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ON THE EXCURSION AREA OF PERTURBED GAUSSIAN FIELDS

Elena Di Bernardino1,*, Anne Estrade2 and Maurizia Rossi3

Abstract. We investigate Lipschitz-Killing curvatures for excursion sets of random fields on R2 under
a very specific perturbation, namely a small spatial-invariant random perturbation with zero mean. An
expansion formula for mean curvatures is derived when the magnitude of the perturbation vanishes,
which recovers the Gaussian Kinematic Formula at the limit by contiguity of the model. We develop an
asymptotic study of the perturbed excursion area behaviour that leads to a quantitative non-Gaussian
limit theorem, in Wasserstein distance, for fixed small perturbations and growing domain. When letting
both the perturbation vanish and the domain grow, a standard Central Limit Theorem follows. Taking
advantage of these results, we propose an estimator for the perturbation variance which turns out to
be asymptotically normal and unbiased, allowing to make inference through sparse information on the
field.
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1. Introduction

A wide range of phenomena can be seen as single realizations of a random field, for instance the Cosmic
Microwave Background radiation (CMB) (see [24]), medical images of brain activity (see [34]) and of mammary
tissue (see [11]), and many others. Their features can be investigated through geometrical functionals, among
them the well-known class of Lipschitz-Killing (LK) curvatures of excursion sets (see e.g. [31, 33] for a precise
definition and [16] for some applications in cosmology). From a theoretical point of view, probabilistic and
statistical properties of the latter have been widely studied in the last decades. For instance, in the two-
dimensional Euclidean setting, in [5, 7, 12], the length of the level sets (i.e., the perimeter of the excursion sets)
is taken into account, in [15] the Euler-Poincaré characteristic, while several limit theorems are obtained for the
excursion area in [10, 32]. See [22, 27] for higher dimensions. In this manuscript we focus on the two-dimensional
setting, i.e., random fields defined on R2 endowed with the standard Euclidean metric.

In many cases, the LK curvatures are studied for Gaussian excursion sets via the Gaussian Kinematic Formula
(see, e.g., [1, 8]). In this framework, a natural question is the following: how do these geometric quantities change
under small perturbations of the underlying field? The present work gives an answer in the very specific case
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of an independent, additive, spatial-invariant noise with zero mean perturbing a stationary isotropic Gaussian
field. Indeed, this model naturally arises when taking into account measurement errors that globally affect all
the observations in physical experiments. As briefly anticipated above, LK curvatures have been very extensively
exploited in the recent cosmological literature as a tool to probe non-Gaussanity and anisotropies in the CMB
(see e.g., [13, 16]). Our setting could be viewed as the representation of a Gaussian field contaminated by super-
imposed point sources (i.e., galaxies and other astrophysical objects), and in this sense it could be used for point
source detection or map validation in the framework of CMB data analysis. We remark that the perturbation
of a Gaussian field obtained by adding either an independent Gaussian field or a function of the field itself can
be fully treated through Gaussian techniques (see [6]). Some computations of expected values of LK curvatures
of excursion sets in the latter setting have been given in the physical literature by e.g. [18, 26] in order to derive
a promising method to constrain the primordial non-Gaussianity of the universe by temperature fluctuations in
the CMB.

However, our aim is not to develop the theory of LK curvatures for excursion sets of general non-Gaussian
fields (see for instance [3, 7, 23]) but to go beyond Gaussianity by introducing a small perturbation of the
underlying Gaussian field. This perturbation clearly appears in the LK curvatures of excursion sets, allowing
us to measure the discrepancy between the original and perturbed fields. Moreover, we are able to recover the
classical Gaussian case by contiguity, i.e., when the perturbation vanishes.

Our model can be also seen as a random affine transformation of the initial excursion level. A deterministic
and more challenging counterpart has been recently studied in [4] where a different geometrical functional is
considered, namely, the number of connected components of excursion sets.

At last, considering excursion sets instead of the whole field is a sparse information that is commonly used
by practitioners (see, for instance, Chap. 5 in [2]). Furthermore, it is equivalent to consider thresholded fields,
which is a standard model in physics literature (see, e.g., [9, 29, 30]).

1.1. Main contributions

In this paper, we provide an expansion formula for the perturbed LK curvatures (see Prop. 2.5) where the
contiguity property clearly appears for a vanishing perturbation. Visually, the perturbation is not evident by
looking at the image of excursion sets (see Fig. 1) but its impact can be detected by a statistical and numerical
analysis through the evaluation of their LK curvatures (see Fig. 3). Moreover, an asymptotically normal and
unbiased estimator for the variance of the perturbation magnitude is proposed in Proposition 4.1. In order
to get the Gaussian limiting behaviour of the latter estimator, we develop an asymptotic study of the second
LK curvature, i.e. the area, of the perturbed excursion sets. We analyze both the case when the perturbation
vanishes and the domain of observation grows to R2 (see Thm. 3.5) and the case of a fixed small perturbation
and growing domain (see Thm. 3.2). The former is a standard CLT result, the latter is a quantitative limit
theorem towards a non-Gaussian distribution, giving an upper bound for the convergence rate in Wasserstein
distance. We deeply study the unusual non-Gaussian limiting law (see Thm. 3.3 and Figs. 4, 5 and 6).

An auxiliary result which is of some interest for its own is collected in Lemma A.1 where uniform rates (w.r.t.
the level) of convergence for sojourn times of general Gaussian fields are proved. An argument similar to the
one in the proof of Lemma A.1 allows to obtain uniform rates of convergence also for sojourn times of random
hyperspherical harmonics, at the cost of getting worse rates than those found in [25].

1.2. Outline of the paper

Section 2 is devoted to the study of mean LK curvatures of our perturbed model. In particular, in Section 2.1
we introduce our setting and recall the notion of LK curvatures for excursion sets; in Section 2.2 we give unbiased
estimators of the LK densities; in Section 2.3 we derive the asymptotic expansion for the mean curvatures as
the perturbation vanishes (Prop. 2.5) providing some numerical evidence in Section 2.4 (see Figs. 2 and 3). In
Section 3.1 we state and prove the quantitative limit theorem, in Wasserstein distance, for the excursion area of
the perturbed model for fixed small perturbations and growing domain (Thm. 3.2). Theorem 3.3 characterizes
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the unusual non-Gaussian limiting distribution whose numerical investigation leads to Figures 5 and 6. In
Section 3.2 we state and prove the standard CLT for the excursion area for growing domain and disappearing
perturbation (Thm. 3.5).

Taking advantage of the asymptotic studies for LK curvatures in Sections 2 and 3.1, in Proposition 4.1 we
prove that the proposed estimator for the perturbation variance is unbiased and asymptotically normal. Its
performance can be appreciated in Figure 7.

Finally, Appendix A collects the auxiliary result on uniform rates of convergence for sojourn times of Gaussian
fields.

2. LK curvatures for the considered perturbed Gaussian model

2.1. Definitions and preliminary notions

In the present paper we consider the three additive functionals, called in the literature intrinsic volumes,
Minkowski functionals or Lipschitz-Killing curvatures, Lj for j = 0, 1, 2, defined on subsets of Borelians in R2.
Roughly speaking, for A a Borelian set in R2, L0(A) stands for the Euler characteristic of A, L1(A) for the half
perimeter of its boundary and L2(A) is equal to its area, i.e., the two-dimensional Lebesgue measure. Taking
inspiration from the unidimensional framework, the L2 functional is also called sojourn time, although no time
is involved in this context.

