1 = {D1, D2} F2 = {D1, D3}
Property subjPrefixes objPrefixes subjPrefixes objPrefixes

rdf:type ex:
my:Tarzan

ex:Person
ex:Student
ex:Teacher

ex:

ex:University
ex:Course
ex:Student
ex:Person

ex:heldAt ex: ex:UniversityOfNantes ex: ex:UniversityOfNantes

ex:attends ex:
my:Tarzan ex: ex:Jeanne ex:SemanticWeb

ex:teaches ex: ex:
ex:enrolledIn my:Tarzan ex:Database ex:Jeanne ex:SemanticWeb

Table 6: Capabilities of federations F1 and F2.

tp1 tp2 tp3 tp4
Q, sim=1

tp1 tp2 tp3 tp4’a
Q’4a, sim=0.66

tp1 tp2 tp3 tp4’b
Q’4b, sim=0.66

tp1 tp2 tp3 tp4’c
Q’4c, sim=0.66

tp1 tp2 tp3 tp4’e
Q’4e, sim=0.33

tp1 tp2 tp3 tp4’d
Q’4d, sim=0.33

Q’4a
Q’4b

Q’4b
Q’4c
Q’4d

Q’4c
Q’4d
Q’4e

Q’4d
Q’4e

Q’4a Q’4cQ’4b

(b) Similarity-ordered query queue(a) Relaxation sub-graph

(1) (2) (3) (4)

Figure 5: Relaxation sub-graph ofQ over F2with relaxations
of tp4.

allows performing an optimal source selection by limiting the com-
munication with the data sources. Table 6 shows the capabilities of
F1 and F2. Consider tp4′a of Q ′4a that asks for ex:Jamy ex:attends
?cours. Table 4 shows one triple for ex:attends but capabilities of
this property in F2 show only one subject prefix that is ex:Jeanne,
not ex:Jamy. Consider the join tp3 . tp4′c ofQ ′4c : {?course ex:heldAt
ex:UniversityOfNantes . ex:Jamy ?y ?cours}, Table 4 shows two triples
for ex:heldAt. Capabilities of ex:heldAt do not discard this join. But,
analyzing the subject and object capabilities of whatever property
(the property of tp4′c is a variable), we notice that when there exists
ex:SemanticWeb in the object, the subject contains ex:Jeanne, not
ex:Jamy, so the join dependency on ?cours cannot be satisfied. Thus,
thanks to the dataset capabilities of F2, we identify Q ′4a and Q ′4c
as failing queries.

BDA, October, 2020 Benjamin Moreau and Patricia Serrano-Alvarado

3.4 Algorithm for the similarity-based
relaxation graph

When the distributed query relaxation is necessary, we define an
optimal similarity-based relaxation graph by sub-federation. The
goal is to avoid verifying that the result set of an important num-
ber of relaxed queries is not empty. Relaxed queries are generated
and executed from the most to the least similar. When we find
one licensable and non-empty relaxed query that we call candidate
query, we stop the relaxation process. In the following, we ex-
plain how FLiQue finds the candidate query for the sub-federation
F2. First, the algorithm computes the MFS of the original query,
MFS(Q)={ex:Jamy ex:teaches ?course}. It contains only tp4 because
F2 does not contain a data source to evaluate tp4. Using the MFS,
the algorithm considers only relaxed queries that contain a relax-
ation of tp4. The relaxation algorithm uses a query queue ordered
by similarity. This query queue gives the analysis order of relaxed
queries. Figure 5 shows (a) a relaxation sub-graph where tp4 is
relaxed, and (b) the analysis process of relaxed queries with the
query queue (failing relaxed queries are in gray). Relaxed queries
of the first level, Q ′4a and Q ′4b, are generated and inserted in the
queue (1). The most similar relaxed query Q ′4a is analyzed. It is
identified as a failing query. It is not executed, but it is relaxed, so
Q ′4c , and Q ′4d are generated and inserted in the query queue (2).
Then, the first relaxed query in the queue, now Q ′4b, is analyzed.
It is also identified as a failing query so it is relaxed in Q ′4d , which
is already in the queue (3). Then, the first relaxed query in the
queue, now Q ′4c , is analyzed and identified as a failing query, so
it is relaxed into Q ′4e , which is inserted in the queue (4). Then,
the first relaxed query in the queue, now Q ′4d , is analyzed. It is
executed returning a non-empty result set. Thus, Q ′4d (in bold)
is the candidate query of query Q for the federation F2, and the
relaxation process stops. The MFS and the failing relaxed queries
of this example are identified thanks to data summaries without
making requests to data sources (cf. Section 3.3). In this example,
we found a candidate query only with the relaxation of tp4. But
the relaxation may continue until all triple patterns are composed
of variables. A threshold of similarity can be used to avoid such a
case. Figure 2 shows the candidate query Q ′4d , whose similarity
withQ is 0.33. This query asks for students attending a course held
at the University of Nantes. The candidate query for federation F1
is Q ′4b, whose similarity with Q is 0.66. Figure 2 shows Q ′4b, this
query asks for students enrolled in a course held at the University
of Nantes and taught by someone. CC BY-SA can protect relaxed
queries for F1. Relaxed queries for F2 can be protected by CC BY-
NC but also by CC BY-NC-SA because both licenses are compliant
with licenses of D1 and D3. Table 7 shows the feedback returned to
the query issuer so that she can choose which query to execute.