Notations. All over the paper, ‖ · ‖ denotes the Euclidean norm in R2 and I2 the 2× 2 identity matrix.

We will also denote by | · | the two-dimensional Lebesgue measure of any Borelian set in R2 and by | · |1
its one-dimensional Hausdorff measure. In particular, when T is a bounded rectangle in R2 with non empty
interior,

L0(T ) = 1, L1(T ) =
1

2
|∂T |1, L2(T ) = |T |,

where ∂T stands for the boundary of T .

Let T be a bounded closed rectangle in R2 with 0 ∈
◦
T . In the following notation T ↗ R2 stands for the limit

along any sequence of bounded rectangles that grows to R2. For that, set N > 0 and define

T (N) :=
{
Nt : t ∈ T

}
the image of a fixed rectangle T by the dilatation t 7→ Nt; then letting T ↗ R2 is equivalent to N →∞, as soon

as 0 ∈
◦
T . Remark that T (N) is a Van Hove (VH)-growing sequence (see Def. 6 in [10]), i.e., |∂T (N)|1/|T (N)| → 0

as N →∞. In the sequel, we sometimes drop the dependency in N of the rectangle T (N) to soften notation.

We now define the main notions that we will deal with.

Definition 2.1 (Considered Gaussian field). Let g be a Gaussian random field defined on R2 with C3 trajectories.
We assume that g is

– stationary, isotropic with E[g(0)] = 0, Var g(0) = σ2
g and covariance matrix of ∇g(0) equals to λI2 for

some λ > 0, σg > 0,
– such that its covariance function r(t) = Cov(g(0), g(t)) satisfies

|r(t)| = O(‖t‖−α), for some α > 2 as ‖t‖ → ∞. (2.1)

We will consider perturbations of the above Gaussian field prescribed by the following.

Definition 2.2 (Perturbed Gaussian field). Let X be a random variable such that E[|X|3] < +∞. Let g be a
Gaussian random field as in Definition 2.1, with X independent of g. We consider the following perturbed field
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f(t) = g(t) + εX, t ∈ R2 , with ε > 0.

Let u ∈ R and T a bounded rectangle in R2. For h any real-valued stationary random field, we consider the
excursion set within T above level u:

{t ∈ T : h(t) ≥ u} = T ∩ Eh(u), where Eh(u) := h−1([u,+∞)).

We now introduce the Lipschitz-Killing curvatures for the excursion set Eh(u), u ∈ R (see [1, 7, 8] for more
details).

Definition 2.3 (LK curvatures of Eh(u)). Let h be a real-valued stationary field that is almost surely of class
C2. Define the following Lipschitz-Killing curvatures for the excursion set T ∩Eh(u), u ∈ R, T bounded rectangle
in R2,

L2(h, u, T ) : = |T ∩ Eh(u)|

L1(h, u, T ) : =
|∂(T ∩ Eh(u))|1

2
,

L0(h, u, T ) : = ] connected components in T ∩ Eh(u)− ] holes in T ∩ Eh(u).

Furthermore, the normalized LK curvatures are given by

C
/T
i (h, u) :=

Li(h, u, T )

|T |
, for i = 0, 1, 2,

and the associated LK densities, if they exist, are

C∗i (h, u) := lim
T↗R2

E[C
/T
i (h, u)], for i = 0, 1, 2.

The existence of the above limits for h a Gaussian field as in Definition 2.1 is given in Proposition 2.3 in [8].
Figure 1 displays a realization of a Gaussian random field (first row) and of the associated perturbed one

(second row) and two excursion sets for these fields for u = 0 (center) and u = 1 (right). We chose here a
Student distributed centered random variable X with ν = 5 degrees of freedom, i.e., X ∼ t(ν = 5), and g a

Bergmann-Fock Gaussian field prescribed by its covariance function r(s) = σ2
g e−κ

2‖s‖2 . In Figure 1 one can
appreciate a visual similarity between these images and in particular in terms of their excursion sets. Then it
could be difficult to evaluate the perturbation behind the considered Gaussian model by looking exclusively at
Figure 1.

This motivates the necessity of a statistical and numerical processing in order to measure the impact of the
perturbation. The goal of the next sections will be to study the LK curvatures of the perturbed field in order to
both quantify the discrepancy between these black-and-white images and evaluate the robustness with respect
to a small perturbation of the considered geometrical characteristics of the excursion sets.

2.2. Mean LK curvatures of excursion sets of perturbed Gaussian model

Let g be as in Definition 2.1. The Gaussian kinematic formula provides the mean LK curvatures of excursion
sets of g within a rectangle T (see, e.g., [1], Thm. 13.2.1 or [2], Thm. 4.3.1), for u ∈ R,

E[C
/T
2 (g, u)] = Ψ

(
u

σg

)
; (2.2)

E[C
/T
1 (g, u)] = Ψ

(
u

σg

)
|∂T |1
2|T |

−
√

2πλ

4σg
Ψ′
(
u

σg

)
; (2.3)
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Figure 1. Gaussian random field and its perturbed counter-part as in Definitions 2.1 and 2.2

with covariance r(s) = σ2
g e−κ

2‖s‖2 , for σg = 2, κ = 100/210 in a domain of size 210× 210 pixels,
with ε = 1 and X ∼ t(ν = 5). First row : A realization of Gaussian random field g (left) and the
two associated excursion sets for u = 0 (center) and u = 1 (right). Second row : The associated
realization of a perturbed Gaussian random field f (left) and two excursion sets for u = 0
(center) and u = 1 (right).

E[C
/T
0 (g, u)] = Ψ

(
u

σg

)
1

|T |
−
√

λ

2π σ2
g

Ψ′
(
u

σg

)
|∂T |1
2|T |

+
λ

2π σ2
g

Ψ′′
(
u

σg

)
, (2.4)

where λ is the second spectral moment of g and Ψ(x) := 1√
2π

∫ +∞
x

e−t
2/2 dt the Gaussian tail distribution with

zero mean and unit variance. Then the LK densities of the considered Gaussian field exist and are given by

C∗2 (g, u) = Ψ

(
u

σg

)
, C∗1 (g, u) = −

√
2πλ

4σg
Ψ′
(
u

σg

)
, C∗0 (g, u) =

λ

2π σ2
g

Ψ′′
(
u

σg

)
. (2.5)

We now focus on the modified field f . In the next result, we state the existence of the LK densities for the
considered perturbed Gaussian field.
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Proposition 2.4. Let u ∈ R, T a bounded rectangle in R2 and f as in Definition 2.2. Then the LK densities
C∗i (f, u), i ∈ {0, 1, 2} exist and it holds that

E[C
/T
2 (f, u)] = C∗2 (f, u),

E[C
/T
1 (f, u)] = C∗1 (f, u) +

1

2
C∗2 (f, u)

|∂T |1
|T |

,

E[C
/T
0 (f, u)] = C∗0 (f, u) +

1

π
C∗1 (f, u)

|∂T |1
|T |

+ C∗2 (f, u)
1

|T |
.

Proof of Proposition 2.4. Notice that for i ∈ {0, 1, 2}, Li(f, u, T ) = Li(g, u− εX, T ) and hence,

E[C
/T
i (f, u)] = E[E[C

/T
i (g, u− εX)|X]]. (2.6)

Let us start with the area. Using the Gaussian kinematic formula (2.2) and the associated density C∗2 (g, u)
in (2.5), one yields

E[C
/T
2 (f, u)] = E[E[C

/T
2 (g, u− εX)|X]] = E[Ψ((u− εX)/σg)].

Letting T ↗ R2, it proves that C∗2 (f, u) exists and equals E[Ψ((u−εX)/σg)]. Moreover, for any fixed rectangle T ,

E[C
/T
2 (f, u)] = C∗2 (f, u).

Concerning the perimeter, using the Gaussian kinematic formula (2.3) and the associated density C∗1 (g, u)
in (2.5), one yields

E[C
/T
1 (f, u)] = E[E[C

/T
1 (g, u− εX)|X]]

= −
√

2πλ

4σg
E[Ψ′((u− εX)/σg)] + E[Ψ((u− εX)/σg)]

|∂T |1
2|T |

.

Letting T ↗ R2, it proves that C∗1 (f, u) exists and equals −
√
2πλ

4σg
E[Ψ′((u− εX)/σg)]. Moreover, for any fixed

rectangle T ,

E[C
/T
1 (f, u)] = C∗1 (f, u) +

1

2
C∗2 (f, u)

|∂T |1
|T |

,

as announced in the proposition.
A similar procedure with Formula (2.4) and associated density C∗0 (g, u) in (2.5) yields the desired formula

for E[C
/T
0 (f, u)] in the proposition.

Notice that Proposition 2.4 proves that f in Definition 2.2 is a “standard random field” in the sense of
Definition 2.1 in [8]. For this reason, the same unbiased estimates can be applied also in this setting.

Actually, as products of (2.2)–(2.3)–(2.4)–(2.5) and Proposition 2.4 respectively, one can build the following
unbiased estimators of C∗i (h, u), i = 0, 1, 2 for h equal g or f .

Ĉ0,T (h, u) = C
/T
0 (h, u)− |∂T |1

π|T |
C
/T
1 (h, u) +

(
1

2π

(
|∂T |1
|T |

)2

− 1

|T |

)
C
/T
2 (h, u), (2.7)

Ĉ1,T (h, u) = C
/T
1 (h, u)− |∂T |1

2|T |
C
/T
2 (h, u), (2.8)

Ĉ2,T (h, u) = C
/T
2 (h, u). (2.9)
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In the forthcoming section, we will provide a numerical illustration of the performance of the unbiased
estimators Ĉi,T (h, u) above, for both h = g and h = f .

2.3. Asymptotics of the mean LK curvatures for small perturbations

As we consider our perturbation as an additive spatial-invariant noise, from now on we will assume that
E[X] = 0. In this particular setting, we now provide Taylor expansions of the LK curvatures for the perturbed
Gaussian model for small ε.

Proposition 2.5 (LK curvatures for the perturbed Gaussian model). Let f(t) = g(t) + εX, t ∈ R2 as in
Definition 2.2 and E[X] = 0. Then, for small ε, it holds that

E[C
/T
0 (f, u)] = C∗0 (g, u)

(
1 +

ε2E[X2]

2σ2
g

(
H2

(
u

σg

)
− 2

))
(2.10)

+
1

π
C∗1 (g, u)

(
1 +

ε2 E[X2]

2σ2
g

H2

(
u

σg

))
|∂T |1
|T |

+
(
C∗2 (g, u) + ε2 E[X2]

π

λ
C∗0 (g, u)

) 1

|T |
+O

(
ε3
(

1 +
|∂T |1
2|T |

+
1

|T |

))
,

E[C
/T
1 (f, u)] = C∗1 (g, u) + C∗2 (g, u)

|∂T |1
2|T |

(2.11)

+ ε2 E[X2]

(
C∗1 (g, u)

2σ2
g

H2

(
u

σg

)
+ C∗0 (g, u)

π

λ

|∂T |1
2|T |

)
+O

(
ε3
(

1 +
|∂T |1
2|T |

))
,

E[C
/T
2 (f, u)] = C∗2 (g, u) + ε2 E[X2]

π

λ
C∗0 (g, u) +O(ε3), (2.12)

where H2(y) = y2 − 1, for y ∈ R (i.e., the second Hermite polynomial) and the constants involved in the
O-notation only depend on g and X.

Proof of Proposition 2.5. Let a := λ
σ2
g
. In the following we will use that Ψ′(x) = − 1√

2π
e−x

2/2, Ψ′′(x) =

x 1√
2π

e−x
2/2, Ψ′′′(x) = Ψ′(x)H2(x) and Ψ′′′′(x) = Ψ′′(x)H2(x)+2xΨ′(x) = Ψ′′(x)(H2(x)−2). From (2.6), Taylor

developing the Gaussian tail distribution Ψ and bearing in mind that X is a centered random variable we have

E[C
/T
2 (f, u)] = E[E[C

/T
2 (g, u− εX)|X]] = E[Ψ((u− εX)/σg)]

= Ψ(u/σg) +
ε2

σ2
g

Ψ′′(u/σg)

2
E[X2] +O

(
ε3

σ3
g

E[|X|3]

)
, (2.13)

where the constant involved in the O-notation is universal, in particular it does not depend on u since the third
derivative of Ψ is bounded. One can rewrite (2.13), by using the kinematic formula for LK densities C∗i (g, u) of
the Gaussian field g in (2.5). Hence the result in (2.12). Analogously,

E[C
/T
1 (f, u)] = E[E[C

/T
1 (g, u− εX)|X]]

= −
√
a

4

√
2π E[Ψ′((u− εX)/σg)] + E[Ψ((u− εX)/σg)]

|∂T |1
2|T |

= −
√
a

4

√
2π

(
Ψ′(u/σg) +

ε2

σ2
g

Ψ′′′(u/σg)

2
E[X2] +O(ε3)

)
+

(
C∗2 (g, u) + ε2C∗0 (g, u)

π E[X2]

λ
+O(ε3)

)
|∂T |1
2|T |

.
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Then by using the Gaussian LK densities C∗i (g, u) in (2.5), we get equation (2.11). Finally,

E[C
/T
0 (f, u)] = E[E[C

/T
0 (g, u− εX)|X]]

=
a

2π
E[Ψ′′((u− εX)/σg)]−

√
a

2π
E[Ψ′((u− εX)/σg)]

|∂T |1
2|T |

+ E[Ψ(u− εX)/σg)]
1

|T |

=
a

2π

(
Ψ′′(u/σg) +

Ψ′′′′(u/σg)

2

ε2

σ2
g

E[X2] +O(ε3)

)
−
√

a

2π

(
Ψ′(u/σg) +

ε2

σ2
g

Ψ′′′(u/σg)

2
E[X2] +O(ε3)

)
|∂T |1
2|T |

+

(
Ψ(u/σg) +

ε2

σ2
g

Ψ′′(u/σg)

2
E[X2] +O(ε3)

)
1

|T |
.