Sub-federation Query Similarity Compliant licenses
F1={D1, D2} Q’4b 0.66 CC BY-SA
F2={D1, D3} Q’4d 0.33 CC BY-NC, CC BY-NC-SA

Table 7: Feedback with candidate queries for the user query
Q .

Conflicting sources Conflicting licenses Queries
DBP, DB CC BY-SA, CC BY-NC S1, S10, C9
DBP, TCGA CC BY-SA, CC BY-NC L7
DBP, JA CC BY-SA, CC BY-NC-SA L6
DBP, DB, TCGA CC BY-SA, CC BY-NC C10
DBP, DB, TCGA, JA CC BY-SA, CC BY-NC, CC BY-NC-SA S6, S8, S9, C3, C5, C8, L1, L3, L5, L8

Table 8: The 16 queries of LargeRDFBench whose result set
cannot be licensed. DBP (DBpedia), DB (Drug bank), TCGA
(Linked TCGA), JA (Jamendo).

4 EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is to measure the overhead
produced by the implementation of our proposal. In particular, (a)
when the result set of the original query is licensable, and (b) when
the original query is relaxed.

4.1 Setup and implementation
FLiQue is implemented over CostFed, which relies on a join-aware
triple-wise source selection. Recent studies show that the source
selection of CostFed least overestimates the set of capable data
sources, with a small number of ASK requests [16, 18]. These per-
formances make CostFed a good choice for our license-aware query
processing strategy. The join ordering of CostFed is based on left-
deep join trees. It implements bind and symmetric hash joins. Our
test environment uses LargeRDFBench[16]. This benchmark con-
tains 32 queries that are executed over a federation of 11 data
sources. We identified the license of each dataset (cf. Figure 1). We
use a Creative Commons CaLi ordering [12] to verify compatibility
and compliance among licenses. Our experiment runs on a single
machine with a 160xIntel(R) Xeon(R) CPU E7-8870 v4 2.10GHz 1,5
Tb RAM. Each dataset of LargeRDFBench is saturated and made
available using a single-threaded Virtuoso endpoint in a docker
container with 4 Gb RAM. Between each query execution, caches
are reset.

4.2 Performance of FLiQue vs CostFed
To measure the overhead produced by FLiQue, we compare two dif-
ferent federated query engines: CostFed and CostFed+FLiQue (that
we call FLiQue to simplify). They correspond to the original imple-
mentation of CostFed5 and our extension of CostFed that includes
FLiQue6. CostFed executes a query without considering licenses
while FLiQue ensures license compliance of the result set. We ex-
ecuted all queries 5 times with each federated query engine. We
measured the time in milliseconds to return the first result of each
query. Using the capable data sources by query, and the compati-
bility graph of licenses, we identified 16 queries whose result set
cannot be licensed. Table 8 shows these queries, their conflicting
capable data sources and conflicting licenses. 10 need to be relaxed,
they are shown in bold. We recall that the DBpedia license (CC BY-
SA) is not compliant with the licenses of Jamendo (CC BY-NC-SA),
Linked TCGA and Drug bank (CC BY-NC). The average time to
check license conflicts is 296 milliseconds what is negligible.

Evaluation of queries that do not need relaxation. Figure 6 presents
the execution of 22 queries of LargeRDFBench. For 16 queries,

5https://github.com/dice-group/CostFed
6Our code repository is hidden for anonymity reasons.

https://github.com/dice-group/CostFed

Ensuring License Compliance in FederatedQuery Processing BDA, October, 2020

Figure 6: Average time to get the first result of the 22 queries
of LargeRDFBench that can produce a licensable result set
without relaxation.