As before, by using (2.5), we get

E[C
/T
0 (f, u)] =C∗0 (g, u)

(
1 + ε2(H2

(
u

σg

)
− 2)

E[X2]

2σ2
g

)
+

1

π
C∗1 (g, u)

(
1 + ε2

E[X2]

2σ2
g

H2

(
u

σg

))
|∂T |1
|T |

+
(
C∗2 (g, u) + ε2E[X2]

π

λ
C∗0 (g, u)

) 1

|T |
+O

(
ε3
(

1 +
|∂T |1
2|T |

+
1

|T |

))
.

In the next result, we give close formulae for the LK densities for the considered perturbed Gaussian field.

Corollary 2.6 (LK densities for the considered perturbed Gaussian model). Under assumptions of Proposi-
tion 2.5 and using the same notations, it holds that

C∗0 (f, u) = C∗0 (g, u)

(
1 +

ε2E[X2]

2σ2
g

(
H2

(
u

σg

)
− 2

))
+O(ε3),

C∗1 (f, u) = C∗1 (g, u)

(
1 +

ε2 E[X2]

2σ2
g

H2

(
u

σg

))
+O(ε3),

C∗2 (f, u) = C∗2 (g, u) + ε2 E[X2]
π

λ
C∗0 (g, u) +O(ε3).

The proof of Corollary 2.6 is based on the property of the VH-growing sequence of rectangles T on R2.

2.4. Numerical illustrations

An illustration for the finite sample performance of the proposed three unbiased estimators Ĉ0,T (g, u),

Ĉ1,T (g, u) and Ĉ2,T (g, u) obtained by adapting equations (2.7)–(2.9) to g, is given in Figure 2. In this case, g has
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Figure 2. Gaussian random field as in Definition 2.1 with covariance r(s) = σ2
ge
−κ2‖s‖2 , for

σg = 2, κ = 100/210 in a domain of size 210 × 210 pixels. Theoretical u 7→ C∗0 (g, u) (left panel),
C∗1 (g, u) (center panel) and C∗2 (g, u) (right panel) in (2.5) are drawn in black lines. We display

with red stars the averaged values on M = 100 sample simulations of Ĉ0,T (g, u) (left panel),

Ĉ1,T (g, u) (center panel) Ĉ2,T (g, u) (right panel), obtained by adapting to g estimators in (2.7)–

(2.9), as a function of the level u. We also present u 7→ C
/T
0 (g, u) and C

/T
1 (g, u) in green dashed

lines (left and center panels). These samples have been obtained with Matlab using circulant
embedding matrix.

a covariance function r(s) = σ2
ge
−κ2‖s‖2 . Analogously, a good statistical performance of Ĉ0,T (f, u), Ĉ1,T (f, u)

and Ĉ2,T (f, u) can be observed in Figure 3. Here, we observe small empirical intervals (in red vertical lines)
showing an accurate precision in the estimations.

The quantities C
/T
0 , C

/T
1 and C

/T
2 in (2.7)–(2.9) are computed with the Matlab functions bweuler, bwperim

and bwarea, respectively. When it is required to specify the connectivity, we average between the 4 and 8
connectivity. Since C∗1 is defined as the average half perimeter, we divide by 2 the output derived from bwperim.

The good quality of the estimates Ĉi,T (red stars) for i = 0, 1, 2 of LK densities C∗i (plain black lines) is

globally evident in all panels of Figures 2 and 3 in particular if we compare with biased C
/T
i (green dashed

lines). The impact of this bias correction is clearly appreciable for small levels u in center panels of Figures 2
and 3.

However, for values of u near zero Ĉ1,T overestimates C∗1 in the three center panels of Figures 2 and 3.
This problem, independent to the statistical procedure, is generated by a well known numerical phenomenon in
the Matlab function bwperim, due to the discretized representation from a pixelated image of the continuous
boundary of the excursion set (see, e.g., the discussion in [8]).

The functions u 7→ C∗i (g, u), for i = 0, 1, 2 in blue dashed lines in Figure 3 could be used as reference values to
visually appreciate the discrepancy between the considered geometrical characteristics of the excursion sets of
the Gaussian model and the perturbed one (black plain lines for C∗i (f, u), red stars for Ĉi,T (f, u), for i = 0, 1, 2).

Conversely to Figure 1 where the quantification of the perturbation was hard to get, by providing this
statistical and numerical analysis based on the LK curvatures, we are now able to precisely measure the impact
of the perturbation. Furthermore, the contiguity of the Gaussian model g with respect to the perturbed one
f can be observed in their LK curvatures when the magnitude of the perturbation decreases, i.e., ε → 0 (see
Fig. 3: first row with ε = 0.4, second row with ε = 1).
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Figure 3. Perturbed Gaussian random field as in Definition 2.2 with covariance r(s) =

σ2
ge
−κ2‖s‖2 , for σg = 2, κ = 100/210 in a domain of size 210 × 210 pixels, with X ∼ t(ν = 5)

and ε = 0.4 (first row); ε = 1 (second row). Theoretical u 7→ C∗0 (f, u) (left panel), C∗1 (f, u)
(centered panel) and C∗2 (f, u) (right panel) in Corollary 2.6 are drawn in black plain lines and

relative u 7→ C∗0 (g, u), C∗1 (g, u) and C∗2 (g, u) in blue dashed lines. We present u 7→ C
/T
0 (f, u)

and C
/T
1 (f, u) in green dotted lines (left and center panels). We also display the averaged values

on M = 100 sample simulations of Ĉ0,T (f, u) (left panel), Ĉ1,T (f, u) (centered panel) Ĉ2,T (f, u)
(right panel) in (2.7)–(2.9), as a function of the level u by using red stars. The empirical inter-

vals associated to the estimation of Ĉi,T (f, u), for i = 0, 1, 2 are given by using red vertical
lines. These samples have been obtained with Matlab using circulant embedding matrix.

3. Asymptotics for the excursion area of perturbed
Gaussian fields

Recall that C
/T
2 (f, u) = C

/T
2 (g, u − εX) and that E[C

/T
2 (g, u)] = C∗2 (g, u) = Ψ(u/σg). We are interested in

the asymptotic distribution as T ↗ R2 of

Y εT (u) := |T |1/2
(
C
/T
2 (f, u)− E[C

/T
2 (f, u)]

)
. (3.1)
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Considering the unperturbed case, by Theorem 3 in [10] for instance, we know that for a Gaussian field g as
in Definition 2.1 and for any u ∈ R, the following convergence in distribution holds,

|T |1/2
(
C
/T
2 (g, u)− C∗2 (g, u)

)
d−→

T↗R2
N (0, v(u)), (3.2)

with

v(u) =
1

2π

∫
R2

∫ ρ(t)

0

1√
1− x2

exp

{
− u2

σ2
g(1 + x)

}
dxdt (3.3)

and ρ(t) := corr(g(0), g(t)) = r(t)/σ2
g . The interested reader is also referred to [22, 27].

Actually, we are able to state a more powerful result. It is given in the next lemma where the convergence
in (3.2) is proved to be uniform with respect to level u. In order to formulate our result, let us introduce the
Wasserstein distance between random variables Z1 and Z2:

dW (Z1, Z2) = sup
h∈H
|E[h(Z1)]− E[h(Z2)]|,

where H denotes the set of Lipschitz functions whose Lipschitz constant is ≤ 1.

Lemma 3.1. Let g be a Gaussian field as in Definition 2.1. Then,

dW

(
|T |1/2

(
C
/T
2 (g, u)− C∗2 (g, u)

)
,N (0, v(u))

)
= O

(
(log |T |)−1/12

)
,

where v(u) is defined in (3.3) and the O-constant does not depend on the level u.

Proof of Lemma 3.1. We apply Lemma A.1 with X = g/σg. Indeed, the condition (2.1) implies assumption
(A.1). Hence, with the notations that are in force, in particular (A.2), conclusion of Lemma A.1 can be rewritten
as

dW

(
|T |1/2

(
C
/T
2 (g, u)− C∗2 (g, u)

)
, N (0, σ2(u/σg))

)
= O

(
(log |T |)−1/12

)
, (3.4)

Note that obviously, (3.4) yields the same CLT as (3.2) for the excursion area as T ↗ R2, and hence the variance
σ2(u/σg) given by (A.2) equals variance v(u) given by (3.3).

Let us come back to the study of the asymptotics of Y εT , defined by (3.1). We will use the next decomposition

Y εT (u) = |T |1/2
(
C
/T
2 (f, u)−Ψ

(
u− εX
σg

))
+ |T |1/2

(
Ψ

(
u− εX
σg

)
− E

[
Ψ

(
u− εX
σg

)])
=: ZεT (u) +RεT (u). (3.5)

3.1. Asymptotics for fixed small ε and T ↗ R2

In this section, we introduce a non-Gaussian random variable that we denote by Θε(u). We firstly provide an
upper-bound for the Wasserstein distance between ZεT (u) in (3.5) and Θε(u). Secondly, we describe the form of
the density of Θε(u) by providing a Taylor expansion for small ε > 0.

Theorem 3.2 (Quantitative asymptotics for ZεT (u)). Let f(t) = g(t) + εX, t ∈ R2 as in Definition 2.2 with
E[X] = 0. For any fixed ε > 0 and u ∈ R, we consider Θε(u) a random variable whose conditional distribution
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given {X = x} is centered Gaussian with variance v(u− εx), v(·) being defined by (3.3). Then, as T ↗ R2, it
holds that

dW (ZεT (u),Θε(u)) = O
(

(log |T |)−1/12
)
,

where the constant involved in the O-notation depends neither on ε nor on u.

Proof of Theorem 3.2. By the definition of Wasserstein distance, we have

dW (ZεT (u),Θε(u)) = sup
h∈H

∣∣E[h(ZεT (u))− h(Θε(u))]
∣∣

≤ E
[

sup
h∈H

∣∣E[h(ZεT (u))− h(Θε(u))|X]
∣∣] .

The latter supremum is equal to the Wasserstein distance between ZεT (u) and Θε(u) with respect to the
conditional expectation given X.

Actually, conditionally to {X = x}, ZεT (u) equals |T |1/2
(
C
/T
2 (g, u− εx)− C∗2 (g, u− εx)

)
, since C∗2 (g, ·) :=

Ψ( ·σg ) and Θε(u) is N (0, v(u− εx)) distributed.

Hence, applying Lemma 3.1 yields suph∈H
∣∣E[h(ZεT (u)) − h(Θε(u))|X]

∣∣ = O
(
(log |T |)−1/12

)
, where the O-

constant does not depend on u nor on ε and X. Lebesgue dominated convergence theorem allows us to
conclude.

We now focus on the random variable Θε(u) that has been introduced in Theorem 3.2. Let us quote that it
is non-Gaussian, yielding an unusual non-Gaussian limit of ZεT (u) as T ↗ R2. In the next theorem, we provide
the density distribution function of Θε(u) and a corresponding Taylor expansion for small ε > 0.

Theorem 3.3. Under the same assumptions as Theorem 3.2, it holds that, for fixed ε > 0,

ZεT (u) = |T |1/2
(
C
/T
2 (f, u)−Ψ

(
u− εX
σg

))
d−→

T↗R2
Θε(u), (3.6)

where Θε(u)’s probability density function is given by

hε : y 7→ E[φ(v(u− εX), y)], y ∈ R, (3.7)

where φ(v, ·) stands for the p.d.f. of N (0, v) and v(·) is given by (3.3). Furthermore, hε can be expanded for
small ε > 0, as

hε(y) = fδ=0
BEP (y) +

ε2 E[X2]

2

[
3

4

v′(u)2

v(u)2
(
fδ=0
BEP (y)− 2fδ=2

BEP (y) + fδ=4
BEP (y)

)
+

1

2

v′′(u)

v(u)

(
− fδ=0

BEP (y) + fδ=2
BEP (y)

)]
+O(ε3), (3.8)

where

fδBEP(y) =

∣∣∣∣∣ y√
2v(u)

∣∣∣∣∣
δ

e−
y2

2v(u)

(√
2v(u) Γ

(
δ + 1

2

))−1
, y ∈ R. (3.9)

The notation fBEP in (3.9) stands for Bimodal Exponential Power density function as detailed in the discussion
below.
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Proof of Theorem 3.3. The convergence in (3.6) is a direct consequence of Theorem 3.2. In order to get the
probability density function of Θε(u) in (3.7), it is enough to compute E[ξ(Θε(u))] for any bounded positive
function ξ as follows,

E[ξ(Θε(u))] = E [E[ξ(Θε(u))|X]] = E
[∫

R
ξ(y)φ(v(u− εX), y) dy

]
=

∫
R
ξ(y) E[φ(v(u− εX), y)] dy,

where Fubini-Tonelli theorem has been used for the last equality.
To get the approximation of hε in (3.8), we recall the following result that can be proved with Taylor expansion

and easy algebra.

Lemma 3.4. For any function ϕ in C3(R) with bounded derivatives up to order two and any random variable
η with finite third moment,

E[ϕ(η)] = ϕ(E η) +
1

2
ϕ′′(E η) Var η +O(E[|η − E η|3]),

where the constant in O-notation depends on Var η and on the bounds of derivatives of ϕ.

Applying Lemma 3.4 with η = εX and ϕ(·) = φ(v(u − ·), y) for fixed u, y and ε, and bearing in mind that
E[X] = 0, one gets

E[φ(v(u− εX), y)] = φ(v(u), y) +
1

2
ϕ′′(0) ε2 E[X2] +O(ε3 E[|X|3]),

where

ϕ′′(0) = ∂2vvφ(v(u), y) v′(u)2 + ∂vφ(v(u), y) v′′(u).

Since

∂vφ(v, y) =

√
πve−

y2

2v (y2 − v)

2π
√

2v3
and ∂2vvφ(v, y) =

√
πv(y4 + 3v2 − 6vy2)e−

y2

2v

4v5π
√

2
,

the proof is complete.

Discussion on hε density.