{S2, S3, S4, S5, S7, S11, S12, S13, S14, C1, C2, C4, C6, C7, L2, L4},
FLiQue finds a license that can protect the result set when the
query is executed on the complete federation. For these queries, the
overhead of FLiQue is negligible and corresponds to the time to
check license conflicts among the capable datasets. This overhead
depends on the number of distinct licenses that protect the capable
datasets. For 6 queries, {S1, S6, S9, C3, L1, L3}, FLiQue does not find
a license that can protect the result set when the query is executed
over the complete federation. However, it finds a sub-federation
such that the original query returns a non-empty result set that
is licensable. In this case, the overhead of FLiQue corresponds to
the time to check license conflicts, to compute sub-federations, and
to execute the original query on these sub-federations until the
first result is returned. This overhead depends on the number of
tested sub-federations. The number of sub-federations depends on
the number of distinct conflicting licenses by query. In our test
environment, this number is always 2. For instance, conflicting
licenses CC BY-SA, CC BY-NC, and CC BY-NC-SA can be separated
into two non-conflicting sets {CC BY-SA} and {CC BY-NC, and
CC BY-NC-SA}. These sub-federations are ordered by the number
of datasets in the federation. In the benchmark, the average time
to generate the sub-federations and find a non-empty result set
is 11020 milliseconds. For these 6 queries, we remark that this
overhead is almost constant. That is because, a non-empty result
set is found when FLiQue executes the original query on the second
sub-federation.

Evaluation of queries that are relaxed. Figure 7 represents the
execution of 10 queries of LargeRDFBench that need relaxation to
return a non-empty result set that can be protected by a license.
For each query, we compare the time to get the first result of the
original query for CostFed, and the time to get the first result of
the first candidate query found by FLiQue. The FLiQue overhead
corresponds to the time to check license conflicts, to compute sub-
federations, and to find the first candidate query. We remark that
the execution time of an original query and a candidate query is
not comparable. They are not the same query, and they are not
executed on the same number of data sources. To have an idea
(non-representative) of the similarities, the maximum is 0, 811 (L5’),
the minimum is 0, 077 (C8’), the average is 0, 487, and the median is
0.603.7 Overhead varies a lot depending on the queries. It depends
on the number of generated and executed failing relaxed queries,

7Candidate queries and their similarities are included as supplemental material.

Figure 7: Average time to get the first result of the 10 queries
of LargeRDFBench that need relaxation to produce a licens-
able result set.

Figure 8: Number of generated and executed failing relaxed
queries until finding each candidate query.

before finding the first candidate query. Figure 8 shows the number
of failing relaxed queries, (1) generated, and (2) executed before
finding each candidate query. We recall that an important number
of generated relaxed queries are identified as failing thanks to data
summaries. The candidate query C5′, is found after generating 69
failing relaxed queries, but only 3 were executed. In contrast, can-
didate query L5′ is found after generating 3 failing relaxed queries
but executing only one. For 6 out of 10 relaxed queries, FLiQue does
not need to execute any generated relaxed query to identify them
as failing. With this benchmark, on average FLiQue generates 21.4
failing relaxed queries, and executes 1.75 failing relaxed queries.
Thus, we consider that FLiQue success in limiting communication
costs during the relaxation of queries whose result set cannot be
licensed. We use SPARQL 1.0. We think that with SPARQL 1.1 and
the SERVICE clause, the number of license conflicts detected by
FLiQue would be less.

5 CONCLUSION
In this work, we propose FLiQue, a federated license-aware query
processing strategy. It ensures that a license protects the result set of
any SPARQL query. To our knowledge, this is the first work that uses
query relaxation in a distributed environment. Our implementation
extends an existing federated query engine with our license-aware
query processing strategy. Our prototype demonstrates the usability
of our approach. Experimental evaluation shows that FLiQue en-
sures license compliance with a limited overhead in terms of ex-
ecution time. FLiQue is a step towards facilitating and encourag-
ing the publication and reuse of licensed resources in the Web of

BDA, October, 2020 Benjamin Moreau and Patricia Serrano-Alvarado

Data. FLiQue is not a data access control strategy. It empowers
well-intentioned data users in respecting the licenses of datasets
involved in a federated query.

REFERENCES
[1] Luca Costabello, Serena Villata, and Fabien Gandon. 2012. Context-Aware Access

Control for RDF Graph Stores. In European Conference on Artificial Intelligence
(ECAI).