Since the density in (3.8) plays a crucial role in our asymptotics and as its non-Gaussian shape was not
previously studied in the literature, in the following we propose an analysis of the truncated version of hε(y)
(i.e., we neglect the O(ε3) term),

h̃ε(y) = fδ=0
BEP (y)(1 + γ1 − γ2) + fδ=2

BEP (y)(γ2 − 2γ1) + fδ=4
BEP (y)γ1, (3.10)

where fδBEP(y) as in (3.9) and γ1 := 3
8 ε

2 E[X2] v
′(u)2

v(u)2 , γ2 := 1
4 ε

2 E[X2] v
′′(u)
v(u) .

Firstly, one can remark that coefficients γ1 and γ2 of the linear combination h̃ε depend on the variance
function v(u) in (3.3) and on its first and second derivatives. For the nodal set with u = 0 one can easily evaluate
v(0) = (2π)−1

∫
R2 arcsin(ρ(t)) dt. An illustration of theoretical u 7→ v(u) in (3.3), u 7→ v′(u) and u 7→ v′′(u) can

be found in Figure 4 (left panel).
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Figure 4. Preliminary studies to build h̃ε as in (3.10), on BEP functions, u 7→ v(u) and its
derivatives. Left panel: u 7→ v(u) in (3.3) (dotted black line), u 7→ v′(u) (dashed red line) and
u 7→ v′′(u) (crossed blue line), for several levels u. Black point represents the value v(0). Center
and right panels: theoretical Bimodal Exponential Power density functions for u = 1.5 (center
panel) and u = 3 (right panel). We display fδ=0

BEP (black line) fδ=2
BEP (red line) fδ=4

BEP (blue line),

with fδBEP as in (3.9) with v(u) as in (3.3). The considered correlation function is ρ(t) = e−κ
2‖t‖2 ,

with σg = 1 and κ = 100/210.

Furthermore, notice that function fδBEP(y) in (3.9) is a particular case of the Bimodal Exponential Power den-

sity function, i.e., fBEP(y) = (α|y−µζ |
δe−|

y−µ
ζ |

α

) (2ζΓ( δ+1
α ))−1, for y ∈ R (see [17]) with fixed values of parameters

α = 2, µ = 0 and ζ =
√

2v(u) and varying δ. Obviously, for y ∈ R, fδ=0
BEP (y) = φ(v(u), y), i.e., the Gaussian den-

sity with zero mean and variance v(u). An illustration of the behaviour of these multimodal densities for two
different values of u is given in Figure 4 (u = 1.5 center panel, u = 3 right panel).

Theoretical resulting h̃ε functions in (3.10), built by using v(u), v′(u), v′′(u) and fδBEP functions studied
above, are displayed below in Section 3.3 (see Figs. 5 and 6).

3.2. Asymptotics for ε → 0 and T ↗ R2

Let T (N) = NT , as introduced in Section 2.1. In the following we prove that Y εN
T (N) given by (3.1) satisfies a

classical Central Limit Theorem as soon as εN goes to 0 sufficiently fast, for N →∞.

Theorem 3.5. Let f(t) = g(t) + εX, t ∈ R2 as in Definition 2.2 with E[X] = 0 and εN be such that

lim
N→∞

N εN = 0. (3.11)

Then it holds that,

Y εN
T (N)(u) = |T (N)|1/2

(
C
/T (N)

2 (f, u)− E[C
/T (N)

2 (f, u)]
)

d−→
N→∞

N (0, v(u)),

with v(u) given by (3.3).

Proof of Theorem 3.5. We start by writing Y εT (u) = (Y εT (u)−Θε(u)) + Θε(u).

On the one hand, by triangular inequality we have

dW (Y εT (u),Θε(u)) ≤ dW (Y εT (u), ZεT (u)) + dW (ZεT (u),Θε(u)) (3.12)
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From (3.5), we have dW (Y εT (u), ZεT (u)) ≤
√
E[RεT (u)2]. Then, since

E[RεT (u)2] = |T |E

[(
Ψ

(
u− εX
σg

)
− E

[
Ψ

(
u− εX
σg

)])2
]
,

by performing the Taylor expansion of Ψ
(
u−εX
σg

)
at order 1 and using |Ψ′| ≤ C, we get

E[RεT (u)2] = |T |

(
Ψ′
(
u

σg

)2
ε2 E[X2]

σ2
g

+O(ε3)

)
= ε2|T |

(
C2

σ2
g

E[X2] +O (ε)

)
,

where the constant involved in the O-notation does not depend on T . Then, from condition in (3.11), the first
term on the r.h.s. of (3.12) with ε = εN and T = T (N) goes to 0 as N goes to infinity.

Concerning the second term, Theorem 3.2 yields κ1 (log |T |)−1/12 as upper bound, where κ1 does not depend
on ε. Therefore, the second term on the r.h.s. of (3.12) goes to 0 as T ↗ R2 uniformly with respect to ε (see
Thm. 3.3).

Finally, thanks to the Wasserstein distance in (3.12) that goes to 0, we get that Y εN
T (N)(u)−ΘεN (u) converges

to 0 in distribution.

On the other hand, ΘεN (u)
d→

N→∞
N (0, v(u)) since hε(y) → φ(v(u), y) as ε → 0. At last, Slutsky theorem

allows us to conclude.

Remark 3.6. A careful inspection1 of the proof of Theorem 3.5 shows that under the assumption 1 + ρ(t) 6= 0
for all t 6= 0 we have

dW
(
Y εN
T (N)(u),N (0, v(u))

)
−→
N→∞

0.

Actually,

dW
(
Y εN
T (N)(u),N (0, v(u))

)
≤ dW

(
Y εN
T (N)(u),ΘεN (u)

)
+ dW (ΘεN (u),N (0, v(u))) . (3.13)

The first term on the r.h.s. of (3.13) has been already shown to vanish as N → +∞ in the proof of Theorem 3.5.
To deal with the second term, note first that for every ε > 0

Θε(u) =
√
v(u− εX)U,

where U is a standard Gaussian independent of X and the equality is in law. Then

dW (Θε(u),N (0, v(u))) = dW

(√
v(u− εX)U,

√
v(u)U

)
≤

√
2

πv(u)
E[|v(u− εX)− v(u)|]

≤ C

(
1 + |u|√
v(u)

)
ε, (3.14)

1We thank an anonymous referee for this insight.
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Table 1. Parameters setting associated to Figure 5. Here |T | = 10242, σg = 1 and ρ(t) =

e−κ
2‖t‖2 , for κ = 100/210, i.e., λ = 0.019.

u X ε ε := ε2 E[X2] γ1 γ2 Figure 5

1.5 Skellamµ1=µ2=1

0.5 0.5 0.979 0.485 left panel
first row0.3 0.18 0.352 0.175 center panel

0.1 0.02 0.039 0.019 right panel

3 Skellamµ1=µ2=1

0.5 0.5 2.818 1.774 left panel
second row0.3 0.18 1.015 0.639 center panel

0.1 0.02 0.113 0.071 right panel

for some positive constant C only depending on E[X2] and σ2
g . Indeed, if 1 + ρ(t) 6= 0 for all t 6= 0, from (3.3)

we have

|v′(u)| ≤ 2

π
|u|
∫
R2

|ρ(t)|√
1 + ρ(t)(

√
1 + ρ(t) +

√
1− ρ(t))

dt ≤ C|u|,

for some positive constant C depending only on σ2
g . In particular, the inequality in (3.14) ensures the second

term on the r.h.s. of (3.13) to go to zero as N → +∞.

3.3. Numerical illustrations

All over this section, σg is assumed to be equal to 1. In the following, by using histograms we compare the

empirical density of the random variable ZεT (u) := |T |1/2(C
/T
2 (f, u)−Ψ(u− εX)) versus the truncated proba-

bility density function of Θε, i.e., h̃ε given in (3.10). Each histogram is built by reproducing 300 Monte-Carlo
independent simulations in a large domain such that |T | = 10242.