[2] Géraud Fokou, Stéphane Jean, Allel Hadjali, and Mickaël Baron. 2016. RDF
Query Relaxation Strategies Based on Failure Causes. In Extended Semantic Web
Conference (ESWC).

[3] Alban Gabillon and Léo Letouzey. 2010. A View Based Access Control Model for
SPARQL. In International Conference on Network and System Security (NSS).

[4] Olaf Görlitz and Steffen Staab. 2011. SPLENDID: SPARQL Endpoint Federation
Exploiting VOID Descriptions. In Workshop Consuming Linked Data (COLD)
collocated with ISWC.

[5] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,
Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine
Zimmermann. 2020. Knowledge Graphs. CoRR abs/2003.02320 (2020).

[6] Hai Huang, Chengfei Liu, and Xiaofang Zhou. 2012. Approximating Query
Answering on RDF Databases. Journal of World Wide Web 15 (2012).

[7] Carlos A Hurtado, Alexandra Poulovassilis, and Peter T Wood. 2008. Query
Relaxation in RDF. Journal on Data Semantics X (2008).

[8] Renato Iannella and Serena Villata. 2018. ODRL Information Model 2.2. W3C
Recommendation (2018).

[9] Yasar Khan, Muhammad Saleem, Aftab Iqbal, Muntazir Mehdi, Aidan Hogan,
Axel-Cyrille Ngonga Ngomo, Stefan Decker, and Ratnesh Sahay. 2014. SAFE:
Policy Aware SPARQL Query Federation Over RDF Data Cubes. In Semantic Web
Applications and Tools for Life Sciences (SWAT4LS).

[10] Sabrina Kirrane, AhmedAbdelrahman, AlessandraMileo, and Stefan Decker. 2013.
Secure Manipulation of Linked Data. In International Semantic Web Conference
(ISWC).

[11] Benjamin Moreau, Patricia Serrano-Alvarado, Matthieu Perrin, and Emmanuel
Desmontils. 2019. A License-Based Search Engine. In Extended Semantic Web
Conference (ESWC), Demo.

[12] Benjamin Moreau, Patricia Serrano-Alvarado, Matthieu Perrin, and Emmanuel
Desmontils. 2019. Modelling the Compatibility of Licenses. In Extended Semantic
Web Conference (ESWC).

[13] Said Oulmakhzoune, Nora Cuppens-Boulahia, Frédéric Cuppens, Stephane
Morucci, Mahmoud Barhamgi, and Djamal Benslimane. 2014. Privacy Query
Rewriting Algorithm Instrumented by a Privacy-Aware Access Control Model.
Annals of Telecommunications 69 (2014).

[14] Tassilo Pellegrini, Giray Havur, Simon Steyskal, Oleksandra Panasiuk, Anna
Fensel, Victor Mireles, Thomas Thurner, Axel Polleres, Sabrina Kirrane, and
Andrea Schönhofer. 2019. DALICC: A License Management Framework for
Digital Assets. Proceedings of the Internationales Rechtsinformatik Symposion
(IRIS) 10 (2019).

[15] Pavan Reddivari, Tim Finin, Anupam Joshi, et al. 2007. Policy-Based Access
Control for an RDF Store. InWorkshop Semantic Web for Collaborative Knowledge
Acquisition (SWeCKa) collocated with IJCAI.

[16] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. 2018. Larg-
eRDFBench: a Billion Triples Benchmark for Sparql Endpoint Federation. Journal
of Semantic Web 48 (2018).

[17] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HIBISCuS:
Hypergraph-Based Source Selection For SPARQL Endpoint Federation. In Ex-
tended Semantic Web Conference (ESWC).

[18] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. 2018. CostFed: Cost-Based Query Optimization for
SPARQL Endpoint Federation. In International Conference on Semantic Systems
(SEMANTICS).

[19] Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee. 2009. Policy-Aware
Content Reuse on the Web. In International Semantic Web Conference (ISWC).

[20] Serena Villata and Fabien Gandon. 2012. Licenses Compatibility and Composition
in the Web of Data. In Workshop Consuming Linked Data (COLD) collocated with
ISWC.

	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 A Federated License-Aware Query Processing Strategy
	3.1 Query relaxation techniques
	3.2 Information content measures
	3.3 Data summaries
	3.4 Algorithm for the similarity-based relaxation graph

	4 Experimental evaluation
	4.1 Setup and implementation
	4.2 Performance of FLiQue vs CostFed

	5 Conclusion
	References