Case 1: X is Skellam distributed.
Firstly, we consider the case where X follows a discrete Skellam probability distribution which is the difference
of two independent Poisson-distributed random variables with respective expected values µ1 and µ2. In partic-
ular we consider µ1 = µ2 to have X centered. We choose the parameters setting gathered in Table 1. Obtained
results are shown Figure 5 for u = 1.5 (first row) and for u = 3 (second row). Furthermore, necessary prelimi-

nary studies to built h̃ε as in (3.10), on BEP functions, u 7→ v(u) and its derivatives are given in Section 3.1.

Case 2: X is t-distributed.
We now consider the case where X follows a t-distribution and the parameters are those in Table 2. Obtained
results are shown Figure 6 for u = 1.5 (first row) and for u = 3 (second row). Preliminary studies of BEP
functions, u 7→ v(u) and its derivatives are identical to those in Section 3.1.

The multimodal behaviour of h̃ε in (3.10) is clearly visible in Figures 5 and 6. Furthermore in the numer-
ical studies above one can appreciate the contiguity property of the proposed model for ε → 0. Indeed since
theoretically hε(y) → φ(v(u), y) as ε → 0, in Figures 5 and 6 the unimodal Gaussian behaviour appears when
the perturbation magnitude decreases (ε = 0.5 in first columns of Figures 5 and 6, ε = 0.3 in second columns
and ε = 0.1 in third ones). Finally the choice of the level u plays an important role in term of magnitude of
obtained histograms (see the y-axis scale in Figs. 5 and 6). This behaviour was already visible in the theoretical

h̃ε function (see center and right panels of Fig. 4 for u = 1.5 and u = 3 respectively).
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Figure 5. Histogram for the study of density of ZεT when X is Skellam distributed, for u = 1.5
(first row) and u = 3 (second row), based on 300 Monte-Carlo independent simulations. The
chosen parameters setting is gathered in Table 1. In particular we chose ε = 0.5 (first column),

ε = 0.3 (second column) and ε = 0.1 (third column). Necessary preliminary studies to build h̃ε
as in (3.10), on BEP functions, u 7→ v(u) and its derivatives are given in Figure 4. Resulting

theoretical h̃ε density is drawn by using red plain line.

Table 2. Parameters setting associated to Figure 6. Here |T | = 10242, σg = 1 and ρ(t) =

e−κ
2‖t‖2 , for κ = 100/210, i.e., λ = 0.019.

u X ε ε := ε2 E[X2] γ1 γ2 Figure 6

1.5 tν=5

0.5 0.417 0.816 0.404 left panel
first row0.3 0.150 0.294 0.145 center panel

0.1 0.017 0.033 0.016 right panel

3 tν=5

0.5 0.417 2.349 1.478 left panel
second row0.3 0.150 0.846 0.532 center panel

0.1 0.017 0.094 0.059 right panel
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Figure 6. Histogram for the study of density of ZεT when X is t-distributed, for u = 1.5
(first row) and u = 3 (second row), based on 300 Monte-Carlo independent simulations. The
chosen parameters setting is gathered in Table 2. In particular we chose ε = 0.5 (first column),

ε = 0.3 (second column) and ε = 0.1 (third column). Necessary preliminary studies to build h̃ε
as in (3.10), on BEP functions, u 7→ v(u) and its derivatives are given in Figure 4. Resulting

theoretical h̃ε density is drawn by using red plain line.

4. Inference for perturbation

4.1. Unbiased estimator of the perturbation

In this section we will focus on the restrictive case σg = 1. If the variance of the considered field is unknown a
preliminary estimation of σ2

g is necessary. In the case where only the sparse observations given by the excursion
sets are available, this statistical issue is investigated in [14].

Let u 6= 0 being fixed. We introduce ε := ε2 E[X2]. Since E[X] = 0, it is clear that ε quantifies the variability
around zero of the considered perturbation and it can be useful to measure the discrepancy between the observed
excursion set T ∩ Ef (u) and the associated Gaussian one.

By using (2.12) and then (2.5), we can rewrite

E[C
/T
2 (f, u)] = C∗2 (g, u) + ε

π

λ
C∗0 (g, u) +O(ε3/2) = Ψ(u) + ε

u

2
√

2π
e
−u2

2 +O(ε3/2).
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It appears then clearly that ε has the same order of magnitude than

εu :=
2
√

2π e
u2

2

u
(C∗2 (f, u)−Ψ(u)). (4.1)

This means that ε in (4.1) can be estimated by using the LK curvature of order 2, i.e., the area of the excursion
set at a (chosen) level u. Then, εu is completely empirically accessible by using this sparse observation because
it does not depend on the (unknown) second spectral moment λ of the Gaussian field. In Proposition 4.1 below,
we present a consistent estimator based on the observation T ∩ Ef (u) for the perturbation error εu.

Proposition 4.1. Let f(t) = g(t) + εX, t ∈ R2 as in Definition 2.2 with E[X] = 0. Let u 6= 0 being fixed. Let
consider the empirical counterpart of εu in (4.1), i.e.,

ε̂u,T :=
2
√

2πe
u2

2

u

(
Ĉ2,T (f, u)−Ψ(u)

)
, (4.2)

with Ĉ2,T (f, u) as in (2.9). Then, it holds that

(i) ε̂u,T is an unbiased estimator for εu,

(ii) |T (N)|1/2(ε̂u,T (N) − εu)
d−→

N→∞
N (0, σ2

εu), with σ2
εu = 8π eu

2

u2 v(u) for v(u) as in (3.3) with σg = 1.

Proof of Proposition 4.1. Since Ĉ2,T (f, u) is an unbiased estimator of C∗2 (f, u), one can easily see that E[ε̂u −

εu] = 0. Furthermore, using the fact that |T (N)|1/2(ε̂u − εu) =
√
8πe

u2

2

u Y εN
T (N)(u), from Theorem 3.5 we get the

result.

Remark 4.2. If u = 0, assuming that E[X3] 6= 0 and the fourth moment of X is finite, then by Taylor developing

the function E[C
/T
2 (f, 0)] up to the order 3 (see Prop. 2.5) we easily get an unbiased and asymptotically normal

estimator for ε3E[X3], similar to the r.h.s. of (4.2).

4.2. Numerical illustrations

In this section we provide an illustration of the inference procedure for the perturbation ε := ε2 E[X2]
proposed in Section 4.1 above. The considered perturbed model and the associated parameters are gathered in
Table 3. By using this framework, in Figure 7 one can appreciate the finite sample performance of the inference
procedure proposed in Section 4.1 above, for several values of perturbation ε and for two levels u (u = 1.5 in
center panel and u = 3 in right one).

Unsurprisingly, we remark that the variability of the estimation is related to the choice of level u. The
asymptotic standard deviation function u 7→ σεu |T (N)|−1/2 in the left panel of Figure 7 allows us to identify
some choices of levels u where the variance is minimum. Indeed, for large values of |u|, less observations are
available than for intermediate values of |u|. This aspect can be appreciated by observing the larger confidence
intervals in the case u = 3. For u = 0, the variance σ2

εu diverges (see the left panel of Fig. 7) implying that this
inference procedure will be not robust for u ≈ 0 (see Rem. 4.2).

5. Discussion

In this paper we study how geometric quantities change under small perturbations of the underlying Gaus-
sian field. We focus on the particular case of an independent, additive, spatial-invariant noise with zero mean
perturbing a stationary isotropic Gaussian field. This perturbed model, f := g + εX, can be seen as a small
super-imposed noise to a Gaussian field. In this setting, the zero mean assumption of the noise is usually required
in the literature. However similar Taylor expansion formulae as those in Proposition 2.5 and Corollary 2.6 are
still possible with an extra linear ε term.
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Table 3. Parameters setting associated to Figure 7. Furthermore we consider |T | = 10242,

σg = 1 and ρ(t) = e−κ
2‖t‖2 , for κ = 100/210, i.e., λ = 0.019.

Level u X Chosen ε ε := ε2 E[X2] average of estimated ε̂u Figure 7

on 100 Monte-Carlo Simulations

1.5
Skellam

µ1 = µ2 = 1

0.1 0.02 0.023

first panel
0.2 0.08 0.085

0.3 0.18 0.182

0.4 0.32 0.324

0.5 0.50 0.492

3
Skellam

µ1 = µ2 = 1

0.1 0.02 0.033

second panel
0.2 0.08 0.072

0.3 0.18 0.158

0.4 0.32 0.345

0.5 0.50 0.510

Figure 7. Left panel: theoretical u 7→ σεu |T (N)|−1/2 in Proposition 4.1. Center and right pan-
els: Theoretical ε := ε2 E[X2] (black circles) and obtained average of ε̂u on 100 Monte-Carlo
independent simulations (red stars). Theoretical confidence intervals at level 0.95 prescribed by
Proposition 4.1 are also displayed. The chosen parameters setting is gathered in Table 3. Here
u = 1.5 (center panel) and u = 3 (right panel).

Notice that we work here under the assumption µ = E(g(0)) = 0. Furthermore, the statistical inference
procedure for perturbation in Section 4 is developed in the restrictive unit-variance case, σg = Var(g(0)) = 1. If
the mean and the variance of the considered underlying Gaussian field are unknown a preliminary estimation
is then necessary. In the case where only the sparse observations obtained from one or two excursion sets of the
field are available, this important statistical issue has been recently investigated in [14].

The asymptotic analysis for the excursion area presented in this paper is based on a quantitative CLT in
Wasserstein distance for C2(g, u), where in particular the bound does not depend on the level u (see Lem. (3.1)).
This result is a refinement of Theorem 2 in [28]. Concerning the other Lipschitz-Killing curvatures on R2,
boundary length and Euler-Poincaré characteristic, it should be possible to get similar results, i.e. quantitative
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CLT in Wasserstein distance with uniform bounds, carefully exploiting their chaotic decomposition. However,
this interesting issue goes far beyond the purpose of the present work.

Finally, notice that the mean of LK curvatures in Proposition 2.5 can be derived also in the case of an additive
spatially variant perturbation, i.e., f(t) = g(t) + εX(t), for t ∈ R2 and ε > 0, with X a stationary random field
with finite third moment and independent of g. The proof comes down in the same way and the results are
completely analogous to those in equations (2.10), (2.11) and (2.12). However, the asymptotics results obtained
in Section 3 will become more challenging in that case. Indeed, even in the classical case of excursion area of
Gaussian fields, to the best of our knowledge we are not aware of any (quantitative) central limit theorem in the
case of a non-constant level. This could represent an interesting point to investigate in a future work. For sake
of completeness, the interested reader is referred to [21] where CLT results are obtained for the curve-crossings
number of a stationary Gaussian process (d = 1) according to the form of the moving curve (periodic or linear).

Appendix A. Uniform rates of convergence for CLTs of
sojourn times of stationary Gaussian fields

The following lemma is a refinement of a result in [28]. Therefore, we keep the notations introduced therein.

Lemma A.1. Let {X(t), t ∈ Rd} be a stationary centered Gaussian field with unit variance and covariance
function ρ ∈ L1(Rd). For T > 0 and u ∈ R, we define ST (u) to be

ST (u) :=

∫
[0,T ]d

1(X(t)≥u) dt

the excursion volume above level u. Under the hypothesis that∫
Rd\[−a,a]d

|ρ(t)|dt = O (1/ log a) , a→ +∞, (A.1)

we have, as T → +∞,

dW

(
ST (u)− T dΨ(u)√

T d
,N (0, σ2(u))

)
= O

(
1/(log T )1/12

)
,

where the constant involved in the O-notation only depends on the field {X(t), t ∈ Rd} and where

0 < σ2(u) :=

+∞∑
n=1

φ2(u)H2
n−1(u)

n!

∫
Rd
ρn(t) dt < +∞, (A.2)

φ being the density function of the standard Gaussian and Ψ the tail of its distribution.

Remark A.2. Actually, Theorem 2 in [28] ensures that, as |T | → +∞,

dW

(
ST (u)− T dΨ(u)√

T d
,N (0, σ2(u))

)
= O

(
1/(log T )1/4

)
, (A.3)

where the constant involved in the O-notation depends on the field and the level. By adapting the proof, we
provide a uniform rate of convergence w.r.t. the level u in (A.3).
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Proof of Lemma A.1. We will use the following estimate see e.g. ([19], (30) and [20], Prop. 3): there exists K > 0
such that, for every n ∈ N and x ∈ R, we have

exp(−x2/4)|Hn(x)| ≤ K
√
n!n−1/12. (A.4)

We can write

dW

(
ST (u)− T dΨ(u)√

T d
,N (0, σ2(u))

)
≤ dW

(
ST (u)− T dΨ(u)√

T d
,
ST,NT (u)− E[ST,NT (u)]√

T d

)
+ dW

(
ST,NT (u)− E[ST,NT (u)]√

T d
,N (0, σ2

NT (u))

)
+ dW

(
N (0, σ2(u)),N (0, σ2

NT (u))
)

=: d1 + d2 + d3,

where ST,NT is the truncation of ST at position NT in the Wiener chaos expansion (NT will be chosen later
on). For d1 we have, due to (A.4),

d1 ≤

√√√√ +∞∑
n=NT+1

φ2(u)H2
n−1(u)

n!T d

∫
[−T,T ]d

ρn(t)

d∏
j=1

(T − |tj |) dt

≤K
√
φ(u)

√∫
Rd
|ρ(t)|dt

√√√√ +∞∑
n=NT+1

1

n(n− 1)1/6

=O(N
−1/12
T ),

(A.5)

where the constant involved in the O-notation only depends on the field.
Note that due to (A.4) we can give upper bounds for d2 and d3 (being inspired by the proof of Thm. 2 in

[28]) independently of u,

d2 = O(3NT /
√
T d), d3 = OT→+∞(N

−1/12
T + T−1/4 + (log T )−1/2). (A.6)

Summing up the bounds for d1, d2, d3 in (A.5) and (A.6), and choosing NT = (log T )/4 we have

d1 + d2 + d3 = OT→+∞((log T )−1/12),

that concludes the proof.

Acknowledgements. The authors would like to thank Domenico Marinucci for insightful comments. The research of MR
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